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ABSTRACT
In this paper, we develop a methodology to estimate the power spectrum of an experimentally-obtained data set for high-integrity
modeling of Kalman filter (KF) input noise time correlation. In theory, power spectral density (PSD) upper-bounding can be
used to determine time-correlated error models that guarantee bounds on the estimation error variance in recursive navigation
algorithms such as KFs. This assumes that an empirical PSD is given. In practice, there is more than one way to determine
a PSD from data. This PSD estimate depends on the number of samples in the data set, on the windowing process, and on
the PSD frequency resolution. These parameters have an impact on the robustness of the PSD-upper-bounding model. In this
paper, we analyze error model sensitivity to these parameters for example simulated random processes and for a one-year-long
time-series of GPS orbit and clock ephemeris errors.

I. INTRODUCTION
This paper addresses three practical challenges encountered when determining a power spectral density (PSD) from time-
correlated data for high-integrity Kalman filter (KF)-based navigation. In theory [1, 2], PSD-upper-bounding enables time-
correlated measurement error modeling to upper-bound the estimation error variance of linear, recursive algorithms. In practice,
empirical PSD determination depends on the number of samples in the data set, on the windowing process, and on the PSD
frequency resolution. In this paper, we analyze the sensitivity of PSD-upper-bounding error models to these parameters for an
example simulated random process and for a one-year-long time-series of GPS orbit and clock ephemeris errors.

Safety-critical navigation applications require that estimation errors be reliably quantified. Over the last two decades, significant
effort was spent towards guaranteeing bounds on Global Navigation Satellite Systems (GNSS)-based position estimation errors
in the context of satellite-based and ground-based augmentation systems (SBAS, GBAS) and Advanced Receiver Autonomous
Integrity Monitoring (ARAIM) for aviation applications. Positioning error bounds were achieved by careful modeling of GNSS
ranging measurement errors and by rigorous algorithm design that quantify integrity and continuity risks.

Emerging high-accuracy, high-integrity, and high-continuity navigation applications require the use of sequential estimators
such as KFs. This poses new challenges for integrity monitoring because the time correlation of measurement errors must be
robustly accounted for despite being uncertain. Bounding models for uncertain first-order Gauss Markov processes (FOGMP)
are derived in the time and frequency domains in [3, 4] and are applied in GNSS/INS implementations in [5, 6]. The more
general case of non-FOGMP stationary time-correlated processes is treated in references [1] and [2], which show that PSD
upper bounding of independent measurement error sources guarantees an upper bound on KF estimation error variance. Using
PSD upper bounding, finite-parameter models such as two-parameter FOGMP models can be use to safely account for complex
random processes. However, there is no systematic approach to estimate an empirical PSD from experimental data to ensure
high-integrity error modeling.

In response, in this paper, we develop a methodology to analyze the impacts of autocorrelation sequence (ACS) windowing
parameters, estimated PSD frequency resolution, and data sample sparsity.

Section II is a problem statement further exposing the relevance of these three challenges for high-integrity PSD estimation
using experimental data.

Section III addresses windowing parameters. In [1], a procedure is outlined for modeling correlated noise that involves applying

* The author’s affiliation with The MITRE Corporation is provided for identification purposes only and is not intended to convey or imply MITRE’s
concurrence with, or support for, the positions, opinions, or viewpoints expressed by the author.

© 2023 THE MITRE CORPORATION.



a rectangular or a tapered window to the ACS and then taking its Fourier transform to estimate the PSD. The window size
can be limited by the maximum period over which a GNSS satellite is visible. Because rectangular windows cause spectral
leakage in the Fourier transform, a tapered window with a roll-off period can be applied. In this paper, we analyze the impact
of tapering on the PSD-bounding model of simulated random process. We observe that short-period tapering fails to reduce
spectral leakage whereas longer-period tapering may incorporate unnecessary frequency content that would not impact realistic
operations where a satellite’s visibility period is limited. We outline a procedure for finding the window tapering period that
minimizes the variance of the PSD-bounding process.

In Section IV, we address the fact that the PSD is estimated at discrete frequencies and the PSD is then upper-bounded at those
frequencies for modeling. Ignoring that the PSD is a continuous function raises doubt as to whether the model’s PSD truly
exceeds the estimate at all frequencies because only a finite number of frequencies would be considered. In this paper, we
develop a new automated method to account for the continuous nature of the PSD. It finds local PSD maxima using an analytical
expression of the PSD. We give this expression in terms of a sum of sample-based coefficients multiplying cosine functions of
integer multiples of the frequency. The maxima are then be upper-bounded for robust modeling. We evaluate this automated
approach using samples drawn from a simulated random sample time series.

In Section V, we analyze the impact of sample size in PSD estimation. We use analytical expressions of FOGMP PSDs to
illustrate the fact that, given a fixed GMP variance, a finite-sample time series has less low-frequency content than a continuous
(infinite sample) time-process. This difference is quantified analytically and for an example simulated FOGMP.

Finally, Section VI implements the above procedures to derive a high-integrity model of time-correlated GPS satellite orbit and
clock ephemeris errors.

II. PROBLEM STATEMENT: THREE CHALLENGES WITH PSD UPPER-BOUNDING
Assuming that a measurement error ACS is available, the method outlined in [1] and [2] uses the Wiener-Khinchin theorem to
derive a PSD estimate. In the next paragraph, we will apply a window function to the ACS in Fig. 1a. A PSD-upper-bounding
model F̄(Ω) can then be established as illustrated in Fig. 1b. For example, we may consider a FOGMP model because it is
easily incorporated in a KF by state augmentation. Thus, for a linearly filtered measurement sequence with ACS shown in the
left panel in Fig. 1, we can use the FOGMP model with PSD F̄(Ω) shown in the right panel to predict a guaranteed upper
bound on the estimation error variance [1].

(a) Example time-correlated measurement noise autocorrelation
sequence for a FOGMP evaluated at 1-second lag-intervals over
1400 samples and shown for lag times 0 to 800 s.

(b) Sample PSD of the measurement error process (in red) and PSD-upper-
bounding FOGMP model (dashed black). The x-axis’ circular frequency Ω
is the frequency (in rad/s) multiplied by the sample interval ∆t.

Figure 1: Overview of the PSD upper-bounding process.

Consider a KF measurement error process filtered over a time period not exceeding n∆t where ∆t is the sampling interval. For
example, at a static GNSS receiver location, it is typical for satellite visibility periods to be such that n∆t ≤ 7 hours. We assume
that measurement noise components (e.g., satellite measurement errors) are mutually independent and that each measurement
noise component is zero-mean and stationary over the interval. A conservative noise model is achieved when the noise model’s
PSD is such that [1]:



F̄(Ω) ≥ r0 + 2

nw∑
l=1

ϕlrl cos (lΩ) for all Ω ∈ [0, π], (1)

where F̄(Ω) is the time-correlated noise model PSD, rl is the ACS of the noise component at lag index l corresponding to lag
time l∆t (shown on the left-hand-side panel in Fig. 1, and ϕl is the window function with ϕl = 1 for l ≤ n, ϕl = 0 for l ≥ nw

and ϕl is defined in [3] as a monotonically decreasing function with values from 1 to 0 when l ranges from n to nw.

In Eq. 1, we apply a windowing function ϕl because lag times longer than n∆t are not encountered in operation. A rectangular
ACS window over lag times 0 to n∆t can achieve this goal. However, it causes spectral leakage with ringing effects that
artificially distort the estimated PSD as shown in Fig. ??. Such an estimate would cause the PSD upper-bound to be overly
conservative. A tapered window is used instead with tapering parameter nw illustrated in Fig. 2a. The sensitivity of model
variance to nw is analyzed in Section III.

(a) Example tapered window with width n and tapering parameter nw . (b) Example PSD estimation using a rectangular window causing spectral
leakage, and using a tapered window.

Figure 2: Overview of the ACS windowing process.

In addition, in Eq. 1, F̄(Ω) is a continuous function that must be bounding for all Ω ∈ [0, π]. Typical numerical PSD estimation
routines pick discrete values of Ω at regular frequency intervals. This approach does not guarantee that Eq. 1 is satisfied. We
found practical cases, e.g., in inertial sensor data, where different frequency resolutions yielded significantly different results.
Section IV presents a method to identify PSD peaks without PSD evaluation at arbitrary Ω-values.

Another practical consideration is that the estimated measurement error ACS r̂l is derived from data, after verifying that the
noise process is zero-mean and stationary [5]. The data set should be as large as possible to reduce ACS noisiness [7]. Sensitivity
to the number of samples in the dataset is analyzed in Section II for a FOGMP.

III. PSD ESTIMATE SENSITIVITY TO WINDOWING
Two parameters define the windowing function ϕl in Eq. 1 as illustrated in Fig. 2. The window width n is determined by the
operational filtering duration. In contrast, there is no obvious criterion to select the window tapering parameter nw. Several
values for nw are evaluated in Appendices C and H of [7].

For the stationary noise process ACS in Fig. 1 with n=600, we can vary nw-values to find the minimum variance FOGMP
model that satisfies the PSD inequality in Eq. 1. Consider an FOGMP with time constant τ and variance σ2. For now, PSD
upper-bounds are found for each nw-value using a time-consuming brute-force strategy: we vary FOGMP parameter values (σ
and τ ) till the empirical PSD is upper-bounded by the FOGMP model’s PSD.

For each nw-value, the minimum FOGMP variance value resulting from the two-dimensional search process is plotted in Fig.
3. The figure shows that the FOGMP variance reaches a minimum at a nw-value highlighted by a vertical dashed black line. We
observed this trend in all ACS that we analyzed. The reason is the following. To the left of dashed line, the PSD-bounding model
variance decreases as spectral leakage decreases. To the right of dashed line, the model variance increases because frequency
content is included in PSD estimation, which does not need to be modeled because ACF contributions beyond lag times n∆t
have no impact in actual operations. Thus, it is safe to consider the FOGMP model derived, in this example, for nw = 875.



Figure 3: Example analysis of PSD-bounding model variance versus window tapering parameter nw.

High-integrity error models are typically determined off-line using large amounts of historical data. It is therefore not essential
to limit the model determination’s computation time. Still, the curve in Fig. 3 took many hours to generate. Computation
time reduction contributed to motivate the approach developed in Section IV where PSD peaks are analytically found instead of
searching over many frequency values.

IV. EFFECTIVE FREQUENCY SAMPLING FOR PSD BOUNDING
This section develops an efficient method to determine a FOGMP model with PSD F̄(Ω) satisfying Eq. 1. For clarity of
exposition, we fix the value of the FOGMP time constant τ and use the notation α = e(−∆t/τ). Clever ways to find α are
described in [8]. Thus, we can formulate the problem of determining a variance-minimizing PSD-upper-bounding FOGMP
model as follows:

minimize σ2

subject to
(1− α2)σ2

1 + α2 − 2α cos(Ω)
≥ r0 + 2

nw∑
l=1

ϕlrl cos (lΩ)

for all Ω ∈ [0, π].

(2)

This optimization problem must be considered for all values of Ω ∈ [0, π], which sets an infinite number of constraints that make
Eq. 2 cumbersome to solve. Further, considering discrete Ω-values opens up the problem of adequate sampling of Ω. Figure
4 illustrates the fact that the empirical PSD’s local peaks, and therefore the PSD upper bound, are sensitive to the sampling of
Ω. The red and blue sample PSDs in Fig. 4 are respectively computed using a low and high Ω-resolution: the red PSD estimate
fails to accurately capture the peaks showed on the blue curve. The right-hand-side panel is a zoomed in view of the PSD.

Figure 4: Example PSD Estimation for two different frequency resolutions of 10−4π and 10−3π respectively shown in blue and in red.
The lower frequency resolution in red fails to accurately capture PSD peaks, which can result in underestimated PSD bounds and therefore
optimisitic error models. (Windowing parameters in this example were n = 600 and nw = 720)

In a forthcoming paper [8], we develop an analytic method to solve this problem not only for FOGMPs, but also for white noise



and second-order autoregressive models. A MATLAB implementation of the algorithm will be made publicly available.

Following this method, the FOGMP model variance is set to its minimum allowable value, i.e.:

σ2 = max
Ω

[
1 + α2 − 2α cos(Ω)

(1− α2)

(
r0 + 2

nw∑
l=1

ϕlrl cos(lΩ)

)]
. (3)

Provided that the absolute maximum can be found, it can be shown that this absolute maximum must occur at Ω∗ = 0, Ω∗ = π,
or Ω∗ = cos−1(x∗), where x∗ is a real root of the following generalized polynomial:

p(x) =

nw∑
l=1

clUl(x), (4)

and where Ul(x) is the lth order Chebyshev polynomial of the second kind. The values x∗ can be efficiently found knowing that
the roots of p(x) are generalized eigenvalues of a pair of nw × nw matrices [9].

Thus, this analytical solution to Eq. 3 eliminates the need to reduce Ω ∈ [0, π] to a finite set. We implement this method on
actual data in Section VI.

V. IMPACT OF NUMBER OF SAMPLES IN FOGMP PSD ESTIMATION
The theoretical PSD of a FOGMP with time constant τ and variance σ2 can be written as [10]:

F(Ω) =
σ2(1− α2)

1 + α2 − 2α cos(Ω)
. (5)

Let N be the number of samples. Equation 5 can be interpreted as the FOGMP PSD obtained using a data set where N
approaches infinity. The blue curve in Fig. 5 represents Eq. 5 evaluated for a FOGMP with ∆t/τ = 0.01 and variance σ2 = 1
(both unit-less).
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(b) Ω-axis in log scale to emphasize power density values at low frequencies

Figure 5: Analytical FOGMP PSD curves for values of N ranging from 100 to approaching infinity.

In practice, N is finite. In Appendix, we derive a closed-form expression of a PSD estimate F̂(Ω) for a finite N . The derivation
does not include an ACS-window with width n << N as in Sections II to IV. Instead, the Appendix shows that deriving a
PSD from a finite sample time series is equivalent to applying a triangular window to the ACS of the corresponding infinite
sample time series.This triangular window does not eliminate spectral leakage as effectively as tapering in Fig. 2a, especially



for small values of N . However, the closed-form expression still provides key insights on the impact of N on PSD estimation.
This expression can be written as:

F̂(Ω) = 2σ2 Re

(
N − (N + 1)zΩ + zN+1

Ω

N(1− zΩ)2

)
− σ2 with zΩ ≜ αe(−iΩ), (6)

where Re( ) designates the real part of a complex number.

Figure 5 shows the theoretical FOGMP PSD derived using Eq. 6 for N = 100 and N = 1000. The figure’s right-hand-side
panel is the same as the left-hand-side but uses a log-scale Ω-axis to emphasize low frequency content. As expected, for a large
value of N , the PSD approaches that of Eq. 5, whereas for a smaller value of N , we observe spectral leakage. Also expected
is a knee in the curves located at ∆t/τ = 0.01. The lower N is, the weaker the low-frequency content becomes. The finite-N
curves cross the ‘infinite-N ’ curve because the area under all three curves must equal σ2. For PSD-upper-bounding, we are
concerned about underestimating the PSD, i.e., about the low-frequency content. A value of N can be determined to limit the
low-frequency FOGMP PSD estimation error using the following expression derived from Eq. 5 and 6:

F̂(0)−F(0) =
2σ2

(1− α)2

(
N − (N + 1)α+ αN+1

N
− 1 + α

)
. (7)

VI. EXAMPLE IMPLEMENTATION FOR GPS SATELLITE ORBIT AND CLOCK EPHEMERIS ERRORS
In this section, we implement the automated time-correlated random process modeling method on actual data. Raw samples of
GPS clock and orbit ephemeris errors for PRN 5 at 30 second intervals over Year 2018 are processed to obtain the PSD estimate
in Fig. 6. Figure 6a shows the entire PSD, Fig. 6b zooms in on small Ω-values where the empirical PSD defines the FOGMP
bound, i.e., where the red sample PSD curve touches the black-dashed FOGMP model curve.

It is worth noticing that this data was previously processed in [2] with intensive inputs from the authors, and the FOGMP that
was then obtained matches the model from the automated process well. The new approach also considers all Ω-values, not only
a discrete set of such values.

(a) Transformed ACS for all frequencies (b) Zoomed-in view of the transformed ACS at low frequencies

Figure 6: PSD (transformed ACS) of PRN 5 orbit and clock error over Year 2018 and associated FOGMP PSD upper-bound. (Windowing
parameters were n = 7 hours and nw = 10 hours.)

VII. CONCLUSION
In prior work, a theoretical criterion for defining correlated measurement noise models that guarantee a bound on the KF
estimation error variance bound was derived. However, it left practical considerations on power spectral density (PSD)
estimation unaddressed, including on the sensitivity of the empirical PSD estimate to the number of samples, on the impact of
autocorrelation sequence (ACS) windowing, and on the fact that the PSD is a continuous function of frequency. An automated
method was developed to find a minimum variance first-order Gauss Markov process (FOGMP) model, which was implemented
to derive a robust model for GPS clock and orbit ephemeris error for PRN5 during Year 2018.
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A. FOGMP PSD ESTIMATE FROM FINITE NUMBER OF SAMPLES
This appendix aims at deriving an analytical expression of a PSD estimate F̂(Ω) for a finite number of samples N . This is
performed in two steps. First, we show that in general, deriving a PSD from a finite time series is equivalent to applying a
triangular window to the ACS of the corresponding infinite time series. Then, we use the Wiener Khinchin theorem to estimate
the PSD of an FOGMP from a triangular-windowed ACS.

1. The PSD of a finite discrete time series is the DTFT of the triangular-windowed infinite time series’ ACS

In order to express F̂(Ω) in terms of N , we derive a PSD estimate as a mean periodogram itself derived from measurement
error sample time series νn, for n = 0, ..., N − 1. The discrete-time Fourier Transform (DTFT) of a finite sample time series
extracted from an infinite time series using a rectangular window function ϕR,n is expressed as:

f(Ω) =

∞∑
n=−∞

νnϕR,ne
−iΩn where ϕR,n =

{
1 n ∈ [0, N − 1]
0 otherwise (8)

The periodogram of this windowed sample time series is defined as:

p(Ω) =

( ∞∑
n=−∞

νnϕR,ne
−iΩn

)( ∞∑
n=−∞

νnϕR,ne
iΩn

)

Using the fact that the DTFT of ν−n is f(−Ω), we can re-write this equation as:

p(Ω) =

( ∞∑
n=−∞

νnϕne
−iΩn

)( ∞∑
n=−∞

ν−nϕ−ne
−iΩn

)
(9)

This product of DTFTs can be expressed as the DTFT of a discrete-time convolution. The discrete-time convolution of two
function h(l) and g(l) is: (h ∗ g)[n] =

∑∞
l=−∞ h[l]g[n − l]. Substituting h(l) = νlϕR,l and g(n − l) = νl−nϕR,l−n, we can



rewrite Eq. 9 as:

p(Ω) =

∞∑
n=−∞

( ∞∑
l=−∞

(νlϕR,l)(νl−nϕR,l−n)

)
e−iΩn

=

∞∑
n=−∞

( ∞∑
l=−∞

(ϕR,l−nϕR,l)(νl−nνl)

)
e−iΩn

Let E[ ] be the expected value operator. The expectation of the periodogram scaled by 1/N is the PSD estimate F̂(Ω). Using
the definition of the ACS rn (rn = E[νl−nνl]), we obtain the following expression:

F̂(Ω) =
1

N

∞∑
n=−∞

( ∞∑
l=−∞

(ϕR,l−nϕR,l)

)
rne

−iΩn (10)

The windowing function under the double-sum can be interpreted as a convolution of rectangular windows, i.e., a triangular
window function ϕT,n, which can be expressed as:

ϕT,n =
1

N

∞∑
l=−∞

(ϕR,l−nϕR,l) =
1

N

{
N − |n| n ∈ [−N + 1, N − 1]
0 otherwise (11)

Equation 10 becomes:

F̂(Ω) =
1

N

(N−1)∑
n=−(N−1)

(N − |n|)rne−iΩn (12)

2. Finite-sample FOGMP PSD estimate
For a FOGMP, Eq. 12 becomes:

F̂(Ω) = σ2
N−1∑

n=−N+1

(
1− |n|

N

)
α|n|e(−iΩn) (13)

Splitting the sum at zero and rearranging the summation indices, we can rewrite Eq. 13 as:

F̂(Ω) =σ2

[
N−1∑
n=0

(
1− n

N

)
znΩ +

N−1∑
n=0

(
1− n

N

)
znΩ − 1

]
where zΩ ≜ αe(−iΩ) (14)

and where zΩ is the complex conjugate of zΩ. The term ‘−1’ is added to avoid accounting for the ‘n = 0’ terms twice. The
sum of complex conjugates can be rewritten as:

F̂(Ω) = σ2

(
2 Re

(
N−1∑
n=0

(
1− n

N

)
znΩ

)
− 1

)
(15)

Using geometric series formulas and simplifying, we get the following closed-form expression:

F̂(Ω) = σ2

[
2 Re

(
N − (N + 1)zΩ + zN+1

Ω

N(1− zΩ)2

)
− 1

]
(16)
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