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Abstract

This thesis presents the implementation of a spectral, non-reflecting boundary con-
dition (NRBC) for time-marching, unsteady simulations of flows in turbomachinery
components. It is well known that reflections from artificial boundaries can impair the
prediction of unsteady flow phenomena. In the context of turbomachinery flows, so-
me frequency domain methods for the most part overcome this problem using spectral
NRBCs. Since these NRBCs are non-local in space and time, a transfer to time domain
solvers is not straightforward. Challenges for a time domain implementation are high-
lighted and a detailed description of the underlying theory as well as of the specific im-
plementation is given. This work particularly addresses time domain-related aspects
of the implementation.

The NRBC presented in this work is exact for two-dimensional flows that satisfy the
linearized Euler equations. For three-dimensional, nonlinear, viscous flows, the NRBC
is approximately non-reflecting.

This work includes an extensive validation of the NRBC exhibiting substantially redu-
ced reflections in comparison to widely-used, local approximations of this NRBC. The
validation section comprises three basic, two-dimensional test cases: a transonic turbi-
ne cascade, the propagation of a single, acoustic mode in a circular duct and a popular
flutter test case known as tenth standard configuration. Moreover, this thesis shows
the application of the spectral NRBC to the flutter analysis of a transonic steam turbine
blade and to blade row interactions in a modern, transonic compressor. These realistic
configurations confirm the increased accuracy due to reduction of artificial reflections
and additionally demonstrate the necessary stability of the implemented NRBC.

Therefore, this thesis presents a reliable, accurate NRBC and, thus, offers a contribution
to more accurate time domain simulations for real-world research and design tasks.





Zusammenfassung

In dieser Arbeit wird die Implementierung einer spektralen, nichtreflektierenden Rand-
bedingung (NRBC, engl.: non-reflecting boundary condition) f Èur instationÈare Zeitbe-
reichssimulationen von StrÈomungen in Turbomaschinenkomponenten vorgestellt. Es
ist allgemein bekannt, dass Reflektionen an k Èunstlichen RÈandern die Vorhersage insta-
tionÈarer StrÈomungsphÈanomene beeintrÈachtigen kÈonnen. Im Kontext von Turbomaschi-
nenstrÈomungen beheben einige Frequenzbereichsmethoden dieses Problem mit spek-
tralen NRBCs im Wesentlichen. Da diese NRBCs rÈaumlich und zeitlich nicht lokal sind,
ist eine ÈUbertragung auf Zeitbereichsl Èoser nicht einfach. Die Herausforderungen f Èur ei-
ne Implementierung im Zeitbereich werden erlÈautert und die zugrundeliegende Theo-
rie sowie die konkrete Implementierung detailliert vorgestellt. Dabei wird insbesonde-
re auf die Aspekte eingegangen, die sich aus der Implementierung in ein Zeitbereichs-
verfahren ergeben.

Die in dieser Arbeit vorgestellte nichtreflektierende Randbedingung ist exakt f Èur zwei-
dimensionale StrÈomungen, die durch die linearisierten Euler-Gleichungen beschrieben
werden kÈonnen. F Èur dreidimensionale, nichtlineare, viskose StrÈomungen ist die NRBC
nÈaherungsweise nichtreflektierend.

Eine umfassende Validierung der nichtreflektierenden Randbedingung zeigt, dass die-
se im Vergleich zu weit verbreiteten, lokalen Approximationen dieser NRBC wesent-
lich geringere Reflektionen aufweist. Der Validierungsteil umfasst drei grundlegende,
zweidimensionale TestfÈalle: eine transsonische Turbinenkaskade, die Ausbreitung ei-
ner einzelnen akustischen Mode in einem Ringkanal und einen weit verbreiteten Flat-
tertestfall, bekannt als zehnte Standardkonfiguration. Dar Èuber hinaus wird in dieser
Arbeit die Anwendung der spektralen NRBC auf die Flatteranalyse einer transsoni-
schen Dampfturbinenschaufel und auf die Schaufelreiheninteraktion in einem moder-
nen, transsonischen Verdichter gezeigt. Diese realistischen Konfigurationen bestÈatigen
die Genauigkeitssteigerung durch Reduktion k Èunstlicher Reflexionen und demonstrie-
ren weiterhin die StabilitÈat der implementierten NRBC.

Somit stellt diese Arbeit eine tatsÈachlich praxistaugliche und zuverlÈassige, nichtre-
flektierende Randbedingung vor und leistet damit einen Beitrag zu genaueren Zeit-
bereichssimulationen f Èur reale Forschungs- und Auslegungsaufgaben.
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Nomenclature

Latin symbols
a Speed of sound
Af Cell face area
b Blade span / thickness of quasi 2D streamsurface
c Chord length
cp, cv Isobaric and isochoric specific heat capacities
dmax Maximum displacement of structural mode
d Distance between boundary surface and leading/trailing edge
E Specific total energy
F,G,H Vectors of fluxes in x-,y- an z-direction (conservative variables)
F Flux vector (F,G,H)T

f Frequency
ht Specific stagnation enthalpy
i Imaginary unit
I Identity matrix
k Boundary-normal (angular) wavenumber in radians per unit distance
l Circumferential (angular) wavenumber in radians per unit distance
li i-th left eigenvector
L Matrix of left eigenvectors to dispersion relation, Inverse of R
m Non-dimensional circumferential wavenumber,

a.k.a. (signed) nodal diameter (m = lr)
ṁ Mass flow
Ma Mach number
Mais Isentropic Mach number
N Set of natural numbers
N Number of time steps to resolve one fundamental period
n Surface-normal unit vector
p Pressure
pdyn Dynamic pressure at entry (compressible definition)
pt Stagnation pressure
P Power
P Pitch: arc length between either two blades or

circumferential extent of a computational domain
Pr Prandtl number
Prt Turbulent Prandtl number
q Vector of primitive variables
r Radius
ri i-th right eigenvector
R Matrix of right eigenvectors to dispersion relation
R Specific ideal gas constant
Re q, Im q Real and imaginary part of a complex quantity q

xi



s Specific entropy
t Time
T Period associated with fundamental frequency
T Temperature
Tt Stagnation temperature
U Vector of conservative variables
u, v, w Velocity components along coordinates x, y and z
ug, vg, wg Group velocity components
uφ, vφ, wφ Phase velocity components
V Velocity vector
Vc Cell volume
Waero Aerodynamic work per cycle
x Coordinate perpendicular to boundary or axial position
y Circumferential coordinate (y = rϑ)
y+ Non-dimensional wall distance
z Coordinate tangent to boundary, but perpendicular to y
Z Set of integers

Greek symbols
αrad, αcirc Radial and circumferential flow angles
α̂ Vector of modal amplitudes αi
α Blade pitching angle
γ Heat capacity ratio
γgeom Stagger angle
Γ Reflection coefficient (p̂in/p̂out)
δij Kronecker delta
ηts Isentropic efficiency based on

total inlet and static outlet quantities
κ Turbulent kinetic energy
λ Thermal conductivity
µ Dynamic viscosity
µt Eddy viscosity
ϱ Density
σ Inter-blade phase angle (IBPA)
σ0 Minimum nozzle cross-section (throat)
ξ Cut-off ratio (ωcrit/ω), ξ > 1: cut-off
Ξ Non-dimensional aerodynamic damping coefficient
Ψ Structural eigenmode
ω Angular frequency
ωc Acoustic resonance (angular) frequency
ω∗ Reduced frequency ((ω c) / (2∥V ∥))

Subscripts, superscripts and diacritics
R1D, L1D One-dimensional eigenvector matrices,

backward and forward characteristics transformation matrix
qabs q in the absolute/stationary frame of reference
qc State in a cell
qf State at a boundary face
qi State in boundary-adjacent, inner cell
qo State in boundary-adjacent, outer cell (ghost cell)



q̂ Fourier coefficient of q
q Time-mean area average of q
q̃ Instantaneous area average of q
FE Convective/Euler portion of flux vector F
FD Diffusive portion of flux vector F
qF Flux or mixed-out average of q
qH Hermitian transpose of q
qn Flow state at discrete time step n
q′ Disturbance in q from q
xin,out Incoming and outgoing components of a vector x

or associated rows and columns of a matrix x

Abbreviations
BPF Blade passing frequency
CFD Computational fluid dynamics
DFT Discrete Fourier transform
DLR German Aerospace Center

(ger.: Deutsches Zentrum f Èur Luft- und Raumfahrt)
DNS Direct numerical simulation
FFT Fast Fourier transform
HB Harmonic balance
HPC High pressure compressor
IBPA Inter-blade phase angle
IGV Inlet guide vane
KTH KTH Royal Institute of Technology

(Kungliga Tekniska hÈogskolan)
LE Leading edge
LES Large eddy simulation
LPT Low pressure turbine
MPI Message-Passing Interface
NRBC Non-reflecting boundary condition
NSV Non-synchronous vibration
PDE Partial differential equations
PML Perfectly matched layer
(U)RANS (Unsteady) Reynolds-averaged Navier-Stokes
SAF Sustainable aviation fuels
TE Trailing edge
TMTF Turning mid turbine frame
VKI von Karman Institute for Fluid Dynamics
VPF Vane passing frequency





1 Introduction

1.1 Motivation

1.1.1 The need for accurate flow simulation tools

The aviation industry is facing massive, technological challenges today. On the one
hand, long-term forecasts still predict about 5 % annular growth rate in global air traf-
fic, primarily fueled by economical growth and social participation in countries of the
Global South. On the other hand, the need to mitigate the climate change demands
a swift and large-scale reduction of CO2 emissions. In order to comply with the Eu-
ropean Green Deal, i.e. becoming climate neutral by 2050, German Aerospace Center
(DLR) has recently updated its aviation strategy (see German Aerospace Center, 2021).

Figure 1.1: Estimation of maximum potential for CO2 savings with new technologies
according to DLR’s 2021 aviation strategy. (from: German Aerospace Center (2021),
CC BY-NC-ND 3.0)

Figure 1.1 displays how CO2 emission could develop until 2050 in a best case scenario
according to DLR’s aviation strategy. Although the public debate is primarily con-
cerned with electric propulsion and aviation fuel cells, the figure underlines the strong
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2 Non-reflecting boundary conditions for turbomachinery flows

necessity to achieve substantial efficiency improvements for conventionally propelled
aircraft because it is assumed that the former technologies might not be applicable
to long-haul aviation and possibly only partially applicable to medium-haul aviation.
This leaves a targeted, average, annual efficiency gain of more than 3 % to airframe and
conventional engine technology advancements.

Since the term conventional refers to combustion of kerosene or sustainable aviation
fuels (SAF) in this context, DLR’s strategy does include advanced core engine, propul-
sion and airframe integration concepts to meet this ambitious goal rather than just
gradual enhancements of existing turbofan configurations. Possibly, hydrogen fueled
gas turbines could lead to additional technology demands.

In order to realize the required CO2 reduction on schedule, academia and industries
will have to accomplish revolutionary developments in relatively short time compared
to past technological advancements in aviation, surpassed maybe only by the rapid
progress in aviation technology during and due to World War 2 and the early Cold
War. In contrast to evolutionary technology development, which often relies on a lot
of existing experience, high fidelity simulation and design tools are needed to break
new ground more quickly. Such tools can reduce the required amount of costly and
time-consuming experimental testing and help gain a deeper understanding of new or
early technologies.

Additionally, there is still a need to further improve existing, very mature technology.
Here, more accurate or more comprehensive computational models can play a key role
e.g. in reducing uncertainties that have to be respected with generous safety margins
today or prevent more radical designs.

1.1.2 Frequency and time domain methods for unsteady flow phe-

nomena

Modern turbine and compressor design strategies tend towards lighter and more com-
pact components with high aerodynamic loading. This implies less structural damping
while unsteady blade row interactions become more pronounced (see Vahdati et al.,
2019). Flutter and forced response analysis have predominantly been performed by
means of time-linearized methods for the last decades (see e.g. Whitehead, 1982; Hall &
Crawley, 1989; Kahl & Klose, 1993; Clark & Hall, 1999; Petrie-Repar et al., 2007; Kersken
et al., 2012). Dowell (2015) predicts in his popular textbook on aeroelasticity that non-
linear effects and, hence, tools will play an increasingly important role in the future.

For example, recent studies indicate that interactions with and acoustic reflections from
adjacent blade rows can have a significant impact on aerodynamic damping and ex-
citation (see Schoenenborn & Ashcroft, 2014; Sanders et al., 2019; Vahdati et al., 2019).
Such interactions are not regarded in classical, linear computations, which feature only
single blade rows and one-way coupling of perturbations via so called gust boundary
conditions for excitation calculations (see Frey et al., 2013).

Moreover, there are examples highlighting the limitations of rudimentary turbulence
and transition modelling in time-linearized computations based on the so-called frozen
eddy viscosity approximation. This method takes the eddy viscosity field from a pre-
ceding steady-state computation and regards it as time-invariant. Heners et al. (2019)
show that the inclusion of unsteady turbulence and transition effects can have a non-
negligible impact on the aerodynamic excitation of an LPT blade caused by the wake of
a TMTF. A flutter analysis of a transonic HPC vane with local shock-induced separation
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reveals large discrepancies between linear calculations with the frozen eddy viscosity
simplification and nonlinear calculations with unsteady turbulence modelling (Heners
et al., 2022).

Other recent research topics in aeroelasticity requiring nonlinear analysis tools deal
with e.g. flutter-tolerant designs allowing small limit cycle oscillations (see e.g. Berthold
et al., 2022) and aerodynamic forcing predictions for fans in innovative engine integra-
tion concepts with boundary layer ingestion (e.g. Mårtensson, 2021).

Furthermore, unsteady simulations become increasingly important for aerodynamic
performance analysis due to the general design trends mentioned above. But also re-
search topics like non-axisymmetric casing treatments (e.g. Goinis et al., 2021) or aero-
dynamic assessment and design of new engine integration concepts with boundary
layer ingestion (e.g. Mennicken et al., 2022) depend on unsteady flow analysis. Bet-
ter prediction of film cooling with respect to unsteady effects (see e.g. Brind & Pullan,
2020) or unsteady rim seal purge flow interactions with endwall boundary layers (see
e.g. Chilla et al., 2013; Schuepbach et al., 2010) can potentially yield thermal and aero-
dynamic efficiency gains.

This list is far from exhaustive, but exemplifies the contribution that nonlinear, un-
steady flow simulations can make to future developments of turbomachinery engi-
neering.

For turbomachinery flows, which are characterized by periodically unsteady effects,
nonlinear frequency domain methods like the nonlinear harmonic (see e.g. He & Ning,
1998) or the harmonic balance (HB) method (see e.g. Hall et al., 2002; McMullen, 2003;
Frey et al., 2014, 2015; Crespo et al., 2015) have emerged as highly efficient tools com-
pared to conventional time marching simulations. These approaches solve the Fourier-
transformed URANS equations for distinct frequencies of interest, usually blade inter-
action frequencies or structural eigenfrequencies and higher harmonics thereof.

To date, methods like harmonic balance are not only popular in academia, but they
are on the verge of being routinely employed in industrial design tasks. However,
there are still some well-known issues, ongoing developments and intrinsic limitations
of such methods. Firstly, the high level of robustness and stability, we are used to
from time marching methods, is not (yet) reached by HB methods (see e.g. Huang &
Ekici, 2014; Heners et al., 2022). Furthermore, state of the art turbulence and transition
modelling is an ongoing research topic with respect to model adjustments, validation
and robustness (e.g. Ashcroft et al., 2018; K Èugeler et al., 2018; M Èuller et al., 2022; Heners,
2022).

Depending on the goal of a study or design task, the setup of HB computations often
requires a deeper understanding of the method and the expected unsteady phenom-
ena in comparison to more costly time domain simulations. While for the latter only
the temporal discretization has to be chosen appropriately, the HB user has to define
every interaction mode to be considered not only in terms of base frequency and num-
ber of higher harmonics thereof, but also with respect to circumferential periodicity
and relative rotational direction. These specifications can, of course, be standardized
and automated to a certain extent, e.g. by taking a specific number of direct interac-
tion modes with adjacent blade rows into account. Yet, in multistage turbomachinery
components, indexing effects and acoustic scatter can lead to very complex unsteady
flow fields (Junge et al., 2015; Frey et al., 2018). Thus, capturing all relevant effects is
not a trivial task, but can have a significant impact, e.g. on flutter and forced response
of embedded blade rows (see e.g. Vahdati et al., 2005; Gallardo et al., 2019; Terstegen
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et al., 2019).

Beyond the question as to which interaction modes have to be taken into account, there
is no universal rule how many higher harmonics of those fundamental modes need to
be considered in order to achieve a required level of accuracy (see e.g. Frey et al., 2015;
Schl Èuû & Frey, 2018; Ashcroft et al., 2018). Furthermore, the well-established harmonic
balance variant based on a so-called harmonic set approach neglects cross-coupling
terms between individual harmonic sets while more recent approaches overcome this
simplification, albeit at higher computational costs (see Junge et al., 2018, 2021).

Further development of the harmonic balance technique is needed and currently ad-
dressed regarding extended applicability to more complex geometry features, such
as non-axisymmetric casing treatments, seals and cavities. Moreover, frequency do-
main methods are only applicable if all fluctuations are strictly periodic and all rele-
vant frequencies are known. Thus, phenomena like shock boundary layer interaction,
unsteady wakes, vortex shedding or NSV pose additional challenges to frequency do-
main methods.

On the other hand, scale-resolving methods may progressively fill a niche between
wind tunnel and rig testing on the one side and (U)RANS-based CFD on the other,
in particular augmenting turbulence modelling and other more basic fluid dynamic-
driven topics. However, scale-resolving simulations are still too expensive and time-
consuming to replace (U)RANS-based CFD for most turbomachinery research and de-
sign tasks. Especially, their computational effort does not seem justified for those tasks
where turbulence modelling is not deemed to be the primary source of errors or uncer-
tainties.

Therefore, nonlinear, time domain (U)RANS simulations constitute the highest, feasi-
ble level of modelling unsteady flow phenomena in turbomachinery. Although non-
linear frequency domain methods are becoming more and more important due to their
efficiency advantage over time domain methods, the latter will still play an important
role for all the reasons mentioned above.

Due to ongoing progress in the development of hardware resources and software tools,
time domain simulations have become more affordable and sufficiently fast not only
for research purposes, but also for some tasks in everyday industrial design. Addi-
tionally, time domain computations play a key role for further development, valida-
tion and qualification of frequency domain tools by providing accurate, detailed and
specifically tailored reference data. In the long run, if or when nonlinear frequency
domain methods are considered state-of-the-art tools for the analysis of unsteady tur-
bomachinery flows, time domain methods can be a valuable asset to complement fre-
quency domain methods wherever the accuracy of the latter is at question, e.g. due to
lack of exact knowledge about spectral content or periodicity of a flow.

1.1.3 Non-reflecting boundary conditions

However, numerical reflections arising from artificial, open boundaries at finite com-
putational domains can strongly deteriorate the accuracy of flow solutions and espe-
cially the prediction of unsteady pressure fluctuations, which is in particular detrimen-
tal to applications in aeroelasticity. Besides computational costs, another advantage of
frequency domain methods is that, in the frequency domain, the boundary flow field
can be decomposed into waves with known direction of propagation. This allows for
the implementation of accurate, spectral non-reflecting boundary conditions (NRBC)
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in a relatively straightforward manner (see e.g. Hall & Crawley, 1989; Montgomery
& Verdon, 1997; Moinier et al., 2007; Petrie-Repar, 2010; Kersken et al., 2014, and Sec-
tion 2.3)). The term spectral indicates that these boundary conditions use fundamental
wave propagation considerations based on spectral properties, i.e. wavenumbers and
frequencies.1

For time domain simulations, the implementation of such boundary conditions is there-
fore more involved. Consequently, time domain methods often rely on time-local
boundary conditions, which work well in some situations, but must be regarded as
generally less accurate because they are prone to producing spurious reflections (see
Section 2.2). Higher-order approximate NRBC are local in time and offer improved
reflection properties compared to state-of-the-art NRBC in time domain simulations
(see Section 2.2.3). Yet, they cannot be applied together with phase-shifted periodic
boundary conditions, which poses a severe limitation for aeroelasticity applications.

This works aims at contributing to an accuracy improvement of time domain simu-
lations by integration of spectral non-reflecting boundary conditions. These are well-
established in the context of frequency domain methods and known for their excellent
accuracy.

Moreover, these NRBC offer the benefit of being consistent with popular steady NRBC
when applied in steady-state computations as well as with their frequency domain
counterparts when applied in unsteady computations. The first aspect is important
when comparing results from steady-state simulations with unsteady results in order
to assess unsteady effects (rather than possible differences due to inconsistent bound-
ary conditions). The latter is considered helpful because it makes very close compar-
isons between results from frequency domain and time domain computations possible.
Having one CFD solver offering consistent implementations of turbulence models, nu-
merical methods (except for time discretization), postprocessing routines and finally
boundary conditions, greatly facilitates true comparability, which in turn is important
since frequency domain and time domain methods are intended to complement each
other as a cost effective alternative or a high-fidelity backup and validation tool, re-
spectively.

1.2 Objective and outline

The objective of the present thesis is to develop an implementation of two-dimensional,
spectral non-reflecting boundary conditions, adapted to time domain simulations with
dual time-stepping, into DLR’s turbomachinery CFD solver TRACE.

The term two-dimensional refers to the fact that the underlying theory is based on two-
dimensional flow equations, but does not preclude the application of these boundary
conditions to three-dimensional flow simulations using a quasi-three-dimensional ap-
proach. It should be noted, however, that viable, three-dimensional methods are sub-
ject to similar, simplifying assumptions (see Section 2.3) and, therefore, the expected
accuracy advantage is limited while increased complexity and numerical effort might
significantly impair their usability in time domain simulations.

Furthermore, the theory is derived based on linear hyperbolic systems of PDE. The

1In the literature, such boundary conditions are often referred to as exact because, when they were
introduced, two-dimensional, linearized Euler methods were widely used and only for such methods
these NRBC are indeed exact. Therefore, the term spectral is usually preferred in this work apart from
passages where referenced literature uses the term exact.
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NRBC can still be applied to nonlinear flow calculations, accepting a potential loss of
accuracy due to the linearization error. As there is no equivalent theory for nonlinear
flows in two or three dimensions, this error is inevitable.

Further conceptual decisions appear too technical for this section. Such decisions, their
implications as well as conceptual limitations are, therefore, thoroughly discussed in
Chapters 2 and 3.

Academic test cases of simplified complexity are studied in order to assess the reduc-
tion of spurious reflections in comparison to existing methods. The application to two
realistic turbomachinery test cases confirms the improved accuracy and additionally
underlines the maturity of the presented implementation for applications in real-world
research and design scenarios. Numerical and experimental reference results are pre-
sented where available.

As the boundary condition is non-local in time and space, the challenge is to devise
an implementation that offers not only the intended reduction of spurious reflections,
but also the required stability and convergence characteristics for realistic applications
beyond basic test cases. In particular, the dependence on a temporally spectral repre-
sentation of the transient flow field needs to be addressed.

The scope of this work is limited to artificial or open inflow and outflow boundaries for
flows which are subsonic in boundary-normal direction, like they are typically found
in turbomachinery. Note that Mach numbers greater than one are still permitted in case
of non-vanishing pitch-wise velocity components in the respective frame of reference.
Supersonic boundary conditions are, firstly, deemed unproblematic and, secondly, of
lesser relevance. Furthermore, the boundary conditions presented in this work are in-
tended to be used in Euler- or (U)RANS-based simulations of turbomachinery flows
since they rely on certain prerequisites that do not hold true for scale resolving simu-
lations.

The structure of this work is as follows:

Chapter 2 reviews the existing literature and provides an overview of different ap-
proaches in the context of non-reflecting boundary conditions. After a brief introduc-
tion to the central mathematical concept, two different strategies are discerned. One
group of boundary conditions seeks to formulate local, approximate and, hence, rela-
tively simple, but also more universal boundary conditions. Such boundary conditions
are considered state of the art for the vast majority of conventional time marching sim-
ulations. On the other hand, frequency domain methods often employ more accu-
rate boundary conditions which incorporate a representation reflection of the original
mathematical concept.

In Chapter 3, theory and implementation of the NRBC presented in this work are dis-
cussed. Firstly, those aspects of the underlying time domain flow solver are outlined,
which are relevant for a successful implementation. Subsequently, the theoretical back-
ground of the spectral NRBC is discussed in detail, including explanations regarding
their relationship to the popular set of boundary conditions proposed by Giles (1988).
Finally, their implementation into a time marching solver is presented with particu-
lar emphasis on aspects that require additional considerations compared to frequency
domain implementations.

Chapter 4 deals with three basic validation test cases. The flow in a transonic turbine
cascade poses a challenge for existing, approximate boundary conditions due to the in-
teraction of a suction-sided shock with the outlet boundary. For a single acoustic mode
in a thin, annular duct, the reflection coefficient is evaluated and compared to existing
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boundary conditions in TRACE. The flutter analysis of a two-dimensional compressor
cascade (tenth standard configuration) demonstrates how reduced numerical reflec-
tions improve the prediction of aerodynamic damping.

In Chapter 5, the NRBC is applied to two realistic turbomachinery configurations.
Firstly, we consider flutter of a transonic steam turbine blade with the spectral NRBC
and a one-dimensional, characteristic NRBC and two computational domains. Sec-
ondly, the unsteady blade row interaction in a modern, highly loaded compressor is
studied. The correct prediction of unsteady blade pressure distributions is critical for
forced response analysis, although no aeroelastic postprocessing is presented here. An
analysis with focus on the impact of numerical reflections at inlet and outlet bound-
aries is shown for both test cases.

Finally, Chapter 6 summarizes the thesis and offers an outlook on possible future de-
velopments.





2 State of the art

2.1 Well-posedness of multi-dimensional, hyperbolic sys-

tems

Before the subsequent sections will outline various approaches available in the lit-
erature to formulate (non-reflecting) boundary conditions, it appears worthwhile to
discuss some basic concepts in the context of partial differential equations (PDE) in
this section. The formulation of boundary conditions for systems of PDE is closely
linked to the question whether the resulting mathematical problem is well-posed, i.e.
whether there is a unique and bounded solution to the problem. The question of well-
posedness, however, depends on fundamental properties of the system of PDE.

The time-dependent Navier-Stokes and URANS equations are characterized as mixed
parabolic-hyperbolic systems, where the parabolic nature of the system is associated
with diffusive effects through heat conductivity and viscosity, while the hyperbolic
nature is associated with advection phenomena. Aside from very low Reynolds num-
ber flows (which are of no concern in engineering aerodynamics) and from boundary
layers in the very vicinity of solid walls, it is reasonable to assume that the impact of
diffusion is small. Thus, the Navier-Stokes and URANS equations are often regarded
as essentially hyperbolic and they are numerically solved using methods that have
originally been developed for the actually hyperbolic Euler equations with extensions
for diffusive phenomena where needed (cf. e.g. Toro, 1999).

The steady-state equations can be elliptic, parabolic or hyperbolic depending on local
flow conditions, which implies different requirements for numerical methods. There-
fore, the steady-state equations are often solved using a pseudo-time approach, which
restores the (parabolic-)hyperbolic character of the system and thereby allows the ap-
plication of the same spatial discretization methods as for the time-dependent problem
(see Hirsch, 2007).

For the development of open, artificial boundaries, it is assumed that the parabolic
portion of the system is negligible in the vicinity of such boundaries and, therefore,
well-established theories for hyperbolic systems apply. For multi-dimensional, hyper-
bolic systems of PDE, Kreiss (1970) and Majda & Osher (1975) have devised theoretical
considerations, that are deemed a cornerstone in the development of boundary condi-
tions today. ªThe theory is extremely complicated and algebraic; its physical meaning
tends to get buried by lengthy and detailed studies of various matricesº as Higdon
(1986b) puts it in his paper. Higdon provides a physical and geometrical interpretation
of the above mentioned works and applies the theory, for example, to Maxwell’s equa-
tions, to the shallow water equations or to the linearized, isentropic Euler equations.
Therefore, this work is often mentioned along with the original works when the topic
is approached by researchers from applied mathematics, physics and engineering.

9
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To analyse if a system is well-posed, one often invokes energy estimates, i.e. one
shows that the (physical) energy within the system at hand remains bounded. Higdon
stresses, that such energy arguments are sufficient to prove well-posedness, but not
necessary. That means such a proof can fail even though the problem is indeed well-
posed. The theory by Kreiss (1970) and Majda & Osher (1975) provides a sufficient and
necessary condition based on a so-called normal mode analysis. The argument is de-
rived for linear systems. Hence, it is also applicable to linearized versions of nonlinear
problems (cf. Higdon, 1986b).

The key aspect of this theory is that, in order to obtain well-posed initial boundary
value problems (IBVP), one needs to formulate boundary conditions such that the
propagation of information is correctly taken into account. More precisely, the direc-
tion of propagation needs to be determined somehow and information from inside
must be able to leave the computational domain unhindered while incoming informa-
tion must be specified by means of a boundary condition.

For one-dimensional problems, this distinction is usually simple and based on char-
acteristic variables as covered by almost every introductory course or textbook on nu-
merical methods for fluid dynamics (e.g. see again Hirsch, 2007; Toro, 1999). The
characteristics represent wave-like portions of the solution with known propagation
properties.

However, the identification of such wave-like parts of the solution may become com-
plicated for two- and three-dimensional problems as these cannot be brought into a
diagonal form by transformation into characteristic variables. Here, the normal mode
analysis can be carried out by means of ansatz functions in the form of plane wave
solutions (see Section 3.2). This approach requires the spectral properties of the waves,
i.e. frequencies and wavenumbers, to be known. Hence, the exact normal mode anal-
ysis is no longer local in space and time, instead it requires a spectral representation
of the solution. Boundary conditions based on the exact normal mode analysis are,
therefore, also non-local in space and time, which complicates their implementation in
numerical solvers.

In the following, we distinguish two groups of strategies for the formulation of bound-
ary conditions: The first group circumvents the non-local nature of the normal mode
analysis by either requiring further, simplifying assumptions or introducing local ap-
proximations with various levels of accuracy and complexity. Section 2.2 provides an
overview of these methods without any claim of being comprehensive; it is rather sup-
posed to summarize the most important contributions from a turbomachinery aerody-
namics perspective. For a more general overview, the interested reader is referred to a
review article by Givoli (1991). It contains developments and examples from different
disciplines of physics, e.g fluid dynamics, hydrodynamics, electromagnetics, seismol-
ogy, meteorology and acoustics.

Givoli concludes his work with a comment that local NRBCs often perform well under
certain conditions, but quite poorly in other situations. He considers non-local, exact
formulations to be more promising if they can be realized such that the numerical
solution of the IBVP can be computed efficiently. Therefore, Section 2.3 will deal with
the application of exact boundary conditions to turbomachinery flows.
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2.2 Concepts of approximate non-reflecting boundary con-

ditions

2.2.1 Very basic boundary conditions

Simple types of artificial boundary conditions were used before the closely related
well-posedness theory by Kreiss and others was established. Some of them are still
in use today, but they are generally not well suited for internal flows, in particular not
for unsteady problems.

If the solution can be expected to correspond to radiation of simple waves, Sommerfeld-
type radiation conditions can be applied at open boundaries in the far-field (see Givoli,
1991). However, this approach requires knowledge of the sought solution at infinity
and can lead to large errors if the assumed solution at infinity does not properly match
the actual solution at the far-field boundary. For internal flows, two main problems
arise: Firstly, due to geometrical constraints, it is often not possible to extend the com-
putational domain such that the boundary flow field could adequately be considered
as a far-field. Secondly, the solution is often more complex and cannot be described by
a simple radiation pattern. Even if an analytical far-field solution exists, it is usually
much more difficult to find it a-priori.

Therefore, one often finds simple, mixed boundary conditions, where some compo-
nents of the boundary flow state vector are prescribed at the boundary while others are
extrapolated from the inside. The number of variables to be prescribed or extrapolated,
respectively, is determined with considerations based on one-dimensional flows and
characteristics. For two- and three-dimensional flows the rationale is carried over, i.e.
the characteristics transformation is performed with respect to the boundary-normal
direction. The well-known result is that e.g. for subsonic, three-dimensional flows,
four variables have to be specified at an inflow and the remaining one needs to be ex-
trapolated from inside and vice versa at outflow boundaries. For flows with supersonic
boundary-normal speed, the complete flow state has to be described at the inflow and
no variable is needed at the outflow.

The choice, which combinations of variables are prescribed and which ones are ex-
trapolated in the subsonic case, is not unique and often made heuristically to some
extend. Although numerical solvers can solve different representations of the conser-
vation equations, i.e. in conservative or primitive variables and with various combi-
nations of variables defining the thermodynamic state of the fluid, the admissible sets
of specified variables remain the same and depend only on the flow state. A stringent
well-posedness analysis was only presented later for some combinations (see Hirsch,
1990, and references therein). For many applications, the velocity vector and tempera-
ture are specified at inlets, while pressure is prescribed at outlets. In turbomachinery
aerodynamics, it is more common to specify stagnation pressure and stagnation tem-
perature together with the flow direction, most often in terms of the usual flow angle
definitions, at inlets. As the specified boundary values are held fixed at any point
in time and space, they inherently do not allow passing waves. Hence, this kind of
boundary conditions are known to be highly reflective and therefore of very limited
use in advanced turbomachinery design tools, in particular when dealing with un-
steady flows.
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2.2.2 Characteristics-based approaches

The probably most widely used class of non-reflecting boundary conditions for time
domain flow solvers, in particular for general purpose CFD tools, are those which
utilize the diagonalizability of the one-dimensional Euler equations and the resulting
variable transformation to so-called characteristic variables.

For two- and three-dimensional flows, it is impossible to diagonalize the flux Jacobians
associated with each spatial dimension simultaneously. However, one can define a
characteristic variable transformation with respect to a given direction analogously to
the one-dimensional case. As a result, the characteristic variables will in general not
entirely decouple except for special cases (see Hirsch, 1990).

They should not be confused with the modes in the sense of Kreiss’s normal mode
analysis, which are independent of each other (under the linearization assumption).
All approaches based on characteristics can be understood as a first-order approxima-
tion to the non-local normal mode analysis of Kreiss, although not all of the methods
presented in this section are explicitly derived as an approximation to the normal mode
analysis.

Hedstrom (1979) is credited with being the first researcher to formulate non-reflecting
boundary conditions for the Euler equations based on characteristic variables. He con-
siders the one-dimensional, nonlinear Euler equations and in this case the diagonaliza-
tion of the quasi-linear form does in fact not even require linearization. The nonlinear
counterparts to the characteristic variables are called Riemann invariants.

A variant of a boundary condition using Riemann invariants in the boundary-normal
direction for three-dimensional flows is described by Blazek (2001). It is implemented
in TRACE as a steady boundary condition and will be employed in Section 4.1.

The work of Higdon (1986a) is seen as a further important step towards non-reflecting
boundary conditions for multi-dimensional hyperbolic systems. He enhances the one-
dimensional approach for the scalar wave equation to arbitrary directions. By that,
he found a boundary condition which is able to perfectly absorb waves which hit the
boundary non-perpendicularly. The drawback of his method is that the incidence an-
gles for perfect absorption need to be defined beforehand. But the boundary condi-
tion is able to consider multiple expected incidence angles and Higdon shows that his
method provides good reflection properties with a limited number of specified inci-
dence angles.

Thompson (1987) expands Hedstrom’s approach to two-dimensional and later to three-
dimensional Euler equations (Thompson, 1990). He applies the characteristics trans-
formation in boundary-normal direction and, as mentioned above, the boundary con-
dition is no longer exactly non-reflecting since derivatives in boundary-parallel direc-
tion lead to source or coupling terms in the transport equations of the characteris-
tics. Colonius (2004) reviews various, approximate non-reflecting boundary conditions
and demonstrates that Thompson’s boundary conditions yields lower reflection coef-
ficients than Hedstrom’s (one-dimensional) boundary condition for oblique acoustic
waves at outflows, but produces stronger reflections for outgoing vorticity waves and
for acoustic upstream waves at inflows.

Chernysheva (2004) presents a similar approach which does not necessarily perform
the characteristics transformation with respect to the boundary normal direction. In-
stead, she chooses the reference direction with respect to local flow conditions and
pressure gradients and introduces some additional considerations to minimize the cou-
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pling terms. Only under certain conditions, the coupling terms vanish entirely, e.g.
when the flow is uniform or one-dimensional (i.e. all gradients perpendicular to the
mean flow direction vanish when solving the two- or three-dimensional Euler equa-
tions). Chernysheva demonstrates that this approach is capable of dealing with single,
large amplitude acoustic waves and weak shocks with moderate angle of incidence in
uniform background flow, exhibiting greatly improved reflection properties compared
to boundary-normal characteristic boundary formulations. Yet, no further application
of this boundary condition to more complex flows or waves with shallower incident
angles has been published to the best knowledge of the author of this thesis.

A boundary condition that has received a lot of attention, in especially from LES and
DNS communities, is an evolution of Thompson’s method proposed by Poinsot & Lele
(1992). This method offers two essential improvements that benefit in particular appli-
cations in LES and DNS. Firstly, the method takes viscosity and thermal conductivity
into account, which appears more important in scale resolving simulations than in
(U)RANS methods since the parabolic nature of the Navier-Stokes equations is more
pronounced on small scales. Secondly, it does not rely on simple extrapolation of out-
going characteristics, but rather casts flow equations in a mixed form, which regards
all derivatives in boundary-normal direction in terms of characteristic variables while
retaining all boundary-parallel derivatives in conservative variables. Thus, one can
properly integrate the temporal evolution of the boundary flow field using higher-
order discretization schemes with appropriate one-sided stencils for the outgoing char-
acteristic variables. To determine the incoming characteristics on the boundary surface,
the authors describe a variety of recipes to translate user-defined boundary values,
such as inflow velocity or stagnation quantities or outflow pressure, into values for the
incoming characteristics. However, the boundary condition is still only approximately
non-reflecting since the calculation of incoming characteristics is subject to approxima-
tions, viz. diffusion terms and cross-derivatives are disregarded. Hence, the authors
state that this boundary condition is well suited for one-dimensional flows or flows
with small transverse gradients.

Poinsot & Lele (1992) also discuss one problem that all temporally and spatially local
boundary conditions inherently have in common (unless linear flow equations with
constant mean state are considered): When, for example, one wants to prescribe a static
pressure at an outflow, it is impossible to enforce this pressure at all time instances and
simultaneously allow acoustic waves to pass the boundary without reflection because
the acoustic wave will obviously induce a pressure perturbation. A local boundary
condition offers the mathematical tool to pursue either of the following two, oppos-
ing strategies. On the one hand, the pressure can be kept constant by imposing an
equally strong incoming acoustic wave or, on the other hand, one can let the wave
pass freely and never impose an incoming wave. In the latter case, however, there is
no mechanism to make sure that the originally specified pressure will ever be reached,
indicating an ill-posed problem. Therefore, relaxed incoming waves, i.e. some reflec-
tions, are usually imposed to prevent the boundary value from drifting away. The
ideal amount of relaxation is a matter of tuning and depends on the application and
on individual requirements regarding reflection properties, although there are popular
proposals regarding an optimal relaxation parameter (e.g. Rudy & Strikwerda, 1980).

From this perspective, it appears advantageous to replace the local boundary condition
by a condition based on averaged and, thus, non-local boundary states. Giles (1988)
suggests such an approach for URANS simulations of turbomachinery flows (see also
Giles, 1990, 1991, and Section 3.3.1). Here, one can exploit the associated periodicity
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of the flow and easily define a suitable, spatial and/or temporal mean state. Then,
an incoming mean characteristic can be specified with respect to the deviation of that
mean state from user-defined target values, which will be exactly zero once the mean-
state is converged at the target values, and, thus, the incoming mean characteristic will
vanish as well. The condition to suppress reflections at the boundary is then simply
that the local portion of the incoming characteristic is always zero. This boundary
condition is technically non-local due to the averaging process involved, but still very
simple to implement. In Giles’ paper, he refers to this boundary condition as unsteady,
one-dimensional NRBC.

It should be noted that for non-periodic flows, such as LES or DNS, it is not trivial
to define a mean state that converges entirely unless the averaging is performed over
very large periods of time, which then causes a considerable lag in the development of
temporal averages and, therefore, leads to very slow convergence.

2.2.3 Higher-order approximate boundary conditions

A pioneering work for the development of numerous higher-order approximate non-
reflecting boundary conditions has been achieved by Engquist & Majda (1977). As
mentioned in Section 2.1, the exact condition to discern incoming and outgoing waves
is non-local in space and time since it is expressed as a function of frequency and
wavenumber components. The idea of Engquist and Majda is to replace this function
with a local approximation using either a Taylor polynomial or a PadÂe approximant
(a similar approximation technique using a rational function instead of a polynomial)
around the one-dimensional case, i.e. waves crossing the boundary surface perpendic-
ularly. Using this approximation, they develop a sequence of local boundary condi-
tions for wave equations with increasing order of accuracy and present an application
to the linearized shallow water equations. They show that the use of Taylor polynomi-
als of higher than second order will produce ill-posed IBVP while higher-order bound-
ary conditions can be obtained with higher-order PadÂe approximants. As mentioned
in the previous section, boundary conditions based on characteristics correspond to
the class of first-order boundary conditions in the terms of Engquist and Majda’s ap-
proach.

Following their work, Giles (1990) presents variants of Enquist and Majda’s method
for the two-dimensional Euler equations and especially for turbomachinery flows. See
also Giles (1988) for more theoretical background and Giles (1991) for a description of
implementation details. These boundary conditions have gained huge popularity in
the turbomachinery community. The one-dimensional or first-order unsteady bound-
ary condition has already been mentioned in the previous section.

Moreover, a second-order variant is presented. It is referred to as approximate, two-
dimensional boundary condition because the higher-order term of the Taylor poly-
nomial leads to a boundary-parallel derivative in the final equation (see also Section
3.3.2 and for details about its implementation in TRACE Ashcroft & Schulz (2004)).
Giles proves that the second-order inflow boundary condition is ill-posed in its orig-
inal formulation, but well-posed in a modified version (see Giles, 1988). The two-
dimensional boundary condition generally exhibits significantly improved reflection
properties over the first-order boundary condition (see Sections 4.2 and 4.3). How-
ever, for low frequency perturbations or waves with shallow incidence angles, espe-
cially towards acoustic resonance, the two-dimensional boundary conditions becomes
reflective too.
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An exact, unsteady variant for single-frequency flows will be discussed in Section 2.3.
A special case of this single frequency boundary condition is the steady boundary con-
dition, which is obtained straightforwardly in the zero frequency limit (see Section
3.3.3). This boundary condition requires a Fourier transformation of the boundary
flow field in circumferential direction because it uses the exact mode decomposition
matrix. Although it is hence not an approximate boundary condition, it is listed here
as it clearly belongs to the group of Giles’s boundary conditions and it represents a
crucial stepping stone in the development of turbomachinery boundary conditions,
including those that follow in the remainder of this section.

Saxer & Giles (1993) extend the exact steady, exact, two-dimensional boundary condi-
tions to three-dimensional flows using a quasi-three-dimensional procedure, i.e. the
two-dimensional approach is applied in blade-to-blade stream surfaces of constant ra-
dius assuming the flow varies sufficiently slowly in radial direction. The boundary
condition is, hence, radially decoupled apart from the fact that the flow in each plane
is linearized about its respective mean flow at the respective radial position. Other
two-dimensional boundary conditions can be applied to three-dimensional flows ac-
cordingly and also the two-dimensional boundary condition presented in this work
follows this technique (see Chapter 3).

Fan & Lakshminarayana (1996) employ the boundary-parallel derivative, that arises in
Giles’s second-order, two-dimensional boundary condition, also in spanwise direction
of three-dimensional flows. This yields a second-order, three-dimensional boundary
condition. It should be note, however, that they assume the underlying wave ansatz
in terms of Fourier modes is also valid in three-dimensional flows which is not true in
turbomachinery flows as there is no periodicity in spanwise direction.

With the exception of Giles’s exact steady boundary conditions, all aforementioned
boundary conditions for fluid dynamics applications are of second or lower order ac-
curacy (in terms of different expressions describing deviations from boundary-normal
waves, e.g. circumferential wavenumber or angle of incidence). Bayliss & Turkel (1982)
present a first, higher-order approximate boundary condition with applications to flow
problems, yet not following Engquist and Majda’s approach, but as a higher-order
farfield (or radiation) boundary condition. Hence, the asymptotic expansion is not
around normal incidence angles but around an analytical solution at infinity, i.e. in
terms of the reciprocal boundary distance. Bayliss and Turkel report one fundamental
difficulty for the development of higher-order approximate boundary conditions that
also arises when one wants to incorporate higher-order terms in Engquist and Majda’s
method: higher-order terms occur (by inverse Fourier transformation) as higher-order
differential operators in the local, approximate boundary conditions, which poses a
challenge for their efficient and robust implementation (see e.g. Givoli, 2004).

Collino (1993) suggests replacing these higher-order derivatives with auxiliary vari-
ables, for which additional first-order evolution equations must be solved in the bound-
ary surface. This concept is used by Hagstrom (1997) to present boundary conditions of
higher-order NRBC based on Engquist and Majda’s PadÂe approach for the isentropic,
compressible Euler equations. It is shown that the boundary condition is well-posed
for arbitrarily high orders of accuracy. The first implementation and numerical exper-
iments are presented by Goodrich & Hagstrom (1996).

However, the time- and space-local boundary conditions accumulate numerical errors
over time such that under some conditions they are theoretically not stable over long
integration times. Hagstrom & Goodrich (2003) show that using very high orders of
accuracy for simulations over long periods of time can mitigate the error. An im-
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proved method is presented by Alpert et al. (2002) for the wave equation and later
adopted by Henninger et al. (2015) and Henninger (2019) as extension of Giles’s ap-
proximate, unsteady boundary condition with up to 33rd order accuracy in TRACE.
This approach remedies the long term integration error at the cost of becoming non-
local in space. This means similarly to Giles’s exact, steady boundary condition, a
circumferential Fourier transformation of the boundary flow field is needed. Unlike
the spectral boundary condition presented in this work, Henninger’s boundary condi-
tion is not compatible with phase-shifted periodic boundaries, as they are often used
in turbomachinery applications. This limits their efficient applicability, in particular
for aeroelastic analysis of flutter or conventional forced response problems (based on
two-row configurations without neighbouring rows).

Rowley & Colonius (2000) introduce a sequence of boundary conditions, which is sim-
ilar to the group of local, higher-order Hagstrom-type boundary conditions, but they
incorporate a correction for the artificial dispersion of the respective numerical scheme
in the dispersion relation, which is otherwise usually obtained from the continuous
PDE and is the starting point of the eigenvector problem to discern incoming and out-
going waves. Therefore, they refer to their method as discretely non-reflecting bound-
ary condition.

Beyond the scope of (turbomachinery) aerodynamics, the interested reader is referred
to a review article by Givoli (2004) to learn more about higher-order approximate
boundary conditions in other domains of physics. In that article, the author designates
all boundary conditions as exact which converge to the exact pseudo-differential op-
erator of the normal mode analysis with increasing approximation order. This should
not be confused with exact, non-local boundary conditions, which are addressed in
Section 2.3 and presented in this work for time domain simulations.

2.2.4 Buffer layers

This section deals with a group of techniques which are technically no boundary con-
ditions, but often developed or applied in this context. Hence, they should at least
be outlined in brevity here. There is no unique term for such tools, they are usually
called buffer layers, sponge layers, absorbing zones or something similar. They are
usually employed in combination with a mathematical boundary condition in order
to mitigate errors that arise when suitable non-reflecting boundary conditions are not
available, not only in CFD applications, but also in other numerical methods solving
wave propagation problems.

The basic idea is to add a layer of the computational grid next to the boundary sur-
face, in which outgoing waves, that might induce reflections at an artificial boundary,
as well as reflected perturbations are damped as much as possible. Thus, spurious
reflections have no impact on the actual flow field outside of this layer.

A good overview of such techniques is provided by Colonius & Lele (2004) with focus
on aeroacoustics and Colonius (2004) with emphasis on shear flows and turbulence
resolving simulations. Besides different kinds of buffer layers, the articles also address
(actual) boundary conditions for such flows and the particular challenges involved,
e.g. non-uniform base flows, nonlinearity of the flow, and implications for higher-
order discretization schemes.

The most basic technique, which does not even require code modifications and can
be done on user level during the meshing process, is grid stretching in the far-field
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towards the artificial boundary. This adds numerical dissipation up to the point that
small scale perturbations can no longer be resolved and are effectively filtered. Often
such grid inflation is supplemented by adding artificial viscosity, using dissipative,
biased discretization stencils or central schemes with additional low pass filtering (see
e.g. Rai & Moin, 1993; Colonius et al., 1993).

More sophisticated techniques modify the underlying equations within the buffer layer
by adding artificial convection, often in combination with artificial damping. Ta’asan &
Nark (1995) introduce an artificial convection term which causes supersonic conditions
in the buffer zone, thereby preventing reflected waves at outflow boundaries from re-
entering the region of interest. At inflow boundaries, outgoing waves cannot reach the
boundary plane and, thus, no artificial reflection is generated. The opposite strategy
is suggested by Karni (1996), who decelerates waves by an artificial convection term
such that they remain within the buffer zone as long as possible (ideally forever) where
they are damped by artificial and/or numerical damping.

All of these methods suffer from one common difficulty, i.e. they modify the disper-
sion properties of the continuous or discrete system, either as a by-product of inducing
dissipation or intentionally as in the latter methods. Since changes of dispersion prop-
erties in a medium always produce (partial) reflection of waves, these interventions
have to be introduced gradually within the buffer zone, yielding rather big additional
domains if a small level of reflection is needed. Colonius (2004) highlights that such
methods are, therefore, usually not perfectly non-reflecting and the achievable damp-
ing is scale-dependent. Hence, a considerable amount of heuristic tuning to specific
applications and flow conditions and some experience with that is required.

A more recent paper by Mueller et al. (2021) investigates the use of such methods
for turbomachinery flutter calculations with commercial CFD tools which do not fea-
ture effective non-reflecting boundary conditions. The authors show considerably im-
proved accuracy of the flutter prediction when adding rather large, additional inlet
and outlet buffer zones. However, this also has a moderate effect on the mean flow
and may be difficult to apply to geometrically more complex real-world turbomachin-
ery configurations or even multi-row setups due to the necessary extent of the buffer
zones.

A systematic approach to impose the above mentioned local modifications in an opti-
mized way is the so-called Perfectly Matched Layer (PML), first introduced by Berenger
(1994) for electromagnetic waves. Hu (1996) and Abarbanel et al. (1999) showcase the
first PML for the linearized Euler equations with applications to flows with uniform
mean flow. In the PML, a coordinate transformation is performed such that the disper-
sion relation is conserved locally. For this purpose, a plane wave ansatz is considered,
very much like for the development of non-reflecting boundary conditions, yielding
a set of inhomogeneous PDE with source terms as functions of spectral parameters,
i.e. frequencies and wavenumbers. These source terms are then replaced by auxil-
iary variables with the aim of providing ideal, non-physical damping independently
of the spectral parameters. As a result, additional ODE are obtained for those auxiliary
variables, which have to be solved along with the transformed, original equations.

Initial stability issues have been addressed by BÂecache et al. (2003) and extensions to
the linearized Euler equations with inhomogeneous background flow (Hu, 2005) and
to the nonlinear Navier-Stokes equations (Hagstrom et al., 2005) were developed sub-
sequently. Yet, for nonlinear systems, the PML is not perfectly non-reflecting, but pro-
duces second-order errors (cf. Colonius, 2004).
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2.3 Spectral non-reflecting boundary conditions

2.3.1 Frequency domain applications

There are two main causes that complicate or even inhibit the development of a uni-
versal, perfectly non-reflecting boundary condition. The first cause is that there is to
date no nonlinear, multi-dimensional equivalent to the normal mode analysis outlined
in Section 2.1. The second cause is that the existing theory is inherently non-local in
time and space. While only some of the methods presented in Section 2.2 adress the
nonlinearity issue, all of them, explicitly or implicitly, aim at resolving the difficulty of
formulating a non-local boundary condition by introducing approximations that allow
a local formulation (the only exceptions being Giles’s exact, steady boundary condition
for the reason mentioned earlier and Hedstrom’s boundary condition when used in its
original form for one-dimensional problems only).

For time domain, i.e. time marching, methods, the dilemma is primarily rooted in
the temporally non-local nature of the existing mode analysis because the complete
temporal history of the solution cannot be known until the simulation is terminated,
not to mention the memory that would be required if this were possible. The spatial
non-local nature, on the other hand, creates a certain amount of complexity compared
to local methods and, thus, requires additional effort for developing and implementing
spatially non-local boundary conditions. Yet, it is possible to do so as the solution is
usually known for the entire computational domain at a given point in time.

Therefore, it is much easier to define non-reflecting boundary conditions for frequency
domain methods, which consider periodically unsteady problems in terms of a limited
number of temporal Fourier harmonics as these represent the entire time history of
a periodic problem. For two-dimensional potential flow in oscillating cascades, non-
reflecting boundary conditions are first presented by Verdon et al. (1975), Verdon &
Caspar (1980) and Whitehead (1982).

A first application with two-dimensional, linearized Euler equations is demonstrated
by Hall (1987) and Hall & Crawley (1989). This boundary condition is exact for the
linearized Euler equations if certain requirements regarding the underlying mean flow
are met (see Section 3.2.1).

Hall’s boundary condition corresponds to the exact, two-dimensional, single frequency
boundary condition in Giles’s papers (Giles, 1988, 1990). This boundary condition is
consistent with Giles’s popular exact, steady boundary condition as it converges to-
wards the steady boundary condition for vanishing frequency, apart from some mod-
ifications of the steady boundary condition in its implementation into the UNSFLO
code (see Giles, 1991, and Section 3.3.3).

Giles (1988) suggests that the exact, single frequency boundary conditions should be
cast in terms of characteristic variables rather primitive variables when a pseudo-time
stepping technique is employed. Since it is well-known that a hyperbolic system is
well-posed with vanishing, incoming characteristics, he presumes without own testing
that the pseudo-time system will remain stable if the incoming characteristics, deter-
mined as functions of the outgoing ones by means of the exact two-dimensional bound-
ary condition, are sufficiently relaxed. Many of the methods presented below follow
this suggestion when employing a pseudo-time solution method. The characteristics-
based formulation is also used for the implementation into a time domain dual time-
stepping solver presented in this thesis and the author considers this an essential step
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towards the achieved stability.

The two-dimensional boundary conditions can be applied to three-dimensional flows
with a quasi-three-dimensional approach corresponding to the concept of Saxer &
Giles (1993) for steady boundary conditions. This allows an analytical solution of the
eigenvalue problem for the mode decomposition. Alternatively, Hall et al. (1993) intro-
duce a numerical approach for a three-dimensional mode decomposition. Like in the
quasi-three-dimensional approach, the solution is expressed in terms of circumferen-
tial Fourier modes at each radial position. Thus, one can obtain an eigenvalue problem
for each circumferential mode for which the radial distribution of the Fourier modes
needs to be discretized. This eigenvalue problem can then be solved numerically.

Moinier & Giles (2005) enhance the three-dimensional mode decomposition by adding
radial components of viscous stress and heat flux to the eigenvalue problem, target-
ing a better representation of the radially varying mean flow in the presence of side-
wall boundary layers. This mode decomposition is employed in a three-dimensional,
viscous NRBC proposed by Moinier et al. (2007). Viscous or inviscid variants of such
boundary conditions are today commonly used in time-linearized solvers (e.g. Kersken
et al., 2014; Sotillo & Gallardo, 2018).

Note that all the above methods assume the mean flow to be axially and circumferen-
tially uniform. Petrie-Repar (2010) shows a method allowing for non-uniform mean
flow, which however leads to a two-dimensional, discrete eigenvalue problem for the
mode decomposition (in contrast to one-dimensional in radial direction for the afore-
mentioned methods). Consequently, Petrie-Repar reports that the numerical effort to
solve the eigenvalue problem is in the same order of magnitude as the solution of the
linearized flow equations for the internal flow, even when a much coarser auxiliary
mesh is used for the boundary condition. Without this auxiliary mesh, the eigenvalue
problem alone is much more expensive than the actual flow solution. Interpolation
from and onto the coarse, auxiliary mesh could, however, introduce an error, which
is not significant in Petrie-Repar’s test case, but might give rise to limitations for the
application to flows with stronger circumferential gradients, such as transonic flows or
blade row interactions.

A complication for the implementation of exact, non-reflecting boundary conditions
is the phenomenon of acoustic resonance at the cut-on/cut-off transition. In this situ-
ation, the axial group velocity of acoustic modes is zero, which causes upstream and
downstream modes to coincide and form a single standing wave, which is not able to
propagate axially, but spins circumferentially. Hence, the modal decomposition matrix
becomes singular and is therefore useless for the definition of a modal boundary con-
dition. This issue is addressed by Kersken et al. (2014) and later in more detail by Frey
& Kersken (2016). They propose an approach which is outlined in Section 3.2.2.

The two-dimensional (i.e. quasi-three-dimensional) variant of the exact boundary con-
dition is also successfully employed in nonlinear frequency domain methods, such as
harmonic balance (e.g. Lindblad et al., 2019; Ekici & Hall, 2007; Frey et al., 2014). The
spectral mode decomposition is then applied at each resolved frequency. A similar
boundary condition for the application in a HB solver with Discontinuous Galerkin
spatial discretization is presented by Wukie et al. (2019).

An interesting advantage over local boundary conditions is that the boundary con-
dition can be used to readily model the blade row coupling interface when studying
blade row interactions with HB (see Ekici & Hall, 2007; Frey et al., 2014; Lindblad,
2020). If a mode is resolved in the adjacent blade row (with respect to the correct
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frequency shift due to relative motion of the respective frames of reference), then the
non-reflecting boundary condition, i.e. zero amplitude of incoming waves, is replaced
by prescribing the amplitude associated with the incoming portion of the mode from
the adjacent blade row. Otherwise, the mode is treated like at an inflow or outflow
boundary with vanishing incoming amplitude.

The primary reason for sticking to the two-dimensional mode decomposition instead
of using the fully three-dimensional method is that the underlying mean flow is not
fixed in case of the harmonic balance method. This would necessitate a repeated, nu-
merically expensive solution of the eigenvalue problem, which is a function of the
mean flow only, while for time-linearized methods it suffices to solve the eigenvalue
problem as a preprocessing step. Recall that the two-dimensional approach uses an
analytical solution based on Fourier modes and is therefore much cheaper.

Frey et al. (2020) reason that the error introduced by using a two-dimensional mode
decomposition is in the same order of magnitude as errors caused e.g. by violating the
underlying assumptions of linearizability and uniform background flow or by disre-
garding physical reflections from the surroundings when using a truncated domain.
Thus, considering the remaining error due to unavoidable simplifications, it does not
appear worthwhile to accept the significantly increased computational effort required
to employ the theoretically superior, three-dimensional mode analysis.

Studies of LPT flutter demonstrate that the difference between solution obtained with
three-dimensional and quasi-three-dimensional boundary conditions is relatively small
compared to either the differences one obtains using a one-dimensional boundary con-
dition (see Kersken et al., 2014) or compared to the impact of considering interactions
with neighbouring blade rows (see Sotillo & Gallardo, 2018).

Implications of using the quasi-three-dimensional approach are discussed by Frey et al.
(2020) in the first part of a double paper and numerical experiments are presented by
Wolfrum et al. (2020) in the second part. This approach raises the question how to de-
fine the rotational surface for the two-dimensional mode decomposition in case of in-
clined boundary surfaces (i.e. axisymmetrical, but not perpendicular to machine axis)
or radially converging or diverging mean flow (e.g. due to non-cylindrical endwalls).
The authors show that characteristic variables should always be defined with respect to
the boundary normal direction for stability reasons. However, the boundary condition
may become more accurate in simplified test cases when the modal decomposition,
to determine target incoming characteristics, is performed with respect to the mean
meridional velocity vector rather than with respect to the boundary normal direction.
Yet, counter-examples could be constructed and in a forced response calculation, char-
acterized by strong secondary flow structures and a diverging annulus, typical of an
LPT, the accuracy improvement could not be confirmed so clearly.

2.3.2 Time domain adaption of spectral NRBC

Due to the inherent intricacy of implementing a temporally and spatially non-local
boundary condition for time marching simulations, there are, to the author’s knowl-
edge, only few efforts in the literature to apply boundary conditions, which are exact
with respect to spectral modal decomposition of the linearized Euler equations, in time
domain CFD of turbomachinery.

Chassaing & Gerolymos (2007) present a time domain implementation of an exact,
spectral boundary condition similar to the two-dimensional frequency domain bound-
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ary conditions discussed in the previous section. To perform the temporal Fourier
transformation, they apply an iterative moving-average technique from their imple-
mentation of the phase-lag method (Gerolymos et al., 2002). The authors demonstrate
considerably improved accuracy, i.e. reduction of artificial reflections, compared to
a one-dimensional and to Giles’s approximate, two-dimensional NRBC for a single
acoustic mode in uniform, inviscid, two-dimensional flow (very similar to the test case
presented in Section 4.2). However, stability issues are reported unless the algorithm
is restricted to considering only the one circumferential Fourier mode corresponding
to the imposed acoustic mode.

Chernysheva (2004) presents a similar study with similar findings based on another
implementation of the exact, two-dimensional NRBC. While showcasing superior re-
flection properties over approximate boundary conditions for small perturbation lev-
els, the boundary condition fails at yielding converged solutions when the amplitude
is increased beyond 3 % of the mean flow pressure. She also shows a successful ap-
plication to flutter calculations of a flat plate cascade with a torsional vibration mode,
exhibiting very good reflection properties and agreement with reference results. Un-
fortunately, there is only little information on implementation details. In particular, no
description is given about the temporal Fourier transformation except that only one,
fundamental harmonic is considered.

Both of the above boundary conditions are implemented in primitive variables, not in
terms of characteristic variables. Recalling Giles’s proposal about using characteristic
variables and successful examples from frequency domain methods with pseudo-time
solvers in the previous section, it appears quite possible that the limited robustness of
the implementations by Chassaing & Gerolymos (2004) and Chernysheva (2004) is at
least partly due to this choice of variables.

The author of this thesis along with colleagues at DLR’s Institute of Propulsion Tech-
nology have experience with an ad-hoc adoption of our harmonic balance implementa-
tion of the exact, two-dimensional boundary condition. Applications in two-dimensional,
steady-state, transonic turbine cascade flow and unsteady computations of a compres-
sor stage (Schl Èuû et al., 2016) as well as LPT flutter computations (Kersken et al., 2014)
showed promising results regarding accuracy. Yet, we have observed similar robust-
ness issues in other cases, severely limiting the general applicability of our implemen-
tation. If convergence could be reached, it was usually significantly delayed compared
to other boundary conditions.

For the reasons discussed in Chapter 1.1 and based on the desirable accuracy observed
with the previous ad-hoc implementation mentioned above, it was decided to fur-
ther pursue the development of a time domain-specific implementation of the spectral
NRBC. The result is presented in this work. To overcome the robustness shortcomings,
a formulation in terms of boundary-normal, one-dimensional characteristic variables is
chosen in combination with modifications for the dual time-stepping approach of the
unsteady flow solver. This allows for an appropriate relaxation of incoming charac-
teristics in pseudo-time while the propagation of different wave types can be realized
correctly in physical time (for details see Sections 3.4.3 and following). To deal with the
non-local nature of the spectral NRBC in time, an approach similar to the shape correc-
tion method, which is used to address the same issue in the context of phase-shifted,
periodic boundaries, is employed (for details see Section 3.4.1).





3 Theory and implementation

3.1 Flow equations and discretization approach

Before non-reflecting boundary conditions are discussed in the subsequent sections,
this section outlines some basics. These will either serve later as a starting point for the
theoretical derivation of NRBC or familiarity with these basics will be required for the
discussion of implementation details. However, this section is not supposed to provide
a thorough introduction into CFD.

3.1.1 URANS equations

As mentioned in Chapter 1, the scope of this work is limited to URANS-based simu-
lations of turbomachinery flows. The URANS equations represent the physical prin-
ciples of mass, momentum and energy conservation, assuming that turbulent fluctua-
tions occur on scales much smaller than the ones resolved by the temporally and spa-
tially discretized flow field. The effect of turbulence is therefore considered in the form
of a statistical model. Note that the compressible flow equations are actually Favre-
and Reynolds-averaged, but the final set of equations is commonly referred to as the
(U)RANS equations.

Using Boussinesq’s eddy viscosity assumption (see e.g. Wilcox, 2006), the URANS
equations for a stationary frame of reference in conservative form and Cartesian co-
ordinates read

∂

∂t
U +

∂

∂x

(
FE + FD

)
+

∂

∂y

(
GE +GD

)
+

∂

∂z

(
HE +HD

)
= 0 (3.1)

with the vector of conservative variables

U =




ϱ
ϱu
ϱv
ϱw
ϱE




(3.2)

and the inviscid, convective fluxes

FE =



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u (ϱE + p)



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(3.3)
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as well as the viscous, diffusive fluxes

FD =




0
σxx
σxy
σxz

uσxx + vσxy + wσxz − λ∗ ∂T
∂x



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
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0
σxy
σyy
σyz
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∂y
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
,

HD =
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

0
σxz
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σzz

uσxz + vσyz + wσzz − λ∗ ∂T
∂z



. (3.4)

For brevity, we write the effective, viscous stress tensor in Einstein’s summation nota-
tion

σij = −µ∗

[(
∂uj
∂xi

+
∂ui
∂xj

)
− 2

3

∂uk
∂xk

δij

]
+

2

3
ϱκδij (3.5)

with the Kronecker delta δij , effective dynamic viscosity

µ∗ = µ+ µt (3.6)

and effective thermal conductivity

λ∗ = cp

(
µ

Pr
+

µt
Prt

)
. (3.7)

The so-called eddy viscosity µt and the turbulent kinetic energy κ are obtained from
a corresponding turbulence model. In this work, the k-ω model by Wilcox (1988) is
employed. The Prandtl number Pr is a property of the fluid, while the turbulent
Prandtl number Prt needs to be modelled appropriately depending on the flow sit-
uation. Molecular diffusion and turbulent transport of turbulent kinetic energy are
omitted in the energy equation. This approximation is quite common and valid for
subsonic, transonic and supersonic (but not hypersonic) flows (see Blazek, 2001).

Further, we assume calorically perfect gas satisfying the following equations of state

p = ϱRT, E = cvT +
V 2

2
=

1

γ − 1

p

ϱ
+
V 2

2
, γ =

cp
cv

=
cp

cp −R
= const. (3.8)

with V = (u, v, w).

3.1.2 Finite volume method and boundary ghost cells

This section describes some fundamentals of the finite volume method in order to ex-
plain the concept of ghost cells for imposing boundary conditions on a cell-centred
finite volume scheme. Using Gauss’s theorem, we can rewrite Equation (3.1) and ob-
tain

∫

Vc

∂U

∂t
dV +

∮

∂Vc

(F · n) dA = 0 (3.9)
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with the three-dimensional flux vector

F =



FE + FD

GE +GD

HE +HD


 . (3.10)

Vc denotes a control volume with the outward pointing surface-normal unit vector n.

In order to solve, the system numerically, one divides the computational domain into
many (usually convex) polyhedra, so-called cells. The state within each cell of volume
Vc is assumed to be uniform and, accordingly, fluxes across interfaces between cells are
also uniform. Therefore, a semi-discrete form of the above equation reads

Vc
∂U

∂t
+

Nfaces∑

f

(Ff · nf )Af = 0. (3.11)

Time is still a continuous coordinate and, hence, there is still a temporal derivative in
the equation. In this work, only structured hexahedra meshes are used, i.e. Nfaces = 6.

Figure 3.1: Detail of a Cartesian, cell-centred finite volume mesh at a boundary of a
computational domain (grey) with a layer of ghost cells (white).

For the sake of simplicity, we consider a structured, two-dimensional, uniform, Carte-
sian mesh here for the introduction of the ghost cell concept. An extension to non-
uniform, curvilinear, body-fitted meshes leads to additional metric terms representing
an arbitrary mesh geometry (see e.g. LeVeque, 2002). Figure 3.1 depicts the boundary
region of a computational domain.

The finite volume method requires the evaluation of fluxes at all cell faces. Within
the computational domain, the fluxes are calculated as functions of neighbouring cell
states, e.g. the flux Gi,j+1/2 in Figure 3.1. The stencil, i.e. the pattern of involved cells
for the computation of a flux at a given cell interface, depends on the discretization
scheme and may extend beyond directly adjacent cells.

In this work, convective fluxes are evaluated with Roe’s flux-difference splitting method
(Roe, 1981) extended to second-order accuracy by means of a MUSCL extrapolation
scheme (van Leer, 1979) and a suitable slope limiter (van Albada et al., 1982). Diffusive
fluxes are computed with a second-order accurate central scheme.
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In case of cell-centred approaches like in Figure 3.1, the boundary surface of the com-
putational domain consists of faces of the outermost layer of (inner) cells. Accordingly,
the formulation of boundary conditions for an (initial) boundary value problem corre-
sponds to the prescription of an equivalent boundary flux across each boundary face
for the finite volume method.

For this purpose, one or more layers of so-called ghost cells are added, depending on
the scheme used to evaluate the flux functions at cell interfaces. With this approach, the
finite volume algorithm can be applied to all inner cells including the outermost layer
and all face fluxes are determined as functions of the neighbouring cells as illustrated
by the flux Fi+1/2,j in the sketch. Thus, the prescription of boundary fluxes requires
the definition of corresponding ghost cell states. The specific procedure to define the
ghost cell states depends on the physical boundary condition. For example, periodic
boundary conditions can be realized by adding two layers of ghost cells (for the scheme
described above) and copying the states of the corresponding cells from the respective
opposite boundary of the computational domain. Then the same discretization scheme
as in the interior is employed to evaluate the fluxes.

For inflow and outflow boundaries, a different technique can be used. First, one deter-
mines the ideal boundary face state using e.g. a non-reflecting boundary condition. In
a second step, the face state is extrapolated to the ghost cell such that the extrapolation
procedure is consistent with the subsequent flux evaluation method. The easiest way
of doing this is by means of a linear extrapolation using the adjacent inner state Ui and
the boundary face state Uf to obtain the state in the first ghost cell Uo:

Uo = 2Uf − Ui (3.12)

Then,

Ff = F
(
1

2
(Ui + Uo)

)
(3.13)

provides an exact flux and a second layer of ghost cells is not needed.

In contrast to fluxes within the computational domain or e.g. at periodic boundaries,
this central expression for convective fluxes does not lead to instabilities at inflow or
outflow boundaries. Discretization schemes for nonlinear, convective fluxes as de-
scribed above are usually comparatively complex in order to provide stability and ac-
curacy at the same time because the scheme must reflect in a physically correct manner
how information is spread in space (see e.g. Toro, 1999). However, if the boundary
state at an inflow or outflow is determined with an appropriate boundary condition,
this state and the corresponding flux already incorporate the physically correct propa-
gation processes (see Sections 3.2 and 3.4).

The above approach appears more complex than just evaluating F(Uf ) directly. How-
ever, by taking the detour via ghost cells, it is possible to implement a computationally
efficient finite volume algorithm for all inner cells without exceptions for boundary
cells.

3.1.3 Dual time-stepping

This section outlines the concept of pseudo-time integration and dual time-stepping
as it will be crucial for the implementation of the unsteady boundary condition to
properly distinguish physical time steps from pseudo-time steps. Before we consider
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dual time-stepping, the pseudo-time stepping technique is introduced on the basis of
the steady-state equations.

For this purpose, we replace the physical time t by an auxiliary time-like variable τ ,
called pseudo-time, and introduce a residual function R, which represents the flux
balance, i.e. the entire spatial discretization:

R(U) = − 1

Vc

Nfaces∑

f

(Ff · nf )Af (3.14)

To solve the steady RANS equations, we now seek the equilibrium flow state such that
the pseudo-time derivative vanishes. From Equation (3.11) follows:

∂U

∂τ
= R(U) → 0 (3.15)

With a suitable time-stepping algorithm, we can march from an initial solution in
pseudo-time until a steady state is found (satisfying an acceptable convergence cri-
terion). For efficiency reasons, we want to choose the pseudo-time step size as large as
possible. Since explicit schemes are unstable for large time steps due to the CFL condi-
tion (see Courant et al., 1928), an implicit algorithm is more advantageous. Therefore,
we write the implicit system using a simple finite difference approach for the temporal
discretization.

∆U i

∆τ
=
U i+1 − U i

∆τ
= R(U i+1) (3.16)

where i denotes the pseudo-time step. The system is called implicit because the right-
hand side is a function of the unknown state at time step i + 1. Therefore, R(U i+1) is
approximated with a Taylor series expansion:

R(U i+1) = R(U i) +
∂R
∂U

∣∣∣∣
i

∆U i +O
(
∆U2

)
(3.17)

Inserting Equation (3.17) into Equation (3.16) and rearranging gives

(
1

∆τ
I − ∂R

∂U

∣∣∣∣
i
)
∆U i = R(U i). (3.18)

This is a linear system of equations that can be solved numerically.

The pseudo-time method can also be applied to implicit time integration for unsteady
flows. In this case, we reintroduce the physical time derivative and obtain

∆U i

∆τ
= R(U i+1)− ∂U

∂t

∣∣∣∣
i+1

→ 0 (3.19)

The time derivative is approximated with a finite difference stencil, e.g. using the pop-
ular two-step backward differentiation formula (BDF2, see e.g. Dahmen & Reusken,
2008):

∂U

∂t

∣∣∣∣
n+1

≈ 1

2∆t

(
3Un+1 − 4Un + Un−1

)
(3.20)
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Note that index n designates physical time levels here while in the equation above i
is associated with pseudo-time levels. Since the pseudo-time approach serves as an
iteration technique to solve the implicit system for each physical time step, U i+1 is the
best approximation of Un+1 and, thus, U i+1 replaces Un+1. Substituting again R(U i+1)
by its Taylor approximation (Eq. (3.17)) in Equation (3.19) and using Equation (3.20),
yields

(
1

∆τ
I +

3

2∆t
I − ∂R

∂U

∣∣∣∣
i
)
∆U i = R(U i)− 1

2∆t

(
3U i − 4Un + Un−1

)
(3.21)

As in the steady case, this linear system can be solved numerically. It provides an
update for the pseudo-time iteration loop until the solution is converged. At the be-
ginning of each physical time step, the final solution of the previous physical time step
is used as a starting point for the pseudo-time iteration loop (U i=0 = Un).

In both the steady and the unsteady algorithm, the residual Jacobian matrix ∂R
∂U

con-
tains the Jacobians matrices of the numerical flux functions and can therefore become
relatively complicated depending on the underlying spatial discretization. However,
if the system converges and ∆U vanishes, the accuracy of the final solution depends
on the right-hand sides of Equations (3.18) and (3.21) only. Therefore, the residual Ja-
cobian matrix does not need to be exact and can be simplified in order to reduce the
computational effort needed for the solution of the linear system or to increase the
stability of the iteration algorithm (see N Èurnberger, 2004).

3.2 Fundamentals of spectral NRBC

3.2.1 From URANS equations to the dispersion relation

The concept of the NRBC presented in this paper is to consider the boundary flow
field in the spectral domain, i.e. in the wavenumber and frequency domain. Here,
the flow can be decomposed into waves with known propagation properties. To attain
non-reflecting behaviour of artificial open boundaries, incoming waves can easily be
suppressed by setting their amplitude to zero and reconstructing the flow in the physi-
cal domain, i.e. in time and space, allowing only outward travelling disturbances from
the mean flow.

To derive such NRBC for three-dimensional flows, we need to introduce some assump-
tions and thereby simplify the underlying equations. Thus, the NRBC presented in this
work are only perfectly non-reflecting if these assumptions apply. In general, these
prerequisites are not strictly fulfilled when dealing with realistic turbomachinery ap-
plications and the accuracy, viz. the suppression of undesired numerical reflections,
depends on how well our assumptions are met. Yet, we will see in Chapters 4 and 5
that the NRBC presented in this work still reduce these reflections at least significantly,
often even so that artificial reflections are no longer a factor to the analysis of numerical
results.

Although we use the NRBC to solve the URANS equations, we assume that the bound-
ary flow field can be considered inviscid to a sufficient approximation. That means
viscous effects may play a crucial role within the computational domain, but not at its
open boundaries (in contrast to solid walls). For example, the wake of a blade, sec-
ondary flow vortices or hot streaks originate somewhere in the interior and grow due
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to diffusion while they are convected to the open boundary. At the boundary, however,
we assume that diffusion can be disregarded locally and the predominant transport
mechanism is convection. We will see later that such effects represent entropy and
vorticity distortions in this context and they are convected along streamlines. If we
locally disregard viscosity and heat conductivity, the boundary flow field is described
by the time-dependent Euler equations instead by the URANS equations. The former
are mathematically characterized as purely hyperbolic which facilitates the following
approach to decompose the boundary flow field into distortions of known direction of
propagation.

Moreover, the flow is required to be subsonic in boundary-normal direction and not
completely at rest. This does not present a real restriction as supersonic inflow and
outflow boundary conditions are trivial and not subject to artificial reflections. Their
definition can be found in many basic CFD textbooks e.g. Hirsch (1990). When running
CFD simulations, it must be known beforehand if the boundary flow conditions are
supersonic in boundary-normal direction because, in that case, one additional quantity
needs to be specified at the inlet and no boundary value can be specified at the outflow.

We further assume that effects in blade-to-blade surfaces dominate variations in span-
wise direction. The resulting two-dimensional boundary condition can then be ap-
plied at arc segments of constant radial and axial position along the boundary sur-
face in a quasi-three-dimensional fashion according to the extension Saxer & Giles
(1993) have proposed to extend Giles’s originally two-dimensional NRBCs to three
spatial dimensions. By applying the two-dimensional NRBC at arcs of constant ra-
dius, it is assumed that the corresponding stream surfaces are decoupled (see Section
3.4.2 and the illustration there). The theory of spectral NRBC is not per se limited to
two-dimensions. In fact, three-dimensional mode decomposition techniques have suc-
cessfully been utilized for NRBC in frequency domain methods (see Section 2.3 and
references therein). However, with a given frequency a two-dimensional problem has
to be solved at the boundary and the associated computational effort can be signifi-
cant (cf. Petrie-Repar, 2010). In a time domain simulation, the modal analysis needs to
be conducted at every discrete frequency of the spectrum yielding an additional, tem-
poral dimension. Therefore the boundary condition will become a three-dimensional
problem itself (in two spatial and one temporal dimension) and the expected computa-
tional effort might prohibit the use of such a boundary condition in large time domain
simulations that are costly anyway. Beyond, three-dimensional NRBCs are, as well
as their two-dimensional counterpart, subject to restrictions regarding the underlying
mean flow and duct geometry. If the flow is not uniform in axial and circumferential
direction, the modal analysis is much more intricate (see e.g. Rienstra, 1999). Hence,
three-dimensional NRBCs are not as universal as their label might suggest. Kersken
et al. (2014) show that, starting from simple one-dimensional boundary conditions, one
gains the most significant improvement by incorporating the circumference as second
spatial dimension and the impact of adding the third spatial dimension is much less
substantial in a LPT flutter study.

For those reasons, in this work the quasi-three-dimensional approach is pursued. This
approach, however, requires the definition of rotational surfaces in which the two-
dimensional Euler equations are considered. Employing the quasi-three-dimensional
approach to realistic turbomachinery configurations is not straightforward as there is
no natural choice to define such rotational surfaces. In general, the computational
domain is not always bounded by planes of constant axial position, e.g. when deal-
ing with modern three-dimensional blade designs and small axial gaps between blade
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rows. Moreover, the annulus geometry might deviate from purely cylindrical endwalls
causing the flow to deviate from simplified, purely axial or axially constant mean flow
conditions as well (e.g. see Chapter 5.1). In these situations, the question arises how the
above mentioned surfaces should be defined appropriately. The first degree of freedom
for such a rotational surface is obviously given by the circumferential direction. How-
ever, there are two options that seem to be plausible choices for the second coordinate.
One is the mean meridional velocity vector. With this choice, the mean out-of-plane
velocity component vanishes and the reference surface is a genuine (temporally and
circumferentially averaged) stream surface. This definition is in particular motivated
by considering the 2D Euler equations and the subsequent wave propagation analysis
in such a stream surface. On the other hand, in case of non-cylindrical stream surfaces,
the prerequisite of the flow being homogenous in axial direction is violated anyway.
Moreover, we will formulate the spectral NRBC in terms of one-dimensional charac-
teristics because for hyperbolic systems, well-posed initial-boundary value problems
can be formulated using boundary conditions based on bounded, boundary-normal,
incoming characteristics (see Kreiss (1970) or Higdon (1986b)). Hence, the boundary-
normal direction appears to be the suitable choice with regard to well-posedness.

A detailed description and analysis based on the pseudo-time harmonic balance solver
in TRACE is given by Frey et al. (2020) and Wolfrum et al. (2020). It has been found
that the formulation based on the mean meridional velocity vector may yield supe-
rior reflection behaviour in elementary duct flows with strongly inclined interfaces.
However, the analysis of unsteady blade forces induced by the wake of a TMTF on a
subsequent LPT rotor did not support this clear advantage of the meridional velocity-
based formulation. Both options are implemented and available for the time domain
spectral NRBC presented in this work. Yet, the default definition is chosen to be the
option using the boundary-normal vector as, from the author’s experience, the merid-
ional velocity vector-based formulation sometimes impairs the convergence of time
domain simulations. This can be explained by the fact, that the boundary normal is
constant whereas the meridional velocity vector might vary, in particular during tran-
sient phases at the beginning of a simulation before the flow reaches periodic conver-
gence. It is therefore no surprise that a coordinate system being itself a function of
the solution is not helpful to the stability and fast convergence of numerical simula-
tions. Accordingly, computations of both three-dimensional test cases in Chapter 5 are
conducted using the boundary-normal to define the rotational surface.

Note that in this chapter, the coordinate system for the two-dimensional approach is
based on either of the surface definitions discussed above. Coordinates x and y with
their respective velocity components u and v are defined locally at the boundary. While
coordinate y denotes the circumferential direction, coordinate x is perpendicular to y,
but either parallel to the mean meridional velocity vector or to the boundary-normal
vector at that radial position. In case of the boundary-normal option, the reference
vector points into the computational domain at inflow boundaries and out of the do-
main at outflow boundaries, such that the corresponding velocity component u always
takes positive values. Coordinate z and the corresponding velocity component w are
associated with the out-of-plane direction.

With the above assumptions of axially and circumferentially uniform, inviscid flow
along stream surfaces of constant or slowly varying radii, we can apply the governing
set of equations in stationary or rotating frames of reference, neglecting centrifugal and
Coriolis forces. Equations (3.1)-(3.3) reduce to the two-dimensional or better quasi-
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three-dimensional Euler equations in conservative variables

∂

∂t
U +

∂

∂x
FE(U) +

∂

∂y
GE(U) = 0 (3.22)

We can expand the spatial derivatives of the Euler fluxes in Equation (3.22) using their
Jacobians with respect to the vector of conservative variables and obtain

∂

∂t
U +

∂FE

∂U

∂U

∂x
+
∂GE

∂U

∂U

∂y
= 0. (3.23)

Moreover, we introduce the vector of primitive variables q = (ϱ, u, v, w, p), the asso-
ciated variable transformation ∂U

∂q
and its inverse ∂q

∂U
. Rearranging Equation (3.23) in

terms of primitive variables yields

∂

∂t
q +

∂q

∂U

∂FE

∂U

∂U

∂q

∂q

∂x
+
∂q

∂U

∂GE

∂U

∂U

∂q

∂q

∂y
= 0. (3.24)

For brevity, we write this equation in a so-called quasi-linear form

∂

∂t
q + A∗(q)

∂q

∂x
+B∗(q)

∂q

∂y
= 0 (3.25)

with

A∗(q) =
∂q

∂U

∂FE

∂U

∂U

∂q
and B∗(q) =

∂q

∂U

∂GE

∂U

∂U

∂q
. (3.26)

The next crucial step is to write the local flow state along the boundary, at constant
radial and axial position, as the sum of a local perturbation q′ and a circumferentially
and temporally area-averaged mean state q

q = q + q′ (3.27)

with

q =
1

T A

∫

T

∫

A

dAdt (3.28)

and assume the perturbations are sufficiently small. If we then freeze A and B at the
mean state, they read:

A := A∗(q) =




u ϱ 0 0 0
0 u 0 0 1/ϱ
0 0 u 0 0
0 0 0 u 0
0 γp 0 0 u



, B := B∗(q) =




v 0 ϱ 0 0
0 v 0 0 0
0 0 v 0 1/ϱ
0 0 0 v 0
0 0 γp 0 v




(3.29)

With constant matricesA andB, the system is now indeed linear. As mentioned earlier,
we postulate that the mean flow is approximately constant in axial direction. Hence,
the mean state alone is a trivial solution and, due to linearity, the perturbation is also a
solution to the linear system

∂q′

∂t
+ A

∂q′

∂x
+B

∂q′

∂y
= 0. (3.30)
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Again owing to the linear nature of Equation (3.30), we can without loss of generality
assemble an arbitrary, spatially and temporally periodic boundary field by superposi-
tion of Fourier modes of the following form:

q′ = Re
(
q̂ ei(kx+ly+ωt)

)
(3.31)

Substituting Equation (3.31) into Equation (3.30), we obtain

(ωI + kA+ lB) q̂ = 0. (3.32)

With non-trivial solution q̂, this yields

det (ωI + kA+ lB) = 0. (3.33)

As this equation relates the wavenumber components k and l to the angular frequency
ω, it helps determine how waves associated with such Fourier modes propagate. Equa-
tion (3.33) is called dispersion relation and it is a polynomial equation of degree five in
k, l and ω for A and B are 5× 5 matrices.

3.2.2 Modal decomposition and wave propagation

We can interpret the dispersion relation (3.33) as the characteristic polynomial to an
eigenvalue problem

(kA+ lB)ri = −ωiri (3.34)

with eigenvalues −ωi and eigenvectors ri. When developing boundary conditions,
however, we can express the boundary flow field in its spectral representation, i.e. we
can conduct Fourier transforms in time and in circumferential direction. Details on
implementing this step and its implications, in particular for time marching computa-
tions, are addressed in Section 3.4. With known circumferential wavenumbers l and
angular frequencies ω, it is beneficial to multiply Equation (3.32) from the left by A−1

and obtain
(
ωA−1 + kI + lA−1B

)
ri = 0. (3.35)

Equation (3.35) is an eigenvalue problem with the same eigenvectors ri, but eigen-
values −ki. This means, with given circumferential wavenumber l and frequency ω,
we can calculate the boundary-normal wavenumber ki and thereby identify whether
a wave enters or leaves the computational domain as we will discuss later in this sec-
tion. In fact, it is not necessary to compute A−1 explicitly because the characteristic
polynomial to Equation (3.35)

det
(
A−1 (ωI + kA+ lB)

)
= det

(
A−1

)
det (ωI + kA+ lB) = 0 (3.36)

is equivalent to Equation (3.33) since A is neither a function of k, l or ω nor singular for
non-vanishing u. Thus, we can instead solve Equation (3.33) for its five roots ki. Here,
it is convenient to introduce an auxiliary variable

ω̃ = ω + vl (3.37)

which can be understood as the Doppler-shifted angular frequency one detects in a
virtual reference frame that rotates with circumferential velocity v so that in this virtual
reference frame the mean flow is purely axial. Expanding Equation (3.33) then yields

(ω̃ + uk)3
(
(ω̃ + uk)2 − a2

(
l2 + k2

))
= 0 (3.38)
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with speed of sound a =
√
γ p
ϱ
. From Equation (3.38), we can easily identify a triple

eigenvalue

k1,2,3 = − ω̃
u
. (3.39)

Since the algebraic multiplicity of this vector is three, the construction of the corre-
sponding eigenvectors is not unique. We will use the following definition for two rea-
sons. Firstly, it is easy to see that r1,2,3 are mutually orthogonal and hence the geometric
multiplicity of k1,2,3 equals its algebraic multiplicity. This is crucial to our approach to
use the eigenvectors as a new basis for the decomposition of the flow field into waves
with known propagation properties. Secondly, this choice offers a rather simple phys-
ical interpretation.

r1 =




−ϱ
0
0
0
0



, r2 =




0
arl

−ark2
0
0



, r3 =




0
0
0
a
0




(3.40)

By only affecting density, r1 expresses the change in primitive variables induced by
an entropy wave. While r2 induces a velocity perturbation along the wavefront and
can therefore be understood as a vorticity or shear wave in the x-y-streamsurface, r3
induces out-of-plane velocity fluctuations.

To determine the waves’ direction of propagation with respect to the boundary, the
group velocity ug = −∂ω

∂k
rather than the phase velocity uφ = −ω

k
is of interest since

only the former describes energy transport. If the boundary-normal wavenumber is
proportional to the frequency, group and phase velocity are equal. This is, for exam-
ple, true for one-dimensional acoustic waves. Yet, for multi-dimensional problems,
dispersion relations provide in general nonlinear relationships between wavenumbers
and frequencies and therefore the phase velocity is not meaningful for our purpose.
The interested reader is referred to Whitham (1974) for a comprehensive deep dive
or to Higdon (1986b) to learn more about this in the context of boundary condition
theory. The boundary-normal group velocity component associated to the first three
eigenvectors is

ug(k1,2,3) = − ∂ω

∂k1,2,3
= −

(
∂k1,2,3
∂ω

)−1

= u. (3.41)

This means the entropy and vorticity waves are simply convected with the mean flow
without any change in shape or magnitude. Thus, they are incoming perturbations at
an inflow boundary and outgoing ones at an outflow boundary.

From the remaining quadratic part of the characteristic polynomial (Eq. (3.38)), we can
calculate the fourth and fifth eigenvalues

k4 =
ω̃ (u− aχ)

a2 − u2
and k5 =

ω̃ (u+ aχ)

a2 − u2
(3.42)

with

χ =

{√
1− ξ2 if ξ ≤ 1

−i sign (ω̃)
√
ξ2 − 1 if ξ > 1

(3.43)
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and the definition of the cut-off ratio

ξ =

∣∣∣∣∣
l
√
a2 − u2

ω̃

∣∣∣∣∣ =
ωc

ω
. (3.44)

Here, ωc denotes the critical frequency and the significance of the cut-off ratio and the
critical frequency will be discussed below. It should be noted here that some authors
refer to the quadratic frequency ratio as the cut-off ratio and others prefer its recip-
rocal. However, in the author’s view, the latter should rather be named normalized
frequency or cut-on ratio as large values (> 1) describe cut-on modes.

The corresponding eigenvectors read:

r4,5 =




ϱ
−a2k4,5
ω̃+uk4,5
−a2l

ω̃+uk4,5

0
γp




(3.45)

As they constitute isentropic changes of state and irrotational velocity perturbations,
they describe acoustic waves. Again, their propagation properties can be derived from
their eigenvalues r4 and r5.

For sufficiently large frequencies, viz. cut-off ratios ξ < 1, we obtain real values for χ
and thus the eigenvalues are real-valued as well. From Equation (3.31), we find that in
this case the wave propagates without attenuation, i.e. with constant amplitude. Such
a mode is called cut-on. To discern their direction of propagation with respect to the
boundary, we examine the group velocity. After some lines of pen and paper work
(Others may call it straightforward algebra, but that seems a little presumptuous for
an engineering PhD candidate.), we obtain:

ug(k4) = − ∂ω

∂k4
=

(
−∂k4
∂ω

)−1

=
a2 − u2

a
χ
− u

(3.46)

With ξ < 1 and therefore 0 < χ ≤ 1 and 0 < u < a, we see that ug(k4) > 0 and hence
the wave associated with r4 is a downstream travelling, acoustic wave. Likewise we
calculate

ug(k5) = − ∂ω

∂k5
=

(
−∂k5
∂ω

)−1

= −a
2 − u2

u+ a
χ

(3.47)

which reveals that the wave associated with r5 is an upstream travelling wave, i.e.
ug(k5) < 0.

On the other hand, from Equations (3.42) and (3.43) it becomes evident that with cut-
off ratio ξ > 1 the acoustic modes become complex-valued. In that case, the definition
of Fourier modes (Eq. (3.31)) can be revisited in order to study the propagation char-
acteristics. It can be rearranged to

q′ = Re
(
q̂ e−Im(k)x ei(Re(k)x+ly+ωt)

)
(3.48)

where q̂ e−Im(k)x can be understood as an amplitude that decays or grows in axial direc-
tion depending on the sign of the imaginary part of k4 and k5 respectively Thus, when
taking the square root of the negative radicand 1 − ξ2, we must choose the correct



3. Theory and implementation 35

branch by defining the sign of the root such that the wave associated with k4 travels
downstream while the wave associated with k5 travels upstream. With the definition
in Equation (3.43), we make sure that k4 has a positive imaginary part and therefore
decays in positive x-direction. As the amplitude of a single wave cannot increase while
propagating in uniform flow, this is equivalent to the wave associated with k4 travel-
ling downstream. Analogously, this definition guarantees Im(k5) < 0 and with the
same reasoning the corresponding acoustic wave must travel upstream. The impor-
tant feature is that these propagation directions are consistent to the cut-on case ξ < 1.
As with ξ > 1 the acoustic waves decay in their respective direction of propagation,
they are called cut-off.

Note that the singularity of k4,5 at ω̃ = 0 is removable. Equations (3.42) and the follow-
ing can easily be rewritten such that the ω̃ in the denominator of the definition of ξ is
extracted and eventually cancelled out. Yet, the above notation is chosen to explicitly
keep the cut-off ratio in the equation and thereby point out more clearly the signifi-
cance of the cut-off ratio to the nature of acoustic modes. For the sake of completeness,
we define

k4
∣∣
ω̃=0

:=
i |l| a√
a2 − u2

and k5
∣∣
ω̃=0

:=
−i |l| a√
a2 − u2

. (3.49)

The phenomenon at ξ = 1 is referred to as acoustic resonance. From Equations (3.42)
and (3.43), it is evident that k4 and k5 become equal and therefore also the correspond-
ing eigenvectors r4 and r5 coincide. The mode decomposition approach, we are about
to introduce, will collapse in that case since the eigenvectors no longer form a suitable
basis. This implies that upstream and downstream travelling modes can no longer be
discerned which poses a challenge to the construction of well-posed boundary con-
ditions. In fact, the boundary-normal group velocity component vanishes (cf. Eqs.
(3.46) and (3.47)), which means that the acoustic waves spin around the circumference
and their energy is neither dissipated nor carried away. In the context of boundary
conditions, we can circumvent this phenomenon by adding a small imaginary part
to the otherwise real-valued angular frequency (only within the boundary condition
formulation). This regularizes the modal decomposition because as a result the res-
onant modes become virtually cut-off. In other words, the imaginary part of the an-
gular frequency is equivalent to artificial damping. The associated eigenvalues are
then complex conjugates to each other which allows differentiating their direction of
propagation or decay by means of their imaginary part. A thorough discussion of this
technique is given by Frey & Kersken (2016). Their work deals with a frequency do-
main implementation of this regularization approach, but the physical and mathemat-
ical principle is identical. The authors show that the the impact of this regularization
approach is limited to stabilizing the boundary condition under conditions close to
acoustic resonance, but does not affect accuracy if the damping parameter is chosen
sufficiently small. To not overcomplicate this chapter, we stick to the original formu-
lation based on real-valued frequencies here keeping in mind that acoustic resonance
and its mathematical implications are taken care of in the actual implementation.

The pivotal benefit of the presented eigenvector analysis is that we have found five
linearly independent eigenvectors to form a basis in which our five-dimensional vector
of primitive perturbation variables can be expressed as a linear combination of five
types of waves, i.e. eigenvectors, with known propagation directions. Let αi be the
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amplitude of these fundamental waves, so we can write

q′ = Re

([
5∑

i=1

αirie
ikix

]
ei(ly+ωt)

)
(3.50)

at each position of our spectrum in time and space, i.e. for each combination of known
ω and l. Note that it is not necessary to calculate the group velocities in the actual im-
plementation of the NRBC since we know that, for flows that are subsonic in boundary-
normal direction, the first four eigenvectors are associated with downstream travelling
waves and only the fifth mode runs upstream.

To determine the coefficients αi of a given modal perturbation q̂, Giles (1988) also in-
troduces a set of left eigenvectors. We have utilized that the set of right eigenvectors is
independent of left multiplying A−1 to Equation (3.32) in order to obtain an eigenvalue
problem with eigenvalues −k. Yet, this is not true for left eigenvectors. Therefore, Giles
proposes a way to analytically derive the left eigenvectors to the modified characteris-
tic polynomial (Eq. (3.35)) without computing A−1. Instead, the fact is exploited in this
work that inverting the matrix of column-wise right eigenvectors

R = (r1 r2 r3 r4 r5) (3.51)

produces a matrix of row-wise left eigenvectors

L =




l1
l2
l3
l4
l5



. (3.52)

This can be verified easily as follows. If we define the diagonal matrix Λ containing
the eigenvalues of an arbitrary, quadratic, regular matrix M whose right eigenvector
matrix R∗ has full rank, we can write:

MR∗ = R∗Λ ⇔ R∗−1MR∗ = Λ

Then defining L∗ = R∗−1 shows that L∗ constitutes a matrix of (row-wise) left eigen-
vectors:

L∗ML∗−1 = Λ ⇔ L∗M = ΛL∗

Therefore, it is more convenient for us to compute L numerically. The key for con-
structing NRBC is that, with LR = I , we can use L to measure the portion of each
fundamental wave type ri in a given flow state q̂. We define the modal decomposition

α̂ = R−1q̂ = Lq̂ (3.53)

with α̂ denoting the vector of amplitudes.

3.2.3 Specification of spectral non-reflecting boundary condition

The condition to avoid spurious reflections at artificial boundaries in the spectral do-
main is simply to suppress all waves that are identified as incoming by means of the
modal decomposition introduced above. Accordingly, the boundary flow field then
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contains only outwards travelling perturbations and no reflection can come back into
the computational domain. Hence, we require for any discrete Fourier mode of the
two-dimensional spectrum in space and time, viz. with given angular frequency ω and
circumferential wavenumber l,

Lin(ω,l)q̂(ω,l) = 0 (3.54)

where Lin(ω,l) only includes the rows of L that correspond to incoming waves. This

means Lin(ω,l) = (l1, l2, l3, l4) at inflow boundaries and Lin(ω,l) = (l5) at exists. The re-
maining rows belong to the matrix of left eigenvectors associated with outgoing waves
Lout(ω,l). In the same way, we distinguish right eigenvector matrices Rin

(ω,l) and Rout
(ω,l) with

column-wise separation.

The zeroth harmonic in space and time q̂0,0 must be excluded from this condition as it
represents the mean flow instead of perturbations. We will specify a different condition
for this mode in Section 3.4 in order to meet the specified mean boundary values.

3.2.4 Imposing incoming modes

The modal decomposition can also be utilized to combine the prescription of unsteady,
incoming disturbances with non-reflecting boundary conditions. Usually, when inho-
mogeneous, two-dimensional boundary value distributions are specified, e.g. to mimic
incoming wakes of upstream components, the boundary becomes reflective to outgo-
ing waves because of the local nature of the boundary condition. However, instead
of removing all incoming modes at an interface when employing spectral NRBCs, we
can also allow incoming disturbances by means of the modal decomposition if we can
specify these disturbances in the spectral domain. For that, Equation (3.54) is extended
by adding a right-hand side:

Lin(ω,l)q̂(ω,l) = α̂in(ω,l) (3.55)

An example of this technique is demonstrated in Section 4.2 where we prescribe single,
two-dimensional, acoustic modes at an inlet of an annular duct with axial mean flow.
However, by providing a distribution with several modes to be superposed at each
radial position, it is also possible to reconstruct more complex and more realistic inlet
distortions such as, for example, the above mentioned wake of an upstream blade row.

3.3 Related NRBC formulations

In the following subsection, we will outline three types of boundary conditions that
can be derived from the spectral NRBCs presented in the preceding part of this chap-
ter. Those boundary conditions have been introduced by Giles (1988) and gained pop-
ularity in numerous turbomachinery CFD tools. Therefore, they are also studied in the
validation and application part of this work in order to compare the spectral NRBC
against them.

3.3.1 Characteristic, one-dimensional NRBC

A very common class of unsteady boundary conditions is based on one-dimensional,
characteristic variables. These boundary conditions can be formulated local in space
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and time and they are relatively simple to implement. Thus and due to their robust-
ness, they are widely used although they provide, in general, only very limited sup-
pression of artificial reflections.

Characteristics based, one-dimensional NRBC can be regarded as a special case of the
more generally valid, two-dimensional NRBC. For one-dimensional flows, i.e. if all
waves enter or leave the domain perpendicularly to the boundary, the circumferential
wavenumber vanishes and the eigenvectors can be scaled such that they do no longer
depend on ω:

L1D =




−1
ϱ

0 0 0 1
ϱ a2

0 0 1
a

0 0
0 0 0 1

a
0

0 1
a

0 0 1
ϱ a2

0 −1
a

0 0 1
ϱ a2



, R1D =




−ϱ 0 0 ϱ
2

ϱ
2

0 0 0 a
2

−a
2

0 a 0 0 0
0 0 a 0 0

0 0 0 ϱ a2

2
ϱ a2

2




(3.56)

The characteristic variables (or short: characteristics) are then defined as

c′ = L1D q
′. (3.57)

As they solely depend on mean flow quantities, the one-dimensional boundary condi-
tion

Lin1D q
′ = c′

in
= 0 (3.58)

can be applied locally without any prior Fourier transform in time and/or space. How-
ever, this is only true for the perturbation part. We still want to meet given boundary
values in terms of temporally and circumferentially averaged, hence non-local, quan-
tities. Therefore, we additionally prescribe a change in mean characteristics. This pro-
cedure is identical to the spectral NRBCs and covered in Section 3.4.

3.3.2 Approximate, unsteady, two-dimensional NRBC

To overcome the complication of implementing the spatially and temporally non-local,
spectral NRBC in a time marching scheme, Giles (1988) proposes a local, approximate,
two-dimensional, unsteady boundary condition. The central concept is to circum-
vent the dependence of the modal decomposition on the spectral representation of
the boundary by approximating the modal decomposition matrix L in Equation (3.53)
by means of a Taylor series expansion about the unsteady, one-dimensional condition.
With an auxiliary variable λ = l

ω
, the second-order approximation of the left eigenvec-

tor matrix L reads

La = L|λ=0 + λ
∂L

∂λ

∣∣∣∣
λ=0

= L1d +
l

ω

∂L

∂λ

∣∣∣∣
λ=0

. (3.59)

Now the boundary condition Lina q
′ = 0 can be multiplied by ω. From Equations (3.31)

and (3.32), we infer that the backward transform into the time and space domain is
achieved by replacing ω by i ∂

∂t
and l by i ∂

∂y
yielding

Lin1d
∂q′

∂t
+
∂Lin

∂λ

∣∣∣∣
λ=0

∂q′

∂y
= f

(
Lout1D

∂q′

∂y

)
. (3.60)
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This differential equation can be solved along the boundary surface with an appropri-
ate numerical scheme and the outgoing characteristics on the right-hand side need to
be extrapolated from the interior. The detailed right hand side term and the solution
algorithm applied in TRACE are presented by Ashcroft & Schulz (2004). The adher-
ence of averaged boundary quantities to user specified values is again accomplished
in a manner consistent with the spectral, two-dimensional and the characteristic, one-
dimensional NRBC.

Giles shows that his original formulation may become ill-posed at inflows and, hence,
he proposes giving up the condition for perfect decoupling of acoustic modes and
thereby accepting a certain amount of reflections. The coupling term is minimized
under the constraint of the boundary condition being well-posed.

Due to the approach of expressing the left eigenvector matrix by a Taylor series ex-
pansion in λ, this boundary conditions is only perfectly non-reflecting to planar waves
passing orthogonally through the boundary. In general, the boundary condition be-
comes more reflective with increasing λ. Accordingly, flows with large circumferential
wavenumbers and flows that are dominated by low frequency waves can induce spu-
rious reflections at the boundary.

3.3.3 Steady, two-dimensional NRBC

Giles also introduces a derivative of the spectral NRBC for steady state computations.
In fact, the modal decomposition for the time-averaged flow with arbitrary wavenum-
bersL(0,l) can be used in a straightforward fashion as a steady boundary condition if the
modal decomposition is applied to the steady state solution of the latest pseudo-time
step instead of to the zeroth harmonic of the unsteady boundary flow field. There-
fore, the spectral NRBC presented in this work, when used in steady state simulations,
is inherently consistent with the steady NRBC presented by Giles (1988) in terms of
physics. However, Giles (1991) proposes two aspects that simplify the implementation
of the NRBC for steady state computations.

Firstly, an alternative inflow boundary condition is presented to reduce the number
of non-local operations and possible second-order non-uniformities in inflow stagna-
tion enthalpy and entropy which both are assumed to be uniform in pitch-wise di-
rection. Rather than performing the necessary Fourier transform based on primitive
variables, Giles considers characteristic variables according to Equation (3.57). Note
that we will also rewrite the boundary condition (Eq. (3.54)) in terms of characteristic
variables in the implementation of the spectral, unsteady NRBC (as detailed in Sec-
tion 3.4), but for other reasons. One simplification of Giles’ steady NRBC is that the
incoming modes can be written as functions of the characteristic variable associated
with upstream acoustic waves c4 only and therefore only one scalar quantity needs to
be Fourier transformed at inlet boundaries.

Furthermore, the non-local conditions for entropy and for the downstream acoustic
wave are replaced by a local condition that is not subject to possible second-order
effects, which come with the linearization and modal decomposition approach. In-
stead of setting the associated modal amplitudes to zero, Giles directly suppresses
any deviation from the circumferentially averaged entropy and stagnation enthalpy
at every position along the boundary rather than in the wavenumber space. This guar-
antees uniform distributions while the modal approach may produce second-order
effects. However, the author of this thesis has observed such uniformities so far only
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in the presence of shocks that impinge on the inflow boundary. Hence, second-order
non-uniformities appear acceptable regarding that the assumption of uniform entropy
across an impinging shock is physically not sound. In lack of a better, substitute con-
dition, this assumption is still maintained, but it appears debatable if mild deviations
from it are detrimental in any way.

Secondly, Giles utilizes the fact that in steady flows, the acoustic modes are cut-on if
and only if the flow is supersonic (but still subsonic in boundary-normal direction). In
that case, the acoustic modes constitute Mach waves with strictly confined regions of
influence. Shocks are usually presented by superposition of a number of such modes.
On the other hand, in subsonic flows, acoustic modes describe the (much smoother)
steady state potential flow field with an infinite region of influence due to the elliptic
nature of subsonic steady state flows.

For this reason, the modal decomposition in steady, supersonic flows can be formu-
lated in a purely local fashion while a non-local condition is needed for subsonic flows.
This implies that the spatial Fourier transform is not necessary for supersonic, steady
flows.

The control of mean boundary values is similar to the unsteady NRBC variants apart
from the fact that temporal averaging is not meaningful in steady state simulations
and, thus, only pitch-wise mean quantities are driven towards user specified values
(cf. Section 3.4.4).
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3.4 Implementation into time domain solver

This section deals with the implementation of spectral NRBC, as presented in Section
3.2, into a finite volume, unsteady, time domain URANS solver with dual time step-
ping. It addresses the topics arising from the temporally and spatially non-local nature
of the spectral NRBC when applied to time marching simulations, which requires a
proper specification of boundary states at any position of the boundary surface at any
discrete time step. Several aspects greatly improve the robustness and convergence
behaviour of the presented implementation as opposed to a former ad-hoc incorpora-
tion of spectral NRBCs from DLR’s harmonic balance solver (cf. Kersken et al. (2014);
Schl Èuû et al. (2016)). Together, these details yield an implementation, that provides
true utility of the spectral NRBC in time domain simulations for real world research
and design tasks.

We will discuss the implications of dual time stepping for a robust and efficient NRBC
implementation. While the boundary condition must of course be applied at each
pseudo-time iteration, some of its steps must be carried out only once per physical
time step and with respect to the temporal dynamics of the system at hand.

Secondly, a simple one-dimensional, characteristic boundary condition (see Section
3.3.1) is used as a basic framework since these boundary conditions are well-posed
and known to be very robust (cf. Giles (1988)). This is described in Sections 3.4.3 and
3.4.6.

Thirdly, we will discriminate between time-local, i.e. instantaneous, circumferential
averages and quantities that are averaged in both space and time. We will take advan-
tage of the fact that the difference between those is equivalent to the superposition of
each boundary-normal wave (l = 0) (see Section 3.4.5).

In this work, the spectral NRBCs have been implemented into DLR’s in-house tur-
bomachinery CFD tool TRACE. TRACE offers a wide range of modelling approaches
as well as numerical methods for both structured and unstructured grids (see Becker
et al., 2010, and references therein). Conventional steady state RANS and time march-
ing URANS methods (see e.g. Ashcroft et al., 2012; Geiser et al., 2019) are available
as well as reduced-order frequency domain approaches such as a time-linearized (see
e.g. Kersken et al., 2012; Frey et al., 2012) or a nonlinear harmonic balance solver (see
e.g. Frey et al., 2014, 2015). To close the (U)RANS equations, TRACE covers a vari-
ety of turbulence (see e.g. Franke et al., 2010; Morsbach, 2016) and transition models
(see e.g. Kozulovic, 2007; Marciniak, 2016; K Èugeler et al., 2018). Beyond (U)RANS, re-
cent developments also strive for turbulence resolving simulations of turbomachinery
flows based on either conventional second order finite volume (see e.g Morsbach &
Bergmann, 2020) or discontinuous Galerkin methods (see e.g. Bergmann et al., 2018,
2020). However, turbulence resolving simulations are outside the intended scope of
applications of the spectral NRBCs presented in this work.

In the context of boundary condition methods, we seek the correct state at faces of ex-
posed boundary cells. This state can be regarded as the output of a particular boundary
condition method, e.g. a simple reflective boundary condition, a characteristic NRBC
or, in this case, the spectral, two-dimensional NRBC. The following subsections de-
scribe the calculation of this local face state. To feed the finite volume solver with a
consistent flux across the boundary cell face, this face state needs to be extrapolated
to the ghost cell(s) appropriately, but independently of the actual boundary condition
method, as discussed in Section 3.1. That means, while the definition of a boundary
condition is a piece of physical modelling, the subsequent extrapolation is a purely
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numerical tool needed to provide the underlying finite volume method with suitable
boundary fluxes.

3.4.1 Transient calculation of temporal Fourier coefficients

One fundamental difference between unsteady, time domain methods and frequency
domain methods, where spectral NRBCs can be regarded as established state-of-the-
art turbomachinery boundary conditions, is that the latter are per se non-local in time.
Here, the unsteady flow field is considered in terms of Fourier coefficients of one or
numerous predominant harmonics. This inherently spectral representation of the flow
serves as direct input for the modal decomposition (Eq. (3.54)) and, hence, for the sup-
pression of waves entering the computational domain. In contrast, in time marching
simulations, we have to determine the temporal Fourier coefficients of the unsteady
flow in a transient manner.

For this purpose, it is useful to revisit a concept which has been proposed in the con-
text of unsteady simulations of periodic turbomachinery flows using computational
domains that include only one blade passage (or a heavily reduced number of blades).
If the unsteady flow is characterized by temporally and circumferentially periodic phe-
nomena, the periodicity condition at pitch-wise boundaries can be extended such that
it allows for given inter-blade phase angles. The idea is to not couple the periodic
boundaries directly by exchanging their instantaneous flow states, but rather describe
the boundary flows in terms of harmonic modes. The periodic boundary condition
then ensures, that the flow states at either side of the domain are constructed using the
same Fourier coefficients but with respect to a given phase shift. Such phase-shifted (or
often referred to as phase-lagged) periodic boundary conditions have been introduced
by Erdos et al. (1977), who store the time history at periodic boundaries to exchange
phase-shifted states. However, this procedure is quite memory intensive and, thus, He
(1990, 1992) suggests to describe the boundary flow with a limited number of Fourier
harmonics. He describes an algorithm to update these Fourier coefficients at every
time step so that storing the entire time history of the last period is not necessary. This
method is called shape correction in contrast to Erdos’ direct store method. In the
present work, a very similar algorithm proposed by Gerolymos et al. (2002) (and then
implemented in TRACE by Schnell, 2004) is applied.

If the sought solution is periodic in time, the Fourier coefficient of the k-th harmonic q̂k
must converge to a constant value. This means, the discrete integral over one period,
corresponding to the fundamental frequency ω, using N sampling points, i.e. time
steps, is independent of the starting point. For example, the Fourier coefficient q̂nk ,
evaluated at time step n and with tn = n 2π

ωN
, reads

q̂nk =
1

N

n∑

i=n−N+1

qie−ikωti . (3.61)

Likewise, we write q̂n−1
k , evaluated at time step n− 1,

q̂n−1
k =

1

N

n−1∑

i=n−N

qie−ikωti . (3.62)

With period N , and hence

e−ikωtn = e−ikωtn−N , (3.63)
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we expect:

q̂nk − q̂n−1
k =

1

N

(
qn − qn−N

)
e−ikωtn → 0. (3.64)

Since we would like to avoid storing the history of q, we approximate qn−N by recon-
structing it from the latest set of Fourier coefficients using again Equation (3.63):

qn−N ≈ q∗ = Re
∑

k

q̂n−1
k eikωtn (3.65)

So, we can understand the right-hand side of Equation (3.64) as a residual to an itera-
tion scheme for q̂k and write:

q̂nk = q̂n−1
k +

1

N
(qn − q∗) e−ikωtn (3.66)

Note that in a dual time-stepping solver, time levels n refer to physical time and not to
pseudo-time. Therefore, the update of temporal Fourier coefficients (Eq. (3.66)) should
be performed once at the end of any pseudo-time iteration loop.

In order to stabilize the phase-lag method, Schnell (2004) reports that this iteration
scheme needs to be relaxed. Additionally, the temporal development of Fourier coeffi-
cients requires filtering out numerical, long-wave oscillations to achieve reasonable ro-
bustness. However, in the context of spectral NRBC, Equation (3.66) is applied directly
without further modification. In fact, such long wave oscillations or other robustness
issues have not been observed by the author of the present work. The reason for that
might be twofold.

On the one hand, in the context of spectral NRBCs, the Fourier coefficients are used as
an input to the modal decomposition yielding ideal boundary states, towards which
the actual, current boundary state is driven with appropriate relaxation (as discussed
later). In contrast, the phase-corrected state is directly imposed at phase-lagged peri-
odic boundaries.

On the other hand, the spectral boundary condition suppresses incoming perturba-
tions by prescribing bounded incoming characteristics (also discussed later in this sec-
tion) whereas phase-lagged periodic boundaries transmit any kind of physical and nu-
merical oscillations by coupling two boundaries of the computational domain, which
could generate some sort of feedback mechanism.

The spectral NRBCs are implemented such that either the full spectrum from the base
frequency to the highest possible harmonics according to the Nyquist criterion is con-
sidered or only a predefined set of relevant harmonics if these can be estimated a priori.
The former option requires no further user input, but might become expensive in terms
of computational effort and memory for very large simulations such as full wheel sim-
ulations of realistic turbomachinery components with adverse blade counts. If relevant
frequencies can be identified beforehand (e.g. all blade interaction and scatter frequen-
cies and some of their higher harmonics), the computational costs of the spectral NRBC
is comparable to other (local) boundary conditions and, thus, the impact on overall
computational costs is negligible even for large setups. This is investigated in detail in
a master’s thesis by Sivel (2018), supervised by the author of this work. In contrast to
frequency domain simulations, where one tries to strongly limit the set of considered
frequencies in order to fully exploit the efficiency of the frequency domain method,
the selection of harmonics to be considered in the spectral NRBC can be comparatively
generous. In the author’s experience, the spectral NRBCs do not significantly increase
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the computational effort per time step compared to simpler boundary conditions if any
possible blade interaction frequency and up to ten harmonics thereof are taken into ac-
count. In single passage simulations with phase-lagged periodic boundaries, the base
frequency is usually resolved with fewer time steps compared to large multi passage
simulations. Therefore, an a priori selection of harmonics is not necessary in terms
of computational costs. If not stated otherwise, in this work, ten harmonics of every
blade interaction frequency are taken into account in multi passage simulations with
truly periodic boundaries and the full spectrum up to the Nyquist frequency is used
whenever phase-lagged boundaries are applied.

3.4.2 Band concept and circumferential Fourier transform

Recall from Chapter 3.2 that the spectral NRBCs presented in this work are not only
non-local in time but also in space as they are derived from the two-dimensional Euler
equations applied to virtual, rotationally symmetrical stream surfaces. The intersec-
tion curve with the boundary surface is a segment of a circle along which the boundary
condition is applied, disregarding coupling of such stream surfaces. To obtain modal
amplitudes for the application of the spectral boundary condition (Eq. (3.54)), the spa-
tial Fourier transform of the space-local, temporal Fourier coefficients is performed in
circumferential direction.

Figure 3.2: Illustration of the two-dimensional NRBC applied to three-dimensional
flow. One band (dark red) is depicted as the intersection of the boundary mesh (light
red) and a virtual stream surface (blue).

Therefore, it is necessary that the computational mesh is designed such that all bound-
ary cell faces can be grouped according to their radial position into so-called bands as
depicted in Figure 3.2. If the centres of faces along such a band are aligned at constant
radial position, a Fourier transform along this band will yield modal amplitudes with
associated circumferential wavenumbers. In the present work, only structured meshes
are considered as these usually fulfil this condition for rotationally symmetrical con-
figurations which are typically considered when dealing with turbomachinery flows.
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However, unstructured meshes can also be used if inflow and outflow boundaries are
discretized accordingly.

The circumferential Fourier transform and its inverse is performed employing an ex-
ternal library (see Keiner et al., 2009). In contrast to a common DFT or FFT, this library
supports non-equidistant sampling points which is important to allow for variable
boundary cell sizes of the computational mesh. The library still offers computational
costs that are element of O(n log(n)), which is also true for an FFT, instead of O(n2),
which is the case for a DFT.

The wavenumber spectrum is given by

lj =
Nϑ

r

(
j +

kσ

2π

)
with j ∈ Z (3.67)

where Nϑ is the number of blades in single passage simulations or, more generally for
arbitrary duct segments or multi passage domains of angular pitch ∆ϑ ,Nϑ = 2π

∆ϑ
. Note

that the inter-blade phase angle (or more generally, the inter-segment phase angle) σ is
scaled with the temporal harmonic index k. The limits of the wavenumber spectrum
are determined using the Nyquist criterion based on the largest circumferential spacing
of two neighbouring face centres

To implement non-local boundary conditions into a contemporary CFD solver, that
exploits distributed memory parallelization based on multi block topologies, further
steps must be taken. In TRACE (and many other CFD tools), this concept is realized by
means of the MPI standard and respective libraries (see Message Passing Interface Fo-
rum, 2005). In very brief, the (simplified) concept works as follows: The computational
domain is divided into subdomains, so-called blocks, and the system of conservation
equations is solved in each of these blocks separately. The blocks with their respec-
tive data are distributed among several or many processes. Adjacent blocks need to
exchange flow states at their interfaces. However, one boundary surface, in general,
covers several blocks which may reside on different processes.

Thus, additional communication between processes is required for the implementation
of non-local NRBCs. The local boundary states are gathered and redistributed to a
subset of processes such that each participating process receives the data it needs to
perform the non-local operations of the boundary condition for one or more bands.
The bands (with the associated collected data and workload) are distributed among the
participating processes as evenly as possible. Subsequently, the face-local boundary
states are sent back to the processes, that own the respective, original block data, and
the ghost cell extrapolation is performed on block level.

Also, the calculation of spatially averaged quantities involves further communication.
Here, MPI provides so-called reduce operations that facilitate the calculation of inte-
grals over split domains.

3.4.3 Characteristics-based approach and one-dimensional boundary

condition

The aim of the approach presented in this section, is to capitalize on the fact that well-
posed initial-boundary value problems can be formulated using bounded, incoming,
boundary-normal characteristics (see Kreiss (1970); Higdon (1986b)). Hence, it appears
promising that we can preserve the well-known robustness of the one-dimensional,
characteristics-based NRBC by modifying this boundary condition appropriately Let
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us recall the definition of one-dimensional characteristics c′ (Eq. (3.57)) and the respec-
tive forward and backward transform L1D and R1D (Eq. (3.56)). Rather than prescrib-
ing vanishing incoming characteristics (c′in = Lin1D q′ = 0), a right-hand side is sought
such that the spectral, two-dimensional boundary condition (Eq. (3.54)) is fulfilled.

For this purpose, the local boundary flow state can be decomposed into its mean state
q and a perturbation q′ where the perturbation part is constructed in terms of outgoing
and incoming characteristics:

q = q + q′ = q +
(
Rin

1Dc
′in +Rout

1Dc
′out
)

(3.68)

The outgoing characteristics can be extrapolated from the interior of the computational
domain, i.e. the boundary-adjacent cells of the computational mesh.

Recalling Section 3.3.1, we see that with vanishing incoming part we obtain the local,
characteristic, one-dimensional NRBC directly.

However, we can instead determine finite target values for these incoming character-
istics from the spectral, two-dimensional NRBC theory. Note that the characteristic
transformation matrices R1D and L1D depend purely on the mean state, but not on lo-
cal or spectral quantities, in particular not on angular frequency ω and wavenumbers
k and l. Therefore, we can also apply the characteristic transformation in the spectral
domain.

ĉ(ω,l) = L1D q̂(ω,l) (3.69)

Thus, we formulate a boundary state according to Equation (3.68) with incoming and
outgoing characteristic variables also in the spectral domain and rewrite the non-reflecting
boundary condition (Eq. (3.54)):

Lin(ω,l)q̂(ω,l) = Lin(ω,l)
(
Rin

1D ĉ
in
(ω,l),target +Rout

1D ĉ
out
(ω,l)

)
= 0. (3.70)

Extrapolating the outgoing characteristics ĉout(ω,l) and solving Eq. (3.70) for the incoming

target characteristics ĉin(ω,l),target yields

ĉintarget,(ω,l) = −
(
Lin(ω,l)R

in
1D

)−1
Lin(ω,l)R

out
1D ĉ

out
(ω,l). (3.71)

The above equation provides the ideal incoming characteristics of each mode in the
discrete, two-dimensional spectrum of frequencies and circumferential wavenumbers.
In order to determine the ideal flow state to avoid incoming perturbations, we need to
reconstruct the time- and space-local incoming target characteristics from these modal
contributions. This will be discussed in Section 3.4.6.

Note, however, that modes that are not resolved with Fourier modes (see Section 3.4.1)
are interpreted as modes with vanishing contribution in terms of modal target char-
acteristics. Hence, possibly neglected modes are still captured in a one-dimensional-
NRBC-like fashion by the approach at hand, i.e. the reconstruction of local, incom-
ing target characteristics from ideal, modal contributions, because vanishing incoming
characteristics satisfy the one-dimensional NRBC, see Equation (3.58).

3.4.4 Mean boundary values and compliance with specified operat-

ing conditions

The mode q̂(0,0) is disregarded when calculating the incoming target characteristics
since this mode describes the temporal and circumferential mean flow. Instead, we
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are looking for the shift of mean, incoming characteristics, δcin, needed in order to
meet user-specified boundary values, denoted by subscript bd. For this purpose, we
introduce the residuum:

R =








p
cv
(sF − sbd)

ϱ a
(
ν1 · V F

)

ϱ a
(
ν2 · V F

)

ϱ(hFt − ht,bd)


 for inflow boundaries

(
pF − pbd

)
for outflow boundaries

(3.72)

This residuum is driven to zero by means of one Newton-Raphson step per time step

to determine δcin:

R+
∂R

∂qF
Rin

1Dδc
in = 0 (3.73)

with

∂R

∂qF
=








−a2 0 0 0 1

0 ϱ a νx,1 ϱ a νy,1 ϱ a νz,1 0

0 ϱ a νx,2 ϱ a νy,2 ϱ a νz,2 0

− γ
γ−1

p
ϱ

ϱ u ϱ v ϱw γ
γ−1




for inflow boundaries

(
0 0 0 0 1

)
for outflow boundaries

(3.74)

The vectors ν1,2 are constructed as orthonormal vectors to the target flow direction us-
ing the Gram-Schmidt process. In TRACE, the target inflow direction can be specified
by the user in several formats, either directly as a vector in cylindrical coordinates or
based on various flow angle definitions commonly used in the turbomachinery com-
munity.

Superscript F denotes flux-averaged quantities. This averaging technique and why it
is used will be discussed later in this section.

The definition of the residual is not unique and many other formulations are possible.
The present residual is very similar to the one proposed by Giles (1991) apart from
the more general criterion to specify the inflow direction and a different scaling by
(area-averaged) mean quantities.

In turbomachinery analysis, inlet conditions are typically specified in terms of stag-
nation temperature and stagnation pressure. Since the state of an ideal gas has two
degrees of freedom (at macroscopic level), it is straightforward to determine the target
boundary values of entropy and stagnation enthalpy

s = cp ln

(
Tt
Tref

)
−R ln

(
pt
pref

)
(3.75)

ht = cpTt (3.76)

with reference pressure pref and temperature Tref . These reference values can be cho-
sen arbitrarily as they result in a constant entropy shift and thus cancel out in the
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entropy residual condition. In a non-dimensionalized implementation of a flow solver,
they can be omitted, but in this notation they are necessary just because the argument
of the logarithm needs to be dimensionless.

The mix of area-averaged and flux-averaged quantities in the definition of the residual
may seem odd at first glance. The reason is that the actual criteria, i.e. vanishing
entropy and enthalpy deviations as well as the alignment of the velocity vector with
the given flow direction, are based on flux-averaged values and have the respective
dimension while area-averaged quantities are used to scale every component of the
residual vector such that they have dimension pressure. Thus, the Newton-Raphson
step is performed with respect to the flux-averaged quantities only and the Jacobian
consists of area-averaged quantities alone.

At inflow and outflow boundaries, the boundary values can either be specified by
spanwise distributions or by global parameters. In the latter case, the inflow bound-
ary values are imposed at each band independently (see Section 3.4.2) rather than on
average. If a single value for static pressure is used at an outlet instead of a spanwise
distribution, the pressure at each band is adjusted based on the flow solution with
respect to the radial equilibrium condition

∂p

∂r
= ϱ

v2abs
r

(3.77)

with vabs being the mean circumferential velocity in the absolute frame of reference.
The user-defined reference pressure is then imposed at a spanwise position of choice.
This can be either at the hub or at the tip or at midspan.

The spectral NRBC presented in this work can also be used as a NRBC for steady flow
simulations, equivalent to the steady NRBC described in Section 3.3.3. An application
to the mixing plane approach (see Giles, 1991) is readily available if the above residual
is replaced by the difference of flux-averaged states (expressed in primitive variables).
Then, the 5x5 residual Jacobian is simply the identity matrix I and the outgoing compo-
nents of the five-dimensional, characteristic solution vector are subsequently removed,

yielding δcin. Thus, the correct propagation direction of information is inherently en-
sured.

Closely linked to the issue of specifying boundary values and imposing them on the
boundary flow field is the question how a temporally and spatially varying flow field
can be adequately represented by an equivalent and somehow averaged flow state.
Although it is often presumed in turbomachinery design that the latter is always guar-
anteed, there is no trivial answer to this question. For the interested reader, Cumpsty &
Horlock (2006) provide a highly recommendable overview. They conclude that there is
no such thing as a universal averaging method and choosing a suitable method is not
a matter of preference, but the correct method depends on the underlying engineering
problem or design task.

In the context of boundary conditions, the so-called flux-averaging method (also known
as mixed-out averaging) is used in this work due to consistency and conservation re-
quirements. This concept traces back to the work of Amecke (1967) with respect to two-
dimensional cascade flows and shortly afterwards Dzung (1971) for three-dimensional
turbomachinery flows (both in German language). A comprehensive English-language
introduction and review is presented in a report by Pianko & Wazelt (1983). It should
be noted, that for swirling, three-dimensional flows in annular ducts, as they are typ-
ically found in turbomachinery, further consideration is needed as shown by Prasad
(2005). However, the averaging process is performed in a quasi-two-dimensional fash-
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ion along individual bands for the boundary condition (see Section 3.4.2) which per-
mits the use of the original flux averaging method.

Unlike simple weighted averaging techniques, such as area or mass flow weighted
averaging, the flux averaging process seeks a homogeneous flow state that yields flux
integrals for mass, (angular) momentum and energy on a given surface, in our case the
band at the respective radius, that are equal to the fluxes integral of the inhomogeneous
and time-varying flow field. With the prerequisites from Chapter 3.2 (i.e. 0 < u < a),
we can define the flux-averaged state of a band as the inverse of the boundary-normal
flux function applied to the time-mean, area-averaged flux density on a band:

qF = F−1


 1

T |Aband|

∫

T

∫

Aband

F (q) dAdt


 (3.78)

In periodic turbomachinery flows, the time interval T refers to the period of the fun-
damental frequency that is also used in the temporal Fourier analysis.

As flux-averaging is the only method that conserves mass, momentum and energy
across an interface, it is mandatory for mixing planes. At inlets and outlets, the correct
choice is not necessarily so strict (although the subsequent analysis of results from a
simulation demands more rigour with respect to the nature of the analysis as elab-
orated by Cumpsty & Horlock (2006)). For instance, consistency to reference data
from experiments or other (pre)design tools, where flux-averaged data are not avail-
able, may be important. Thus, the formulation of the residual vector in TRACE is not
rigidly limited to controlling the mean flow with respect to flux-averaged boundary
values and also area or mass flow averaging can be chosen by the user. Otherwise, one
should stick to flux-averaging for the following reasons.

Firstly, the ideal NRBC represents an artificial boundary and therefore mimics the in-
teraction of the computational domain with the infinite surroundings. Thus, when ap-
plying NRBC, the flow solution is independent of the exact position of the boundary
(neglecting increased or decreased end wall losses when shifting the inlet and outlet
boundary as well as aerodynamic and aeroacoustic interactions with potentially con-
verging or diverging annular ducts). For this purpose, a mixed-out average is the
correct reference state.

Secondly, unsteady flow simulations, particularly in the context of aeroelasticity, are
often performed on subdomains of more extended steady state computations. For ex-
ample, in the flutter or forced response analysis of single blade rows or stages, these
rows, together with the corresponding radial distributions of boundary values, are
usually extracted from steady state simulations of the entire component at a given op-
erating point. Hence, former mixing planes become inlet and outlet boundaries and,
for consistency, flux-averaged boundary values should also be used in the unsteady
simulation.

3.4.5 Time-local procedure for quasi-1D waves

Whenever truly periodic boundaries are used, e.g. in multi-passage simulations in con-
trast to single passage simulations using the phase lag approach and non-zero IBPA,
the circumferential wavenumber l = 0 exists in the discrete wavenumber spectrum
(see Section 3.4.2). In such cases, we can exploit the following simplification.
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All modes with zero circumferential wavenumber are excluded from the spectral ap-
proach disregarding their temporal harmonic index. The reason is that modes of cir-
cumferential wavenumber zero, i.e. plane waves propagating normal to the boundary
surface, lead to temporal fluctuations in instantaneous, circumferential averages. This
can interfere with the update of mean characteristics to meet given boundary values
as long as the temporal Fourier coefficients and temporal averages are not fully con-
verged. Instead of regarding those modes within the spectral NRBC approach, we
extrapolate the instantaneous, circumferentially averaged outgoing characteristics

c̃outi = Lout1D (q̃i − qi) (3.79)

with q̃ being the instantaneous, area-averaged state and subscript i denoting states in
the boundary adjacent, inner cell layer.

Thus, c̃outi , too, represents plane waves running orthogonally to the boundary. Their
respective contribution to target incoming characteristics is zero. For periodically con-

verged flows, c̃outi is equivalent to the outward propagating wave reconstructed from
all modes q̂(ω,0). However, the above procedure does not depend on temporal Fourier
coefficients. Therefore, the extrapolation of circumferentially symmetric, outgoing
waves can be carried out locally in time allowing this strategy to properly capture
transient plane wave perturbations at early stages of the simulation, thereby facilitat-
ing convergence.

3.4.6 Reconstruction of the local, instantaneous boundary flow field

The final step of the non-reflecting boundary condition is to construct the local face
states at the current time step of the time marching simulation. For this purpose, the
individual terms from Sections 3.4.3-3.4.5 are compiled along with the mean state.

The instantaneous, face-wise, incoming target characteristics need to be determined
from the spectral target incoming characteristics (Eq. (3.71)) by means of a spatial and
temporal inverse Fourier transform.

cintarget(t, y) =
∑

k

∑

j

Re
(
ĉintarget,(ωk,lj)

ei(ljy+ωkt)
)

with ωk = kω (3.80)

Since the temporal Fourier coefficients of the boundary flow field are updated only
once per physical time step, the target characteristics also need to be evaluated only
once per time step. However, in order to ensure that the target values are met at the
end of a pseudo-time iteration loop, the local, incoming characteristics at a face must
be updated at each pseudo-time step i of a physical time step n:

(
cinf
)n,i

= (1− φ)
(
cinf
)n,i−1

+ φ
(
cintarget

)n
(3.81)

Some relaxation is helpful in order to preserve the good robustness of the underlying
characteristics-based boundary condition formulation in a pseudo-time solver as sug-
gested by Giles (1988). On the other hand, the relaxation factor φ must be sufficiently
large to achieve convergence in pseudo-time within a limited number of iterations. In
this work, the relaxation factor φ = 0.85 is chosen.

On the other hand, the mean characteristics update (Eq. (3.73)) must be imposed with
particular deliberation regarding physical time and suitable relaxation. The resulting
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shift should be applied only once per physical time step for two reasons. First, conver-
gence of the inner iteration loop would otherwise be impossible because the controlled
boundary value, due to its nature as a time-averaged quantity, cannot reach a given
value in a single physical time step. Second, stability and convergence properties of
the control problem of the dynamic system should not depend on the number of in-
ner iterations per time step as the latter is just a numerical solution method while only
physical time stepping determines the temporal evolution of the flow field.

Since the temporal development of time-averaged quantities is lagged depending on
the fundamental frequency, and thus the period (see Eq. (3.78)), the dynamic prop-
erties, e.g. the stability limit for the control of boundary values, is also governed by
the underlying fundamental frequency. Therefore, the prescribed rate of change of the
boundary flow per time step must be scaled with respect to the number of time steps
per period, so that the system behaviour is tuned to the fundamental frequency rather
than to the individual time step.

Hence, a prefactor of ψN
N

is introduced for the control of mean, incoming character-

istics δcin. The free parameter ψ can be increased by the user in order to expedite
convergence at the expense of robustness or vice versa. Although faster convergence
is often possible with larger values, a value of ψ = 5 provides reliable convergence in
the author’s experience. This value is therefore the default value in TRACE and is used
throughout this thesis.

To accelerate multi-passage simulations, where the dominant blade interaction fre-
quencies are much greater than the underlying base frequency, e.g. the frequency
associated with the shaft’s rotational speed in full wheel simulations, the number of
modelled blades in the mesh of the neighbouring blade row is also included in the
scaling factor. For full wheel simulations, the factor N is equal to the number of blades
in the neighbouring blade row of the real world machine, while for less-than-360° mod-
els N is scaled according to the circumferential extent of the numerical domain. For
example, N equals one in single passage computations.

From the author’s point of view, a more sophisticated control law for the boundary val-
ues, rather than a simple correction proportional to the time-averaged deviation, could
potentially provide a significant speed-up in the future, in particular for large multi-
passage simulations with small base frequencies and therefore big lag in the evolution
of averaged quantities.

When constructing local face states by means of incoming and outgoing characteristics,
the outgoing characteristics are extrapolated from the interior layer of cells. Therefore,
unlike incoming characteristics, outgoing characteristics must not undergo numerical
relaxation in order to correctly capture their physical propagation.

As the extrapolation of mean, outgoing characteristics (see Section 3.4.5) is only appli-
cable when using non-phase-shifted periodic boundary conditions, two cases need to
be considered for the extrapolation of local outgoing characteristics from the interior:

couti =

{
c̃outi + Lout1D (qi − q̃i) for truly periodic boundaries

Lout1D (qi − qi) for phase-shifted periodic boundaries
(3.82)

Finally, the instantaneous face state reads

qf = qf +

[
Rin

1D

(
cinf +

ψN
N

δcin
)
+Rout

1Dc
out

]
. (3.83)





4 Academic validation test cases

4.1 VKI LS89 cascade

4.1.1 Test case design and numerical setup

The first validation test case is a two-dimensional, linear turbine cascade designed and
investigated at von Karman Institute for Fluid Dynamics (VKI) (see Arts et al., 1990;
Arts & Lambert de Rouvroit, 1992). A preliminary, reduced study of this test case has
been presented as a conference contribution before (see Schl Èuû et al., 2016). However,
that earlier work is based on different operating conditions which are not covered in
the VKI measurement series. Furthermore, the study uses the aforementioned ad-hoc
adaption of the spectral NRBC harmonic balance implementation in TRACE. This pro-
totype showed very similar results for this test case, but for many others it suffered
from convergence and robustness issues.

The test case is intended to showcase three things. First, unnatural reflections from
boundaries with reflecting or partially reflecting boundary conditions are not only
detrimental when studying unsteady flows, for example in aeroelasticity, but can also
impair the prediction of mean flow features. Second, the different representations of
the interaction of a suction-sided shock with the outlet boundary serve as a lucid vi-
sualization of physically implausible boundary conditions. Third, we observe that the
flow solution is independent of the position of an artificial boundary if a non-reflecting
boundary condition is employed.

The LS89 airfoil is typical of highly loaded nozzle guide vanes and a detailed descrip-
tion of the geometry, the test facility and the operating conditions can be found in the
references above. Blade pressure and heat transfer measurements are available for a
variety of Reynolds numbers, exit Mach numbers and inflow free-stream turbulence
intensities. Therefore, the cascade is frequently used for code validation purposes, es-
pecially with respect to heat transfer modelling (see e.g. Gourdain et al., 2010; Collado
Morata et al., 2012), RANS-based turbulence and transition modelling (see e.g. Langtry
& Menter, 2009; Steelant & Dick, 2000) as well as the development of turbulence resolv-
ing methods and associated higher-order discretization schemes (see e.g. Segui et al.,
2017; Klose et al., 2022).

With regards to boundary conditions, the cascade is of particular interest as a shock ex-
tends from the aft part of the suction side almost perpendicularly to the outlet bound-
ary under transonic flow conditions and due to the large outflow angle of the airfoil.
Therefore, Cosmo & Salvadori (2019) and Henninger (2019) use this test case to validate
their implementations of Giles’s steady NRBC and Hagstrom’s higher-order approxi-
mate NRBC (see Chapter 2) respectively.

Like in the latter works, a transonic flow is considered in this study with conditions
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designated as MUR47 by Arts and subsequent authors. A synopsis of its character-
istic parameters is given in Table 4.1. With the low inflow turbulence intensity and
the strong stream-wise acceleration under these conditions, Arts et al. (1990) observe
attached, laminar flow until laminar-to-turbulent transition onset is triggered by the
shock on the suction side close to the trailing edge. Accordingly, the prediction of blade
pressure distributions is, in contrast to other operating conditions, primarily governed
by potential flow phenomena and the boundary conditions’ different reflection prop-
erties rather than turbulence and transition modelling. Therefore, this is a suitable
operating point to study boundary conditions.

Table 4.1: LS89 characteristics and MUR47 operating conditions.

P/c 0.85 -
γgeom 55° -
σ0/P 0.2597 -

pt,Inlet 159.6 kPa
Tt,Inlet 420 K
Mais,Outlet 1.02 (see Eq. (4.2))
ReOutlet 106 -
αcirc 0° (axial flow)
TuInlet 1 % -

For this purpose three different computational domains are considered with varying
axial spacing d between the in- and outflow boundary and the blade’s leading and
trailing edge respectively. The smallest domain is most challenging for the boundary
conditions with d/cax = 0.5. Besides, a medium large domain (d/cax = 1) and a large
domain (d/cax = 3) are examined. All computations are carried out on single blade
meshes with periodic boundary conditions in pitch-wise direction. The meshes are
quasi-two-dimensional with a single layer of cells and inviscid walls at the span-wise
boundaries. Figure 4.1 depicts the mesh coarsened by factor two in both dimensions.
The structured mesh comprises 21,016 cells in the short case and up to 36,668 cells
with the longest domain. The blade wall boundary layer is discretized such that the
wall-adjacent cells have a fairly fine, average wall-normal size of y+ = 0.3. A grid
convergence study has shown that a mesh refinement by factor 2 (i.e. about 84,000
cells in the small domain) leads to identical blade pressure distributions (not shown
here).

Steady-state simulations are conducted using the spectral 2D NRBC, Giles’s steady 2D
NRBC and a simple, local Riemann boundary conditions (see Chapter 2.2.2) at the in-
flow and outflow boundary. Additionally, time-resolving simulations are performed to
analyse unsteady boundary conditions, that is Giles’s approximate 2D NRBC, a char-
acteristic 1D NRBC and again the spectral 2D NRBC. As there is no external source of
unsteadiness in this cascade flow, a reasonable time step size needs to be estimated.
Here, this estimation is based on the outflow conditions of the steady-state flow. It is
assumed that a virtual, downstream blade row of identical pitch has a pitch-wise rela-
tive velocity such that it faces axial inflow conditions in its moving frame of reference.
Then, we can determine a base frequency of

f =
vOutlet
P

= 6, 261Hz. (4.1)

The corresponding period is resolved with 64 time steps using an implicit, dual time-
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Figure 4.1: Computational mesh of VKI LS89 turbine cascade, every second mesh line
depicted. Colours illustrate different axial length of the computational domain (black:
d/cax = 0.5, blue: d/cax = 1, red: d/cax = 3).

stepping, third-order Runge-Kutta scheme (see Ashcroft et al., 2013) and 20 pseudo-
time iterations. Time integration is carried out over 100 periods.

However, no unsteadiness is observed in any of the time-resolving simulations and
the flow converges to a stable, steady-state solution. While Segui et al. (2017) and
Klose et al. (2022) find macroscopic unsteady effects in their LES (such as trailing edge
vortex shedding and shock-boundary layer interaction apart from purely stochastic
turbulence), it should be noted that they consider operating points with smaller pres-
sure ratios and in some cases considerably higher inflow turbulence levels, resulting in
more complex boundary layer flows (i.e. either laminar separation bubbles or bypass
transition upstream of the shock).

Given that the pre-shock Mach number is moderate and no detached flow is found in
the experiment under the MUR47 flow conditions, the prediction of steady-state flow
appears plausible in the context of URANS-based simulations. Hence, in the absence
of unsteady effects, the boundary condition analysis is focused on the prediction of
steady-state flow features. Reflection properties with regard to unsteady waves are
investigated in Chapters 4.2, 4.3 and 5.

All computations are performed applying Roe’s upwind scheme (see Roe, 1981) ex-
tended to second-order accuracy through van Leer’s MUSCL extrapolation (see van
Leer, 1979) and an appropriate limiter function for convective fluxes. Viscous fluxes are
computed based on gradients obtained by a central finite difference scheme in combi-
nation with Wilcox’s k-ω turbulence model (see Wilcox, 1988). If not stated otherwise,
these spatial discretization methods are also applied to subsequent test cases of this
work.

4.1.2 Pseudo-schlieren images

In Figures 4.2 and 4.3, the magnitude of the density gradient is plotted for all compu-
tations with the short and long domain in order to mimic schlieren photography for
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Figure 4.2: Pseudo-schlieren images obtained by plotting density gradient magnitude
(black corresponds to large gradients), d/cax = 0.5, flow solution is duplicated in pitch-
wise direction for visualization.

flow visualization. For a better overview, the mesh and flow solution is duplicated in
pitch-wise direction in the depiction. The flow around the airfoil is supercritical, char-
acterized by a shock close to suction side trailing edge that extends to the exit boundary
plane. Depending on the boundary condition method in use and the distance between
the exit boundary and the trailing edge, the shock representation differs significantly.

The results using the shortest computational domain (d/cax = 0.5) are depicted in Fig.
4.2. On the one hand, the steady computations employing the steady, two-dimensional
NRBC (Fig.4.2b) coincide with both the steady-state computation using the spectral,
two-dimensional NRBC (Fig.4.2a) and the unsteady computation using the spectral,
two-dimensional NRBC (Fig.4.2d). These results exhibit the shock going right through
the exit plane.

On the other hand, the other boundary conditions predict flow fields that differ from
those mentioned above as well as among each other. While we still observe a distinct
shock with the Riemann boundary conditions (Fig.4.2c), the shock is predicted further
upstream. Moreover, the shock appears to be truncated in the vicinity of the bound-
ary owing to the physically not justified constant pressure field along the boundary
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imposed by the Riemann boundary condition.

Despite their ability to allow for pressure variations along the boundary surface, the
approximate, two-dimensional (Fig.4.2e) and the characteristic, one-dimensional NRBC
(Fig.4.2f) produce flow fields in the region in question which do not feature a distinct,
single shock. Instead, increased density gradients occur in a wider area of the suction-
sided trailing edge region. Two confined lines might resemble shocks, yet weaker com-
pared to the shocks in Figs. 4.2a-4.2d. However, the analysis of blade pressure distri-
butions in Section 4.1.3 will support that these lines of increased density gradients do
not represent two definite shocks. The solutions predicted by the approximate and the
characteristic NRBCs are qualitatively similar, yet not identical.

(a) Spectral 2D (steady) (b) Spectral 2D (unsteady)

(c) Riemann (steady) (d) Steady 2D (steady)

(e) Approximate 2D (unsteady) (f) Characteristic 1D (unsteady)

Figure 4.3: Pseudo-schlieren images obtained by plotting density gradient magnitude
(black corresponds to large gradients), d/cax = 3, inflow region truncated in depiction,
flow solution is duplicated in pitch-wise direction for visualization

Figure 4.3 shows corresponding flow solutions obtained from the computations with
the longest computational domain (d/cax = 3). Here, all boundary conditions methods
consistently produce a shock, coincident in shape and position with the shock pre-
dicted by the steady and the spectral two-dimensional NRBCs with the short domain.
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Note that those boundary conditions which exhibit a different shock representation
with the short domain still interact with the shock in close proximity to the boundary,
that is, they fail to render the shock passing the boundary. However, the region of
influence is limited and does not affect the flow close to the blade.

4.1.3 Blade pressure distribution

Figure 4.4: Comparison of isentropic Mach number distributions with different bound-
ary condition methods and small axial spacing (d/cax = 0.5).

In the following, blade pressure distributions are analysed in order to quantitatively
support the findings from the previous chapter. A common way to present blade pres-
sure distributions is by means of the isentropic Mach number:

Mais =

√√√√ 2

γ − 1

[(
pt,Inlet
p

) γ−1

γ

− 1

]
(4.2)

In Fig. 4.4 the isentropic Mach number distributions obtained with the short domain
and different boundary conditions are compared. Additionally, experimental results
from Arts et al. (1990) are included. The isentropic Mach number distributions of all
computations show excellent agreement with each other and with the VKI measure-
ments along the pressure side and in the front half of the suction side.

Beyond this and consistent with our observations in the previous section, the steady,
two-dimensional and the spectral, two-dimensional NRBC also coincide in the rear
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(a) Spectral 2D (steady) (b) Spectral 2D (unsteady)

(c) Riemann (steady) (d) Steady 2D (steady)

(e) Approximate 2D (unsteady) (f) Characteristic 1D (unsteady)

Figure 4.5: Close-up of isentropic Mach number distributions with different boundary
condition methods and domains, rear part of suction side.
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part of the suction side, where the shock is predicted at about 95 % relative axial span
with a pre-shock Mach number of 1.2.

The Riemann boundary condition predicts the shock at about 85-90 %, just slightly in
front of the position found in the experiment by Arts. The predicted pre-shock Mach
number matches the the experiment (Mais ≈ 1.22).

While the approximate, two-dimensional NRBC and the characteristic, one-dimensional
NRBC exhibit the transition from supersonic to subsonic flow at roughly the same po-
sition, they do not feature a distinct shock. Instead, the flow decelerates continuously
through a segment with a length of about 10 % relative axial chord. Given the fact that
the flow solution is not time-averaged but constant in time, this smooth supersonic to
subsonic transition is considered physically incorrect. The local Mach number maxi-
mum of the solutions using the approximate and the characteristic NRBC is about 1.7
and 1.8 respectively. However, these solutions as well as the solution obtained with the
Riemann boundary condition correspond more closely to the experimental isentropic
Mach number distribution in the supersonic region (from about 50 % to about 90 %
relative axial chord) compared to the solutions obtained with the steady or spectral
boundary conditions, which have weaker supersonic acceleration in this region.

Based on the above observations, the Riemann, the characteristic one-dimensional and
the approximate two-dimensional boundary conditions seem to better reflect the flow
as measured at VKI than the spectral or steady two-dimensional NRBCs do. How-
ever, the inconsistency of schlieren plots with regards to axial spacing of the former
boundary conditions and the implausible drop in isentropic Mach number, from su-
personic to subsonic flow, of the characteristic and approximate boundary conditions,
contradict a conclusion that the results with the Riemann, characteristic or approxi-
mate boundary conditions are more accurate than the ones using the spectral or steady
NRBCs.

To have a closer look at the boundary conditions’ impact on the flow in the region in
question, Figure 4.5 depicts the isentropic Mach number in the suction-sided rear part
of the blade in more detail. It shows the variation of the isentropic Mach number distri-
bution of each boundary condition method with different axial spacings between the
blade and the boundary surface. For easier comparison among the different bound-
ary condition methods, the results from the largest domain using the two-dimensional
spectral NRBC are included in every subfigure as well as the VKI test results.

The crucial finding at this point is that the solutions obtained with all boundary con-
dition methods converge to the same solution with increasing axial spacing. This is
in line with the observations from Fig. 4.3 and indicates that this common solution is,
due to minimal influence of the artificial boundary, the most accurate solution to the
two-dimensional, periodic flow problem based on the (U)RANS-equations with given
turbulence and transition modelling and numerical discretization.

Yet, the different boundary condition methods differ in how quickly they reach this
solution. The steady and unsteady computations with the spectral, two-dimensional
NRBC (Figs. 4.5a and 4.5b) and the computation with the steady, two-dimensional
NRBC (Fig. 4.5d) exhibit only small deviations when the shortest domain is used. With
this short domain, they overestimate the pre-shock acceleration in the very vicinity of
the shock (∼5 % relative axial chord) by about 0.05, but agree very closely with the
solution from the large domain in all other parts of the suction side apart from the
immediate pre-shock region. Already with an axial spacing of d/cax = 1, the solutions
almost coincide with the solutions from the d/cax = 3 domain.
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In contrast, the remaining boundary condition methods, applied to the short domain,
deviate significantly from the common solutions obtained with the long domain as
discussed in the first part of this section. Moreover, with the d/cax = 1 domain, they
produce intermediate solutions which, on the one hand, also incorporate a shock when
using the characteristic (Fig. 4.5f) and the approximate NRBCs (Fig. 4.5e). On the other
hand, the shock position is still located upstream of the shock position found when
using the long domain.

This supports the above statement, that the (partially) reflecting boundary conditions
(i.e. Riemann, characteristic one-dimensional and approximate, two-dimensional) do
not provide a better prediction of the cascade flow with the short mesh under these
conditions. The dependence of the flow solution on the axial spacing between the
blade and the boundary indicates unphysical interaction of the artificial boundary and
the blade flow. The good agreement of especially the solution based on the Riemann
boundary condition is coincidental and due to cancellation of errors, either from mod-
elling and numerics or from uncertainties in the measurements.

Figure 4.6: Isentropic Mach number from side wall pressure at d/cax = 0.43 by Arts &
Lambert de Rouvroit (1992), Mais,Outlet = 1.02, ReOutlet = 106.

In fact, other authors note similar divergence from the VKI MUR47 measurements re-
garding the prediction of the shock employing various types of NRBCs or sufficiently
large domains. Henninger (2019), using Hagstrom’s higher-order approximate NRBC
implemented in TRACE, Cosmo & Salvadori (2019), with an implementation of Giles’s
steady two-dimensional NRBC in an unstructured solver, and Vagnoli (2016), using
Numeca’s Fine/Turbo as well as an OpenFOAM derivative, report predicted shock
positions downstream of the VKI measurements and in good agreement with the data
presented in this work.

Henninger suspects insufficient periodicity of the original cascade as a potential rea-
son for the mismatch of idealized, two-dimensional, periodic, computational results on
the one hand and the experiment (with only five blades in pitch-wise direction for in-
strumentation reasons) on the other hand. This assumption is based on wall pressure
measurements presented by Arts & Lambert de Rouvroit (1992), taken at 43 % axial
chord downstream of the trailing edge. These data showcase only approximately peri-
odic outflow conditions (see Fig. 4.6). Since the outflow state is close to critical (sonic)
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conditions (Mais = 1.02), one must expect large sensitivity of the flow solution even to
small uncertainties or errors. Fransson et al. (1999) underline that such sensitivities of
transonic cascade flow to small uncertainties in the boundary conditions is challenging
for CFD validation purposes.

Cosmo & Salvadori (2019) achieve a remarkably precise reproduction of the experi-
mental shock position by imposing the corresponding period of the pitch-wise exit
pressure distribution from the experiment by means of a reflecting, but local bound-
ary condition. This procedure is of course not a viable alternative to NRBCs in most
turbomachinery CFD scenarios. But in this case, it strongly promotes the assumption
that the the shock position discrepancy between the VKI measurements and CFD re-
sults, that are deemed to be accurate solutions to the idealized flow problem, emerge
primarily from the insufficient periodicity in the experiment.

To conclude, this test demonstrates that not only the prediction of unsteady flow phe-
nomena can be impaired by the use of reflecting boundary conditions in combination
with boundary surfaces that are positioned too close to the flow field of interest. In
this case, the shock strength and position of a transonic turbine blade is affected when
a boundary condition interferes with the interior flow field. This effect vanishes if the
boundary is located sufficiently far away or a non-reflecting boundary condition is ap-
plied. In steady-state flow, the spectral, two-dimensional NRBC presented in this work
proves to be equivalent to the popular, steady, two-dimensional NRBC by Giles. Both
NRBCs render accurate flow predictions even with limited spacing of the boundary
surface. However, as they are derived from the linearized Euler equations, they are
not perfectly non-reflecting under highly demanding conditions. Here, a (nonlinear)
shock together with very little axial spacing leads to locally confined and minor, but
evident variations in the shock region implying that the flow field is not perfectly in-
dependent of the boundary location and, therefore, the boundary condition method is
regarded to be almost, yet not perfectly non-reflecting.
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4.2 Two-dimensional acoustic mode in an annular duct

4.2.1 Test case design and numerical setup

In this section, the propagation of a single acoustic mode through a thin, annular duct
in purely axial, subsonic, inviscid flow is investigated. The resulting flow problem is
quasi two-dimensional and, hence, chosen to examine the spectral NRBC in conditions
compliant to the assumptions made for the derivation of this kind of NRBC from the
linearized two-dimensional Euler equations.

The aim of this test case is not only to visualize numerical reflections that are not
as striking and obvious as, for example, disturbed shocks. But due to its simplicity,
this test case is well suited to quantify and compare the reflection properties of differ-
ent boundary condition methods. Moreover, this test case demonstrates the ability of
spectral NRBC, that are based on a wave splitting approach, to not only prescribe ho-
mogenous inflow conditions, but to impose specific incoming perturbations (see Sec-
tion 3.2.4).

We consider an annular duct of radius r = 1m and thickness ∆r = 0.3mm. The flow
is inviscid and the background flow is homogeneous and purely axial (Ma = 0.6,
p = 105 Pa). Therefore, there is no radial pressure gradient and the test case can be
regarded as two-dimensional, such that the computational mesh comprises only one
layer of cells in the radial direction and inviscid sidewalls. An acoustic, spinning mode
of constant nodal diameter m = 400 is imposed at the inflow boundary using the spec-
tral boundary conditions presented in this work. As the solution is periodic, the com-
putational domain is truncated in pitch (P = 2πr

m
≈ 0.01572m) and periodic boundary

conditions are applied in the circumferential direction. The axial extent of the computa-
tional domain is chosen to ∆x = 0.0125m. At the outlet boundary the spectral bound-
ary condition is compared to Giles’ steady 2D and Giles’ approximate 2D boundary
conditions and a characteristic, 1D boundary condition (see Chapter 2 or Section 3.2).
The cut-off ratio ξ (see Eq. (3.44)) is varied from 0.05 to 2 by modifying the frequency
of the spinning mode at a constant inlet pressure amplitude of |p̂0| = 200Pa (0.2 % rel-
ative pressure). Furthermore, the pressure amplitude of the acoustic mode is varied
from 20Pa to 20,000Pa (0.02 - 20 % relative pressure) using the spectral NRBC at a con-
stant cut-off ratio of ξ = 0.5 in order to investigate the impact of the linearization used
to derive this type of boundary condition.

Unless otherwise stated, the numerical setup is kept constant across all parameter and
boundary condition variations. The mesh comprises 53 rectangular cells in pitch-wise
direction and 50 cells in axial direction, resulting in 2,650 cells in total. As the nodal
diameter of the acoustic mode is constant and matches the computational domain, a
rather high spatial resolution of 53 cells per wavelength in circumferential direction
is guaranteed for all cut-off ratios. As the axial wavelength varies depending on the
cut-off ratio and even becomes a complex-valued number for cut-off modes, the axial
resolution varies accordingly. Therefore, at ξ = 0.05 the mesh is refined in axial di-
rection by a factor of four yielding a resolution of still 25 cells per wavelength. The
minimal axial resolution using the original mesh is about 34 cells per wavelength at
ξ = 0.25. Time integration is performed using the second-order accurate scheme by
Crank & Nicolson (1947) as it offers a small dissipation error for small computational
costs when used with sufficient temporal resolution (see Ashcroft et al., 2013). In this
study, the acoustic mode is resolved with 256 time steps and 50 pseudo-time iterations
per time step. Although the frequency and therefore the time step size vary depending
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Figure 4.7: Amplitude of downstream propagating mode when reaching the outflow
boundary.

on the cut-off ratio, the rate of change per time step is constant yielding a comparable
temporal discretization error. Since the unsteadiness is represented by just one har-
monic oscillation and hence smooth, this time integration is quite accurate compared
to most setups of turbomachinery applications. Nonetheless, an implicit third-order
accurate Runge-Kutta scheme (Ashcroft et al., 2013) is employed to the numerically
more demanding cases of ξ = 0.05 and ξ = 1. The latter describes the phenomenon of
acoustic resonance where the upstream and downstream running acoustic waves co-
incide and form a spinning mode with no transport of energy in axial direction. As
the solution is still a plane wave and not a local singularity at the inflow boundary,
the wave must (in theory) travel around the circumference infinitely until it reaches
the outlet boundary. To attenuate numerical dissipation, 512 time steps per period are
used in this case. Furthermore, the regularization of the modal decomposition , i.e.
the identification of upstream and downstream travelling waves, is crucial for this sit-
uation (see Section 3.2.2). Every computation runs for 100 cycles to ensure that the
original wave and possible reflections can spread and the solution becomes perfectly
periodic. For the reasons described above, the acoustic resonance case requires more
cycles to reach a periodic state. Hence, the simulation time is increased to 400 cycles.

The amplitude of the acoustic mode with an original amplitude of 200Pa after trans-
mission through the computational domain and possible numerical and physical at-
tenuation is depicted in Figure 4.7 for different cut-off ratios and their respective nu-
merical setups. Under cut-off conditions, the expected decay when reaching the outlet
can be determined by means of the axial wavenumber as a function of nodal diameter
and frequency/ cut-off ratio. The imaginary part of the axial wavenumber along with
the domain length yield the remaining amplitude of the analytical solution. The results
at ξ > 1 agree very well with the analytical solution. Thus, the numerical dissipation
is considered negligible.
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Cut-on modes are not affected by any physical decay and deviations from the original
amplitude are due to numerical dissipation. At those conditions that do not require ad-
ditional numerical effort (0.25 ≤ ξ ≤ 0.95), the artificial damping is indeed negligible,
too. The numerical damping at ξ = 0.05 is about 10 % or 1 dB, which is in accordance
to the dissipation found in Wolfrum et al. (2020) and Schnell (2004) for this mesh reso-
lution and solver. For acoustic resonance conditions, an estimation of numerical losses
based on propagation distance and mesh resolution is not meaningful. However, the
effective loss from the inlet to the outlet boundary is less than 10 %. As Section 4.2.2
will demonstrate, the precise amplitude has only very small impact on the reflection
characteristics. Hence, the numerical losses observed in Fig. 4.7 are acceptable.

4.2.2 Results and discussion

Snapshots of the normalized unsteady pressure fields p(t)−p
|p̂0|

at t = n2π
ω

with n ∈ N

are depicted in Figure 4.8 at cut-on conditions and in Figure 4.9 at acoustic resonance
and the cut-off conditions. In the limit of ξ → 0, the flow is purely one-dimensional
and the wave fronts pass the boundary perpendicularly. With increasing cut-off ratio
(0.05 ≤ ξ ≤ 0.8), the wave fronts become more and more inclined such that the cir-
cumferential component of their direction of propagation grows. Note that the wave
fronts align with the axial direction when the mode is purely spinning without any
propagation in axial direction in a reference system that is convected along with the
background flow with u = aMa. For the given Mach number, this is approximately
the case at ξ = 0.8. However, this situation is, in general, not identical to the acous-
tic resonance condition as the resulting mode still has a non-vanishing, positive axial
component of the effective group velocity in the absolute frame of reference due to
convection by the background flow. Only in the limit of zero background velocity,
this case corresponds to acoustic resonance. Therefore, the angle between the mean
flow direction and the the wave front normal grows beyond 90° until the negative, ax-
ial component of the wave propagation in the convected frame of reference and the
convection velocity cancel out each other yielding a vanishing axial component of the
group velocity vector, i.e. no axial transport of energy, and thus acoustic resonance
(ξ = 1). With cut-off ratios ξ > 1, the mode and axial wavenumber become complex-
valued (see Section 3.2.2). Accordingly, the wave decays along its path and the pressure
pattern is no longer described by straight wave fronts. The rate of decay increases with
increasing cut-off ratio (see also Fig. 4.7).

The steady NRBC does not allow for temporal fluctuations at the boundary which
contradicts the proper representation of an acoustic mode. Therefore, the steady NRBC
is not an appropriate tool for unsteady flow problems and leads to strong artificial
reflections independently of the cut-off ratio. For cut-on modes, the original mode and
its reflected counterpart form interference patterns. This interference is less obvious
under cut-off conditions as the remaining pressure fluctuations are small close to the
outlet. However, the unnatural bending of the isobars in this region indicates that the
flow field is distorted by an unsuitable boundary condition.

The characteristic 1D NRBC produces only very small reflections if the flow is almost
one-dimensional (ξ = 0.05). However, with growing incidence angles, i.e. growing
cut-off ratios, reflections quickly become stronger. The same observation is true for
Giles’ approximate 2D NRBC albeit the error is smaller in the whole cut-on regime.
This behaviour is plausible as the approximate 2D NRBC can be regarded as a one-
dimensional approach extended by an approximate correction accounting for circum-
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Figure 4.8: Snapshots of unsteady pressure field at cut-on conditions (ξ < 1).
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Figure 4.9: Snapshots of unsteady pressure field at acoustic resonance and cut-off con-
ditions (ξ ≥ 1).
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ferential variations (cf. Section 3.3). For acoustic resonance and at cut-off conditions,
both the characteristic 1D and the approximate 2D NRBC do not show satisfactory
results. Yet, the impact of reflected cut-off modes for practical applications in tur-
bomachinery design is limited as the reflected wave is also cut-off and therefore the
effective error in the region of interest is small as long as the computational domain is
not extremely truncated or the boundary flow field itself is not part of the subsequent
analysis (e.g. in acoustics).

The pressure field predicted with the spectral 2D NRBC corresponds qualitatively to
the expected analytical solution exhibiting almost no visible interference pattern. Only
at the most demanding cases 0.8 ≤ ξ ≤ 1 the isobars are slightly curved instead of
perfectly straight. Under cut-off conditions the isobars are not unphysically crooked
at the outlet. The spectral 2D NRBC is the only boundary condition in the present
study that is capable of predicting a plausible flow solution under numerically very
challenging acoustic resonance conditions.

Figure 4.10: Reflection coefficient as a function of cut-off ratio using different boundary
conditions.

Figure 4.10 supports the qualitative conclusions drawn from Fig. 4.8 and Fig. 4.9 quan-
titatively. The reflection coefficient Γ, evaluated at the outlet boundary, is defined as
the ratio of the amplitude of an incoming, i.e. reflected, mode to the amplitude of
the outgoing, i.e. original, mode. These amplitudes are determined by means of the
modal decomposition of the temporally and spatially Fourier-transformed boundary
flow field (see Equation (3.53)).

The inability of the steady boundary condition to allow for temporal fluctuations causes
any pressure perturbation to be reflected entirely. Therefore, the reflection coefficient
is close to unity in the complete range of cut-off ratios. The characteristic 1D and the
approximate 2D NRBC achieve significant damping under cut-on conditions, but their
reflectivity strongly depends on the wave incident angle as a function of the cut-off
ratio. As expected, the approximate 2D boundary condition produces weaker reflec-
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tions in the cut-on regime. While the characteristic 1D NRBC provides damping of at
least one order of magnitude for cut-off ratios smaller than 0.25, the approximate 2D
NRBC yields reflection coefficients smaller than 0.1 for cut-off ratios smaller than 0.5.
In the cut-off regime both boundary conditions do not offer a significant reduction of
numerical reflections.

On the contrary, using the spectral 2D NRBC cuts down the amplitude of artificial re-
flections by a factor of 50 or more except for conditions close to acoustic resonance.
Note that the modal decomposition matrix is singular at acoustic resonance and there-
fore needs regularization (cf. Chapter 3.2.2 or Frey & Kersken (2016)). Hence, the anal-
ysis is inaccurate for ξ → 1 and care needs to be taken for the interpretation of reflection
coefficients in this region. Figures 4.8 and 4.9 suggest that the actual reflection using
the spectral 2D NRBC is less than indicated by the reflection coefficient. Altogether,
the spectral 2D NRBC exhibit a further reduction of spurious reflections compared to
the state-of-the-art, approximate 2D NRBC by at least one order of magnitude in the
whole cut-off ratio range except at small cut-off ratios, where even less advanced 1D
boundary conditions yield acceptable results.

Chassaing & Gerolymos (2007) report comparably advantageous reflection properties
of their implementation of spectral 2D NRBC in a similar study of plane waves in a
two-dimensional, circular duct. In fact, they observe even smaller reflection coeffi-
cients close to acoustic resonance and under cut-off conditions. However, their simu-
lations employ a fifth order accurate spatial scheme with a very high mesh resolution.
Furthermore, they observe very slow convergence (requiring up to 1000 cycles) and
stability issues if the spectrum of circumferential harmonics included by the boundary
condition is not limited to large scale modes. This strongly limits the applicability of
their implementation to turbomachinery flow problems that might involve strong gra-
dients or shocks. It is not clear whether the smaller reflection coefficients observed by
Chassaing and Gerolymos are due to their enhanced numerical setup or to differences
in the implementation of the boundary condition.

However, Henninger et al. (2015) conduct a similar study with an implementation of
an NRBC by Hagstrom & Goodrich (2003) in the TRACE solver. A more detailed
(German-language) analysis of the same test case can be found in the PhD thesis of
the first author (Henninger, 2019). He observes that the damping coefficient, evalu-
ated within the domain, does not drop below the level observed in the present work
even in numerical experiments conducted on an elongated domain that are terminated
before a possible reflection can travel back to the region of interest. Hence, Henninger
concludes that the residual damping might be due to residual noise in the numerical
solution itself or the iterative temporal Fourier transform, which is required for the
modal decomposition and calculation of the reflection coefficient, rather than due to
spurious reflections from the boundary.

Another effect that possibly causes the residual reflection coefficient is that, even if
the numerical solution and its Fourier representation perfectly converge and the error
in the numerical solution of the discretized system of equations is negligible, the dis-
cretization in space and time itself introduces a certain amount of artificial dissipation
and dispersion. Hence, the propagation of waves in the numerical system does not per-
fectly match the wave propagation described by the purely physics-based dispersion
relation. Thus, the analysis based on a wave-splitting approach is subject to a small
error due to this discrepancy between numerical and analytical wave propagation (cf.
Rowley & Colonius, 2000). However, this error is in the same order of magnitude as
the error of any particular discretization scheme and therefore it is acceptable within
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Table 4.2: Sensitivity of the reflection coefficient Γ to amplitude variations using the
spectral 2D NRBC at ξ = 0.5.

|p̂0| [ Pa] |p̂0| /p Γ
Γ−Γp̂0,min

Γp̂0,min

20 2 · 10−4 5.821882 · 10−3 -
200 2 · 10−3 5.821866 · 10−3 −2.75 · 10−6

2,000 2 · 10−2 5.820282 · 10−3 −2.75 · 10−4

20,000 2 · 10−1 5.670000 · 10−3 −2.61 · 10−2

the expected accuracy of any given numerical setup.

Although the residual reflection coefficients in the present study are larger compared
to the study of Chassaing and Gerolymos, the numerical setup used here is more com-
parable to setups that are typically used in turbomachinery CFD and the resulting
reflection properties constitute a substantial advancement in comparison to prevalent
approximate or 1D boundary conditions. The residual level of reflection is deemed
negligible for very most applications in the analysis of turbomachinery flows and re-
lated disciplines.

In Table 4.2, the impact of the modal amplitude on the reflectivity of the spectral
2D boundary condition is examined. Albeit the boundary condition is based on a
linearization approach assuming sufficiently small variations about a constant mean
state, the resulting reflection coefficient is constant over a wide range of amplitudes.
Even when the acoustic mode induces fluctuations of 20 % relative pressure (or 40 %
peak to peak variation), the reflection coefficient changes only by about 3 % with re-
spect to the reflection coefficient observed at 0.02 % relative pressure amplitude (Γp̂0,min

).
This variation is very small in comparison to the range of reflection coefficients when
varying the boundary condition method or cut-off ratio. In turbomachinery flows, in
particular in transonic and supersonic conditions, even larger pressure fluctuations
might occur in total. Yet, a steep gradient in the flow field will, in general, not be
represented by a single harmonic in the spectral domain, but it will be formed by su-
perposition of a substantial number of harmonics, each of moderate magnitude. This
explains why the spectral boundary condition provides satisfying reflection proper-
ties in the presence of shocks (cf. sections 4.1 and 5.1) even though it is based on the
linearized Euler equations.
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4.3 Tenth standard configuration

This section is a revised version of a study of the tenth standard configuration pre-
sented at the ISABE conference (see Schl Èuû & Frey, 2019).

4.3.1 Test case design and numerical setup

The academic flutter case standard configuration number ten is a well-established nu-
merical flutter experiment for code validation purposes. The two-dimensional flow
through an oscillating cascade of modified, i.e. 5% cambered, NACA0006 airfoils with
pitch-to-chord ratio of unity and 45◦ stagger angle is investigated. For details on the
geometry, flow conditions and blade modes and a comprehensive overview of refer-
ence results obtained by different authors using a variety of methods see the report by
Fransson & Verdon (1992). This test case is known for being sensitive to artificial re-
flections from the boundaries, in particular in the vicinity of conditions where acoustic
resonance occurs. Hence, in this work, it serves to validate the spectral NRBC and to
demonstrate their superior reflection properties. We consider subsonic flow conditions
(Ma = 0.7) with a blade pitching motion at reduced frequency ω∗ = cω

2∥V ∥
= 0.5 based

on the half chord length c/2, the angular frequency of the pitching motion ω and the
mean inflow velocity V . These conditions are referred to as cases 3 (σ=0◦) and 4 (σ=90◦)
in the literature. The pitching motion imposed onto the blade has an amplitude of one
degree. The inlet and outlet boundaries are located roughly one chord length away
from the leading and trailing edges.

Figure 4.11: Single passage mesh of the tenth standard configuration.

The results of the present study are compared to reference results by Verdon & Usab
(1986) and Hall & Clark (1991), both are available in Fransson and Verdon’s overview
report. Verdon’s method solves the time-linearized, compressible potential flow equa-
tions. A finite-difference approximation of the governing equations is directly solved
using Gaussian elimination. Hall solves the time-linearized Euler equations by means
of a finite-volume approach and pseudo-time stepping. Subsequent to Fransson and



72 Non-reflecting boundary conditions for turbomachinery flows

(a) Spectral 2D NRBC (b) Approximate 2D NRBC (c) Characteristic 1D NRBC

Figure 4.12: Aerodynamic damping versus inter-blade phase angle.

Verdon’s report, numerous authors have used this test case to validate their methods
(see e.g. Petrie-Repar et al., 2006; Huang, 2013; Henninger, 2019; Chuang & Verdon,
1999; Kahl & Klose, 1993; Kersken et al., 2012). The good mutual agreement of meth-
ods of different levels of abstraction and fidelity supports the validity and common
acceptance of the references provided by Verdon and Hall.

Single passage time marching simulations are conducted using the phase lag approach
(see Section 3.4.1 and references therein) for the complete range of IBPAs with the pre-
sented spectral two-dimensional NRBC as well as with one-dimensional characteristic
boundary conditions and Giles’s approximate two-dimensional NRBC for compari-
son. Further, multi-passage computations are performed with truly periodic bound-
aries and spectral NRBC for some IBPAs, that can be computed using integer blade
counts. The flow is assumed to be inviscid and two-dimensional. An implicit dual
time-stepping BDF2 scheme with 64 time steps per cycle is employed. The mesh com-
prises 5824 cells and is depicted in Figure 4.11.

4.3.2 Results and discussion

Figure 4.12 shows that using the spectral two-dimensional NRBC, the predicted aero-
dynamic damping coefficient

Ξ =
−ReWaero

πα2c2bpdyn
(4.3)

agrees well with reference results. Here

Waero = −iπ

∫

A

ΨH (̂pn)ωdS (4.4)

represents the aerodynamic work per cycle of a structural eigenmode Ψ with blade
surface A and surface normal unit vector n. The pitching angle (radian measure) is
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Figure 4.13: Amplitude and phase angle of unsteady pressure coefficient along the
blade surface (case 4: σ = 90◦).

denoted by α and b is the blade span, i.e. in this quasi 2D case the thickness of the S1
plane. Note that the dynamic pressure pdyn in this work and Hall’s reference results
refers to the (more eligible) compressible dynamic pressure definition (pdyn = pt − p)
whereas Verdon uses the incompressible dynamic pressure. The results obtained from
the multi-passage simulations agree perfectly with the results from the phase lag com-
putations. This indicates that the special treatment of spatial harmonics with wavenum-
ber zero, as described in Section 3.4.3, does not affect the final solution. In contrast,
using the characteristic one-dimensional NRBC yields a qualitatively different damp-
ing curve. The distinct peaks at acoustic resonance conditions are not captured cor-
rectly. The minimal damping at about 60◦ is overestimated. Giles’s approximate NRBC
provides better results than simple characteristic NRBC. They exhibit weak peaks at
the correct IBPAs, but in the vicinity of acoustic resonance, the agreement with the
references is poor. The accuracy of the approximate NRBCs decreases with increas-
ing absolute value of the circumferential wavenumber, i.e. increasing absolute value
of the IBPA, because Giles’s approach is based on a Taylor series expansion about
l/ω = 0 s

m
. This becomes evident as the peak at σ ≈ -30◦ is better reflected than the

peak at σ ≈ 120◦. Also, Giles’ approximate NRBC lead to an overestimated minimal
damping coefficient.

Although the characteristic 1D and Giles’ approximate 2D NRBC yield damping co-
efficients that significantly differ from the reference results for a wide range of IBPAs,
the predicted damping coefficients at case 3 and case 4 conditions agree relatively well
with the spectral NRBC and the references by Verdon and Hall. At σ= 0◦ (case 3), the
dominant waves leave the domain perpendicularly to the boundary. In this case, the
predicted damping values of all three NRBCs coincide. Here, Giles’s approximate 2D
NRBC and the characteristic 1D NRBC can correctly describe the outgoing mode with-
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(a) Spectral 2D NRBC (b) Approximate 2D NRBC (c) Characteristic 1D NRBC

Figure 4.14: Snapshot of unsteady pressure fluctuations, positive values red, negative
values blue (case 4: σ = 90◦).

out any conceptual limitation.

Yet, a more detailed analysis of case 4 (σ = 90◦) reveals that the local unsteady blade
pressure, i.e. the source of aerodynamic damping or excitation, may vary notwith-
standing that the disparity in the integral damping among the different NRBCs and
reference results is only about 10 %. For this purpose, we examine the blade surface
distribution of the amplitude-scaled, unsteady pressure coefficient

ĉp =
p̂

α pdyn
(4.5)

in Figure 4.13. The unsteady blade pressure computed with the spectral 2D NRBC cor-
responds satisfactorily to the reference results, in particular to Hall’s data. While the
aft portion of the suction-sided and the entire pressure-sided ĉp distribution matches
Hall’s distribution, the amplitude in the leading edge region of the suction side devi-
ates to an amount comparable to the discrepancy among the reference results them-
selves. In contrast, the unsteady pressure predicted by the characteristic 1D NRBC
differs considerably in phase, especially on the suction side. Moreover, the amplitude
is overestimated in the front section of the suction side. The solution obtained using
the approximate 2D NRBC exhibits a smaller unsteady pressure amplitude on the en-
tire suction side compared to the references and the solution with the spectral NRBC.
The pressure-sided amplitude as well as the phase along the entire blade surface agree
well between the 2D NRBCs and the reference results.

The pressure fluctuation arising from the blade pitching motion at the moment of max-
imum displacement of the central blade is depicted in Figure 4.14 in order to visualize
non-physical reflections at artificial boundaries. Note that the actual blade movement
is amplified by a factor of ten in this figure for visualisation purposes. Additionally,
the computational domain and flow solution is extended in circumferential direction
by copying and rotating the flow solution of the single passage computations with
respect to the correct phase shift. As, for the given IBPA of σ= 90◦, the upstream prop-
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agating perturbation upstream of the blade row is a single cut-on mode, we can ex-
pect straight wave fronts. However, when employing one-dimensional boundary con-
ditions, the resulting wave fronts are curved revealing that the upstream travelling
acoustic wave does not undistortedly pass through the inflow boundary. The reflec-
tion of the cut-off mode occurring at the outlet with the one-dimensional boundary
condition is even more obvious. Analogously to Section 4.2.2, we observe that the ap-
proximate 2D NRBC also struggle to correctly absorb the cut-off mode at the outlet
while the upstream propagating cut-on mode seems to be better captured at the in-
let boundary. However, the unsteady pressure differs in the leading edge section of
the suction side between the spectral and the approximate NRBC when the blade is
fully deflected. The pressure pattern of the solution obtained with the spectral NRBC
does not display any effects of artificial reflections. Supported by the findings from the
global aerodynamic damping (cf. Fig. 4.12) and the analysis of the local unsteady blade
pressure distribution (cf. Fig. 4.13) and the agreement with the references therein, the
pressure field predicted by the spectral NRBC is regarded as plausible and most accu-
rate among the boundary conditions investigated here.

Figure 4.15: Development of damping coefficient (case 4: σ = 90◦).

Figure 4.15 depicts the convergence of the damping coefficient at σ = 90◦. Two things
can be observed here: The spectral two-dimensional boundary conditions need more
time steps to reach a converged value compared to the one-dimensional and the ap-
proximate boundary conditions. However, the multi-passage simulations converge
much faster and exhibit no oscillations whereas the curves of phase lag simulations,
and in particular the one using spectral NRBC, are less smooth. There are two effects
that contribute to this observation. The phase lag approach is per se prone to such
oscillations. When additionally the inflow and outflow boundaries depend on slowly
converging temporal Fourier coefficients, the harmonic convergence is further lagged.
Moreover, in single passage simulations with non-zero IBPA, the mode with circumfer-
ential wavenumber equal to zero is not part of the expected spectrum. As this mode is
not accounted for in the spectral analysis, the aforementioned transient extrapolation
of waves that propagate perpendicularly to the boundary is not applicable here.





5 Applications

5.1 Steam turbine flutter

The following section is a revised version of a study of this test case presented at the
ISUAAAT conference by the author (see Schl Èuû & Frey, 2018). It is supplemented by
summarized conclusions from a subsequent article based on the same test case (Frey
et al., 2019) in Section 5.1.5. The author of the thesis at hand has contributed to that
article as a co-author.

5.1.1 Test case design and numerical setup

To assess the reflection properties, efficiency and stability of the boundary conditions
presented in this work in a real, three-dimensional turbomachinery test case, the flutter
stability of a transonic steam turbine stage is studied. The configuration has originally
been established at Durham University (see Burton, 2014) and later been proposed
as an open, numerical test case for flutter in steam turbines by the KTH turboma-
chinery group. The geometry, the mode shape and further information on the flutter
configuration can be found in Qi et al. (2017) and on the corresponding KTH Website
(2021). The results will be compared to references by Sun et al. (2017) obtained with the
time-linearized flow solver LUFT (see Petrie-Repar et al., 2007) , which utilizes three-
dimensional NRBC (see Petrie-Repar, 2010), and with the commercial, nonlinear time
domain solver Ansys CFX.

Table 5.1: Overview of operating conditions and blade parameters.

pt,Inlet 27 kPa
Tt,Inlet 340 K
pOutlet 8.8 kPa
Ω 3000 1/min
b 920 mm
cmid−span 163.2 mm

Figure 5.1 shows a sketch of the configuration consisting of a stator row with 60 blades,
a rotor row with 65 blades and a downstream diffuser. A simplified, linear distribution
of relative span in accordance to the original test case description is used for analysis.
It is outlined in Fig. 5.1 and its definition can be found on the KTH website. The op-
erating conditions are taken from the same sources and summarized in Table 5.1. The
inflow is roughly axial. In contrast to the references produced with LUFT, this study
incorporates the original tip gap (cf. Burton, 2014) of 4.2 mm or about 0.5 % relative
span. The CFX results are available either without the tip gap (like the LUFT results)
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Figure 5.1: Schematic of the steam turbine stage depicting the computational domain
and the definition of relative span.

or with a reduced tip gap (2.1 mm or 0.25 % relative span).

The flutter analysis is based on the energy method and focuses on the first bending
mode of the rotor. A travelling wave mode is assumed and the normalized mode shape
is provided for download on the KTH website. In the present study, the amplitude
is scaled such that the maximum displacement dmax at the tip trailing edge is 3 mm,
which is in the order of the trailing edge thickness. In Section 5.1.5 we will see that
at this amplitude the aerodynamic response can be regarded as linear and, hence, the
non-dimensional aeroelastic properties are independent of the amplitude. The bend-
ing mode magnified by a factor of twenty is depicted in Figure 5.2. An artificial modal
frequency of 132.08 Hz is adopted from the test case authors. The numerically deter-
mined natural frequency of the bending mode is smaller. But for this purely numerical
analysis, the modal frequency is modified such that it is equivalent to a reduced fre-
quency of ω∗ = ω c

2∥VExit∥
= 0.15, which is within the typical range of a real steam turbines

(cf. Sun et al., 2017).

Table 5.2: Ideal gas parameters.

R 461.52 J · kg−1 ·K−1

γ 1.12 -
µ 1.032 · 10−5 N · s ·m−2

The underlying mean flow is calculated in a steady simulation beforehand. Here, the
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Figure 5.2: Illustration of bending mode magnified by factor twenty.

exit pressure is imposed at mid-span of the diffuser outlet along with a radial equi-
librium condition. The diffuser domain is included in the rotor system without an
additional interface. In order to assess the reflection properties of the boundary con-
ditions, flutter simulations are also conducted with a shorter computational domain
without the diffuser (see Figure 5.1). The short configuration is a demanding test case
for boundary conditions as the oscillating trailing edge shock impinges on the outflow
boundary. Computations are carried out using both spectral 2D and characteristic 1D
boundary conditions for comparison. The circumferentially averaged pressure profile
is extracted from the steady simulation at the rotor exit plane and the diffuser exit
plane. These profiles are then prescribed in the unsteady simulation at their respec-
tive position. To ensure comparability between simulations using the long and the
short domain, it has been verified that the mass flow as well as the time-mean radial
pressure distribution at the rotor outlet remain constant.

The computational mesh is generated by means of DLR’s in-house tool PyMesh (see
Weber et al., 2016) and comprises about four million cells in total, about 2.1 million
cells thereof in the rotor domain and another 0.7 million in the diffuser domain. Note
that this is a considerably finer resolution compared to the mesh used to produce the
reference solutions. Blade wall boundary layers are resolved with y+ ≈ 1 whereas wall
functions are employed at hub and casing walls with 30 < y+ < 80. Details of the mesh
are depicted in Figure 5.3.

For all computations the Wilcox’s k-ω turbulence model (see Wilcox, 1988) is employed
and ideal gas with constant molecular viscosity and the parameters given in Table 5.2
is assumed. This assumption is justified for the flutter analysis of a steam turbine’s last
stage as shown by Petrie-Repar et al. (2014). To conduct single passage simulations for
arbitrary IBPAs, the phase lag method is employed (see Section 3.4.1). All computa-
tions are run with an implicit, dual time-stepping algorithm using the BDF2 scheme
with 128 physical time steps per cycle and 50 pseudo-time iterations per physical time
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(a) Hub

(b) Shroud

Figure 5.3: Details of mesh coarsened by factor 2 and duplicated in pitch-wise direc-
tion.
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(a) 50 % span (b) 90 % span

Figure 5.4: Pseudo-schlieren image of the flow in the rotor blade row (solution dupli-
cated in pitch-wise direction).

step. For IBPAs of −99.7◦, −72◦, −45◦, 0◦, 72◦ and 180◦, simulations are carried out
using the truncated computational domain (without the diffuser) as well as the long
domain (including the diffuser). The IBPAs are chosen such that the calculations with
negative IBPA cover the region of maximum excitation while the IBPA of 72◦ is close to
the point of maximum damping . At these IBPAs, the corresponding nodal diameters
are integers for a given blade count of 65 blades, with the exception of −45◦, which is
chosen for comparison with the KTH references.

5.1.2 Steady Results

The mean flow in the rotor is characterized by a system of trailing edge shocks due to
the high exit Mach number compared to a typical gas turbine LPT. Figure 5.4 depicts
this shock system by plotting the density gradient magnitude to mimic schlieren im-
ages of slices at 50% and 90% relative span. In particular at 90% span, the pressure side
branch of the trailing edge shock impinges on the neighbouring blade’s suction side
at about 50% chord length. Additionally, a strong expansion zone at the suction side’s
leading edge region, indicating a considerable incidence angle, can be observed at 90%
span.

These features also become evident in Figure 5.5. It plots the rotor blade pressure dis-
tribution at the same radial positions in comparison to results from Sun et al. (2017)
obtained with LUFT. Both solvers predict the steady blade pressure in good agree-
ment. However, the leading edge suction peak and the subsequent shock are predicted
stronger in the TRACE result. The same is true for the pressure rise related to the in-
cident shock at about half chord in the tip region (Fig. 5.5b). At midspan, the more
pronounced pressure plateau in the TRACE result at about 75 % chord is also caused
by the incident shock (see Fig. 5.5a). A wall shear stress analysis reveals that the flow
is still attached in this region (not shown here). A possible explanation for these differ-
ences is the fact that the mesh used in this work comprises about twice as many cells
in the rotor domain as the mesh used in the references.
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(a) 50 % span (b) 90 % span

Figure 5.5: Steady blade pressure distribution at two radial positions.

Nevertheless, the steady flow solutions can be considered similar so that they pose a
suitable basis for the following investigation of flutter. This is supported by the analy-
sis of global performance quantities. TRACE predicts a mass flow of ṁ = 85.43 kg s−1, a
total-to-static isentropic efficiency ηts = 83.676% and a power output of P = 11.71MW.
These values agree well with the results in Sun et al. (2017) and Qi et al. (2017) consid-
ering the different modelling of the tip gap.

5.1.3 Flutter analysis

To analyse flutter, let us consider the non-dimensional damping coefficient Ξ according
to Equation (4.3). Here α = dmax/c denotes the normalized amplitude of the bending
mode at hand (instead of the pitching angle in Section 4.3). The averaged dynamic
pressure in the rotor inlet plane is pdyn = 2127.7Pa.

Figure 5.6 plots the non-dimensional aerodynamic damping as a function of the IBPA
for both types of boundary conditions and both domains including references from
Sun et al. (2017).

In general, there is good agreement between the results and the LUFT references. In
particular, in the range of aerodynamic excitation, i.e. negative damping, the predicted
damping values almost coincide when using the spectral 2D NRBC or the characteristic
1D boundary condition along with the longer domain. The latter boundary condition,
however, leads to a significant deviation when employed in combination with the short
domain.

The predicted damping values depend only to a small extent on the domain length in
case of two-dimensional boundary conditions. As the position of the boundary plane is
expected to have an impact on the unsteady pressure field if reflections occur, the above
observation suggests that there is only a small amount of reflection when employ-
ing two-dimensional boundary conditions. Since also the divergent diffuser geometry
may interact with the radiated pressure field from the moving blade, solutions from
the long and the short domain cannot be expected to match perfectly. Moreover, the
assumptions of the flow being purely two-dimensional and perturbations being small
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Figure 5.6: Non-dimensional aerodynamic damping versus IBPA.

are not fulfilled. Still, the small differences between the results from both domains us-
ing the two-dimensional boundary conditions indicate superior reflection properties
of the spectral boundary conditions over the one-dimensional boundary conditions.

Note that for the σ = 0◦ case the one-dimensional boundary conditions produce almost
the same damping values as the two-dimensional boundary conditions with both exit
locations. This is due to the fact that, in this specific case of synchronously vibrating
blades, plane waves arise that leave the domain orthogonally to the boundary and,
hence, can also be absorbed by one-dimensional boundary conditions.

The CFX results display a weaker agreement with the other solutions, especially in
the region in which TRACE and LUFT predict excitation. Yet, they serve to give an
estimation of the influence of the tip gap modelling. This influence on the integral
damping appears not very strong for most IBPAs.

In the following, we will examine the σ = −45◦ case more extensively as detailed ref-
erence data are available for this IBPA. Although the corresponding nodal diameter is
non-integer (m = −8.125) and therefore not relevant for the full wheel configuration,
the aerodynamic response can be modelled for arbitrary IBPAs using a single passage
computational domain with appropriately phase-shifted periodic boundaries. Figure
5.7 plots the imaginary part of the first pressure harmonic on the rotor suction side. As
the imaginary part of the pressure, along with the associated structural mode, deter-
mines the aerodynamic work and damping, this figure reveals where the differences in
global damping emerge. In the solution using one-dimensional boundary conditions
and the short mesh, the distinct line at the position, where the oscillating shock from
the neighbouring blade impinges, is diminished in comparison to all other solutions.
Furthermore, in the tip region, a spot of large pressure (imaginary part) appears in the
short 1D solution.
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(a) Spectral 2D
short

(b) Spectral 2D
long

(c) Characteristic 1D
short

(d) Characteristic 1D
long

Figure 5.7: Distribution of unsteady pressure on rotor suction side associated to fun-
damental harmonic of blade vibration frequency (imaginary part, σ = −45◦).

(a) 50 % span (b) 90 % span

Figure 5.8: Local work coefficients at two radial positions (σ = −45◦).
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To compare this observation with the references, the local work coefficient

w =
dWaero/dA

πα2 c pdyn
. (5.1)

with Waero according to Equation (4.4) is introduced. Figure 5.8 shows the local work
coefficient at 50% and 90% relative span. Several conclusions can be drawn from this
figure: Firstly, the solutions, apart from the result with the short domain and one-
dimensional NRBC, agree qualitatively with the LUFT results at 90% span. The largest
differences occur close to the suction side’s leading and trailing edges. Sun et al. (2017)
investigate the impact of the tip clearance. They observe that including the tip gap
causes the front peak to be flattened. Unlike the present work, which includes the orig-
inal tip gap, Sun et al. compare a downsized gap of 0.25 % relative span and a model
without tip gap. Thus, the effects of the tip gap can be expected to be stronger in the
present work and the smaller work coefficient in the leading edge region in this work
possibly results from the larger tip gap model. In a succeeding article, Sun et al. (2019)
study the tip gap flow by means of URANS and detached eddy simulations. While
the development of the tip gap vortex in stream-wise direction differs significantly de-
pending on the representation of turbulence, both simulation approaches show good
agreement in the front section of the tip region supporting the validity of the statement
drawn from Sun et al. (2017). Additionally, it has been observed (see Section 5.1.5) that
time-linearized methods produce a stronger peak at the leading edge close to the tip
gap compared to nonlinear time or frequency domain methods independently of tur-
bulence modelling. This might as well explain deviations from the (time-linearized)
LUFT solutions.

The larger peak in the present solutions at 55% chord length, where the neighbouring
blade’s trailing edge shock hits the suction side, is related to the observation from the
steady results, that the pressure rise due to the impinging shock is predicted stronger
than by the LUFT results. This, again, is probably related to the finer mesh used in
this work. The solution with the short domain and one-dimensional NRBC, however,
deviates especially in this region from the other TRACE results.

Moreover, the work coefficient distributions at both radial positions reveal that the so-
lution upstream of the shock impingement position is independent of the exit position
and hence not affected by possible reflections from the outlet as the supersonic flow
in front of the shock prevents the propagation of upstream travelling disturbances be-
yond the shock position. However, in the front region, the work coefficient varies with
the inflow boundary method, yet to a smaller extent. Note that the rotor inlet position
is constant for all simulations. Thus, the solutions obtained with the long and the short
domains coincide in the front region.

In the following, we will study the acoustic mode generated by the blade motion with
the corresponding frequency and a non-dimensional circumferential wavenumber of
m = −8.125. Figure 5.9a plots the pressure amplitude of this wave at the inlet bound-
ary depending on the radial position. This mode can be decomposed into fundamen-
tal waves by means of the same two-dimensional wave splitting approach used for
the spectral NRBC. It should be emphasized that this analysis is simplified and does
not correctly describe possible radial modes. Therefore, it only serves to give a certain
estimation, but not a quantitatively precise evaluation of the real upstream and down-
stream propagating modes. The contribution of the incoming, downstream propa-
gating acoustic mode is depicted in Figure 5.9b. As expected, the amplitude of the
incoming acoustic mode equals zero when using the spectral boundary conditions.
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(a) full amplitude (b) downstream acoustic wave

Figure 5.9: Pressure amplitude of blade vibration induced mode along span at rotor
inlet (σ = −45◦).

(a) full amplitude (b) upstream acoustic wave

Figure 5.10: Pressure amplitude of blade vibration induced mode along span at rotor
outlet (σ = −45◦).
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The discrepancy in Figure 5.9a between the solutions using the spectral 2D NRBC and
the characteristic 1D NRBC is consistent with the amplitude of the incoming acous-
tic mode of the characteristic 1D NRBC. This indicates that the differences of the local
work coefficient in the front region can be attributed to numerical reflections from the
inlet boundary.

The same analysis is performed at the rotor outlet plane and shown in Figure 5.10. Both
the long and the short mesh results are evaluated at the short rotor outlet plane. The
analysis yields findings similar to the ones from the inflow boundary. Furthermore, it
shows the impact of the outlet boundary position. There is a considerably stronger in-
coming wave in the outer 25% span region when one-dimensional NRBC are applied
on the short mesh. Additionally, one observes that the tip leakage vortex produces
strong perturbations close to the casing. Such three-dimensional, nonlinear perturba-
tions cannot be correctly dealt with by both boundary condition methods. Figure 5.10b
exhibits a relatively weak, but significant incoming wave for the long domain simula-
tions. As its amplitude is approximately constant over the whole span, it is supposed
that this mode does not stem directly from the blade motion because, unlike the ampli-
tude in pressure, the blade displacement is approximately proportional to the relative
spanwise position. Further investigation is needed to clarify which of the following
possible reasons is responsible for this observation. Firstly, the circumferential Fourier
decomposition is not corrected for the residual grid motion at the short rotor outlet
as the imposed grid motion decays from the blade to the actual outlet boundary at
the diffuser exit. Thus, this might be a pure postprocessing artefact. Another possible
explanation is that there is a true three-dimensional interaction of the diffuser geom-
etry with the original downstream travelling acoustic mode from the blade. Beyond,
the upstream wave could be an artificial reflection from the outlet boundary as the
prerequisites of the boundary condition theory are not strictly fulfilled. However, the
one-dimensional and the two-dimensional NRBC produce consistent incoming pertur-
bations which seems unlikely regarding the substantial differences in the formulation
of both boundary conditions.

Figure 5.11: Temporal development of integral damping (σ = −45◦).
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5.1.4 Convergence and computational costs

Figure 5.11 plots the temporal development of integral damping over time for an IBPA
of −45◦. The spectral NRBC need about twice as many time steps to converge as the
one-dimensional boundary conditions. This is due to the fact, that the spectral NRBC
depend on the temporal Fourier coefficients of the boundary solution, which them-
selves converge rather slowly in phase lag simulations. However, there are no stability
issues related to the boundary conditions in this study.

Furthermore, the reduced reflections of spectral NRBC allow shorter domains. The
possibility to use shorter domains, in turn, reduces the number of time steps required
for convergence as one can infer from Figure 5.11. In this case, the spectral NRBC ap-
plied on the short domain and the one-dimensional NRBC along with the long domain
take roughly the same number of time steps to reach convergence and comparably ac-
curate damping predictions. Note that the long mesh comprises more cells and, hence,
demands more computational resources if the run time is to be kept constant. On the
other hand, the more complex spectral NRBC enlarge the computational effort of the
boundary treatment. However, throughout all computations carried out in this work,
the run time per time step of simulations using spectral NRBC is increased by only
0.5-1.5% compared to the computations with one-dimensional boundary conditions
while all other parameters are kept constant. Therefore, there is no clear answer to the
question which boundary method is favourable if solely the computational effort is
considered. Altogether, the computational costs of unsteady time domain simulations
using spectral boundary conditions remain comparable to the costs of simulations us-
ing characteristic boundary conditions.

5.1.5 Comparison to frequency domain methods

With the development of robust spectral NRBCs for time domain simulations pre-
sented in this thesis and the advancing progress towards a mature harmonic balance
solver to tackle industry relevant turbomachinery problems, the TRACE code offers,
to the author’s knowledge, a unique capability to simulate unsteady turbomachinery
flows based on either linear or nonlinear frequency domain approaches as well as on
conventional time marching methods with a very high level of consistency regard-
ing spatial discretization techniques, state-of-the-art turbulence and transition mod-
elling and non-reflecting boundary conditions. While the comparability of time and
frequency domain methods is often subject to uncertainties regarding the inconsisten-
cies of these numerical methods and physical models, a true apples-with-apples com-
parison is now feasible with TRACE. Thus, Frey et al. (2019), with participation of the
author of this thesis, analyse the sources of the remaining variations in solutions from
different approaches of capturing unsteady flow phenomena based on the same steam
turbine flutter configuration.

Aside from cost and runtime considerations, the central outcome in a nutshell is show-
cased in Figure 5.12. The overall agreement of results obtained with different solution
approaches is very good. Note that the time domain result is not identical to the results
from this work as Frey et al. (2019) consider a reduced tip gap size in order to stabilize
the frequency domain simulations, in particular the time-linearized solver.

The largest contribution to the difference in global damping between time-linearized
and nonlinear time or frequency domain solutions can be attributed to the choice of ref-
erence plane for the 2D spectral NRBCs (cf. Section 3.2.1). While being implemented
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Figure 5.12: Detail of damping curve comparing different modelling approaches in the
vicinity of maximum excitation (σ = −72◦), adapted from Frey et al. (2019).

such that the reference plane can be adjusted by the user, the default reference plane
in TRACE is only based on the circumferentially averaged meridional velocity if the
time-mean flow is constant, e.g. in the linear solver. If the background flow is part of
the solution, i.e. in time domain simulations or in harmonic balance computations that
allow for a variable zeroth harmonic, it is beneficial from our experience to rather use
the boundary-normal definition of the reference plane for stability reasons. The ad-
dition ªmod bcsº, therefore, refers to the time-linearized solution using the boundary-
normal NRBC formulation analogously to the nonlinear results. This solution is in very
close agreement to the harmonic balance solution that does not include the turbulence
model in its harmonic solution, i.e. the effect of turbulence is assumed to only depend
on the time-averaged mean flow disregarding any coupling of unsteady flow phenom-
ena and local eddy viscosity. This constant eddy viscosity simplification is made in the
time-linearized solver as well. If the turbulence model is accounted for in the harmonic
balance solver, i.e. if the transport equations are part of the harmonic solution, then the
harmonic balance solution is in very good agreement with the nonlinear time domain
solution.

Furthermore, reducing the blade’s bending amplitude by factor 4 yields a virtually
identical non-dimensional damping value based on a harmonic balance simulation
with unsteady turbulence modelling. From this, we can conclude that the amplitude
used to predict flutter onset is still in the realm of linear aerodynamic response (under
the assumption that the reduced tip gap does not fundamentally affect the validity of
this finding).

Yet, the conclusions from Fig. 5.12 regarding the excellent agreement of linear and
nonlinear methods refer to integral damping only. The full paper shows, that the time-
linearized solver predicts a strong peak in aerodynamic work in the tip leading edge
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region similar to the observation in Fig. 5.8. The time domain solution and the har-
monic balance solution with and without unsteady turbulence modelling on the other
hand do not exhibit this strong peak. However, these discrepancies are locally con-
fined. In this region, the flow cannot be expected to behave in a linear fashion due to
e.g. transonic effects and the tip gap vortex.
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5.2 Compressor blade row interaction

5.2.1 Test case design and numerical setup

The second application of the spectral NRBC to real-world turbomachinery flows is
based on DLR’s Rig250, which represents the front stages of a modern, highly loaded
compressor. The entire compressor comprises four stages plus a variable inlet guide
vane with the first two stages being transonic. Its layout is outlined in Figure 5.13
including blade counts.

Figure 5.13: Outline of DLR’s compressor Rig250 with blade row designations and
blade counts. Rotor blades are coloured blue. Black boxes show computational do-
mains used in this work.

The purpose of this test case is to demonstrate the prediction of unsteady, transonic
blade row interactions with truncated computational domains which comprise only
the blade rows of interest rather than the whole compressor or possibly additional
duct segments or buffer zones in order to mitigate the influence of spurious, numer-
ical reflections. In this case, the interaction of stator 1 and rotor 2 is examined with
regard to unsteady blade pressure distributions. Although no aeroelastic evaluation
is presented, this can be viewed as an example of a forced response (or high cycle fa-
tigue) analysis since the prediction of unsteady blade pressure distributions is vital to
the calculation of aerodynamic forcing.

Two objectives can be pursued with this choice of blades rows. In a first step, a compar-
ison to available reference data of stator 1 is presented in Section 5.2.3. These reference
data include both experimental blade pressure measurements and CFD data from very
costly and time-consuming full annulus simulations of the first two stages including
the IGV as well as the swan neck and strut section (see Reutter et al., 2018). As this
CFD setup has several blade rows between stator 1 and the artificial inlet and outlet
boundaries, the impact of possible, numerical reflections on the region of interest is
very small.

The second part deals with the unsteady pressure distribution on rotor 2 which is more
demanding with regards to non-reflecting boundary conditions as shown in Sections
5.2.4 and following. It is demonstrated that an accurate prediction of unsteady blade
pressure requires the use of a suitable non-reflecting boundary condition when no ad-
ditional blade rows are kept in the computational domain. For this purpose, time



92 Non-reflecting boundary conditions for turbomachinery flows

domain simulations with the spectral, two-dimensional and the characteristic, one-
dimensional NRBCs are performed. Reference results for the assessment of those com-
putations are obtained from an additional computation on an extended domain with
the spectral, two-dimensional NRBC, including also the stator 2 downstream of rotor
2 (see Fig. 5.13).

Furthermore, the test case shows that the harmonic balance method and time domain
simulations produce consistent results when using consistent NRBCs. This is an im-
portant result because the availability of spectral, two-dimensional NRBCs in the time
domain solver is deemed a crucial aspect of time domain simulations being a con-
sistent, high-fidelity tool for the validation, backup or complement to the harmonic
balance method, which represents a cost-effective reduced-order method (see Chapter
1.1).

The study considers a single operating point characterized by a total pressure ratio of
5.2 and a reduced mass flow of 47 kg/s at nominal shaft speed. These conditions are
close to the aerodynamic design point. The boundary values for the blade rows of in-
terest are extracted from flux-averaged, radial distributions of a steady-state precursor
simulation of the entire compressor which is based on boundary conditions from rig
tests. All unsteady computations are initialized with the steady-state flow solution.

The time domain simulations with the shorter domain (S1-R2) as well as all HB com-
putations are carried out as single-passage computations with phase-shifted periodic
boundary conditions while a multi-passage mesh is used for the time domain simula-
tion with the extended domain (S1-R2-S2). With the given blade counts, truly periodic
boundary conditions are realized with a 90° segment comprising 9, 7 and 12 blades
of each row, respectively. On the one hand, the multi-passage computation becomes
necessary as phase-shifted boundaries are only available for time domain simulations
with a single base frequency in TRACE, which prevents their application to configura-
tions with more than two blade rows (unless scaling or favourable blade counts allow
for coincident blade passing frequencies). On the other hand, thereby an application
of the spectral NRBC with both phase-shifted boundaries and a multi-passage setup in
one test case is demonstrated.

Time integration is performed by means of an implicit Crank-Nicolson scheme with
pseudo-time stepping (see Crank & Nicolson, 1947; Ashcroft et al., 2013). Single pas-
sage (phase-lag) simulations resolve the blade interaction frequency with 72 time steps.
Correspondingly, 648 time steps are used to describe one passing of the quarter annu-
lus segment in the multi-passage simulation, such that the BPF of S1 is resolved with 72
time steps in the R2 system. For each physical time step, 40 pseudo-time subiterations
are carried out.

The two row HB computations incorporate the mean flow and four harmonics of the
respective blade interaction modes. In the HB computation with the additional S2 row,
the harmonic sets of S1 and R2 remain unchanged, i.e. the upstream effect of the S2
potential field is disregarded. The harmonic set of S2 is set up such that a specific mode
from the S1-R2 interaction is matched instead of the R2 wake modes. This mode has
a nodal diameter of 64 at S1 BPF in the frame of reference of R2 and translates to a
mode of equal nodal diameter with the R2 BPF in the stationary frame of reference (or
in other words having an IBPA of -120° with respect to S2). The frequency shift is due
to the Doppler effect when a mode is observed from different frames of reference with
relative rotational motion to each other. Further explanation and the mathematical
description can be found in Junge et al. (2015). The mean solution and four harmonics
of the mode described above are resolved in the S2 row. The reason for resolving this
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Figure 5.14: Blade-to-blade cut of the computational mesh at mid-span, every second
grid line shown.

mode will become clearer in Sections 5.2.5 and following. This HB computation will
be used to help explain differences between the time domain solutions obtained with
the short and long domains. All HB computations employ the HB implementation of
the spectral, two-dimensional NRBC at inlets, outlets and blade row interfaces.

Figure 5.14 depicts a mid-span cut through the computational mesh (coarsened by fac-
tor two in the picture), which is identical on individual blade level to the one used and
described by Reutter et al. (2018). It comprises 5.04M (S1), 4.92M (R2) and 4.55M (S2)
cells per blade, totalling 134.7M cells for the S1-R2-S2 multi-passage mesh (in compar-
ison to nearly one billion cells in the full annulus computation presented by Reutter).
Solid walls are modelled with the low-Reynolds approach and an average wall-normal
cell size of y+ ≈ 1.

All boundary layers are regarded as fully turbulent without transition modelling. The
(U)RANS equations are closed employing the two equation k-ω model by Wilcox (1988)
with extensions for the stagnation point anomaly (see Kato & Launder, 1993) and ef-
fects of rotating flows (see Bardina et al., 1985). This turbulence model is consistent
with Reutter’s setup. For robustness reasons, the HB computations solve the turbu-
lence model equations for the mean flow solution only, producing a temporally invari-
ant eddy viscosity field.

5.2.2 Mean Flow

Figure 5.15 shows the time-averaged blade pressure distribution on stator 1 and rotor 2
at 50 % relative span. For stator 1, time domain and harmonic balance computations
with the spectral, two-dimensional boundary conditions show excellent agreement
with each other as well as with Reutter’s full annulus computation. The solution ob-
tained with the characteristic, one-dimensional boundary condition exhibits a slightly
reduced pressure level along the pressure side and the also along the suction side ex-
cept for the first 10 % of axial chord. The flow accelerates slower resulting in down-
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(a) Stator 1 (b) Rotor 2

Figure 5.15: Time-mean blade pressure distributions at mid-span.

stream shift of the suction peak by about 5 % axial chord compared to the solutions
obtained with the spectral NRBC. For reference, the peak Mach number in the three-
dimensional flow field is found to be about 1.05 in the vicinity of this blade surface
region. Altogether, differences between the numerical solutions are small.

The agreement with rig test results is generally satisfactory, but varies along the blade.
While in particular the numerical solutions with the spectral NRBC match the mea-
surements very well in the first half of the suction side, the latter present a reduced
pressure build-up towards the trailing edge on the suction and pressure side.

However, the excellent correspondence of the computations presented in this work to
the numerical references by Reutter et al. is the central finding with regards to validat-
ing boundary conditions since the numerical results obtained with the reduced domain
can ideally meet the results obtained from a full annulus, multi-stage computation with
otherwise consistent models and numerical parameters.

The disparity of CFD and rig test results can generally be rooted in a variety of causes
that are beyond the scope of this work. These can be the use of the (U)RANS equations
with respective turbulence, transition and gas modelling, simplification and idealiza-
tion of the real world geometry (including intrusive measurement equipment), uncer-
tainties and assumptions regarding boundary conditions (in this case boundary values,
not numerical boundary condition methods for the underlying differential equations),
numerical dissipation and dispersion and measurement uncertainties to name just the
most important, usual suspects.

Reference results of rotor 2 are not available. Here, all flow solutions predict an al-
most coincident mean blade pressure distribution with a clearly discernible shock at
about 30 % normalized axial chord. The solution obtained with the characteristic,
one-dimensional boundary condition presents the most significant deviations from all
other solutions, but the overall agreement can still be considered very good.
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5.2.3 Unsteady blade pressure: Stator 1

Figure 5.16: Unsteady blade pressure amplitudes on stator 1 at 50 % span .

In the following, the unsteady pressure field is analysed beginning with stator 1. Am-
plitudes of pressure fluctuations with the blade passing frequency of rotor 2 at 50 %
relative span are plotted in Figure 5.16.

Again the pressure fields predicted by all computations with the spectral NRBC are
in very good agreement with each other while the characteristic boundary condition
leads to a qualitatively similar, yet significantly different unsteady blade pressure. The
inlet boundary is located immediately upstream of this blade row and, thus, the vari-
ations stemming from different boundary condition methods are more prominent in
the front section of the blade. Here, the characteristic boundary condition produces
about 30-50 % larger pressure amplitudes on the pressure side. The front section of the
suction side is to some extent shielded from upstream travelling perturbations associ-
ated with the S1-R2 interaction as the flow reaches transonic conditions in the suction
peak region. Hence, only relatively weak pressure fluctuations are observed here. All
flow solutions exhibit a peak followed by a local minimum in the area of sonic flow
conditions. These local extrema are much more pronounced with the characteristic
boundary condition.

The computations based on spectral boundary conditions correspond very well to the
numerical results presented by Reutter et al. (2018) in the front part of the blade. In the
rear half, the agreement is still sound although the reference solution predicts larger
amplitudes throughout the rear part.

Numerical results by Reuter et al. as well as the ones with spectral NRBCs show good
agreement with rig test data along the suction side, especially in the front area. Com-
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pared to the calculations of this work, the slightly larger amplitudes found in Reut-
ter’s CFD data in the rear section appear to better reflect the rig test data although the
limited number of data points and the varying degree of agreement does not allow a
concluding assessment.

In contrast, the pressure-sided agreement of CFD and experiment is poor. The reasons
for that remain unclear and are not addressed in the paper by Reutter et al. As this
disparity is also evident in the full annulus computation with a much larger compu-
tational domain, it cannot be due to potential inaccuracy of the boundary condition
method that are presented and examined in this work.

Although the characteristic boundary condition yields a qualitatively similar predic-
tion of unsteady blade pressure, the analysis of unsteady pressure on stator 1 demon-
strates that, by means of the spectral NRBC, a prediction can be achieved on a truncated
domain that is almost equivalent with respect to this specific blade row interaction to
the large-scale simulation of the whole compressor.

5.2.4 Unsteady blade pressure: Rotor 2

Figure 5.17: Blade surface distribution of complex unsteady pressure associated with
S1 BPF on rotor 2 at mid-span.

Subsequently, the blade pressure resulting from the stator-rotor interaction on rotor 2
is studied in more detail. Figure 5.17 shows the complex-valued unsteady pressure at
50 % relative span.

In accordance with observations from the previous sections, the solutions with the
spectral NRBC show excellent agreement for the majority of the surface while the so-
lution with the characteristic boundary condition differs significantly along the entire
chord. Overall, higher levels of unsteady pressure are found in particular in the vicin-
ity of the leading and trailing edges when the latter boundary condition is employed.
Moreover, local extrema are overestimated compared to the spectral NRBC solutions
and partly offset towards mid-chord by up to 10 % relative axial chord, e.g. the double
peak in the pressure-sided trailing edge region.
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Figure 5.18: Blade surface distribution of unsteady pressure amplitudes associated
with S1 BPF on rotor 2.

As these differences are more pronounced for the real part of the unsteady pressure,
it should be noted that the unsteady blade pressure differs not only in magnitude but
also in phase. Note that again only weak fluctuations are observed in the supersonic
region of the suction side.

Local deviations between the results from time domain simulation of the S1-B2-S2 do-
main on the one hand and the time and frequency domain solutions with the spectral
NRBC and the S1-B2 domain on the other hand are found in the trailing edge region
of the pressure side. The HB solution of the extended domain also exhibits minor dif-
ferences here, but corresponds much more closely to the short domain solutions. As
the modal content resolved in the S2 row is limited to modes of certain circumferen-
tial periodicity when using HB, only the time domain simulation can be considered
a reference solution in order to assess the reflection properties of the exit boundaries
in the short domain computations. As the pressure side is oriented backwards, to-
wards either the exit boundary or the downstream blade row, these local differences
can be explained by incoming waves from downstream or the absence of those waves.
Whether these waves are numerical artefacts in the short domain computations and the
HB computation on the extended domain or physically explicable, will be discussed in
the following sections.

However, in comparison to the differences observed when using the characteristic
NRBC, the differences mentioned above are small and localized. Therefore, it can
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Figure 5.19: Circumferential decomposition of the pressure field at the exit boundary
or blade row interface (50 % relative span).

be concluded that artificial reflections can drastically impair the prediction of the un-
steady pressure field when the characteristic, one-dimensional boundary condition is
used together with an exit plane in the vicinity of the region of interest. On the other
hand, the non-reflecting properties of the spectral, two-dimensional boundary condi-
tion allow in this case to omit the subsequent blade row without a substantial loss of
prediction accuracy.

Figure 5.18 shows the amplitude of unsteady pressure on the entire blade surface in or-
der to indicate that the above observations are not limited to the mid-span cut, but ap-
ply to other radial positions as well. While all distributions obtained with the spectral
NRBC appear almost indistinguishable, the characteristic boundary condition leads to
regions of increased pressure amplitudes, in particular in the proximity of the trailing
edge, in the transonic region on the suction side and in the pressure-sided leading edge
area.

5.2.5 Modal decomposition

To further explore the impact of the boundary/interface flow field on the blade pres-
sure, the unsteady pressure field at the exit boundary or the blade row interface (see
dashed line in Fig. 5.13) is Fourier-decomposed along the circumference to identify
modes of different circumferential periodicity, depicted in Figure 5.19.

Recall from Equation (3.67) that the wavenumber spectrum is determined by the cir-
cumferential periodicity of the computational model, depending on the pitch-wise ex-
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tent of the computational domain and the (a priori specified) phase shift of the periodic
boundaries. Therefore, the spectral resolution of the computations which are based on
single-passage models, i.e. the S1-R2 time domain and both HB computations, is iden-
tical while the multi-passage time domain computation of the S1-R2-S2 domain yields
a finer resolution. However, these additionally resolved wavenumbers do theoreti-
cally not carry any signal because of the perfectly periodic blade geometry and mesh.
For the sake of clarity, modes with an amplitude smaller than 5 Pa have been blanked
out and thereby only a few additional modes remain in the plot (e.g. at m = -32). All of
these are small compared to the relevant modes resolved by the single-passage models.

Moreover, note that these circumferentially decomposed modes are used only for anal-
ysis purposes in the S1-R2-S2 time domain computation, as the sliding interface does
not rely on spectral data but uses a local interpolation of flow states. This also applies
to the time domain simulation with the characteristic, locally formulated boundary
condition. In contrast, HB and short domain computations with the spectral bound-
ary condition use the same spectral representation, as it is plotted here, as input to the
wave decomposition presented in Section 3.2.2, either for the exit boundary (time do-
main and short HB computation) or for the modal row coupling in HB (S1-R2-S2 HB
computation, see Frey et al. (2014); Junge et al. (2015) for a detailed description of the
coupling technique).

The time domain and HB computations with the spectral NRBC and the S1-R2 domain
present almost identical spectra. The amplitudes found in the solution of the character-
istic boundary condition are larger than the aforementioned ones for most wavenum-
bers, the only exceptions being found at m = -76, where amplitudes match, and at m = -
48, where the characteristic NRBC produces the smallest amplitude of all computa-
tions. Note that smaller, relative differences are observed for smaller circumferential
wavenumbers. This is due to the fact that the characteristic approach is an approxi-
mation to the exact wave splitting operator, which is only exact for one-dimensional
waves (dominant) and becomes less accurate with increasing absolute value of the cir-
cumferential wavenumber.

The degree of conformity of the solutions from the S1-R2-S2 domain with each other as
well as with their S1-R2 domain counterparts is less consistent than the mutual agree-
ment between the latter. For example, all solutions with the spectral NRBC exhibit
similar amplitudes for wavenumbers -104, -76 or 120. On the other hand, at m = 8 and
m = -20, the HB S1-R2-S2 computation agrees closely with the short domain computa-
tions, but the S1-R2-S2 time domain computation shows amplitudes reduced by about
50 %. In these cases, the former does not incorporate these modes in the set of modes
resolved by this specific HB setup in the stator 2 row. Since the HB blade row inter-
face acts like an exit boundary condition with respect to modes that are not resolved
in the adjacent blade row, the observed agreement with short domain results is to be
expected for such modes.

Conversely, the time domain computation including S2 is capable of rendering all
modes in the S2 row that are already rendered in the rotor 2 row due to the identi-
cal circumferential periodicity with respect to a 90° segment. Therefore, it is the only
computation in this study that can naturally represent all kinds of upstream effects
of the second stator, including possible physical reflections from the blade surfaces or
(possibly rather involved) mode scattering effects.

Although the previous section has shown that the impact of those phenomena is rather
limited in the configuration considered here and that the R2 blade pressure is predicted
with sufficient accuracy based on the truncated domain and the spectral NRBC, this
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Figure 5.20: Decomposition of the m = -48 mode into upstream and downstream prop-
agating components.

analysis underlines why the availability of high-quality time domain simulations is
deemed important despite their large computational effort. Albeit it is feasible to re-
solve additional modes in the HB setup, this approach can become very sophisticated
and quickly negate the cost advantage of the HB technique if all uncertainties about
which modes need to be resolved are to be removed; even in a moderately complex
three row configuration like this.

In the following, the analysis focuses on the two modes with wavenumbers -48 and
64 as these are, firstly, the most dominant ones and, secondly, they feature the most
pronounced variance.

5.2.6 Tyler-Sofrin mode with upstream component

First, the mode associated with wavenumber -48 is examined. This mode is resolved in
the S2 row in the respective HB computation. However, it must not be confused with
the upstream effect of the potential field of this stator. Although the nodal diameter
matches the blade count of stator 2, the stationary potential field of stator 2 is observed
at the blade passing frequency associated with this stator in the rotor domain while
our analysis deals with modes associated with the blade passing frequency of stator 1.
Instead the origin of this mode is explicable with the theory of Tyler & Sofrin (1962)
about the generation of tonal noise.

Figure 5.20 depicts Fourier coefficients of the unsteady pressure associated with this
mode in the complex plane, shown as squares in the illustration. Additionally, the
total amount is decomposed according to Equation (3.53) into modal amplitudes of
upstream (triangles) and downstream (circles) travelling waves.

The figure shows that, for the short domain solutions with the spectral NRBC, the
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mode observed at the exit represents a downstream travelling wave only. Therefore,
the outgoing component and the total value coincide while the incoming component
is located in the origin of the complex plane. This reflects the concept of the spectral
NRBC.

In contrast, the solutions including stator 2 exhibit an additional incoming wave with
about the same phase such that the overall magnitude of the mode is predicted larger
than by the short domain computations. Since this mode is cut-on under the given
flow conditions (see Eq. (3.44)), this incoming wave could be a reflection of the out-
going wave by the stator 2 blades. Alternatively, it could originate in the stator 2 row
as the result of another mode being scattered. For our purpose, the exact generation
mechanism does not matter. Either way, this is an example of an actual, physically
explainable incoming mode that is neglected when using the short domain.

The slightly smaller amplitudes and the small, but uniform shift in phase of the S1-
R2-S2 time domain computation compared to its HB counterpart could be due to the
fact that time integration always produces some numerical dissipation and dispersion
error.

The short domain solution produced by the characteristic boundary condition also
presents an incoming wave. Yet, this incoming mode lacks any physical justifica-
tion and must therefore be considered a spurious artefact. The incoming and out-
going waves are of considerably larger magnitude than the superposed wave since
they display almost 180° phase difference. This means, although the total amplitude
is smaller than the corresponding amplitudes of the S1-R2 computation with the two-
dimensional NRBC, there is a relatively strong incoming mode caused by the one-
dimensional boundary condition.

5.2.7 Wake mode

The results of the decomposition of the mode with wavenumber m = 64 into upstream
and downstream propagating parts are shown in Figure 5.21. As the amplitude ob-
served with the characteristic boundary condition is much larger, this computation is
excluded from the plot for clarity in order to realize an adequate scale for the remaining
data.

Again, we find a significant incoming contribution only if stator 2 is regarded. Other-
wise, the S1-R2 solutions correspond to the outgoing waves of the solutions from the
extended domain. In this case, however, the situation is different and this section dis-
cusses why the extended domain leads to a different solution although the difference
is primarily caused by the boundary condition rather than by an upstream effect of
stator 2.

The overall amplitude observed in the S1-R2-S2 solutions is very low and the incoming
and outgoing contributions, as determined by the two-dimensional approach based
on the linearized Euler equations, appear to almost completely cancel out each other.
Since this mode is cut-off, this observation cannot be explained with an acoustic wave
being perfectly reflected at the subsequent stator 2.

The existence of an upstream travelling mode, originating from the S2 blade row, either
by mode scattering or as an independent Tyler-Sofrin mode, destructively interfering
with a downstream propagating Tyler-Sofrin mode from the S1-R2 interaction, is the-
oretically possible. However, it is improbable that they cancel out each other almost
perfectly.
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Figure 5.21: Decomposition of the m = 64 mode into upstream and downstream prop-
agating components.

Moreover, Figure 5.22 shows that this situation can be found along the entire radial
range of the interface. The plot shows the radial distribution of total amplitudes of
each computation using the spectral NRBC and the upstream and downstream con-
tributions of the S1-R2-S2 time domain computation. The other upstream and down-
stream parts are left out for clarity.

The overall pressure found in the short domain computations matches the outgoing
portions of the long domain computations since the incoming waves are suppressed
by the exit boundary condition in the short domain computations.

The S1-R2-S2 solutions from the time domain and the HB solver exhibit only small
overall pressure amplitudes at all radial positions. Consequently, the upstream and
downstream contributions of the HB solution closely follow their respective time do-
main equivalents (not shown here for clarity, but in accordance with the findings from
Fig. 5.21).

As the flow field is three-dimensional and non-uniform in radial direction, it is vir-
tually impossible that an independent upstream travelling mode from stator 2 cor-
responds to the downstream travelling mode from the S1-R2 interaction with equal
magnitude and opposing phase along the entire radius.

In fact, this mode with a circumferential wavenumber of 64 is related to the pattern of
wakes. The rotor wakes are observed as a stationary pattern in the rotor system and,
therefore, they are primarily represented by the zeroth temporal harmonic rather than
by the harmonic associated with the BPF of S1, which is considered in this analysis. Yet,
as the rotor flow is subject to unsteady perturbations associated with the S1 BPF, the
stationary rotor wake pattern oscillates at the same frequency. This means, in addition
to the 36 convected wakes of stator 1, some signal stemming from the 28 rotor wakes
can be found at S1 BPF as well.

Figure 5.23 depicts the real part of the Fourier-transformed eddy viscosity at the BPF
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Figure 5.22: Radial distribution of complex pressure for the m = 64 mode at outlet plane
of R2.

of stator 1 taken from the time domain simulation with the extended domain. Eddy
viscosity itself does not play any role for the spectral NRBC as they are derived from
the Euler equations. But eddy viscosity is closely linked with wakes, which represent
entropy and vorticity modes in the context of spectral NRBCs. The latter are, however,
more difficult to visualize distinctively.

Recall that the computational domain covers 90° degree in pitch-wise direction, i.e. one
quarter of the full blade row. We can clearly identify 9 maxima and minima at the inlet
of the blade row, corresponding to 36 incoming wakes of S1. At the outlet, however,
we find a pattern of 16 maxima and minima, corresponding the mode discussed in this
section with circumferential wavenumber 64.

Only in flows that can be described by the two-dimensional, linearized Euler equations
with constant mean flow, the modal decomposition is exact such that convective and
acoustic modes can actually be decoupled. Therefore, this procedure is only approx-
imately accurate in complex, nonlinear turbomachinery flows. Since the combined
pressure amplitude is small in the time domain solution including stator 2 and it was
concluded that the small amplitude is not due to cancelling out of two opposite waves,
the relatively high amplitudes of upstream and downstream travelling waves must be
an artefact of the imperfect modal decomposition.

The fact that this limitation of the wave splitting approach is especially significant for
this specific wavenumber associated with the wake pattern suggests two possible ex-
planations. Firstly, the imperfect decoupling could be caused by viscosity effects. Sec-
ondly, this could be an example of nonlinear effects and a flow field that cannot be
described correctly by superposition of plane wave solutions (cf. Eq. (3.31)) in con-
stant background flow because the wake pattern with nodal diameter 64 does not spin
uniformly along the circumference. Only the 36 wakes of stator 1 move continuously
along in circumferential direction. While the positions of the 28 wakes associated with
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Figure 5.23: Real part of unsteady eddy viscosity field in the R2 blade row at BPF of S1.
Cut at 50 % relative span. Positive values coloured red, negative values blue.

the rotor remain stationary in the rotating frame of reference, the local fluctuation of
these wakes is synchronous with the relative motion of stator 1. Therefore, the overall
signal with S1 BPF and circumferential wavenumber 64 does not correspond to a sin-
gle, plane wave as assumed when deriving the dispersion relation and its eigenvector
decomposition.

As mentioned above, the sliding interface in this computation is independent of the
modal decomposition approach. Here, this is only a postprocessing matter while the
wave splitting approach is a cornerstone to both the exit boundary condition of the
short domain computation and to the modal blade row coupling approach of the HB
solver.

This explains why the solutions of the S1-R2 model differ from their S1-R2-S2 counter-
parts. The exit boundary conditions falsely identifies an upstream and a downstream
travelling acoustic wave induced by the wake pattern, but suppresses the incoming,
upstream propagating portion, resulting in a considerably stronger total modal pres-
sure amplitude at m = 64 in the wavenumber spectrum.

In the HB computation including the S2 row, both the upstream and downstream prop-
agating (spurious) waves occur because the respective mode is resolved in the S2 do-
main. Hence, the interface algorithm suppresses neither of the two waves and, by
superposition, the interface flow field is reconstructed such that it corresponds to the
one observed at the sliding interface of the time domain computation.

The one-dimensional, characteristic NRBC does not rely on the modal decomposition
in spectral space. Recall from Section 3.3.1 that the calculation of characteristic vari-
ables is, nevertheless, a simplification of the spectral wave splitting approach. Thus,
the characteristic boundary condition is even less accurate at decoupling acoustic and
and convective perturbations that do not propagate perpendicularly to the boundary.
Therefore, a strong wake-induced reflection is produced leading to the strong artificial
pressure amplitude found in Figure 5.19.

For the sake of completeness, it should be noted that the above analysis does not imply
that there is no Tyler-Sofrin mode with this wavenumber. However, three reasons sug-
gest that its impact is small compared to the effect described above. First, the observed
overall pressure amplitude of this mode is relatively small in the reference time do-
main computation including stator 2. Second, this mode is cut-off. Third, the variance
among the different computations is considerably more pronounced for this particular
wavenumber indicating that the effect of the wake plays the dominant role here.

To conclude, it must be emphasized that, when employing the spectral NRBC, the
impact of local differences at the boundary, found in the modal analysis in this and the
preceding sections, on the unsteady blade pressure distribution is small as discussed in
Section 5.2.4. In contrast, using the one-dimensional, characteristic boundary condition
yields a significantly different solution.
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A spectral, two-dimensional non-reflecting boundary condition for unsteady, time-
marching flow computations has been implemented into DLR’s turbomachinery CFD
solver TRACE and applied to five different test cases of increasing complexity. It was
found that the NRBC provides significantly improved accuracy, i.e. suppression of
artificial reflections, compared to existing boundary conditions for time domain sim-
ulations while good overall stability and convergence properties allow for a wide uti-
lization in real-world turbomachinery research and design scenarios.

Therefore, this work contributes to meeting the growing demand for accurate simu-
lations of unsteady turbomachinery flow phenomena. Time domain URANS simu-
lations are commonly considered the highest (feasible) level of turbomachinery flow
simulation because, in contrast to frequency domain methods, they involve no further
simplifications or assumptions. However, frequency domain methods often employ
superior NRBC formulations. The present work closes this gap. The approach for the
NRBC presented in this thesis has been chosen because linear and nonlinear frequency
domain methods have been employing this type of of boundary condition successfully
since the emergence of frequency domain methods in turbomachinery CFD. Unfor-
tunately, these boundary conditions are not only non-local in space, but also in time
because they rely on a modal representation of the boundary flow field. This results in
additional difficulty for the implementation into time domain simulation methods.

Thus, approximate NRBC have usually been used for time domain simulations so far,
not only in TRACE, but also in the literature. Apart from accuracy improvements for
the time domain solver, a consistent method for time and frequency domain simula-
tions is deemed highly valuable because it enables the parallel use and comparability
of time and frequency domain methods such that they complement each other with
their respective strengths and weaknesses.

A thorough description of the theory and implementation has been presented. The
NRBC are derived from the two-dimensional, linearized Euler equations. In this con-
text, they are exact. For three-dimensional flows, they are applied using a quasi-
three-dimensional approach. Therefore, one cannot expect them to be perfectly non-
reflecting in nonlinear, three-dimensional flows. The section about implementation
details emphasizes aspects that are specific to the adaption of the spectral NRBC to
time domain simulations. These include

• the transient calculation of the necessary temporal Fourier transform of the bound-
ary flow field,

• the formulation of the NRBC in terms of characteric variables with suitable relax-
ation of incoming characteristics,

• distinguishing between updates of the boundary flow field with respect to pseudo-
time and phyisical time,
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• an exceptional, local handling of waves with wave fronts parallel to the boundary
as these cause a shift in cirumferential averages and, hence, interfere with the
control of mean boundary values.

Subsequently, three basic, two-dimensional test cases have been studied to validate the
improved accuracy of the NRBC:

A transonic turbine cascade has shown that reflecting boundary conditions do not only
affect unsteady waves, but can also impair the prediction of the underlying mean flow.
In this case, the prediction of a suction-sided shock is subject to artificial reflections
at the outflow boundary unless an accurate NRBC is used. This has a significant im-
pact on the blade pressure distribution. Even though the NRBC are derived from the
linearized Euler equations, the spectral NRBC exhibit little sensitivity to a variation
of the boundary location in presence of a shock, indicating still low levels of artificial
reflections.

The second test case demonstrated the capability of the spectral NRBC to impose in-
coming modes. By studying a single acoustic mode in a thin, circular duct, a quantita-
tive analysis of reflection coefficients of different boundary conditions was presented.
The generally better accuracy of the spectral NRBC in comparison to existing boundary
conditions could be underlined. Especially in situations, in which existing boundary
conditions are known to perform poorly, the spectral NRBC offer a reduction of spuri-
ous reflections by at least a factor of 10. Moreover, it has been shown that a variation
of the unsteady pressure amplitude from 0.02 % to 20 % of the mean flow pressure
leads to less then 3 % difference in the reflection coefficient. This supports the above
observation, that the spectral NRBC remain reasonably accurate for relatively large
perturbations despite their linear nature.

An academic flutter test case called tenth standard configuration, which is known to
be sensitive to reflections from boundary conditions, has also supported the increased
accuracy of the spectral NRBC. With these NRBC, very good agreement with widely
accepted reference results has been achieved whereas existing, approximate NRBC fail
to meet the reference results, especially under conditions close to acoustic resonance.
In particular, the critical point of minimal aerodynamic damping is not well predicted
by the approximate NRBC. Moreover, identical results of single-passage simulations
using phase-shifted periodic boundaries and truly periodic multi-passage simulations
have verified that the spectral NRBC is correctly implemented for both approaches.

Beyond these academic validation test cases, two more realistic turbomachinery appli-
cations have been presented.

Very similar conclusions to those from the tenth standard configuration can be drawn
from a flutter analysis of a transonic low pressure steam turbine rotor blade. Only
the results obtained with the spectral NRBC agree well with reference results, particu-
larly in the unstable region of negative aerodynamic damping. Moreover, the analysis
has been performed with and without a downstream (bladeless) diffuser section. In
contrast to a one-dimensional NRBC, the spectral, two-dimensional NRBC shows very
similar results for both domains, confirming the strong suppression of spurious reflec-
tions when using the spectral NRBC in this demanding, three-dimensional case where
a trailing edge shock interacts with the outflow boundary. Convergence is slightly
lagged with the spectral NRBC as they depend temporal Fourier coefficients, which
need to be evaluated in a transient manner. On the other hand, the use of an accurate
NRBC allows a smaller computational domain which in turn reduces the computa-
tional effort and leads to faster convergence. Therefore it cannot be concluded that
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the spectral NRBC generally increase the computational costs due to slower conver-
gence. Additionally, a comparison of time domain and harmonic balance results with
consistent spectral NRBC has been presented. The agreement is excellent.

Also, an application considering the unsteady blade row interaction in a modern, tran-
sonic compressor has proven the practical usability of the presented NRBC for real-
istic turbomachinery flows. With the spectral NRBC, reference results from a much
more expensive full-wheel, multi-stage simulation could be well reproduced on re-
duced computational domains. Again, a comparison to harmonic balance simulations
has been presented. The agreement is very good as well. However, harmonic balance
simulations do typically not resolve all possible interaction modes in multi-row con-
figurations. Therefore, a detailed analysis has identified local differences that can be
explained by modes which are not taken into account by the specific harmonic balance
setup. This showcases that for complex configurations, time domain simulations are
the more universal tool, yet the impact on unsteady blade pressure is small in this case.
Furthermore, it has been shown that wakes can induce acoustic reflections. However,
this reflection is much more pronounced with a less accurate one-dimensional NRBC
and the impact on the respective unsteady blade pressure distribution is small for the
spectral NRBC in this case.

Altogether it can be concluded that the spectral NRBC have been successfully imple-
mented in TRACE. The NRBC is characterized by significantly reduced artificial reflec-
tions even in three-dimensional flows with nonlinear phenomena. Stability or conver-
gence issues due to the boundary condition have not been observed with any of the
test cases and applications presented in this work. This is a critical advancement com-
pared to the few other attempts of implementing such NRBC into time domain solvers
found in the literature, where stability issues and drastically slowed convergence have
been reported even for simple duct flows.

The additional computational costs of this NRBC appear acceptable. In smaller setups,
the overhead regarding CPU time per time step and memory requirements is negligi-
ble. However, convergence is usually reached a bit later than with local, approximate
boundary conditions. Yet, the high accuracy of the NRBC permits the use of smaller
computational domains which can remedy delayed convergence or even yield reduced
overall costs depending on the configuration at hand. For larger setups, in particular
when low base frequencies are resolved with many time steps, memory consumption
and computational overhead grow substantially unless the user is able to specify rel-
evant frequencies a-priori. In this case, the computational effort and memory require-
ments are comparable to local boundary conditions.

Future developments could address this topic, e.g. by automatically reducing the fre-
quency spectrum of the NRBC by means of an on-the-fly amplitude estimation and
filtering of insignificant modes. An extension to almost periodic Fourier transforma-
tions could provide an automatic detection of relevant frequencies even beyond spec-
tra that consist of harmonics of a common base frequency (see Battistoni et al., 2022).
This would enable an accurate analysis of interactions between turbomachinery com-
ponents with unrelated shaft speeds or other non-synchronous effects.

The author of this thesis is optimistic that it is possible to find a more efficient way
of controlling mean boundary values. In the current form, the control law reacts pro-
portionally to deviations of temporally and spatially averaged mean quantities from
specified target values. For large configurations with low base frequencies and, hence,
large averaging periods, these averages develop with a significant time lag. This in
itself adverse condition necessitates additional relaxation of the control law in order to
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prevent overshooting or loss of stability. However, this issue is not specific to the spec-
tral NRBC presented in this thesis, but applies to all unsteady boundary conditions
controlling a time-averaged boundary value.
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