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Abstract—Self-supervised learning guided by masked image
modelling, such as Masked AutoEncoder (MAE), has attracted
wide attention for pretraining vision transformers in remote
sensing. However, MAE tends to excessively focus on pixel details,
thereby limiting the model’s capacity for semantic understanding,
in particular for noisy SAR images. In this paper, we explore
spectral and spatial remote sensing image features as improved
MAE-reconstruction targets. We first conduct a study on recon-
structing various image features, all performing comparably well
or better than raw pixels. Based on such observations, we propose
Feature Guided Masked Autoencoder (FG-MAE): reconstructing
a combination of Histograms of Oriented Graidents (HOG) and
Normalized Difference Indices (NDI) for multispectral images,
and reconstructing HOG for SAR images. Experimental results
on three downstream tasks illustrate the effectiveness of FG-
MAE with a particular boost for SAR imagery. Furthermore,
we demonstrate the well-inherited scalability of FG-MAE and
release a first series of pretrained vision transformers for medium
resolution SAR and multispectral images.

Index Terms—remote sensing, Earth observation, geospatial
foundation models, self-supervised learning, masked autoencoder

I. INTRODUCTION

ELF-SUPERVISED Learning has brought breakthroughs

to the remote sensing (RS) community with the ability to
learn generic representations from large-scale unlabeled data
[1]. The pretrained encoders (recently also called foundation
models) can then be transferred to various downstream appli-
cations. While convolutional neural networks have been long
studied as model backbones with contrastive learning [2], there
is a growing trend of pretraining vision transformers (ViT)
[3] with masked image modeling (MIM), particularly, masked
autoencoder (MAE) [4] and its variants [5].

MAE works as masking some patches of an input im-
age, encoding the unmasked patches, and reconstructing the
masked patches. Such asymmetric encoder-decoder design
makes it highly efficient compared to contrastive learning.
However, reconstructing raw input makes MAE over-focus
pixel details, sensible to artifacts and noise, and potentially
diverting attention from high-level semantic representations.
These challenges are exacerbated in synthetic aperture radar
(SAR) scenarios, in which the exisitence of speckle noise,
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Fig. 1. Sample data of the proposed FG-MAE method—columns from left to
right: Sentinel-2 multispectral (MS) and Sentinel-1 (SAR) imagery, masked
model inputs, model-reconstructed features (HOG: Histogram of Gradients,
NDI: Normalized Difference Index). False color of the raw SAR image is
coded by [VV, VH, (VV+VH)/2]. False color of the reconstructed MS NDI
is coded by [NDVI, NDWI, NDBI].

which appears as a granular disturbance and usually modeled
as a multiplicative noise, limits MAE’s performance.

In this work, we propose a new simple variant of MAE
for RS imagery, termed Feature Guided Masked Autoencoder
(FG-MAE), by replacing raw images with image features as
reconstruction targets. Looking back at traditional RS image
analysis, human designed feature descriptors (e.g. edge or
vegetation index) have been widely used to extract semantic
information of the Earth’s surface [6, 7]. These image features
incorporate expert knowledge, and can guide the model’s
learning process when introduced to MAE. To demonstrate
that, we conduct a study on popular features for multispectral
and SAR imagery: 1) CannyEdge [8], 2) histograms of ori-
ented gradients (HOG) [9], 3) scale-invariant feature transform
(SIFT) [10], and 4) normalized difference indices (NDI) [11,

, 13]. We show that each of these features alone works
comparably well or even better than the original MAE.

We then search for the best candidates among the popular
features, and propose FGMAE-MS and FGMAE-SAR. For
multispectral imagery, we combine the spatial feature HOG
and the spectral feature NDI, using two separate prediction
heads at the end of the decoder. This combination allows
the spatial and spectral features to complement each other.
For SAR imagery, we simply use HOG to enhance spa-
tial information and reduce the influence of speckle noise.
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We evaluate FG-MAE on scene classification and semantic
segmentation downstream tasks with BigEarthNet-MM [14],
EuroSAT [15] and DFC2020 [16] datasets for both mul-
tispectral and SAR images. For EuroSAT, we match the
geocoordinates of EuroSAT-MS and collect the EuroSAT-SAR
dataset. Results demonstrate the effectiveness of FG-MAE on
all tasks, particularly in SAR scenarios. In addition, FG-MAE
remains as efficient as MAE, making it possible to scale up to
big foundation models. We show that both FGMAE-MS and
FGMAE-SAR scale well up to ViT-Huge with 0.7B parameters
under linear evaluation protocols.

Our main contributions are listed as follows:

« We demonstrate the effectiveness of using RS image fea-
tures as reconstruction targets for masked image modeling
based self-supervised learning;

« We propose FG-MAE, a new variant of MAE that works
well for both multispectral and SAR imagery;

o We show the benefits of FG-MAE pretrained models on
three popular MS&SAR datasets;

o We verify the scalability of FG-MAE, and release a
first series of pretrained ViTs for multispectral and SAR
images with parameter sizes ranging from 22M to 0.7B.

II. RELATED WORK

Masked image modeling for self-supervised learning
Masked image modeling (MIM) is a recent family of gener-
ative self-supervised learning that focus on pretraining vision
transformers by reconstructing the masked input, such as iGPT
[17], BEIiT [18] and SimMIM [19]. Of particular interest,
MAE [4] drew wide attention with substantial improvements
on fine-tuning downstream tasks and efficient pretraining.

Our work, FG-MAE, is a simple variant of MAE. Instead of
reconstructing raw images, we propose to reconstruct features
that are better suited for RS imagery. FG-MAE is also closely
related to MaskFeat [20], where the authors introduced masked
feature prediction for self-supervised video representation
learning. We propose to use the asymmetric encoder-decoder
structure of MAE for efficiency, and explore the best features
for multispectral and SAR imagery.

Masked image modeling in remote sensing Most existing
MIM works in RS are based on MAE [21, 22]. SatViT [21]
presents the benefits of a straightforward implementation of
MAE on satellite images. Wang er al. [23] showcased the
potential of MAE on PolSAR images. RingMo [22] modified
the masking strategy by reversing some pixels in the masked
patches to avoid complete lost of small objects. MAEST
[24] implemented MAE on hyperspectral images with spectral
masking. SatMAE [5] proposed temporal and spectral masking
and positional encoding in multispectral remote sensing time
series. Scale-MAE [25] introduced ground sampling distance
positional encoding and multiscale reconstruction to capture
the geospatial scale information of RS images. Our work
differs from all aforementioned approaches by improving
MAE for RS imagery from the perspective of reconstructing
image features as targets.

Exploiting image features in remote sensing Image feature
descriptors play a big role in traditional RS image analysis.

The normalized difference indices have long been used for
Earth surface monitoring since the last century [26, [2].
Similarly, spatial features like HOG are widely used as input
to machine learning algorithms [27]. In this work, we revisit
these well-known human-designed features and let them be
learned by deep neural networks. This approach leverages the
expertise of human analysts to guide the training process and
facilitate the learning of better representations.

III. METHODOLOGY

Our proposed FG-MAE is a simple variant of MAE [4]
that replaces the reconstruction target with RS image features.
As is illustrated in Figure 2, the image is divided into non-
overlapping patches, and a random subset of these patches are
masked out. The remaining visible patches are sent through
the ViT encoder. The full set of encoded visible patches and
learnable mask tokens are fed into the lightweight ViT decoder
to reconstruct target features. During training, mean squared
error or L2 loss is minimized only on masked patches. In
the following subsections, we will discuss different feature
candidates in III-A, and present the specific target designs for
multispectral and SAR imagery in III-B, respectively.

A. Target features

We consider two categories and four types of RS image
features: spatially, 1) CannyEdge [8], 2) HOG [“], and 3) SIFT
[10]; spectrally, 4) NDI, including vegetation index [ 1], water
index [12] and built-up index [13].

CannyEdge CannyEdge [8] is an edge detection algorithm
that identifies the edges in an image by tracing the gradient of
pixel intensities. The algorithm works by convolving the image
with a Gaussian filter to reduce noise, and then computing the
gradient magnitude and direction of each pixel. Non-maximum
suppression is applied to suppress non-max edge contributors,
and edges are detected by applying a Hysteresis threshold to
the gradient magnitude.

Edge descriptors can simplify complex images by high-
lighting object boundaries, facilitating object identification and
tracking in computer vision algorithms. As one of the most
popular algorithms in this family, CannyEdge has the ability
to accurately detect edges while minimizing false positives.
It can also adapt to changes in lighting and contrast, which
can often cause issues for other edge detection algorithms.
Additionally, CannyEdge is able to accurately detect edges
regardless of their orientation or position within the image.
This makes it a powerful tool for remote sensing applications
[28].

CannyEdge is easy to compute in any deep learning frame-
work by convolution, non-max suppression and thresholding.
We use the filter toolbox of kornia [29] to extract the edges
as MAE targets (one edge map from one image channel).
The same process as reconstructing the raw image follows,
including patchifying and normalization within each small
patch.

HOG Histograms of Oriented Gradients [9] is a feature
descriptor to describe the distribution of gradient orientations
within a local subregion of an image. The algorithm calculates
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Fig. 2. The general structure of the proposed FG-MAE method. We replace the reconstruction target of MAE [4] by remote sensing image features.

the magnitudes and orientations of gradients at each pixel
using gradient filtering. Then, the gradients within each small
local window are accumulated into normalized orientation
histogram vectors voted by gradient magnitudes.

HOG is able to capture local shapes and appearances while
being partially invariant to geometric changes. HOG is also
invariant to photometric changes, as image gradients and
local contrast normalization absorb brightness and foreground-
background contrast variation. Unlike CannyEdge, HOG does
not focus solely on edges but provides information about the
magnitude and orientation of edge gradients.

HOG can be implemented similarly to CannyEdge as a two-
channel convolution to generate gradients, followed by his-
togramming and normalization. We follow the implementation
of MaskFeat [20] that writes HOG as (weight-fixed) neural
network modules. Each channel of the raw image provides
one HOG feature. The histograms of masked patches are then
flattened and concatenated into a 1-D vector as the target
feature.

SIFT Scale-invariant feature transform (SIFT) [10] is a fea-
ture descriptor that is used to extract distinctive and invariant
local features from images. It works by detecting key points in
an image that are invariant to scale, rotation, and illumination
changes. Once the key points are detected, SIFT computes
a descriptor for each key point by extracting the local image
gradient orientations and magnitudes. These gradients are then
transformed into a histogram of orientations, which is used to
create a feature vector that describes the local image patch
around the key point.

The SIFT descriptor is robust against scale, rotation, illu-
mination, and noise, making it applicable for a wide range of
applications like image registration [30]. However, the compli-
cated workflow of key point detectors and feature descriptors
make it difficult for the model to learn. Another specific issue
is that instead of region-based features, SIFT provides point-
based features that do not align well with a standard ViT
model design. Accordingly, it is tricky to integrate the famous
SAR-SIFT [31] algorithm for SAR images. How to efficiently
deal with the dynamic key points and the model’s learning

capacity remains a challenging task for future research. As a
preliminary showcase in this work, we simplify the key point
detection process by computing SIFT descriptor densely over
the image. We utilize the feature toolbox of kornia [29] to
calculate dense SIFT features. Due to memory constraints, we
perform the calculation using grayscale images.

NDI Normalized Difference Indices (NDI) is a technique
used to identify one type of ground objects by quantifying
the differences between two spectral bands. It is often used
in remote sensing applications such as changes in vegetation
health or soil moisture levels. NDI works by calculating the
ratio of the difference between two feature-sensitive spectral
bands to their sum. This ratio is then normalized to a range
between -1 and 1, where values closer to 1 indicate an increase
in the feature of interest.

NDI is a simple and effective way to detect changes in
vegetation health or soil moisture levels, as it is sensitive
to changes in the reflectance of different spectral bands.
Three most popular NDIs are normalized difference vegetation
index (NDVI), normalized difference water index (NDWI), and
normalized built-up index (NDBI):

NIR-R
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where NIR represents near infrared, R represents red, G
represents green, and SW IR represents short wave infrared.
In this work, we calcuate the three indices for each pixel and
concatenate them into a three-channel target image.

In our experiments, we demonstrate that all above features
serve as good reconstruction targets to replace raw images.
Results will be discussed in V-A, where we perform a study
on separately reconstructing the above features and evaluate
corresponding downstream performances.



B. FGMAE-MS / SAR

We then develop our proposed self-supervised methods, FG-
MAE, based on the feature study. We consider two popular
modalities in RS, multispectral imagery and polarimetric SAR
imagery. For multispectral imagery, we combine spatial feature
HOG and spectral feature NDI to complement each other; for
SAR, we select HOG for its computational efficiency and noise
robustness.

As is shown in Figure 2, we retain the asymmetric encoder-
decoder structure of MAE while modifying the reconstruction
targets. Specifically, for FGMAE-SAR, the augmented raw im-
ages with shape (B,2,W,H) are divided into L non-overlapping
patches with shape (B,L,w,h), of which L,, random patches
are masked out. The remaining visible patches with shape
(B,L — L,,,w;h) are flattened to (B,L — L,,,w*h), processed
with a linear embedding layer to (B,L — L,,,K,,,) and passed
through the ViT encoder. The encoded visible patches have
shape (B,L — L,,,K.,). At the beginning of the decoding
process, a linear layer is used to embed encoded patches to
(B,L — L,,,K4.). They are then combined with mask tokens
to (B,L,K4.) as input to a lightweight ViT decoder. The last
layer of the decoder is a linear layer that converts the decoded
patches to HOG predictions with shape (B,L,K,,;), where
Koyt 1s defined by HOG window size, number of bins and
input channel numbers.

While mostly similar for FGMAE-MS, the last layer of the
decoder is replaced by two parallel linear layers, one out-
putting HOG and the other NDI. Note that for both modalities
the outputs cover all patches, and only the masked ones are
counted in the L2 loss calculation.

IV. EXPERIMENTAL SETUP
A. Self-supervised pretraining

Dataset We pretrain vision transformers on Sentinel-1 GRD
and Sentinel-2 L1C products of SSL4EO-S12 dataset [32]. The
dataset is sampled from 250K locations around the world. Each
location has four images from four seasons with size 264 x264
and ground sampling distance 10m. The multispectral images
have 13 channels, and the SAR images have 2 channels.

Data augmentation One image from a random season is
selected for one location, followed by RandomResizedCrop to
224224 and RandomHorizontalFLip as the data augmenta-
tions.

Model architecture We adopt the architecture design of
MAE [4], which includes a regular ViT encoder (by default
ViT-S/16 unless specifically noted) and a lightweight ViT
decoder. Only the encoder is transferred to downstream tasks.
The masking ratio is set to 70% as recommended in [32].

Optimization We pretrain ViTs with batchsize 256 for 100
epochs. We use the AdamW optimizer [33] with weight decay
0.05 and a basic learning rate 1.5e-4. The learning rate is
warmed up for 10 epochs, and then decayed with a cosine
schedule. Training is distributed across four NVIDIA A100
GPUs and takes about 7 hours for multispectral and 4 hours
for SAR.

B. Transfer learning

Dataset The pretrained models are transferred to scene
classification and semantic segmentation downstream tasks for
both multispectral and SAR imagery. For

e scene classification, we evaluate EuroSAT [15] (single-
label land cover classification) and BigEarthNet-MM [14]
(multi-label land cover classification) via linear probing
(freeze encoder) and end-to-end fine tuning.

o semantic segmentation, we evaluate DFC2020 [
cover segmentation) via fine tuning.

BigEarthNet-MM and DFC2020 have both multispectral
and SAR images available. For BigEarthNet-MM, we use the
19-class labels, and follow the official train/val/test splits. For
DFC2020, we use the 10-class high-resolution segmentation
labels, and adjust the official test/validation data for 5128
training and 986 testing images. For EuroSAT, we perform
a random 80%/20% train/test split.

Since EuroSAT has only RGB and multispectral images, we
collected EuroSAT-SAR by pairing the published EuroSAT-
MS from Sentinel-1 GRD products. This is done by matching
the geocoordinates of EuroSAT-MS images and downloading
the corresponding patches with Google Earth Engine [34].
Because EuroSAT-MS has no exact collection time informa-
tion, we performed a rough year-level match based on the
publication time. In the end, we performed a manual check
on random patches for the semantic correctness.

1 (land

Data augmentation We follow a common practice to use
RandomResizedCrop (scale 0.2 to 1.0, resized to 224 x224)
and RandomHorizontalFlip as data augmentations for all lin-
ear probing experiments. For BigEarthNet-MM, we set the
smallest crop scale as 0.8 to avoid cutting out too many
objects for the multilabel task. For DFC2020, we set the
resized image size 256x256 following MAE [4]. For fine
tuning experiments, we add mixup [35] augmentation. The
multispectral images of BigEarthNet-MM (Sentinel-2 L2A)
are zero-padded to 13 channels to match the pretrained models.

Model architecture We use standard ViTs for scene clas-
sification on BigEarthNet-MM and EuroSAT. For semantic
segmentation on DFC2020, we use UperNet [36] with ViT
backbones following MAE [4].

Optimization For BigEarthNet-MM, we minimize MultiL-
abelSoftMargin loss. The batchsize is set to 256. For linear
probing, we train SGD optimizer without weight decay for
50 epochs. For fine tuning, we train AdamW optimzier with
weight and layer decay for 20 epochs. The learning rate is
0.5 with cosine decay for linear probing, and le-3 with cosine
decay and 3-epoch warm-up for fine tuning.

For EuroSAT, we minize cross entropy loss. The batchsize
is set to 256. For linear probing, we train SGD optimizer with
weight decay 0.001 for 50 epochs. For fine tuning, we train
AdamW optimzier with weight and layer decay for 20 epochs.
The learning rate is 0.1 with cosine decay for linear probing,
and le-3 with cosine decay and 3-epoch warm-up for fine
tuning.

For DFC2020, we use the RSI-Segmentation library [37] for
fine tuning. We minimize cross entropy loss for 40k iterations



with batchsize 8. We use AdamW optimizer with layer decay.
The basic learning rate is le-4, which is warmed up for 500
iterations and then polynomial-decayed.

Evaluation metrics We use mean average precision (mAP)
and F1 score for the evaluation of BigEarthNet-MM. Overall
accuracy (OA) and class-wise average accuracy (AA) are used
for EuroSAT. For DFC2020, we evaluate overage accuracy
(OA), average accuracy (AA) and mean intersection over union
(mloU).

V. RESULTS
A. FG-MAE: target features

We first conduct a study on replacing raw image with
different target features in MAE for both multispectral and
SAR imagery. We pretrain ViTs on SSL4EO-S12 and transfer
them to a 10% subset of BigEarthNet-MM. As shown in Table
I, all features perform comparably well to the raw image
(MAE) under both linear probing and fine tuning settings
in multispectral imagery. HOG is even better than the raw
image for both settings. This proves the effectiveness of
reconstructing image features as a new variant of MAE.

TABLE I
A STUDY OF THE FEATURES ON BIGEARTHNET-10% — MS.

Linear probing  Fine tuning

Rand. Init. 70.3 -
Supervised - 81.3

" Raw image (MAE)” =~ = "77.8 =~ % 848
CannyEdge 779 84.8
HOG 77.9 85.0
Dense SIFT 77.8 84.9
NDI 77.3 84.6

" HOG&NDI (ours) ~ ~ 781 = ¢ 852

Among the individual features, both CannyEdge and HOG
show an advantage over NDI in linear probing. This is due to
the fact that spatial feature descriptors capture better image-
level semantics from e.g. shape information, while the spectral
feature NDI does not consider pixel relationships. In addition,
while HOG performs best among individual features, NDI
provides a good complement that combining both pushes the
performances further.

A similar but more interesting behavior is shown in Table
IT for SAR imagery. We can observe that both SIFT and HOG
perform better than raw image (MAE), and HOG provides a
remarkable boost. This can be attributed to the fact that MAE
reconstructs every pixel and thus strongly disturbed by the
speckle noise, while feature descriptors provide natural noise
filtering. Furthermore, Dense SIFT performs worse than HOG.
This is due to the coarse setting that we consider each pixel as
one key point and thus have too many false positives. In fact,
this inspires a promising research direction to better integrate
scale-invariant features into MAE structure.

Qualitative examples of feature reconstruction can be seen
in Figure 1 and 3. Despite masking out 70% of the input
patches, the reconstruction results remain impressive for multi-
spectral images. For SAR images, the ground truth themselves
are very noisy, but interestingly, the reconstructed features

TABLE 11
A STUDY OF THE FEATURES ON BIGEARTHNET-10% — SAR.

Linear classification  Fine tuning

Rand. Init. 58.1 -
Supervised - 72.7

" Raw image (MAE)  ~ =~ ¢ 69.8 ~ T T 7 749 T
CannyEdge 69.9 74.9
Dense SIFT 69.8 75.8
HOG (ours) 71.7 78.0

appear clearer than the ground truth. This observation suggests
another exciting research direction for better low-level feature
extraction algorithms [31] .

B. FGMAE-MS

We then benchmark the performance of the proposed
FGMAE-MS (HOG+NDI) and FGMAE-SAR (HOG) on ex-
tensive downstream datasets. Table III shows the transfer
results on the full set of the multi-label scene classification
dataset BigEarthNet. The proposed FGMAE-MS outperforms
MAE consistently on both linear probing and fine tuning, with
improvements up to 0.9%.

TABLE III
FGMAE-MS ON BIGEARTHNET-100%.

Linear classification Fine tuning

mAP F1 mAP Fl1
Rand. Init. 72.0 60.0 - -
Supervised - - 87.8 789
"MAE 7 780 680 < 836 799
FG-MAE (ours)  78.5 68.7 89.3 80.8

Table IV presents the transfer learning results on the
single-label scene classification dataset EuroSAT. Similar to
BigEarthNet, slight but consistent improvements can be ob-
served in all scenarios.

TABLE IV
FGMAE-MS oN EUROSAT.

Linear classification  Fine tuning
OA AA OA AA
Rand. Init. 79.3 79.5 - -
Supervised - - 96.7 96.3
"MAE 9427 7940 985 982
FG-MAE (ours) 94.8 94.8 98.7 985

Finally, Table V demonstrates the transfer learning re-
sults on the semantic segmentation dataset DFC2020, where
FGMAE-MS outperforms MAE by noticeable margins on all
metrics (e.g. 3.4% increase in mloU). This underscores the
promising benefits of FG-MAE on dense prediction tasks.

TABLE V
FGMAE-MS oN DFC2020.

OA mloU  AA

Supervised 63.3 46.2 59.2
"MAE T T T T 669 480 633

FG-MAE (ours)  69.6 514 66.4




Fig. 3. Examples of FG-MAE reconstructed features. Every two rows represent one MS-SAR pair. From left to right, first row: MS image, MS HOG target,
MS NDI target, SAR HOG target, SAR image; second row: MS image masked, MS HOG prediction, MS NDI reconstruction, SAR HOG prediction, SAR
image masked.
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Fig. 4. Examples of EuroSAT-SAR prediction results where FG-MAE gives the correct label while MAE doesn’t. FG-MAE better captures semantics that

are more distinguishable from the HOG features (e.g. a highway).

TABLE VI
PER-CLASS BENCHMARK RESULTS ON EUROSAT-SAR. FG-MAE OUTPERFORMS MAE BY LARGE MARGINS ON MOST OF THE CLASSES.

Annual Crop Forest Herbaceous Vegetation Highway Industrial Pasture Permanent Crop  Residential River Sea/Lake
Supervised 76.4 771 66.4 66.0 90.7 58.4 59.1 90.2 89.3 98.1
MAE 79.6 79.1 70.2 727 92,0 64.6 59.2 91.8 924 98.8
FG-MAE (ours)  84.1 (+3.5)  85.4 (+6.3) 78.1 (+7.9) 82.4 (+9.7) 935 (+1.5) 75.7 (+11.1) 67.7 (+8.5) 94.3 (+2.5) 94.2 (+1.8) 98.8
C. FGMAE-SAR TABLE VIII
. . . FGMAE-SAR ON EUROSAT.
Likewise, we benchmark the transfer learning results on
SAR imagery of the aforementioned datasets. As can be Linear classification  Fine tuning
seen from Table VII, FGMAE-SAR demonstrates remarkable OA AA OA AA
improvements compared to MAE on BigEarthNet. Especially Rand. Init. 61.9 61.3 - -
when compared to the multispectral scenario (0.5% to 0.9% _ Supervised - _ - __ 184 71T
. ts), the b fit of FG-MAE i h . MAE 79.3 78.6 81.0 80.4
improvements), the benefit o - is much more sig- FG-MAE (ours)  80.7 79.9 859 854

nificant (up to 3.1%). This again highlights the advantage of
implicit noise filtering with HOG features.

TABLE VII
FGMAE-SAR ON BIGEARTHNET-100%.

Linear classification  Fine tuning

mAP F1 mAP F1
Rand. Init. 59.0 40.4 - -
Supervised - - 79.5  71.1
"MAE T T T T 7047 T 7591 0 813 T 28
FG-MAE (ours)  72.3 62.2 82.7 740

Table VIII presents the results on our collected EuroSAT-
SAR dataset. Similar to BigEarthNet results, substantial per-
formance boosts can be observed with FGMAE-SAR. While
FGMAE-MS gives 0.2% to 0.8% improvements compared
to MAE, FGMAE-SAR provides up to 5.0% improvement.
Detailed per-class benchmarks are shown in Table VI, where
FGMAE-SAR outperforms MAE by a large margin for most of
the classes (e.g. as much as 11.1% for the pasture class). Figure
4 presents some patch examples, which MAE misclassifies
while FG-MAE predicts the correct label. We can observe
from the figure that FG-MAE helps the model better capture
the semantics that are easier to recognize with HOG features
(e.g. a highway image).

Finally on DFC2020, consistent improvements compared to
MAE can be seen from Table IX. Though the improvements
compared to FGMAE-MS here are not as much as the previous
two scene classification datasets, they are still noteworthy

compared to supervised learning. This is also shown in Figure
6, where the segmentation results of two example image pairs
are presented. The limited benefits can be attributed to the
characteristics of SAR imagery, where interpreting fine grained
pixel details is very challenging.

TABLE IX
FGMAE-SAR oN DFC2020.

OA mloU AA

Supervised 61.4 37.3 56.1
"MAE T T T T 621 389 " 569
FG-MAE (ours) 62.3 39.3 57.0

D. Scaling ViTs

The efficiency of MAE is well-preserved in the proposed
FG-MAE, thus we are able to scale-up the pretrained models
to a series of ViTs with up to 658 million parameters: ViT-
Small, ViT-Base, ViT-Large and ViT-Huge. We evaluate linear
classification and fine tuning results on both multispectral and
SAR imagery of the BigEarthNet-MM dataset. As is shown
in Figure 5, scaling up ViTs provides consistent improve-
ments for both modalities under linear classification protocol.
This supports the potential benefits of even larger foundation
models [38]. However, we also observe significant overfitting
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Fig. 5. Similar to MAE, FG-MAE scales well on BigEarthNet linear

evaluation for both multispectral and SAR imagery.

phenomenon under fine tuning protocol, as reflected by the
saturation trend in Figure 5. This indicates the need for further
research on how to effectively fine-tune big foundation models.

VI. CONCLUSION

In this study, we demonstrated that image features are com-
parable or superior reconstruction targets for masked image
modelling based pretraining in remote sensing, particularly
for SAR imagery. We proposed a novel variant of MAE,
called feature guided masked autoencoder (FG-MAE), which
modifies the reconstruction targets. For multispectral imagery,
we combined HOG and NDI, while for SAR imagery, we
used HOG alone. Experimental results on three downstream
tasks verify the effectiveness of FG-MAE. In addition, we
demonstrated the scalability of FG-MAE, and released a
series of pretrained vision transformers with size up to 0.7B
parameters for multispectral and SAR imagery.

Though the proof of concept has been made clear, one
limitation of this work is that we can not make the best use

of scale-invariant features such as SIFT / SAR-SIFT out-of-
the-box. However, we believe these features are of great value
with proper and more sophisticated design. Scale-MAE [25],
for example, though not directly inspired by SIFT, shares a
similar idea and provides promising insights.

Another limitation, as we have mentioned, is that both
MAE and FG-MAE scale well to larger backbones in linear
probing, but not in fine tuning. As we are entering the era
of big EO foundation models, how to effectively transfer the
foundation knowledge remains an important but not yet well-
studied problem.

There are also two interesting thoughts that we believe
deserve further investigation. First, we have shown a relatively
poor performance in reconstructing raw SAR images because
of the effect of speckle noise. However, what if we reconstruct
the despeckled images instead? SAR-despeckling has been
widely studied and there are many well-developed algorithms.
If integrated into MAE pretraining, would it help the model
prevent confusion due to noise? Second, the reconstructed
SAR features sometimes seem to be clearer than the corre-
sponding noisy ground truth. This may inspire a promising
direction for low-level tasks, including the aforementioned
SAR-despeckling.
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Appendix: EuroSAT-SAR Dataset

Below we provide extensive information about the collected
EuroSAT-SAR dataset, which is a SAR version of EuroSAT.
As a side contribution of this paper, we believe this simple,
clean and well-balanced SAR dataset (which surprisingly
rarely exists yet) is of great value to further machine-learning
research and education on SAR imagery.

A. Data collection

To create EuroSAT-SAR, we match the published EuroSAT-
MS (Sentinel-2 L1C) dataset with dual-pol Sentinel-1 GRD
images from Google Earth Engine. Specifically, for each
geotiff image in EuroSAT-MS, we extract the corresponding
coordinate system and bounding box coordinates. We then
build a geo-referenced rectangle region for the patch. Mean-
while, we build a temporal period between the years 2016
and 2017. Next, we filter available SAR images based on the
region and period, and download a random qualified patch
with bands VV and VH. Since no cloud filtering is needed
for SAR imagery, the data collection is very fast (within one
hour). In the end, we match the whole EuroSAT-MS dataset
and download 27,000 SAR images, each assigned with the
same class label as the corresponding MS image. Figure 7
illustrates the data collection process.

EuroSAT-MS
images

l

Define time period

GEE SAR
collection

l Filter available
SAR images

Sample one scene,
extract CRS and Bbox

Randomly download
one quaified image

next patch |

e

EuroSAT-SAR

Fig. 7. EuroSAT-SAR creation pipeline.

B. Dataset characteristics
EuroSAT-SAR dataset has 27,000 dual-pol Sentinel-1 GRD

images with size 64x64 and two channels VV and VH. There
are 10 land cover land use classes, each containing 2000 to
3000 images. To complement the EuroSAT paper, Table X i )

. e e . Fig. 8. Sample image patches of all 10 classes covered in the collected
presents the detailed class distribution. Also, sample images g sAT-SAR dataset
are shown in Figure 8.

(i) River (j) Sea/Lake

TABLE X
EUROSAT-SAR CLASS DISTRIBUTION.

Annual Crop  Forest  Herbaceous Vegetation  Highway  Industrial Pasture = Permanent Crop  Residential River  Sea/Lake

Number of images 3000 3000 3000 2500 2500 2000 2500 3000 2500 3000




Datasheets for EuroSAT-SAR

Here we answer the questions outlined in the datasheets for
datasets paper by Gebru et al. [39].

A. Motivation

For what purpose was the dataset created? The dataset
was created as a SAR version of the popular EuroSAT dataset
to evaluate SAR foundation models.

Who created the dataset (e.g., which team, research
group) and on behalf of which entity (e.g., company,
institution, organization)? The dataset was created by the lab
“Data Science in Earth Observation” at Technical University
of Munich and German Aerospace Center.

Who funded the creation of the dataset? The creation of
the dataset was funded by the Helmholtz Association through
the Framework of Helmholtz Al

B. Composition

What do the instances that comprise the dataset rep-
resent (e.g., documents, photos, people, countries)? This
dataset contains satellite images.

How many instances are there in total (of each type,
if appropriate)? The dataset contains 27,000 dual-pol SAR
images with size 64x64.

Does the dataset contain all possible instances or is it a
sample (not necessarily random) of instances from a larger
set? The dataset is a sample of all Sentinel-1 satellite images
to match the EuroSAT dataset.

What data does each instance consist of? A Sentinel-1
GRD image.

Is there a label or target associated with each instance?
Yes, the images are stored in different folders and labels are
indicated by the folder names.

Is any information missing from individual instances?
No.

Are relationships between individual instances made
explicit (e.g., users’ movie ratings, social network links)?
Not applicable, geographic location can be extracted if needed.

Are there recommended data splits (e.g., training, devel-
opment/validation, testing)? No. Following EuroSAT dataset
which doesn’t have an official split, we provide the full
dataset in a whole as well. We use our random splits in the
benchmarks.

Are there any errors, sources of noise, or redundancies
in the dataset? Yes, since we don’t have the exact acquisition
dates of EuroSAT images, we match them with SAR images
in a rough time period assuming no change happened. Though
the data looks good with some manual check, we didn’t check
all the images.

Is the dataset self-contained, or does it link to or
otherwise rely on external resources (e.g., websites, tweets,
other datasets)? The dataset is self-contained.

Does the dataset contain data that might be considered
confidential (e.g., data that is protected by legal privilege
or by doctor-patient confidentiality, data that includes the
content of individuals’ non-public communications)? No.

Does the dataset contain data that, if viewed directly,
might be offensive, insulting, threatening, or might other-
wise cause anxiety? No.

Does the dataset identify any subpopulations (e.g., by
age, gender)? No.

Is it possible to identify individuals (i.e., one or more
natural persons), either directly or indirectly (i.e., in
combination with other data) from the dataset? No.

Does the dataset contain data that might be consid-
ered sensitive in any way (e.g., data that reveals race
or ethnic origins, sexual orientations, religious beliefs,
political opinions or union memberships, or locations;
financial or health data; biometric or genetic data; forms of
government identification, such as social security numbers;
criminal history)? No.

C. Collection process

How was the data associated with each instance ac-
quired? The data was collected from the publicly available
Sentinel-1/2 database.

What mechanisms or procedures were used to collect the
data (e.g., hardware apparatus or sensor, manual human
curation, software program, software API)? Google Earth
Engine with Python was used to collect the data.

If the dataset is a sample from a larger set, what
was the sampling strategy (e.g., deterministic, probabilistic
with specific sampling probabilities)? We sample Sentinel-1
images by matching the geocoordinates and rough acquisition
time of the published EuroSAT dataset.

Who was involved in the data collection process (e.g.,
students, crowdworkers, contractors) and how were they
compensated (e.g., how much were crowdworkers paid)?
The data was automatically collected and verified by the
authors.

Over what timeframe was the data collected? The data
was collected by the authors between February and March
2022. The images within the dataset were captured in the year
2016/2017.

Were any ethical review processes conducted (e.g., by
an institutional review board)? No.

Did you collect the data from the individuals in question
directly, or obtain it via third parties or other sources (e.g.,
websites)? The data was collected from open sources.

Were the individuals in question notified about the data
collection? N/A.

Did the individuals in question consent to the collection
and use of their data? N/A.

If consent was obtained, were the consenting individuals
provided with a mechanism to revoke their consent in the
future or for certain uses? N/A.



Has an analysis of the potential impact of the dataset
and its use on data subjects (e.g., a data protection impact
analysis) been conducted? N/A.

D. Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data
done (e.g., discretization or bucketing, tokenization,
part-of-speech tagging, SIFT feature extraction, removal
of instances, processing of missing values)? The data
was pre-processed by GEE internally during the collec-
tion/downloading process. No further pre-processing was
done.

Was the “raw” data saved in addition to the prepro-
cessed/cleaned/labeled data (e.g., to support unanticipated
future uses)? No, not necessary.

Is the software used to preprocess/clean/label the in-
stances available? Yes, we use Google Earth Engine with
Python which is freely available.

E. Uses

Has the dataset been used for any tasks already? In this
paper we use the dataset as a downstream task to evaluate our
proposed pretraining algorithms.

Is there a repository that links to any or all papers
or systems that use the dataset? Yes we will organize
and maintain all related information at https://huggingface.co/
datasets/wangyil 1 1/EuroSAT-SAR.

What (other) tasks could the dataset be used for? The
dataset can be used as a simple, clean SAR scene classifica-
tion dataset for the remote sensing community, matching the
popular multispectral EuroSAT dataset.

Is there anything about the composition of the dataset or
the way it was collected and preprocessed/cleaned/labeled
that might impact future uses? We do not unify the orbiting
(ascending/descending) of Sentinel-1 data, which should be
taken into consideration for SAR related applications.

Are there tasks for which the dataset should not be used?
The authors are not aware of any specific task that should be
avoided.

E. Distribution

Will the dataset be distributed to third parties outside
of the entity (e.g., company, institution, organization) on
behalf of which the dataset was created? Yes, the dataset
is publicly available.

How will the dataset will be distributed (e.g., tarball
on website, API, GitHub)? The dataset will be distributed
as tarball. Access to the dataset can be found at https:
/Mhuggingface.co/datasets/wangyil 1 1/EuroSAT-SAR.

When will the dataset be distributed? Starting from July
2023.

Will the dataset be distributed under a copyright or
other intellectual property (IP) license, and/or under ap-
plicable terms of use (ToU)? MIT license.

Have any third parties imposed IP-based or other
restrictions on the data associated with the instances? No.

Do any export controls or other regulatory restrictions
apply to the dataset or to individual instances? No.

G. Maintenance

Who is supporting/hosting/maintaining the dataset? The
dataset is supported and maintained by the authors.

How can the owner/curator/manager of the dataset be
contacted (e.g., email address)? The manager of the dataset
can be reached at the email addresses: yi4.wang@tum.de or
yi.wang @dlr.de.

Is there an erratum? If errors are found an erratum will
be added.

Will the dataset be updated (e.g., to correct labeling
errors, add new instances, delete instances)? Any updates
will be posted and the dataset will be versioned.

If the dataset relates to people, are there applicable
limits on the retention of the data associated with the
instances (e.g., were individuals in question told that their
data would be retained for a fixed period of time and then
deleted)? N/A.

Will older versions of the dataset continue to be
supported/hosted/maintained? Depending on the updates (if
there are), we will either continue hosting the older versions or
make a clear update log that older versions can be generated
from the newest version.

If others want to extend/augment/build on/contribute to
the dataset, is there a mechanism for them to do so? Yes,
please feel free to reach out to us.

H. Author statement of responsibility

The authors confirm all responsibility in case of violation
of rights and confirm the licence associated with the dataset.
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