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Summary
The mode-coupling theory of the glass transition is one of the most successful theories for
predicting the dynamics of dense liquids to date. In the regime where it is applicable, the
theory gives a set of detailed numerical and analytical predictions for the structural relaxation
dynamics upon supercooling. In particular, the theory provides closed equations for dynamic
correlation functions of the microscopic density field, including observables such as the coherent
and incoherent intermediate scattering functions and the mean-squared displacement. These
mode-coupling theory equations take the form of an integro-differential equation, i.e., a
generalized Langevin equation, the kernel of which represents the coupling between different
“relaxation modes”. Because these equations are difficult to solve numerically due to their
non-linearity and the long-livedness of the solutions, specialized algorithms have been developed
to tackle this issue. ModeCouplingTheory.jl is a package that implements such an algorithm,
including a number of convenient features that make it simple to solve the complex equations
involved even for those not well-versed in the theoretical and numerical background traditionally
required.

Statement of need
The mode-coupling theory of the glass transition (MCT) is at the forefront of the study of
the glass transition (Ulf Bengtzelius et al., 1984; Das, 2004; Götze, 2009; Janssen, 2018;
Leutheusser, 1984; Reichman & Charbonneau, 2005) and has been applied to an abundance
of different systems and scenarios in the past forty years. See for example versions of MCT
including multiple particle species (Franosch & Voigtmann, 2002; Götze & Voigtmann, 2003;
Luo et al., 2022; Weysser et al., 2010), confinement (Krakoviack, 2007; Lang et al., 2010),
self-propelling particles (Berthier & Kurchan, 2013; Debets & Janssen, 2023; Feng & Hou,
2017; Liluashvili et al., 2017; Reichert et al., 2021; Szamel, 2016), high dimensionalities (Ikeda
& Miyazaki, 2010; Schmid & Schilling, 2010), and molecular particles (Chong et al., 2000;
Chong & Hirata, 1998; Schilling & Scheidsteger, 1997; Theis et al., 2000; Winkler et al.,
2000) to name a few. Before the conception of the software this paper is based on, there was
no open-source integrator for MCT-like equations available. This meant that each time an
improvement, extension or application to the theory was employed, a new in-house integrator
needed to be developed or adapted. ModeCouplingTheory.jl aims at providing an open-source
and tested implementation of the scheme introduced by Fuchs et al. (1991), that is performant
and easy to extend to new systems, yet simple to call interactively from dynamic languages
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such as Python. As of writing, it has been used for several scientific works (Kerr Winter et al.,
2023; Laudicina et al., 2022, 2023; Pihlajamaa et al., 2023).

The main equation that this package aims to solve is of the form

𝛼 ̈𝐹 (𝑡) + 𝛽 ̇𝐹 (𝑡) + 𝛾𝐹(𝑡) + 𝛿 +∫
𝑡

0
𝑑𝜏𝐾(𝑡 − 𝜏) ̇𝐹 (𝜏) = 0

in which 𝛼, 𝛽, 𝛾, and 𝛿 are coefficients (possibly dependent on time), 𝐾(𝑡) = 𝐾(𝐹(𝑡), 𝑡)
is the memory kernel, and 𝐹(𝑡) is the function that is being solved for. Memory kernels for
solving the most commonly encountered models, such as standard (multi-component) MCT,
including tagged-particle correlators, and mean squared displacements, are implemented, and
it is straightforward to implement custom memory kernels. Internally, the software completely
separates the memory kernel, the type of equation, and the solver, each of which can be
independenty extended by a user.

The documentation details the features of this software, which among others include

1. Generality: the code was developed with generality in mind. For example, the code works
for types between which product operation is defined among 𝛼, 𝛽, 𝛾, 𝐾 on the left and
𝐹 on the right, returning something of the same type as 𝐹 and 𝛿. This implies that the
code works for functions 𝐹 that are scalar valued (schematic models), as well as those
that are vectors of floating point numbers (standard MCT), and vectors with elements
of different types. The latter could include, for example, numbers with measurement
errors, dual numbers, and immutable matrices.

2. Extensibility: the solvers are easily extended to deal with coupled sets of equations that
arive, e.g., in extensions of MCT to describe tagged-particle dynamics, or in certain
asymptotic models.

3. Speed: the code is developed for performance. The solver allocates little memory and
uses BLAS implementations for linear algebra where applicable (Lawson et al., 1979).
The memory kernels of the single component and multi-component MCT as well as their
tagged variants are implemented using Bengtzelius’ trick, yielding algorithmic speed-up
compared to more naive implementations (U. Bengtzelius, 1986).

4. Ease of use: solving the equations of standard MCT takes very few lines of code, see
the example below. While written in Julia, the code can straightforwardly be called
from Python and other languages.

5. Measurement errors: by leveraging the generality of the software it is straightforward to
do standard error propagation through the solver.

6. Non-ergodicity parameters: there is built-in functionality for finding the long-time limits
of the solution of the MCT equations.

Example Use
To solve the standard MCT equations in three dimensions for hard spheres using the Percus-
Yevick structure factor (Wertheim, 1963), one may run the following code. See the documen-
tation for a more in-depth explanation.

using ModeCouplingTheory

# the wave vector grid

Nk = 100; kmax = 40.0; dk = kmax/Nk; k = range(dk/2, kmax-dk/2, length=Nk)

# physical parameters

kBT = 1.0; m = 1.0; ρ = 0.983
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# Hard-Sphere Percus-Yevick structure factor for this density

A = 5688.95; B = 2183.01; C = 661.463; D = 66.0759; E = 314.311;

Sk = @. k^6 /

(A + B*k^2 + k^6 - (A - C*k^2 + D*k^4)*cos(k) - (A + E*k^2)*k*sin(k))

# initial conditions and coefficients

F0 = Sk; ∂F0 = zeros(Nk)

α = 0.0; β = 1.0; γ = @. k^2*kBT/(m*Sk); δ = 0.0

# construct the equation and solve it

kernel = ModeCouplingKernel(ρ, kBT, m, k, Sk)

equation = MemoryEquation(α, β, γ, δ, F0, ∂F0, kernel)

sol = solve(equation)

# plot the solution for several values of k

using Plots

p = plot(xlabel="log10(t)", ylabel="F(k,t)/S(k)",

ylims=(0,1), xlims=(-6, 6))

for ik = [7, 18, 25, 39]

t = get_t(sol)

Fk = get_F(sol, :, ik)

plot!(p, log10.(t), Fk/Sk[ik], label="k = $(k[ik])", lw=3)

end

display(p)

Figure 1: The code above yields this figure, which shows the intermediate scattering function, obtained
with MCT, as a function of time for different values of 𝑘.
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