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Abstract: Aircraft configurations with propellers have been drawing more attention in recent times,
partly due to new propulsion concepts based on hydrogen fuel cells and electric motors. These
configurations are prone to whirl flutter, which is an aeroelastic instability affecting airframes with
elastically supported propellers. It commonly needs to be mitigated already during the design phase
of such configurations, requiring, among other things, unsteady aerodynamic transfer functions
for the propeller. However, no comprehensive assessment of unsteady propeller aerodynamics
for aeroelastic analysis is available in the literature. This paper provides a detailed comparison
of nine different low- to mid-fidelity aerodynamic methods, demonstrating their impact on linear,
unsteady aerodynamics, as well as whirl flutter stability prediction. Quasi-steady and unsteady
methods for blade lift with or without coupling to blade element momentum theory are evaluated
and compared to mid-fidelity potential flow solvers (UPM and DUST) and classical, derivative-
based methods. Time-domain identification of frequency-domain transfer functions for the unsteady
propeller hub loads is used to compare the different methods. Predictions of the minimum required
pylon stiffness for stability show good agreement among the mid-fidelity methods. The differences
in the stability predictions for the low-fidelity methods are higher. Most methods studied yield
a more unstable system than classical, derivative-based whirl flutter analysis, indicating that the
use of more sophisticated aerodynamic modeling techniques might be required for accurate whirl
flutter prediction.

Keywords: aeroelasticity; flutter; propeller whirl flutter; unsteady aerodynamics; 1P hub loads

1. Introduction

Whirl flutter, as an aeroelastic instability, affects the design of aircraft configurations
with elastically supported propellers or rotors [1,2]. Turboprop aircraft represent one
category where the prevention of whirl flutter can require trade-offs in the design of, e.g.,
engine suspension. Reducing cabin vibrations demands low stiffness in the engine support
for better dynamic isolation, while aeroelastic stability requires high support stiffness [3].
To enable the design and certification of the next generation of propeller aircraft, accurate
simulation-based whirl flutter predictions integrated into the frequency-domain flutter
analysis workflows for propeller-driven aircraft are necessary.

For example, a classical, simplified rigid propeller–pylon system is shown in Figure 1a,
where the propeller is located at distance a from the pylon (pivoting point). The propeller is
flexibly mounted on the pylon to allow for rotations of the propeller about the pitch (θ) and
yaw (ψ) axes. Two corresponding rotary springs with stiffness values, Kθ and Kψ, are used
to model the elastic properties of the pylon, along with the respective inertia, which also
represents the inertia of the engine. Linearized around the zero angle of attack, the physical
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displacement of the propeller hub (∆xhub) can be determined using the modal matrix of the
non-rotating system (Φ) and the vector of generalized coordinates q.

y
z
θ
ψ


︸ ︷︷ ︸
∆xhub

=


0 a
−a 0
1 0
0 1

︸ ︷︷ ︸
Φ

(
θ
ψ

)
︸ ︷︷ ︸

q

(1)

Whirl flutter predictions can be displayed as stability maps (see Figure 1b). The line in-
dicates the stability boundary, which separates regions of stable and unstable combinations
of pivot stiffness. This boundary is obtained by varying the pivot stiffness in pitch and yaw
and evaluating the aeroelastic stability at a fixed operating point. Instead of the stiffness
values, the uncoupled pitch and yaw frequencies are used. Consequently, the boundary
shows the uncoupled frequencies in pitch and yaw required for neutral stability (i.e., un-
damped aeroelastic response). The curve can be generally divided into two branches.
The main branch is a parabola with an axis of symmetry on the 45◦ line. Points below
the parabola represent whirl flutter, while points outside the parabola indicate a stable
behavior. It can be seen from Figure 1b that the most critical point is represented by equal
frequency in pitch and yaw. A boundary with a larger extent (i.e., the curve is shifted in the
∆ωstab direction) indicates a less stable system, since higher stiffness is required to obtain
neutral stability. The branches parallel to the axes represent the divergence boundaries.
The described approach is a simplified version of the design problem for turboprop engine
mounts [3] and used throughout this work for presenting whirl flutter results.
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Figure 1. Simplified pylon model used in this work (a) together with a basic stability map (b) showing
parameter ranges for whirl flutter, static divergence and stable areas, obtained by varying Kθ and Kψ.

Currently, rigid propeller blade aerodynamic derivatives are often used within the
flutter assessment of turboprop aircraft [4]. This method was developed by Houbolt and
Reed [5] in the early 1960s after the accidents with the Lockheed Electra [6]. The derivatives
describe the linearized aerodynamic load response of a rigid propeller about its hub when
perturbed, e.g., by a disc pitch or yaw angle. Ribner [7] previously described a method
to derive the derivatives relevant for aircraft flight mechanics. Ribner’s and Houbolt and
Reed’s methods were compared to experimental results [8], and the Houbolt/Reed method
was found to be conservative. Later, in 1989, Rodden and Rose [9] demonstrated the
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inclusion of such derivatives (based on the Houbolt/Reed method) into flutter analysis
using MSC Nastran, paving the way for its inclusion into the flutter assessment of full
propeller aircraft configurations. Since then, the method has found application in certifica-
tion [4], design and optimization [10,11], as well as parameter studies [12–14], due to its
computational efficiency.

Despite being fast and robust, the method by Houbolt and Reed makes some assump-
tions: It neglects blade elasticity, as well as aerodynamic interaction with the wing, and
simplifies the unsteady aerodynamics of the propeller. The stabilizing influence of blade
elasticity was recently discussed by one of the authors [15] and is not be detailed in this
work. Aerodynamic interaction between the propeller and the wing is often neglected
in the literature, although Rodden and Rose [9] suggested an approach to couple the
Houbolt/Reed method with wing aerodynamics modeled with the doublet lattice method
(DLM). The effect of aerodynamic interaction was shown to be slightly destabilizing in
some cases [10], depending on the modes and frequencies involved. The last assumption
concerns the aerodynamic modeling of the propeller. The Houbolt/Reed method is based
on a quasi-steady, linearized strip theory approach, using Theodorsen’s function for un-
steady correction [5]. The steady state (and thus the thrust and torque) is neglected, and no
wake model is considered for the induced velocities.

While this work mainly focuses on propeller whirl flutter, there are parallels with
respect to the so-called 1P hub loads in terms of aerodynamic phenomena and solution
methods. These are the steady in-plane loads a propeller experiences under non-axial
inflow. The thesis by Smith [16] summarizes some low-fidelity methods to predict them,
while Fei et al. [17] compare mid- and high-fidelity approaches to the prediction of propeller
aerodynamics under (even high) angles of attack. CFD-predictions of 1P hub loads have
also been compared to wind-tunnel experiments with high-speed propellers [18,19], finding,
e.g., significant contributions of the spinner to propeller in-plane forces [18]. The authors
also compare different numerical modeling approaches like unsteady time simulation and
actuator disc predictions [19]. The literature concerning 1P hub load prediction only covers
steady loads, while whirl flutter prediction requires unsteady aerodynamic loads.

Although the Houbolt/Reed method is the most common method used for pro-
peller whirl flutter prediction, other methods can be found in the literature. Hoover and
Shen [20,21] used nonlinear airfoil polars coupled with dynamic inflow models under
trimmed conditions to study the whirl flutter stability of NASAs X-57 aircraft. They used
time-domain methods embedded in rotorcraft comprehensive codes or multi-body simula-
tion to include these more complex aerodynamic methods. Time-domain stability analysis
is also commonly applied for tiltrotor aircraft, where the whirl flutter stability of the large,
flexible rotors is of major importance [2]. Different studies [22,23] demonstrated the appli-
cation of mid-fidelity aerodynamic methods in tiltrotor whirl flutter analysis. For example,
Corle et al. [23] compared uniform inflow, dynamic inflow and vortex particle method
(VPM) results, finding good agreement for the tiltrotor case studied for isolated whirl flutter
results. Still, the results cannot easily be transferred to propeller whirl flutter analysis due
to the differences in rotor design, operational ranges and the analysis methods used.

As an alternative to time-domain stability analysis, Wang and Chen [24] presented an
identification procedure to derive rigid propeller aerodynamic derivates from unsteady
vortex lattice method (UVLM) simulations using quasi-steady perturbation of the propeller
disc pitch. This approach is compatible with frequency-domain flutter analysis and yields
derivatives with fewer assumptions, although it still follows the quasi-steady assumption
by Houbolt and Reed. Gennaretti and Greco [25] showed an unsteady, finite-state reduced-
order model (ROM) identification method for unsteady aerodynamics of proprotors and
applied it for a comparison of low- and mid-fidelity aerodynamic methods. They studied
the influence of blade aspect ratio and advance ratio and compared quasi-steady and
unsteady airfoil theory with results from a 3D boundary element solver. Their findings
indicate that for high advance ratios and blade aspect ratios, the airfoil-based approach
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yields an under-prediction of the instability ranges. However, their ROM method is not
easily transferable to other aerodynamic codes due to its level of integration into the solver.

To the authors’ knowledge, no studies exist in the literature comparing low- and
mid-fidelity aerodynamic solution methods with the legacy Houbolt/Reed method for
whirl flutter [5] in a framework fully compatible with frequency-domain flutter analysis.

Koch [26] suggested a method to include arbitrary time-domain models of isolated
rotors into frequency-domain flutter analysis by identifying frequency-domain transfer
matrices about the propeller hub using time-domain perturbations. This method (called
transfer matrix or TM-method) allows for the inclusion of different aeroelastic rotor models
into whirl flutter analysis, enabling the use of the wide range of tools and methods available
for time-domain aeroelastic rotor modeling. It was developed based on an approach to
construct helicopter rotor ROMs [27]. The TM-method is applied in this work to study the
effect of aerodynamic modeling on the prediction of propeller whirl flutter, giving insights
into the underlying mechanism found in unsteady propeller aerodynamics and the reasons
for the differences in stability predictions observed.

In the first part of this paper, the aerodynamic methods, including the legacy Houbolt/
Reed method, are described and compared. Afterwards, the TM-method, and the workflow
and models used are outlined. The results of the studies are presented at the end, finishing
with a discussion and outlook.

2. Materials and Methods

This section gives detailed information about the methods used in this work. It starts
with a description of the legacy Houbolt/Reed method, which is used as a reference in
this paper. Afterwards, the aerodynamic methods are listed and compared, followed by a
workflow description of the TM-method, which is used for deriving unsteady aerodynamic
characteristics, as well as whirl flutter stability results. Finally, the models and operating
points being studied are briefly summarized.

To put this into context, Equation (2) describes the generalized (whirl) flutter problem
in the Laplace domain, with s being the Laplace variable.

s2Mgenq + s(Dgen + Ggen)q + Kgenq = ΦT f (2)

The left-hand side of the equation represents the structural airframe with inertia
(Mgen), damping (Dgen) and stiffness (Kgen) contributions in generalized coordinates q.
Additionally, the gyroscopic effect induced by the rotation of the propeller is included
(Ggen). The right-hand side describes the unsteady, motion-induced generalized loads.
Here, f describes the unsteady aerodynamic propeller force and moment vector at the
propeller hub (see Equation (3) and Figure 1), which needs to be pre-multiplied by modal
matrix Φ to form the generalized loads.

f =


Fy
Fz
My
Mz

 (3)

The aerodynamic loads are usually described with transfer functions from propeller
hub motion to hub loads [26]. Different descriptions exist in the literature, and the most
commonly used one is the formulation using rigid aerodynamic derivatives developed by
Houbolt and Reed. The eigenvalues of Equation (2) can be used to assess the stability of
the propeller–pylon system. This is often conducted in the frequency domain instead of the
Laplace domain (with iω replacing s in Equation (2)) [26].

2.1. Houbolt/Reed Method

Houbolt and Reed’s theory [5] represents a pioneering effort in the field of whirl flutter
prediction methods in conjunction with an analytical description of unsteady propeller
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aerodynamics. According to Houbolt and Reed, load vector f in Equation (2) can be
defined as

f
HR

=
ρ

2
V22πR3

[
KAero(V, Ω) + sDAero(V, Ω)

]
∆xhub (4)

where ρ, V, Ω and R are the air density and velocity, the rotational speed and the radius
of the propeller, respectively. Central to their approach is the formulation of unsteady
propeller derivatives. These define the aerodynamic stiffness and damping matrices (KAero
and DAero) (see Equations (5) and (6)).

KAero(V, Ω) =


0 0

Cyθ

2R
Cyψ

2R
0 0 Czθ

2R
Czψ

2R
0 0 Cmθ Cmψ

0 0 Cnθ Cnψ

 (5)

DAero(V, Ω) =


− Cyψ

2RV
Cyθ

2RV
Cyq
2V

Cyr
2V

− Czψ

2RV
Czθ
2RV

Czq
2V

Czr
2V

−Cmψ

V
Cmθ
V

CmqR
V

Cmr R
V

−Cnψ

V
Cnθ
V

CnqR
V

Cnr R
V

 (6)

The derivatives describe the forces and moments on the propeller plane due to the
corresponding displacements and velocities of the propeller hub (∆xhub) (see Equation (1)).
Each of the derivatives corresponds to the change in a load (first index) in response to a
perturbation (second index). As an example, Cmθ denotes the change in moment My at the
propeller hub due to a displacement in pitch θ. Note that according to Houbolt and Reed’s
notation for the derivatives, y and z stand for the forces in Fy and Fz, while m and n represent
the moments in My and Mz. q and r denote rotational velocities θ̇ and ψ̇. Although stiffness
properties are a function of translations and rotations, Equation (5) only contains derivatives
with respect to rotations θ and ψ. Translatory displacements do not add a perturbation
to the propeller disc, so that the first two columns in Equation (5) are zero. In contrast,
Equation (6) contains derivatives with respect to rotations (first two columns) and rotational
velocities (last two columns). The derivatives in response to ẏ and ż in the first two columns
of Equation (6) are described in terms of θ and ψ rather than ẏ and ż because they linearly
depend on the generalized coordinates (refer to Equation (1)). Generally speaking, due to
the quasi-steady assumption, a velocity in y or z can be interpreted as a steady induced flow
angle. In summary, a total of 16 derivatives are defined, although the inherent symmetry
of the model reduces the number of unique derivatives to 8 (e.g., Czθ = −Cyψ) [9]. These
derivatives are calculated using blade integrals. Exemplary for Cmθ , the equation reads [9]

Cmθ = −
(

Nb
4

)(
1

πR

) ∫ 1

η0

η2c(η)Clα(η)G(k)√
( J

π )
2 + η2

AR[
2 + AR

√
1 − Ma2(1 + η2(π

J )
2)

]dη (7)

with
J =

Vπ

ΩR
(8)

and
k =

c

2R

√(
J
π

)2

+ η2

(9)

As seen in Equation (7), the derivative is determined based on an integration along
the blade. Here, η describes the normalized radius, while η0 stands for the hub radius.
Airspeed and rotational speed of the propeller are described using the advance ratio (J). A
Prandtl–Glauert Mach-number (Ma) correction in conjunction with a compressible flow
aspect ratio (AR) correction is used (see the last factor in the integral in Equation (7)).
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Further, for each blade section, three factors are important: the chord (c); the local lift
curve slope (Clα); and a correction due to the unsteady lift lag implemented by utilizing
the complex Theodorsen function C(k) = F − iG, which is dependent on the reduced
frequency (k). It is worth noting that according to Houbolt and Reed [5], the reduced
frequency for each blade section is only dependent on the rotational speed (i.e., J; refer
to Equation (9)) and not on the eigenfrequency of the system, which is usually the case
in the definition of k. A correction concerning the number of blades (Nb) is provided by
Rodden and Rose [9], alongside the correction concerning the lift curve slope referred to
above. As already mentioned, steady aerodynamic loading including torque and thrust
is neglected within this approach. For more detailed information on blade integrals and
corrections, the reader is referred to the original literature [5,9].

To determine the influence of the propeller derivatives on whirl flutter stability, a sensi-
tivity analysis is conducted for the derivatives according to Houbolt and Reed. Each of the
eight derivative pairs is varied with a scale factor between 60% and 140% of a baseline value
while keeping the other seven pairs equal to the baseline value for a reference configuration.
For each combination, flutter analyses are performed with varying pivot stiffness to find
the required stiffness for neutral stability. These required stiffness values are then converted
into uncoupled frequency. The relative difference from the baseline uncoupled frequency
(∆ωstab) serves as the comparison parameter and is defined as

∆ωstab =
ωstab,i − ωstab,re f

ωstab,re f
, (10)

A positive value indicates a destabilization, since the boundary is shifted to larger
frequencies. It is worth noting that the pitch stiffness and yaw stiffness are kept equal
during this sensitivity analysis, as this represents the most critical combination for classical
whirl flutter (see Figure 1b).

The results of the sensitivity study are presented in Figure 2. Stabilizing contributions
are seen for Cyθ , Czθ and Cmq. On the other hand, Cnθ has a largely destabilizing effect.
Negligible influences are observed for Cyq, Cmθ , Czq and Cnq. The last two were also often
neglected in previous studies due to their comparatively low values [9]. Please note that
the same relations hold for the symmetrical partners of the mentioned derivatives (both
were varied simultaneously during the sensitivity analysis).
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Figure 2. Sensitivity of whirl flutter with respect to the individual propeller derivatives for varying
scale factors.
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2.2. Aerodynamic Methods

The following section introduces the aerodynamic methods compared in this work.
Some assumptions were made to limit the number of studies in this paper and to facilitate
the understanding of the causes for potential differences among results. The limitations are
listed below, and their potential impact is discussed in the Discussion section:

• No compressibility effects: It is known from the literature that compressibility has
a significant impact on whirl flutter stability through the change in the lift curve
slope [28]. As most methods compared in this paper are based on potential flow
aerodynamics, they neglect compressibility and can only account for it using correction
techniques like Prandtl–Glauert correction factors. Despite being available in most
codes, this correction is skipped for better comparability.

• Linear airfoil polars: To keep the number of parameters small and to make the com-
parison among codes easier, linear airfoil polars for a symmetric NACA 0008 airfoil in
potential flow are used. This results in a linear lift curve with slope Clα. All other
contributions, like drag or camber effects, are neglected in this study.

• Limited number of operating conditions: The study is limited to a single operating
range, a turboprop propeller in fast forward flight, since operating conditions with
high advance ratios are the most relevant for whirl flutter.

• Only one geometry: Only a generic five-bladed turboprop propeller is used for this
study. No variations with respect to the blade aspect ratio, the number of blades or
the blade geometry are conducted.

• Only blade aerodynamics: In this work, only the unsteady aerodynamics attributed
to the propeller blades are studied. Contributions from the spinner, nacelle or wing
are neglected.

• Rigid propeller blades: To perform a comparison with the classical Houbolt/Reed
derivatives, the propeller blades are assumed to be rigid. For a study on the influence
of elasticity, the reader is referred to the literature (e.g., Koch and Koert [15]).

The different methods compared in this work with respect to unsteady propeller
aerodynamics and their impact on whirl flutter stability predictions are listed in Table 1.
The first column lists the methods and the name/abbreviation used throughout this paper.
The following three columns contain a brief description of the relevant features distinguish-
ing the methods from each other, split into the blade lift method, the wake method and the
tip loss method. The order of magnitude for computational time is also given in the last
column for comparison. The methods (or rows in Table 1, respectively) are split into three
categories: The first four methods are categorized as mid-fidelity due to their explicit wake
modeling and their ability to capture interference effects. The following three methods are
categorized as low-fidelity due to the simplifications in modeling and their short run times.
The last two rows represent the Houbolt/Reed method introduced earlier.

In general, all aerodynamic methods used in this paper have to solve the equilibrium
between local blade lift distribution and wake strength, as illustrated in Figure 3 for
every given motion and time step. The specific implementation of the blade lift or wake
formulation and their interaction depends on the method and solution of the coupled
system in the tool used.

Table 1. Comparison of aerodynamic methods used in this work.

Method Blade Lift Method Wake Method Tip Loss Comp. Time

UPM
[29–31]

2D vortex lattice on
camber surface

+ 3D source/sink panels
on blade surface

Free panel wake Included in
free wake Hours
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Table 1. Cont.

Method Blade Lift Method Wake Method Tip Loss Comp. Time

DUST-Panel
[32,33]

3D doublet and
source panels

on blade surface

Free vortex
particle wake

Included in
free wake Hours

DUST-UVLM
[32,33]

2D vortex lattice on
camber surface

Free vortex
particle wake

Included in
free wake Hours

DUST-LL
[32,33]

1D lifting line
using airfoil polars

Free vortex
particle wake

Included in
free wake Minutes–Hours

BEM+Wagner

Strip theory
using airfoil polars

+ Wagner’s function
for unsteady lift

lag [34]

Weighted blade
element momentum

theory [16,35]
Prandtl–Glauert Minutes

Wagner

Strip theory
using airfoil polars

+ Wagner’s function
for unsteady lift

lag [34]

No induced
velocity model No tip loss model Seconds

Quasi-steady Strip theory
using airfoil polars

No induced
velocity model No tip loss model Seconds

Houbolt/Reed

Linearized strip theory
(CLα only) +

Theodorsen’s function
for unsteady lift lag

No induced
velocity model Aspect ratio correction Seconds

Houbolt/Reed
quasi-steady

Linearized strip theory
(CLα only)

No induced
velocity model Aspect ratio correction Seconds

The mid-fidelity methods used in this paper rely on different types of blade discretiza-
tion, ranging from a full 3D surface grid using 3D doublets and source panels over 2D
vortex lattice formulations to 1D lifting line theory with radial discretization into airfoil
sections [32]. The wake models in UPM and DUST, on the other hand, are very similar,
using free-wake methods with panel wake [29–31] or discrete vortex particle wake [32,33].
Free-wake methods allow for the capturing of the induced velocities of the wake affecting
the wake itself and the propeller. Due to this complete description of the wake, no tip loss
model is required.

The low-fidelity methods are based on a strip theory approach for blade aerodynamics,
using airfoil polars for the primary relationship between angle of attack and lift. To capture
the unsteady effect of the near wake, a time-domain formulation for the lift lag effect ac-
cording to Wagner’s function (see [34] for details) is applied in some methods. The induced
velocities of the whole wake due to thrust and torque on the propeller are either neglected
or described quasi-steadily using the blade element momentum (BEM) method [35]. Due
to the non-axial inflow condition during propeller disc pitch motion, a special formulation
of the BEM, the Weighted BEM from [16], is used to cover the azimuthal variation in the
induced velocities. Still, in the BEM, no interaction of the radial sections is considered,
so a tip loss model using Prandtl–Glauert’s tip (and hub) loss factor is used in the BEM
method [35]. A more detailed discussion of the influence of the different BEM-formulations
on the results are presented in Appendix C.
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Figure 3. Flow chart for the blade lift and wake equilibrium.

The method by Houbolt and Reed was described earlier. The relevant features for
the comparison in Table 1 are the linearized form of the strip theory (only taking pertur-
bational lift contributions from Clα into account), the optional correction for lift lag using
Theordorsen’s function (see Equation (7)), the lack of a model for the induced velocities
and the finite blade span (or tip loss) correction using the blade aspect ratio (AR).

2.3. Transfer Matrix Method

The goal of this work is to compare different aerodynamic methods with special focus
on the unsteady aerodynamics and their influence on whirl flutter predictions. Hence,
a method is required to derive the relevant unsteady aerodynamic quantities and to con-
duct whirl flutter stability predictions based on them. This paper employs the transfer
matrix (TM) method recently developed by one of the authors [26] to identify the relevant
transfer functions based on time-domain simulations. The TM-method is centered around
describing the unsteady perturbation response of the propeller hub loads, f , to hub motion
∆xhub in the frequency domain according to a frequency-dependent transfer matrix, Hprop:

f
TM

= Hprop(iω, V, Ω, ρ)∆xhub (11)

with

Hprop(iω, V, Ω, ρ) =


Fyy Fyz Fyθ Fyψ

Fzy Fzz Fzθ Fzψ

Myy Myz Myθ Myψ

Mzy Mxz Mzθ Mzψ

 (12)

The transfer matrix captures all features included in the time-domain method, such as
unsteady aerodynamics and wake descriptions. It is used to extract aerodynamic transfer
functions, similar to Houbolt and Reed’s aerodynamic derivatives but capturing the full
frequency dependency of the methods studied. The workflow is described in the following.
The steps in italics are not required for the original TM-method workflow but are employed
in this work to gain further insights into the unsteady aerodynamic behavior:

1. Trimming to a steady operating point in axial flow
The propeller is trimmed to achieve a target steady thrust coefficient CT and to
bring the system to an equilibrium, around which the perturbations are employed.
Trimming is achieved by iteratively changing the blade pitch angle until CT matches
the desired thrust. For each iteration, the system is integrated in time with a fixed
blade pitch until a steady state in the hub loads is reached. The resulting equilibrium
is saved for further restarts.

2. Response of the system to steady disc pitch perturbation (1P hub loads)
Instead of directly identifying the full, frequency-dependent transfer functions for
hub motion perturbations, the quasi-steady response to disc pitch (or disc angle of
attack) is identified first. Starting from the equilibrium point in "1.", the disc pitch
angle is perturbed by a steady 1◦ inclination, and the system is integrated in time
until a steady state in the hub loads is achieved over one period.

3. Perturbation of the hub motion and recording of the hub load response
To identify the frequency-dependent transfer matrices, the propeller is perturbed in
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y-translation and disc pitch θ using unsteady pulse-shaped excitation (for low-fidelity
methods) or harmonic forced motion (for mid-fidelity codes). The response of the hub
load components in the time domain is recorded. The system is integrated in time
until the transient response has decayed. For harmonic forced motion, this process is
repeated for several perturbation frequencies (5 Hz, 10 Hz, 20 Hz) to cover the desired
range for the frequency-domain flutter analysis.

4. Identification of the frequency-domain transfer function from motion to loads
By converting both motion and load time histories into the frequency domain using
Fourier transformation, the frequency-domain transfer function from hub motion
to hub loads can be identified through division. The scalar transfer functions (e.g.,
disc pitch to moment about the z-axis) are then arranged into the transfer matrices in
Equation (12). Due to axial symmetry, the transfer functions for z-translation and disc
yaw ψ can be derived from symmetry and do not have to be calculated separately.

5. Linearization with respect to frequency for comparison with Houbolt/Reed derivatives
To compare the frequency-dependent transfer matrices with the propeller deriva-
tives by Houbolt and Reed, the transfer matrices are linearized with respect to fre-
quency. The constant part of the real part is converted into the aerodynamic stiff-
ness, and the linear slope of the imaginary part is used as aerodynamic damping
(see Appendix A for more insights into the linearization procedure). By using the
same non-dimensionalization as that by Houbolt and Reed, derivatives which can be
used for direct comparison are obtained.

6. Flutter solution in the frequency domain
To assess the impact of different aerodynamic methods on whirl flutter predictions,
the transfer matrices are inserted into the equation of motion (see Equation (2)) and
solved in the frequency domain either using the pk method or pole fitting [26].

The workflow is used for all aerodynamic methods, and results from each step are
described and discussed in the second part of the paper.

2.4. Models

The propeller model used in this work resembles a generic propeller blade close to the
geometry of an off-the-shelf turboprop propeller. It is a five-bladed propeller with variable
blade pitch operated under constant rotational speed. The basic geometry of the blade is
shown in Figure 4 by means of chord and twist distribution. The resulting aspect ratio
according to [5] is 6.87. The twist is the geometric twist, which is added on top of the blade
pitch angle resulting from the trim analysis. All radial sections are positioned to form a
straight 50% chord line. A lift curve slope (Clα) of 6.5894 is used for all sections (when
applicable in the method).
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Figure 4. Chord and twist distributions of the blade (R = 1.25 m).

Figure 5 shows the resulting model geometry together with the global coordinate
system. The global x-axis points in the direction of flight, while the y- and z-axes span the
propeller plane. The global reference frame (to which all loads in this paper are referenced)
stays fixed and does not move or tilt with the forced motion.
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Figure 5. Propeller model and coordinate system used in this study.

For the whirl flutter stability analysis, the propeller is coupled to the simplified pylon
model shown in Figure 1. The structural properties of the system are listed in Table 2
and resemble a typical turboprop engine–pylon combination. The pitch stiffness and
yaw stiffness are varied for parameter sweeps and derived from uncoupled (non-rotating)
pitch or yaw frequency using the equation given in Table 2. According to this model,
the distance between pivot point and the propeller plane (a), therefore, scales the force
terms in the transfer matrices in comparison to the moment terms. For a short pylon (small
a), the moment terms dominate the generalized propeller loads, while for long pylons, the
force terms have a higher impact. Three different pylon lengths are, therefore, considered
in this paper (see Table 2), called “short”, “medium” and “long”.

Table 2. Properties of the pylon system about the pivoting point.

Property Symbol Value

Pitch/yaw inertia Iθ/Iψ 97.42 kg m2

Total polar inertia
of rotating parts Iϕ 6.69 kg m2

Pitch stiffness Kθ Iθ ∗ ω2
θ

Yaw stiffness Kψ Iψ ∗ ω2
ψ

Pylon length a 0.425 m, 0.85 m and 1.7 m

Whirl flutter stability results are compared for three different operating points in this
paper, which are listed in Table 3. They differ in the trim target (i.e., thrust coefficient (CT))
and the advance ratio (i.e., airspeed (V)).

Table 3. Overview of operating points studied in this paper.

Name Airspeed Shaft Speed Advance Ratio Thrust Coefficient Air Density
(V , m s−1) (Ω, rpm) (J, -) (CT , -) (ρ, kg m−3)

CT = 0, V = VD 142 1600 2.13 0.0 1.225
CT = 0.1, V = VD 142 1600 2.13 0.1 1.225
CT = 0, V = 0.5 VD 71 1600 1.07 0.0 1.225
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3. Results

After having described the methods and models, the following section covers the
results from the individual steps of the analysis.

3.1. Comparison of Loads at Axial Inflow

As described in Section 2, the starting point of all simulations is a steady-state condition
trimmed on the target thrust by modifying the blade pitch angle. The pitch angles required
to match the CT = 0.1 trim target are all very close for the methods including wake models
(36.4 ± 0.1°), and those without a wake model predict a smaller pitch angle (35.0°). For the
no-thrust condition (CT = 0.), all methods predict a trim angle of 32.32 ± 0.06°.

Figure 6 shows a comparison of the steady-state axial (or out-of-plane) and tangential
(in-plane) load distributions on the blade among the different methods for operating point
CT = 0.1, V = VD from Table 3. Due to the trim condition, the integral on the upper plot is
identical for all methods. Overall, the distribution of the steady-state loading over the rotor
radius is similar among all methods. The largest differences can be seen for the low-fidelity
Quasi-steady method without wake aerodynamics. The lack of induced velocity results
in a slight shifting in the load towards the middle of the rotor radius. The BEM+Wagner
method also deviates from the mid-fidelity methods, yet the difference is smaller and can
be attributed to the (simplified) Prandtl–Glauert tip loss correction. The differences are
more pronounced at CT = 0 but less significant for further analysis, because the load is, in
general, very small for this operating point. The Wagner method is not displayed, as it
gives the same steady results as the quasi-steady method.
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Figure 6. Comparison of steady blade loading for operating point CT = 0.1, V = VD. The top plot
shows the out-of-plane force distribution (Fx, in N/m) along the blade span. The bottom plot shows
the corresponding tangential or in-plane blade loading (Ftan).

3.2. Loads for Steady Propeller Disc Pitch (1P Hub Loads)

Before progressing to the unsteady results, the response of the propeller models
to a steady perturbation of the propeller disc pitch (as induced by an aircraft angle of
attack), also called 1P hub loads [16], is discussed. Only small perturbations and thus
linearized transfer functions are shown. The name 1P hub loads originates from the
once-per-revolution (1P) angle-of-attack variation (see Equation (13) and Figure 7a) that
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each individual blade experiences during one revolution due to kinematics [11]. The first-
harmonic nature of the resulting blade loads is filtered out for the hub loads due to the
summation over all blades at the propeller hub, resulting in steady loads in the non-
rotating system.

αdyn = −θ · sin(Ωt) (13)

Figure 7b shows the resulting out-of-plane blade load distribution over one revolution
(in Figure 7b, results from UPM are shown). The propeller disc in this example is tilted
around the global y-axis, so the top is tilted forwards. Solid contour lines (on the right
side of the disc) indicate an increase in local thrust in these sectors, and dashed contour
lines (left side of the disc), a loss in thrust. As Figure 7b shows, the lift for a tilt around the
global y-axis is mainly anti-symmetric with respect to the global z-axis, resulting in the
coupling torque (Mzθ), which is one of the main drivers of whirl flutter instability (see Cnθ

in Figure 2). Additionally, it can be observed that the maximum of the unsteady- lift lags in
phase behind the angle of attack, which has its maximum and minimum exactly at 270◦

and 90◦, respectively (see Equation (13) and Figure 7a). This (and the corresponding lift
deficiency) is caused by the unsteady aerodynamic liftlag effects [11]. This unsteadiness
leads to a reduction in the amplitude of the 1P hub loads. A further reduction in the lift
amplitude can be attributed to effects derived from induced velocity. Sectors with more lift
generate more circulation shed in the wake and thus higher induced velocities affecting the
disc, reducing the local angle of attack and the resulting lift. A second consequence of the
phase lag between angle of attack and lift maximum is the development of a moment about
the global y-axis. This can be visualized as a phase shift in the resulting global moment
from the z-axis to higher azimuth angles, resulting in an My component. This (and the
corresponding side force, Fy) are called off-axis terms, because they are perpendicular to the
primary load response (also called in-phase terms in this paper) along the z-axis. Further
explanations for the other hub loads can be found in [11].
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Figure 7. Distribution of variation in out-of-plane blade forces and angle of attack during one
revolution with steady disc pitch angle. (a) Local blade angle of attack perturbation due to disc
pitch θ; (b) Variation in out-of-plane force in UPM simulation.

Figure 8 compares the linear relation between disc pitch and steady hub in-plane
loads for the different methods for operating point CT = 0, V = VD from Table 3. The top
row shows the force transfer functions, and the bottom one, the corresponding moments.
The plots on the right side correspond to the in-phase terms, mainly caused by the kinematic
angle-of-attack variation in the disc. The plots on the left show the off-axis terms caused by
the unsteady lift lag effects.



Appl. Sci. 2024, 14, 850 14 of 28

As apparent from Figure 8, the z-force and -moment are predicted to be much higher
than the off-axis terms by all methods. Methods that do not account for unsteady lift
lag (quasi-steady time-domain and Houbolt/Reed quasi-st. methods) only predict the
in-phase force terms, and the off-axis force term (Fy) is zero. The same applies for the
off-axis moment term (My), although the quasi-steady time-domain method predicts a
small value due to the airfoil torque arising from the offset between lift reference point
at quarter chord and the y-axis, which is neglected in the Houbolt/Reed formulation. In
general, the relative variation among the methods is higher for the off-axis terms, as their
prediction is based on the unsteady lift model employed and not mainly on the kinematics.
The prediction by the mid-fidelity methods (top four rows in each plot) are all within
the same range, deviating by only about 5% with respect to each other (for Mzθ). Only
predictions in Myθ deviate a bit more, as this component is influenced by the chord-wise
distribution of the lift and thus the offset moment between lift vector and y-axis, which is
different among the mid-fidelity methods.
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Figure 8. Comparison of the four in-plane hub load derivatives under steady disc pitch angle. The top
row shows the y- and z-forces, and the second row, the y- and z-moments.

For the low-fidelity methods, the quasi-steady time-domain method over-predicts the
in-phase loads compared with the mid-fidelity codes (e.g., by 47% in Mzθ). This is due
to the lack of the lift deficiency (unlike the Wagner method, which over-estimates Mzθ by
28%), as well as induction and tip loss effects (a further difference from BEM+Wagner).
Because, additionally, no off-axis terms are predicted, this method is not further used in the
following analysis. The equivalent quasi-steady Houbolt/Reed formulation incorporates
the aspect ratio correction (see Equation (7)), explaining the better match in amplitude of
the z-force and -moment due to the reduction in lift due to tip loss effects. The same applies
to the comparison between the unsteady Wagner method and the baseline Houbolt/Reed
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results, where the differences can also be mainly attributed to the missing tip loss correction
in the Wagner method. The baseline Houbolt/Reed results for the 1P hub loads match well
with the mid-fidelity predictions, even though the method lacks an aerodynamic wake
model. The results from BEM+Wagner (the most detailed low-fidelity method) show good
agreement with the mid-fidelity codes, with slight over-predictions of Fzθ and Myθ .

3.3. Loads and Transfer Matrices for Propeller Hub Motion

The previous subsection assessed the transfer behavior for zero frequency about the
propeller hub. In this subsection, this is extended by showing transfer functions which
describe the response to harmonic perturbations about the propeller hub. This subsection
mainly focuses on perturbation response with respect to disc pitch θ. Due to axial symmetry,
the transfer functions for disc yaw (ψ) are equivalent (with some signs being changed).
The transfer functions with respect to harmonic disc in-plane (y and z) translation can be
derived, as a steady velocity ż is almost equivalent to a steady disc pitch θ. For the whirl
flutter studies shown later, the translation terms are still computed separately, but they are
not shown in this subsection for the sake of brevity.

Figure 9 shows these transfer functions for a selection of aerodynamic methods for
operating point CT = 0, V = VD from Table 3. The top row shows the force components,
and the bottom row, the hub moments. Each plot contains the real (solid line) and imaginary
(dashed line) parts of the complex transfer functions plotted over perturbation frequency.
The markers indicate the samples identified with harmonic (for the mid-fidelity methods)
or pulse (for the low-fidelity methods) perturbation. Only UPM transfer functions are
shown for the mid-fidelity codes for better visibility, representing the other mid-fidelity
methods which give similar results. All transfer functions are real-valued for zero frequency
and equivalent to the 1P hub loads shown in Figure 8. A constant term in the real part (e.g.,
in the bottom-left plot for Mzθ) over frequency indicates aerodynamic stiffness. A linear
slope in the imaginary part (e.g., bottom-left plot for Myθ) indicates aerodynamic damping
in this component. All other contributions (e.g., the nonlinear decrease in the real part
of Mzθ) have their origin in an unsteady aerodynamic behavior which is nonlinear with
frequency. From Figure 9, some differences from the Wagner method, which predicts higher
amplitudes in the transfer functions, can already be observed. This is consistent with the
observations for the 1P hub loads in Figure 8. The other methods match reasonably well.

To obtain a more quantitative comparison of all methods, the transfer functions are
linearized with respect to frequency. This allows for a split into the derivative form com-
prising aerodynamic stiffness and damping, similar to the description of the Houbolt/Reed
method in Equations (5) and (6). The linearization is conducted by using the zero-frequency
samples (to obtain correct transfer functions at zero frequency) and a sample at a chosen fre-
quency (in this work, at 10 Hz perturbation frequency). The real part of the zero-frequency
transfer sample is used as aerodynamic stiffness, and the linear slope in the imaginary
part, as aerodynamic damping. The resulting values are non-dimensionalized according to
Equation (4) and can then be compared to the derivatives from the Houbolt/Reed method.
The resulting linearized transfer functions would look similar to the Houbolt/Reed sam-
ple in Figure 9, which are already in linear form. Appendix A gives an example for the
linearization procedure.
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Figure 9. Frequency-dependent transfer function from disc pitch to in-plane hub loads. The first row
shows the real (solid lines) and imaginary (dashed lines) part of the force components, while the
second row shows the moments. For better visibility, only UPM results are shown, representative of
mid-fidelity codes.

Figure 10 shows a comparison of the eight unique derivatives obtained from the
frequency-dependent transfer functions with the derivatives from the Houbolt/Reed
method (marked with horizontal dashed lines in each plot). In general, good agreement
is found among most methods for derivatives Cyq, Czθ , Cmq and Cnθ . These (similar to the
1P hub loads) are the in-phase components, which are mainly related to kinematics [11].
The Wagner method has the highest deviations from the Houbolt/Reed method and the
mid-fidelity codes. The BEM+Wagner method matches again very well with the mid-
fidelity methods. Larger differences among the predictions can be observed for the other
components (Cyθ , Czq, Cmθ and Cnq), which are the off-axis terms mainly influenced by the
unsteady aerodynamic method. Special attention should be paid to the bottom right plot,
for the yaw moment due to pitch velocity (Cnq). Here, all time-domain methods predict
a different sign for aerodynamic damping compared with the Houbolt/Reed method.
The reason could not yet be clarified by the authors. This derivative is often set to 0 in the
literature [9], as it is very small compared with the others and does not impact the stability
results (see the small sensitivity in Figure 2).
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Figure 10. Comparison of the linearized derivatives. The dashed horizontal line marks the reference
derivatives from the Houbolt/Reed method.

3.4. Stability

The differences in aerodynamic stiffness and damping also impact the stability be-
havior regarding whirl flutter. As Figure 2 already points out, some derivatives have a
stabilizing effect, and some, a destabilizing effect. A general over-prediction of the aero-
dynamic loads (as seen, e.g., in the Wagner method), therefore, does not necessarily yield
a more stable or unstable system. Slight differences in a derivative with high sensitiv-
ity change the results more significantly than differences in others with lower sensitivity.
The impact of the aerodynamic methods on stability is explored in this part of the paper.
For this, the full frequency-dependent transfer matrices are used and not their linearization.
The stability of the system is compared using stability maps as introduced in Figure 1b.

For analyzing stability, pole fitting of the coupled system frequency response function
is used to obtain the frequency and damping values of the coupled system; see Koch [26].
Finally, a comparison of the different aerodynamic methods is made for different trim
conditions and distances between pivot point and propeller hub.
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Figure 11 shows the full stability maps for the different aerodynamic methods, evalu-
ated with different pylon lengths for operating point CT = 0, V = VD from Table 3. Clearly
visible is the most critical condition at equal pivot frequency (i.e., stiffness).
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Figure 11. Comparison of whirl flutter stability map predictions with different aerodynamic methods
and for different pylon lengths. For the long pylon, the quasi-steady Houbolt/Reed results are
outside the range at higher frequencies (5.5 Hz for equal stiffness).

The stability boundaries with aerodynamics according to the Houbolt/Reed method
(black dashed line) are always smaller than the ones from the quasi-steady Houbolt/Reed
method (grey dashed line). The mid-fidelity methods, including UPM, DUST-Panel
and DUST-UVLM, have similar stability predictions and always lie between the stan-
dard and the quasi-steady Houbolt/Reed methods. The boundary with the DUST-LL
method is, in contrast to the other mid-fidelity methods, always more conservative (i.e., less
stable). It should be emphasized that the analytical Houbolt/Reed method is always less
conservative than all mid-fidelity methods. Comparing the boundary obtained with the
Wagner method with the mid-fidelity codes, it can be seen that Wagner often gives more
stable predictions, despite having a larger destabilizing term (i.e., Cnθ ; compare Figure 2).
This is because all terms in the Wagner method are over-predicted, including the stabilizing
ones, resulting in a cancellation effect. The BEM+Wagner method shows similar results as
the Houbolt/Reed methods. Although the same transfer matrices are used for the pylon
variations, even the order of the methods in terms of stability predictions changes. This
highlights the sensitivity of the stability results with respect to individual derivatives and
their relative scaling. In the following, this sensitivity is further explored with respect to
the three operating points from Table 3. Uncertainty quantification [36] could give further
insights into the sensitivities of the stability predictions but is kept for future work to limit
the scope of the paper.
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As already mentioned, for a better comparison of different methods and configurations,
the requirement of equal pivot stiffness in pitch and yaw for aeroelastic stability is taken as
a measure and normalized with the Houbolt/Reed predictions according to Equation (10).
Again, values larger than 0 indicate a more unstable stability prediction than Houbolt/Reed,
with smaller values representing a more stable prediction. The comparison is shown in
Figure 12 for the three different pylon lengths (columns) and operating points (rows). The
first two rows (a–f) represent the operating points for no thrust nor torque, with the top
row (a–c) representing a smaller airspeed, 0.5VD, and thus smaller advance ratio. At the
bottom (g–i), a thrusting operating point is depicted at VD with a thrust coefficient of 0.1.
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Figure 12. Comparison of stability measure relative to Houbolt/Reed among different methods at
three operating points (rows) and for three pylon lengths (columns).

Looking at the top two rows in Figure 12, the standard Houbolt/Reed method is found
to be less conservative for CT = 0 compared with the mid-fidelity methods (up to 10%
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deviation, e.g., in plot (f)), while the quasi-steady Houbolt/Reed method shows a large
conservative tendency (up to 40% deviation from the standard Houbolt/Reed). On the other
hand, most mid-fidelity codes (i.e., UPM, DUST-Panel and DUST-UVLM) reveal consistency
for all operating points and provide a good reference for analysis. The lifting line method
is generally more conservative compared with Houbolt/Reed and the other mid-fidelity
methods. The BEM+Wagner method shows more unstable predictions compared with the
mid-fidelity methods but captures the same trends relative to the Houbolt/Reed results,
only with smaller ∆ωstab values. The differences in the stability predictions are in general
higher for the operating point with higher advance ratio (i.e., CT = 0, V = VD) than the
one at lower airspeeds (i.e., CT = 0, V = 0.5 VD). The bottom row of the plots in Figure 12
contains results with non-zero thrust and torque for operating point CT = 0.1, V = VD.
The unsteady aerodynamics from the Houbolt/Reed method show no thrust nor torque
dependency; thus, the reference value of ωstab,Houbolt/Reed remains constant for the bottom
row. The zero-thrust operating point (i.e., CT = 0, V = VD) is found to lead to a more
unstable system compared with CT = 0.1, V = VD, indicating a conservative nature,
which is consistent with the literature. All methods except Houbolt/Reed exhibit this trend.
The reason for this can be found in the torque vector and the steady lift acting on the blades
(a more detailed explanation is given in Appendix B).

4. Discussion

In this work, a comparison of different low- and mid-fidelity aerodynamic methods
with respect to unsteady propeller aerodynamics and whirl flutter stability using the
transfer matrix method has been presented. Further, 1P hub loads and transfer functions
from hub motion to hub loads have been examined. Based on the identified frequency-
domain transfer functions, the whirl flutter stability of simplified pylon whirl systems has
been examined for varying thrust coefficients, airspeed values and pylon lengths. Results
have been compared with the Houbolt/Reed method commonly used for propeller whirl
flutter analysis. The major findings of this study can be summarized as follows: The
classical Houbolt/Reed method does not guarantee conservative results compared with
methods with higher fidelity. It is, therefore, suggested to choose the most detailed feasible
method for a given whirl flutter problem. Additionally, strong sensitivity of whirl flutter
stability with respect to relative changes in the individual in-plane loads has been found.
More detailed key findings and their implications are as follows:

1. Clear trends are visible in the unsteady aerodynamic results when comparing different
methods. The stability predictions that are based on these results, however, do
not necessarily reflect those clear trends. This suggests that stability predictions
are not driven by the absolute differences in unsteady aerodynamics but rather by
relative deviations in the individual load components. Even slight differences in the
prediction of one load component can drastically impact stability predictions. Great
care, therefore, needs to be exercised in the modeling of real aircraft propellers and
as few assumptions as possible should be made regarding method, geometry and
aerodynamic characteristics.

2. For all configurations investigated, the Houbolt/Reed method yields the more sta-
ble (and thus less conservative) whirl flutter predictions for zero thrust than the
mid-fidelity methods. If the Houbolt/Reed method is applied in its quasi-steady
form (without Theodorsen correction), it results in the most unstable system, but un-
steady aerodynamic predictions are far away from the other methods investigated
in this comparison. Despite yielding the least conservative stability predictions,
the Houbolt/Reed method was used successfully for the design and certification of
several propeller aircraft in the past. This fact could be explained by conservatism in
the designs or other stabilizing effects (such as blade elasticity) offsetting the desta-
bilizing effect found. Further research is necessary to compare to experimental data
or high-fidelity numerical test cases without the assumptions used in this study to
identify the correct modeling approach.
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3. The stability predictions for systems with thrust are all more stable than the zero-thrust
operating points, which confirms previous studies in the literature. The stabilizing
effect can mainly be associated with the tilting torque vector. Although not checked in
this study, this effect probably extends into the region of negative thrust/torque, which
is believed to have a destabilizing effect and could thus be important for concepts that
use propellers in conjunction with recuperation, as negative torque might destabilize
the system.

4. To analyze the reasons for a variation in whirl flutter predictions when changing
parameters, it is not sufficient to look at individual hub load components (e.g., only
into the destabilizing term, Mzθ). Changes in several components may cancel each
other out, as some load components (or derivatives in the linearized approach) have
a stabilizing and others a destabilizing effect. For the same reason, as results of
the Wagner method demonstrated, general over- or under-prediction of unsteady
aerodynamic loads does not necessarily result in large changes in whirl flutter stability.

5. The transfer matrix method gives valuable insights into the unsteady aerodynamics of
propellers, as it allows for an assessment of the change in individual hub load components
with frequency and among different methods. This frequency dependency can then be
transferred to frequency-domain flutter analysis, giving a proper unsteady representation
of the propeller in the (whirl) flutter analysis process of, e.g., turboprop aircraft.

6. Regarding the comparison of individual aerodynamic methods, the different mid-
fidelity methods showed in general good agreement in unsteady aerodynamic and
stability predictions. Among the low-fidelity methods, the BEM+Wagner method
was, in most cases, the closest one to the mid-fidelity methods regarding unsteady
aerodynamics. Regarding stability, it could give the same trends but had larger
quantitative differences from the mid-fidelity methods.

Despite the comparison of different methods, operating points and structural con-
figurations, some limitations apply to this work (see Section 2.2). Although delving into
the detailed impact of the limitations on the outcomes is beyond the scope of this paper,
recommendations for future research are provided to support additional investigations.
The main limitation with respect to practical applications in whirl flutter analysis is the
assumption of linear airfoil polars and incompressible flow in this work. Changes in the
local airfoil polars (either due to steady angle of attack or compressibility) have already
been shown to have a significant impact on whirl flutter predictions. The methods used in
this paper allow one to account for this in different ways (nonlinear airfoil polars in the
low-fidelity methods and lifting line, Prandtl–Glauert compressibility correction in the oth-
ers). CFD simulations could give a good reference for compressible unsteady aerodynamic
predictions. Future work could compare those to the different correction approaches to
extend the findings of this work into the compressible regime. In general, even high-fidelity
CFD predictions need to be validated with experimental data (either with forced-motion
experiments or propeller whirl flutter tests on a reference configuration) to validate the
findings. These studies (either high-fidelity numerical or experimental ones) could also lift
the assumptions on aerodynamic interaction effects of the spinner, nacelle and wing.

To further shed a light on the sensitivity of whirl flutter prediction with regards to
input parameters, a structured uncertainty quantification approach could be applied.

Regarding configurations, the main limitations are the geometry and operating points
used. Although representative for a turboprop propeller, the advance ratios are still quite
high; results might, therefore, not be applicable to new configurations, e.g., urban air
mobility concepts. Propellers in this type of configuration operate under smaller advance
ratios but at higher angles of attack and under higher loading, where different effects
might play a role. The geometry of the propeller blades remained unchanged in this
study. However, as mentioned in the literature, factors like blade aspect ratio and sweep
are known to influence aerodynamic predictions, as well as whirl flutter stability. These
parameters could be subjected to variations in future parameter studies to assess their
impact and the prediction capabilities of the different methods. The results in this paper
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give valuable insights into the performance of different aerodynamic modeling techniques
on whirl flutter stability predictions. They can be used by flutter engineers to choose
a method based on requirements for conservatism and computational time. For final
modeling guidelines, however, further validation studies are required.
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Abbreviations
The following abbreviations are used in this manuscript:

BEM Blade element momentum theory
DLM Doublet lattice method
LL Lifting Line
TM-method Transfer matrix method
ROM Reduced-order model
UPM Unsteady panel method
a Distance between propeller pivot point and disc
AR Aspect ratio
c Chord
Cab Houbolt/Reed derivative from motion b to load term a
Clα Lift curve slope
CT Thrust coefficient, CT = Fx/(ρ(Ω/2/π)2R4)

DAero Aerodynamic damping matrix
Dgen Generalized damping matrix
f Loads vector at propeller hub
Fab Transfer function from motion b to force term a
Fc Force in c
Ggen Generalized gyroscopic matrix
Hprop Frequency-dependent complex transfer matrix
Ia Second moment of inertia around a
J Advance ratio
k Reduced frequency
Ka Rotatory stiffness constant in a
KAero Aerodynamic stiffness matrix
Kgen Generalized stiffness matrix
Ma Mach number
Mab Transfer function from motion b to moment term a
Mc Moment in c
Mgen Generalized mass matrix
q Vector of generalized degrees of freedom
R Propeller radius
s Laplace operator
V Airspeed
∆xhub Displacement vector at propeller hub
y Propeller disc displacement in y
z Propeller disc displacement in z
Ω Rotational speed of propeller



Appl. Sci. 2024, 14, 850 23 of 28

ω Angular frequency
∆ωstab Non-dimensional change in required uncoupled pylon stiffness; see Equation (10)
ψ Propeller disc yaw (rotation about z-axis)
Φ Modal matrix
ρ Air density
θ Propeller disc pitch (rotation about y-axis)

Appendix A. Transfer Function Linearization

The transfer matrices introduced in Section 2.3 describe the frequency-dependent
transfer behavior from hub motion to hub loads. Due to unsteady aerodynamics, these
transfer functions become nonlinear with respect to frequency (see Figure A1, blue curve).
For comparison with the method by Houbolt and Reed or compatibility with legacy whirl
flutter workflows, it is beneficial to linearize transfer functions Hprop into a form similar to
Equation (4). This is achieved by using two transfer samples for Hprop(0) and Hprop(iω1)
and applying the linearization as shown in Equation (A1).

Hprop,lin(iω) = Hprop(0)︸ ︷︷ ︸
Kprop

+
Hprop(iω1)− Hprop(0)

iω1︸ ︷︷ ︸
Dprop

iω (A1)

Because Hprop(iω) is complex and nonlinear with frequency, the resulting damping
matrix (Dprop), the slope of the linearization, can be complex (see Figures 9 and A1). This
would lead to complex derivatives, which are not compatible with the Houbolt/Reed
derivatives. To achieve a real-valued damping matrix, only the real part of the damping
matrix is considered. This leads to a constant real part of the final, linearized transfer func-
tion, Hprop,lin(iω), while with the full, complex linearization of the real part of Hprop,lin(iω)
can be (linearly) frequency-dependent.

Figure A1 compares the full, frequency-dependent transfer spectrum for the Fyθ term
(calculated with UPM) with the complex linearization (dotted green line) and the corre-
sponding real linearization (dashed red line). The left plot shows the real part of the transfer
function, and the right one, the imaginary part. For this example, 10 Hz was chosen for ω1.
It can be seen for the real linearization that only the transfer function for zero frequency
is correctly approximated in the real part. For the complex linearization, the sample at
10 Hz also matches exactly, and the linearization gives a better fit in general. The imaginary
part is captured very well, because Hprop(0) is usually real, so no additional (constant)
contribution to the imaginary part is to be expected.
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Figure A1. Comparison of different linearization strategies for frequency-dependent transfer functions.
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In this work, only the real linearization was used to obtain derivatives similar to the
Houbolt/Reed method (see Figure 10) for better comparison.

Appendix B. Influence of Thrust and Torque

The comparative whirl flutter stability assessment in Figure 12 already demonstrated
the stabilizing effect of thrusting conditions on the system experiencing propeller whirl
flutter. This appendix explores this effect in a more detailed manner by showing the
influence of thrust and torque on the unsteady hub transfer functions and the resulting
whirl flutter results.

Figure A2 shows the changes in the unsteady hub transfer function from propeller
disc pitch θ to the in-plane hub loads for two thrust coefficients. For better visibility, only
UPM results are shown. The main differences can be observed in the aerodynamic stiffness
terms (or 1P hub loads) in the z-direction. The absolute value of the vertical force coefficient
increases with thrust, which can be attributed to the tilting steady-thrust vector. The thrust
vector also produces aerodynamic stiffness in the Myy term due to the lateral shift in the
thrust vector relative to the reference frame. The absolute value of the cross-coupling
moment term, Mzθ , in Figure A2 decreases with the increase in loading due to the tilting
torque vector of the propeller. All other terms only show minor changes, as it can be seen,
e.g., in the aerodynamic damping (slope) in the top-left plot for Fyθ .

Figure A3 shows the resulting stability maps for the thrusting and non-thrusting
conditions. As it can be clearly seen from the figure, thrust and torque have a (strong)
stabilizing effect on whirl flutter stability, as already known from the literature [1]. In
fact, it is not the thrust vector itself that leads to this stabilization. The steady-thrust
effects on the transfer functions (aerodynamic stiffness in Myy and Fzθ) cancel each other
out for the simplified pylon system, which only shows rigid-body rotations. The thrust
vector always points through the pivot point and thus cannot contribute to the generalized
loads. The reason for the stabilization can mostly be attributed to the tilting torque vector
decreasing the destabilizing coupling torque (Mzθ).
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Figure A2. Transfer function from disc pitch to hub in-plane loads for operating points with either
no or high thrust setting, calculated with UPM.
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Figure A3. Comparison of whirl flutter stability map predictions with UPM for low and high thrust.

Appendix C. Comparison of BEM Methods

This appendix details the differences in the results obtained with the three different
BEM implementations. The three methods comprise azimuthal averaging (averaged mo-
mentum theory, AMT), element-wise formulation (differential momentum theory, DMT)
and the weighted solution between the two (weighted momentum theory, WMT), which
takes the AMT solution for the root and gradually blends it into the DMT solution at the
tip (see Smith [16] for more details about the methods). In the main paper, the weighted
approach is used for the BEM+Wagner method.

The differences in the different BEM methods only apply for non-uniform inflow
conditions, where lift and thus induced velocity varies over the azimuth. Steady lift
distribution is not affected by the methods. Figure A4 shows the difference in 1P hub
loads among the three different methods, with the weighted method being denoted as
BEM+Wagner like in the rest of the paper. Additionally, UPM results are shown as the mid-
fidelity reference. Wagner results without induced velocity are also shown for comparison.

As Smith [16] already pointed out, the annular BEM (AMT) over-predicts the 1P hub
loads. In fact, the induced velocity effects exerted by the harmonic lift distribution are
completely averaged out, giving the same results as without the induced velocity model
(as it can be observed by comparing it to the Wagner method). Using azimuthally varying
induction (DMT) by using a purely element-wise BEM iteration under-predicts the loads, on
the other hand. The weighted BEM, which basically blends the two solutions in the radial
direction using the local radius, achieves better correlation with most 1P-Load components
(except for Myθ). The results presented in Figure A4 for the quasi-steady 1P hub loads can
be transferred to the hub load transfer functions, with the weighted BEM showing the best
correlation, and AMT over- and DMT under-predicting most unsteady loads.

Figure A5 presents the performance of the three BEM methods with regard to whirl
flutter stability in a plot similar to Figure 12. Despite predicting the aerodynamic loads
better than the two other BEM formulations, the BEM+Wagner results are not always closer
to the mid-fidelity reference (see middle row in Figure A5). On the other hand, the AMT
(like the Wagner method without inflow) for some configurations (e.g., mid and short
pylons) gives an even more stable system than Houbolt/Reed, and the DMT shows higher
sensitivity to the system parameters compared with the reference (see dark-blue bars in the
middle row).
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Figure A4. Comparison of 1P hub loads due to disc pitch of different BEM formulations.
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