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Abstract— Grasping objects with limited or no prior knowl-
edge about them is a highly relevant skill in assistive robotics.
Still, in this general setting, it has remained an open problem,
especially when it comes to only partial observability and
versatile grasping with multi-fingered hands. We present a
novel, fast, and high fidelity deep learning pipeline consisting
of a shape completion module that is based on a single depth
image, and followed by a grasp predictor that is based on
the predicted object shape. The shape completion network is
based on VQDIF and predicts spatial occupancy values at
arbitrary query points. As grasp predictor, we use our two-
stage architecture that first generates hand poses using an au-
toregressive model and then regresses finger joint configurations
per pose. Critical factors turn out to be sufficient data realism
and augmentation, as well as special attention to difficult cases
during training. Experiments on a physical robot platform
demonstrate successful grasping of a wide range of household
objects based on a depth image from a single viewpoint. The
whole pipeline is fast, taking only about 1 s for completing the
object’s shape (0.7 s) and generating 1000 grasps (0.3 s).
(https://dlr-alr.github.io/2023-humanoids-completion/)

I. INTRODUCTION

A major step towards real-world autonomy of robot sys-
tems in general, and of versatile humanoids in particular, is
their ability to grasp objects at a first-time encounter, that is,
a successful handling of novel objects. This scenario is likely
to occur, e.g., in assistive robotics operating in human living
and working environments, or indeed in any environment
that is not strongly constrained in terms of objects and tasks
(hospitals, elderly care homes, shop floors, offices).

Accordingly, the goal of unknown object grasping has
been pursued for more than a decade. In early studies, one
main approach was to transfer grasps from a database of
known objects to novel ones with similar shapes [1, 2]. How-
ever, only the grasp pose and the preshape of the robot hand
or gripper were retrieved in this way, without having control
over the grasp contacts finally made. Grasp poses were also
inferred from probabilistic models [3], and the preshape from
Eigengrasp planners [4]. Going one step further, in [5, 6], we
have warped individual finger contacts onto novel objects,
but also being restricted to a high level of shape similarity.
All in all, the early approaches were suffering from a lack of
generality and control. More recently, there has been progress
on grasping of unknown objects from a wider range [7],
but being tailored to parallel jaw grippers and hence simple
specific grasp types.
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Fig. 1. Grasping the YCB bleach bottle using our grasping pipeline: The
object is first perceived using Agile Justin’s [8] Kinect camera to obtain
a single depth image. Afterward, the shape completion network predicts
the full object shape, based on which the grasping network generates a
stable grasp. The grasp is then executed on the real robot using whole-body
motion planning [9, 10] for positioning the hand relative to the object and
a kinematically calibrated robotic system [11, 12]

Using a dexterous multi-fingered robot hand allows a wide
repertoire of complex grasps, leading to applications ranging
from pick-and-place tasks [13] to object manipulation [14]
and to the utilization of tools via functional grasps [15].
However, the exploitation of its full potential under the
condition of very limited prior object knowledge requires
a detailed reconstruction of the complete object shape and,
based on this, a shape-specific prediction of the finger
configuration. Using these two critical components, we have
integrated the first system that can predict and execute in
real-time stable grasps with a fully actuated four-finger hand
on a wide range of initially unknown object shapes.

Accurate and complete object shape reconstruction from
partial and noisy depth data as can be acquired from a single
viewpoint is challenging. We here take shape completion
to the real world by introducing a procedure for synthetic
training data generation and the training itself that can bridge
the gap to the real sensing conditions. Likewise, we use
the same synthetic data generation procedure together with
the trained shape completion network to acquire realistic
object reconstructions for training the grasp network. We
further describe an extension to the grasp planner which
increases the robustness of the generated training grasps
against uncertainties in the relative pose between object and
hand.

We show what is important in training shape completion
and grasp prediction as a grasping pipeline for the real world.
Critical factors are the careful generation of training data as
well as a training procedure that emphasizes difficult cases.

Our main contributions are:
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Fig. 2. Our pipeline consists of two steps during inference. From a partial point cloud of an object obtained through rendering (training) or a depth sensor
(inference), we use a shape completion network [16] to predict the full object geometry implicitly as occupancy probabilities at query points on a grid
from which we can optionally extract the completed mesh using Marching Cubes [17]. Once this network is trained, the predicted occupancy probabilities
are used as input for the grasp predictor [18] both during training on ground truth (GT) grasps as well as during deployment on our robot Agile Justin.

• A procedure for synthetic data generation and training
of shape completion for improved sim2real transfer.

• A quantitative evaluation on synthetic and real data of
the effects of the improved data and training procedure.

• An extension of the analytical grasp planner to generate
grasps that are more resilient against uncertainties in the
relative pose between hand and object.

• An adaptation of the grasp network architecture to han-
dle ambiguities in the dataset without the requirement
of generating multiple labels for each training sample.

• A validation of the proposed training procedures and
of the system pipeline for reliable grasp generation and
execution through a series of grasping experiments on
our humanoid Agile Justin with a large range of initially
unknown objects.

II. RELATED WORK

Our work is related to deep learning based completion or
reconstruction of partial 3D data. There is a large number of
approaches to handle this modality from 3D convolutional
neural networks [19, 20], over point cloud-based meth-
ods [21, 22, 23] to 3D triangle mesh methods [24, 25].
In recent years, implicit function representations [26, 27,
28, 29, 30, 16] have gained traction due to their strong
performance on diverse problems. While these works excel
on benchmarks, they are seldom extended and evaluated
under realistic conditions like varying viewpoints, object
diversity and rotation, self-occlusion, and sensor artifacts.
We make use of a network architecture introduced in [16] but
train it on a large, realistic dataset to enable generalization
to real-world scenarios.

There is a strong connection to the robotic grasping
literature, specifically works that rely on additional geometric
understanding to perform grasps [31, 32, 33, 34]. Varley
et al. [31] are the most similar to our work but only train
on a limited number of objects (480 vs. 57,000) with a

low-resolution voxel grid representation (403 vs. continuous
implicit representation) and thus lack fidelity in completing
unknown–and especially–real objects. Also, the grasps are
optimized online using an analytical grasp planner, while
we instantly predict stable grasps using our learning-based
approach. Yan et al. [32] only shows qualitative shape com-
pletion results and uses a parallel jaw gripper for grasping.
Also, Chen et al. [34] does not consider multi-fingered hands.
der Merwe et al. [33] use an implicit function representation
of the completed object and a multi-fingered hand but only
show a single low-fidelity qualitative shape completion result
on real data. Furthermore, the grasping prediction requires
an online optimization, leading to long planning times.

In this work, we also propose a new method to handle
ambiguities in the grasp training data. This issue has been
usually approached by generating multiple labels for training
samples and then using the one closest to the network’s
prediction for the computation of the loss [18, 35, 36].
While this reduces the ambiguity problem, it makes the
data generation process more computationally expensive. In
contrast to that, our proposed approach only requires one
label per training sample and therefore does not suffer from
that problem.

III. SHAPE COMPLETION

We use implicit functions to represent the 3D surface
of an object as the continuous decision boundary of a
Deep Neural Network (DNN) classifier predicting occupancy
probability at each spatial location. Compared to discrete
representations, implicit functions have the advantages of
infinite resolution at a low memory footprint and are agnostic
to the genus of the object geometry. During inference, the
implicit function can be queried densely on a voxel grid and
meshed using Marching Cubes [17] to extract an explicit
mesh representation of the object. These networks are trained
by giving partial observations like depth images or point



clouds as input and supervising with occupancy labels at
sampled spatial locations.

Specifically, we use the VQDIF [16] (Vector Quantized
Deep Implicit Functions) network architecture which im-
proves on Convolutional Occupancy Networks [26, 27] using
a more compact sequence-based shape representation.

A. Training data generation

We leverage the ShapeNetCore (v1) subset of the
ShapeNet [37] dataset containing more than 57,000 3D
models across different categories to generate training data.

Many of the provided meshes are, however, not watertight.
We, therefore, first pre-process the entire dataset using the
mesh-fusion [38] pipeline with optimizations for speed and
parallel execution to allow for the processing of large-scale
datasets. We apply quadratic edge collapse decimation [39]
and small disconnected component removal to reduce the
triangle count by 95% and remove unwanted mesh-fusion
artifacts. We sample 100,000 points from the surface of the
watertight meshes. For supervision of the occupied space,
we use multiple sampling strategies. We uniformly sample
100,000 points in the unit bounding cube of each object
with a small padding of 0.1 on each side and determine
their occupancy value using a triangle intersection test as
in Mescheder et al. [26]. We further sample 10,000 points
from the surface of the object and add Gaussian noise
with various standard deviations for a total of an additional
100,000 points to increase the resolution of the supervision
signal close to the surface similar to Xu et al. [29]. Addi-
tionally, we sample 100,000 points from spheres centered on
the object with various radii to prevent missing occupancy
information inside the unit cube under object rotation. We
refer to these points as query points in the remainder of this
article.

To simulate realistic partial views, we render depth, sur-
face normal, and simulated Kinect depth images from views
distributed on the upper hemisphere facing each object using
an optimized version of the Blensor [40, 41] Kinect sensor
model. Figure 3 shows a comparison of a scene rendered
using a standard renderer, the Kinect simulator and the real
Kinect sensor data. The simulation more closely resembles
the real depth image, showing similar noise patterns and
regions of missing data compared to the standard depth
rendering. At the same time, there are still considerable
differences and room for improvement to more accurately
simulate real sensor artifacts.

For each object, we render 100 views with the camera
positioned at varying distances for a total of around 5.7
million views which we split 9 to 1 per object category into
training and validation sets. A test set is not necessary as we
perform testing on novel objects and real data, as explained
later. We also generate additional data where we randomly
scale each object along its upright axis by up to 20% for
every rendered view to further increase the object diversity,
especially for categories with few examples.

The complete data generation pipeline is summarized in
algorithm 1.

Fig. 3. Comparison of standard depth rendering (left), Kinect depth
simulation (middle), and the real Kinect depth image (right). The object
mesh is obtained via a laser scanner, and its pose through a registration
step.

Algorithm 1 Data Generation
1: Obtain ShapeNetCore subset containing N meshes
2: for i = 1 to N do
3: Make mesh watertight
4: Normalize mesh
5: Sample 100,000 points from mesh surface
6: Sample 100,000 random points in unit cube
7: for r = 1 to 5 do
8: Sample 100,000 random sphere points (radius r)
9: end for

10: for s in S ∈ {0.001, 0.25} do
11: Sample 10,000 points from the mesh surface
12: Sample and add noise N (0, s)
13: end for
14: Compute occupancy for all points
15: for v = 1 to 100 do
16: Apply random scale to mesh (optional)
17: Sample view on upper hemisphere
18: Render depth, normal and Kinect depth images
19: end for
20: end for
21: Split data into 90% training and 10% validation sets

B. Training

We train our shape completion networks in a fully su-
pervised manner. For each training example, we randomly
sample one of the ShapeNet objects and then one of its
corresponding rendered depth or simulated Kinect depth
images. We refer to the DNN trained on the simulated Kinect
depth images as KINECT and the one trained on data with
randomly scaled objects during data generation as KINECT
SCALE. The depth image is projected to a 3D point cloud
based on the known camera intrinsic parameters used during
rendering. For the BASIC training setup, we add Gaussian
noise to all points and additional noise to edge points which
we partially remove as in Humt et al. [42]. We center the
input data at its origin and scale its longest side to unit length.

We load the uniform, noisy surface and sphere query
points for the given object, crop points outside the unit
bounding cube, subsample 2048 queries, and transform them
to match the scale and camera frame of the normalized
input data. Since the robot’s base frame of reference is



known during deployment, we further transform all points
from camera coordinates to the robot’s world coordinate
system using the robot’s kinematic chain. This reduces the
complexity of the learning problem by removing camera tilt.
At each query point the occupancy probability is predicted
and the ground truth binary labels are then used to compute
the binary cross-entropy loss, which we use as training
signal.

Once the training is complete, we improve the model
performance further through an automated finetuning step.
Akin to Hard Negative Mining, we employ an importance
sampling strategy by oversampling object views proportional
to the magnitude of their obtained loss. To mitigate the high
class imbalance of ShapeNet (there are approximately 35
times more cars than mugs), we further resort to weighted
batch sampling using the inverse class frequency as weights.
The effects of this additional step are exemplified in Figure
7.

All methods are implemented in the C++ and Python
programming languages. We use PyTorch [43] and Light-
ning [44] as our primary Deep Learning framework. Net-
works are Trained with the AdamW [45] optimizer with a
learning rate of 1e−4 and weight decay of 0.01. All networks
are trained for a maximum of 100 epochs with learning rate
reduction when performance on the validation set plateaus
for 10 epochs and early stopping after 30 epochs without
improvement.

IV. GRASP PREDICTION

To efficiently predict grasps for a given unknown object,
we are building on top of the learning-based approach
proposed by Winkelbauer et al. [18]. Here, grasping is
approached as a supervised learning problem, learning the
mapping from a given observed object o to a set of grasps
{x1, ..., xn}. Each grasp xi is composed of a 6D hand pose
h and a joint configuration q ∈ R12. The ground truth grasp
annotations for synthetic training objects are generated using
an analytical grasp planner. The grasp planner formulates
grasping as an optimization problem by using a grasp quality
metric as objective. Our quality metric is based on the epsilon
quality metric [46], which is defined as the magnitude of
the minimal external wrench that would break the grasp. As
learning architecture, a two-stage neural network is used.
The first stage is a generative network for hand poses that
learns the mapping G : o 7→ p(h|o). The second stage is a
regressive network which learns the mapping J : (o, h) 7→
(q,∆h, s), predicting a joint configuration q, a small hand
pose correction ∆h, and a grasp quality s for each generated
hand pose h. For further details, we refer the reader to
Winkelbauer et al. [18].

A. Object pose uncertainty

When executing a grasp on the real system, multiple small
inaccuracies in the grasping pipeline lead to an uncertainty
in the actual relative positioning of object and hand. These
inaccuracies can occur in the calibration of the camera
and kinematic structure, the shape completion, and also

(a) All contact points (b) Central contact points

Fig. 4. The DLR-Hand II [47] which we use in our experiments. Each
red dot represents a potential contact point. In the left image, all contact
points used in the grasp planner are shown, while the right image shows
only the central contact points that are used to verify that a finger is still in
full contact with the object after slight pose variations.

the grasp prediction itself. Some grasps, however, require
a very precise placement of the fingers to be successful.
So, due to small inaccuracies, a finger might miss or slide
over an edge, which can lead to a distortion of the grasp
and even to dropping the object. To prevent such grasps,
we adapt our grasp planner’s objective in a way that we
diminish the quality of grasps that are prone to missing
the object due to small changes in its relative pose. To
detect such grasps, we check the grasp under multiple small
object pose deviations. In detail, we move the object pose
using a translation ∆ti. To then resolve possible collisions
with the hand base, the hand is moved backward along the
approach direction until any collision with the hand base is
resolved. Afterward, the fingers are closed until they touch
the object or until they reach the limits of the joints. For
each joint, we check whether the difference between the
resulting joint configuration and the original one is smaller
than 23◦. We further check whether each finger, that was
in contact with the object before, still contacts the object in
at least one contact point close to the center of the finger
(see Fig. 4). This detects situations where a finger is still in
contact with the object but only touches its surface slightly
with the side of the finger. If one of the checks fails, the
grasp quality is decreased to 30% of its original computed
value. To keep the grasp planner’s objective computationally
efficient and deterministic, we test six translations ∆ti, each
moving the object along one axis for 2 cm in both directions.
In summary, grasps that are unstable when there is object
pose uncertainty are devalued and therefore, such grasps are
prevented by the grasp planner, if possible.

B. Ambiguities in predicting joint configurations

As mentioned in the introduction of Section IV, the second
stage of the grasp prediction network, is trained to predict
for a given object o and hand pose h the joint configuration
q with the highest resulting grasp quality. This mapping
is ambiguous, however, meaning there are usually multiple
valid joint configurations that lead to the same or very similar
grasp qualities. When using standard supervised training, this
leads to learning the mean of all valid joint configurations,
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Fig. 5. Adapted joint predictor network architecture with multiple heads.
Each head predicts one configuration together with a logit lk , which is used
to determine which head to use at inference.

which, however, might not be valid. The way this is handled
by Winkelbauer et al. [18], is by explicitly having multiple
ground truth annotations for each training sample and then
using the one closest to the network prediction for computing
the loss. The disadvantage of this approach is that it is com-
putationally expensive to find this set of joint configurations.
Also, this might lead to including joint configurations with
less quality and consequentially to the network learning not
the top grasp.

We here present an alternative solution to the ambiguity
problem, which is based on adapting the network architecture
as shown in Figure 5. Instead of predicting just one config-
uration, we let the network predict N configurations using
N heads. Each head k predicts a joint configuration qk, a
small hand pose correction ∆hk, and a grasp quality sk. To
compute the loss, we only use the prediction of the head j
that is closest to the ground truth q̂: j = argmink ∥q̂ − qk∥2.
The joint loss term is hence defined as

Ljoint = ∥q̂ − qj∥2 . (1)

The loss terms for the predicted grasp quality sj and hand
pose correction ∆hj are formulated in an analog manner.
To decide which head’s prediction to use at inference time,
we additionally model the relative frequency of each head’s
prediction in the training dataset. In detail, each head k ad-
ditionally predicts a logit lk, which are together transformed
into a probability distribution using softmax: ck = elk∑K

j=1 elj

Using the cross entropy loss function, this distribution is
optimized to model the true underlying distribution of the
predicted modes in the training dataset:

Lclass = − log cj (2)

At inference time, we select the prediction of the head k with
the largest lk, which corresponds to taking the prediction
that is the most prominent in the training dataset. Using
this architectural adaptation, it is possible for the network
to handle ambiguities in the dataset, while only one ground
truth label for each training sample is necessary. In this work,
we are using N = 5 heads, which we found to be enough to
cover the main ambiguities contained in our training data.

V. EXPERIMENTS

We conduct a systematic evaluation of our shape comple-
tion pipeline through multiple experiments on synthetic and
real test data. First, we quantitatively assess the generaliza-
tion capabilities to novel objects using volumetric and sur-
face metrics on the completed shapes from simulated depth
images. Next, we validate performance on real partial scans
from a Kinect sensor and evaluate the ability to transfer from
synthetic training data. Finally, we provide a qualitative grasp
analysis by attempting robotic grasping of the completed
shapes from real partial views. These experiments analyze
the utility of our approach for enabling robotic manipula-
tion of unknown objects based on incomplete observations
from commodity RGB-D sensors. The robust performance
demonstrates accurate shape inference on synthetic and real
partial inputs, along with successful grasping by leveraging
the completed geometry.

A. Shape completion

The performance of shape completion is evaluated on both
synthetic and real test data. First, we assess the ability to
generalize to novel objects not seen during training. We
use 29 objects which were selected and scanned with a
laser scanner for an Automatica trade fair demonstration as
well as 38 objects of the YCB [48] dataset, for which we
render 100 simulated Kinect depth images per object, each
covering different viewpoints. We quantitatively evaluate the
completed shapes using volumetric metrics like intersection
over union (IoU), F1-score, precision, and recall computed
by sampling one million spatial points uniformly inside the
unit cube (Table I). Additionally, we extract surface meshes
for each completion and measure point-based versions of F1,
precision, recall, as well as Chamfer (L1) distance [26, 49]
between points sampled from the surface of the ground truth
and generated meshes (II).

TABLE I
VOLUMETRIC RESULTS ON AUTOMATICA/YCB DATASET

Model IoU↑ F1↑ Precision↑ Recall↑

KINECT FINETUNE 66.7 75.7 73.5 83.3
KINECT SCALE 60.4 71 75.5 73.6
KINECT 58 68.9 75.7 70.6
BASIC 49.5 61.1 74 59.5

Table I shows the volumetric evaluation results on the
Automatica/YCB dataset for different variants of our shape
completion model. We observe that fine-tuning the network
(KINECT FINETUNE) as explained in section III-B leads to
the best performance with an IoU of 66.7% and F1-score of
75.7%. The network trained on Kinect data but without fine-
tuning (KINECT) performs worse, justifying the additional
step. Interestingly, the network trained on simulated Kinect
data with additional random scaling augmentation (KINECT
SCALE) leads to considerable improvement. Finally, the
network trained only on synthetic data without simulation
(BASIC) performs significantly worse, with an IoU of just
49.5%, highlighting the domain gap between synthetic and



real data. Overall, the results validate our design choices of
using Kinect simulation, scaling augmentation, and finetun-
ing, which enable accurate shape completion from real partial
scans.

TABLE II
MESH SURFACE RESULTS ON AUTOMATICA/YCB DATASET.

CHAMFER-L1 (CD)×10.

Model CD↓ F1↑ Precision↑ Recall↑

KINECT FINETUNE 0.258 41.5 43.4 40.2
KINECT SCALE 0.276 43.4 44.6 42.8
KINECT 0.29 42.7 44.1 42
BASIC 0.455 34.1 36.8 32.6

Table II shows the mesh-based metrics on the Automat-
ica/YCB dataset. We again observe the benefit of Kinect
pretraining and finetuning, with KINECT FINETUNE achiev-
ing the lowest Chamfer-L1 distance of 0.258. The network
trained only on synthetic data (BASIC) has significantly
higher CD, revealing the domain gap. Overall, the mesh
metrics confirm that leveraging simulated Kinect data along
with finetuning is crucial for accurate shape completion from
real partial observations, enabling tasks like robotic grasping.

Second, we validate performance on real sensor data from
a Kinect camera (Table III and Figure 8). We use a limited
subset of 25 objects and a single view. To align the ground
truth meshes with the real data, we use a global-to-local,
coarse-to-fine pose estimation pipeline1 with manual visual
inspection of the result. Note that this is only necessary
for quantitative evaluation of the results and not during the
inference phase when deploying the pipeline on the robot.

We separate the object points from the complete point
cloud obtained from the depth image projection through
plane segmentation. We first fit a plane into the scene
corresponding to the table surface and then only keep points
that are above. Due to noise, this procedure removes points
close to the surface, like the bottom of bowls. To prevent
this, we compute the convex hull of the object points, slightly
increase its size, and translate it towards the table. We then
use it as a mask to cut points from the table surface and
reintroduce them to the object points. The reconstructed
shapes are evaluated using the same set of volumetric and
surface metrics to quantify the sim-to-real transferability.

TABLE III
RESULTS ON REAL SCANS FROM AUTOMATICA/YCB OBJECTS.

CHAMFER-L1 (CD)×10.

Model CD↓ IoU↑ F1↑ Precision↑ Recall↑

KINECT FINETUNE 0.134 74.7 83 79.2 89.2
KINECT SCALE 0.147 72 81.1 79.8 84.2
KINECT 0.128 74.2 82.5 81.3 85.3
BASIC 0.143 71.2 80.4 82.3 80.7

Table III shows the evaluation on real test scans from
Automatica/YCB objects. We observe that the models on

1https://github.com/hummat/easy-o3d

simulated Kinect data achieve lower Chamfer distances and
higher volumetric scores compared to the basic training,
consolidating the results from the synthetic data evaluation
and the qualitative results, showing failure cases without
Kinect simulation (Figure 6) and without finetuning (Figure
7) and high-fidelity completions for a diverse set of objects
and viewpoints (Figure 8). The KINECT model performs
best in terms of Chamfer distance but worse than the fine-
tuned model on the volumetric metrics. The scale-augmented
Kinect model performs worst in this setting. Due to the small
sample size and the resulting high variance–all methods show
a standard deviation of around 0.05 for Chamfer distance
and 2.4% (absolute) for IoU–further investigation is needed
to differentiate between the different Kinect methods.

(a) Basic depth rendering (b) With Kinect simulation

Fig. 6. Effects of Kinect depth simulation. Training on unrealistic depth
data leads to failure in challenging regions far away from input data
and training distribution (left). Accurately simulating sensor characteristics
resolves this (right).

(a) No finetuning (b) With finetuning

Fig. 7. Effects of finetuning. The standard training methodology can lead to
failure cases on challenging objects and viewpoints. Automated finetuning
on difficult examples through importance sampling alleviates or greatly
reduces this problem.

B. Grasping

Using the adapted grasp planner described in Section IV-
A, we generate a dataset of 190 000 grasps across 12 000
ShapeNet objects [37]. For the training of the second stage,
we generate an additional 100 000 grasps using hand poses
generated by the trained first stage. This makes sure the
second stage can correctly process the hand poses produced
by the generative network. For each ShapeNet object in the
training dataset, we generate a simulated Kinect depth image,
based on which the full shape is again reconstructed using
the shape completion network KINECT FINETUNE, presented
in the last section. The two-stage grasp network, including
the improvements described in Section IV-B, is now trained

https://github.com/hummat/easy-o3d


Fig. 8. Qualitative results on the Automatica/YCB dataset. Our approach
yields detailed object geometry from partial, noisy inputs. The complete
meshes correspond to our KINECT FINETUNE model and its quantitative
results in table III.

using the generated shape completions as input and the
optimized stable grasps as labels.

We evaluate the grasping stage in simulation on the same
dataset as used in Section V-A. Each object is grasped 10
times, each time rotated randomly around the up-axis. Of
all tested 660 grasps, 95.2% were successful. The most
prominent failure case is the object being too small to be
grasped while keeping a distance to the table. Same as with
the shape completion network, all evaluated objects shown
here or in the video accompanying the paper are unknown
to the grasping network and not part of the training dataset.

The full pipeline of predicting 1000 grasps for a given
object takes only about 1 s with shape completion 0.7 s and
grasp prediction 0.3 s 2.

As visible in the video, even for unusual objects (e.g., the
stuffed dog), the completion only gradually breaks down,
leading to locally correct completions that still allow for a
successful grasp.

In the following subsections, the two adaptations proposed
to the grasp network are examined more closely:

1) Object pose uncertainty: When not taking the object
pose uncertainty into account, fingers are sometimes placed
close to or even on object edges, as they usually increase
the grasp quality. However, when performing the grasp on
the real system, such placed fingers might slide over the
edge and involuntary rotate the object or even break the
grasp Using the changes proposed in Section IV-A, the
grasps in our training dataset and, therefore, also the grasps
predicted by the network, are chosen in a way that fingers are
placed further from edges, if possible. This can be seen in

2Intel Xeon 6144 with 16 cores and a single GPU NVIDIA V100.

(a) Without pose uncertainty (b) With pose uncertainty

Fig. 9. Comparing grasp predictions with and without considering
object pose uncertainty during training data generation: When taking pose
uncertainty into account, it leads to fingers being placed further away from
edges.

Fig. 9. The network trained without considering object pose
uncertainty is trying to fit as many fingers as possible on the
small surface of the cup, leading to one finger being placed
on the edge of the cup The network trained with object pose
uncertainty, however, instead only uses three fingers, which
allows them to be placed at sufficient distance to the object
edges. So even with slight variations in the object pose, the
grasp would stay stable.

2) Joint configuration ambiguity: By applying the archi-
tectural changes described in Section IV-B to the grasping
network, we are able to train our network using only one
label for each training sample. When training the model
architecture used in Winkelbauer et al. [18] on the same data,
ambiguities cannot be distinguished and the network learns
the mean of all valid joint configurations. This becomes
especially clear when there exist distinct modes in the
training labels. Fig. 10 shows an example where the object
can be grasped with three fingers or four fingers. While
the multi-output network can predict separate valid modes,
the single-output network predicts a mix between the modes
leading to one finger intersecting the object. This example
also shows the importance of classifying which predicted
modes are active. For this kind of object, there seem to exist
two main types of grasps in the training dataset. One using
four fingers and one using only three. The network predicts
both modes, each having a large frequency classification,
while the other three outputs are not used here and therefore
are classified as close to 0%.

VI. CONCLUSION

In this paper, we have proposed a novel, complete, and
fast pipeline (only 1 s from looking to grasping) for robotic
grasping of unknown objects with a multi-fingered hand
based only on partial shape observations from a com-
modity depth sensor. Our method combines deep implicit
shape completion (0.7 s) with data-driven multi-finger grasp
prediction (0.3 s for 1000 grasps). This enables efficient
grasping across objects with significant shape variation, a
key capability for robotic manipulation in unconstrained
real-world environments. Through systematic experiments on
synthetic and real data, we have validated the benefits of
our training procedures for improved sim-to-real transfer.
Robotic grasping trials further demonstrate the utility of our
approach by successfully manipulating a diverse range of
novel household objects based on single-view depth images.
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Fig. 10. Comparing single-output network (left) with multi-output network (right) on predicting the grasp for a butter box: The prediction of the single-
output network is a mixture of all modes leading to one finger intersecting the object. The prediction of the multi-output network can explicitly consider
several modes. In this case, two modes are used: The second one using all four fingers and the fourth one using only three.

Future work will include further improvements to sensor
simulation, network architectures and training procedures.
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Generation,” in IEEE Conference on Computer Vision and Pattern Recognition,
2018.
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