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Abstract 
This paper presents a hybrid and unsupervised approach to flame front detection for low signal-to-noise planar laser-induced 
fluorescence (PLIF) images. The algorithm combines segmentation and edge detection techniques to achieve low-cost and 
accurate flame front detection in the presence of noise and variability in the flame structure. The method first uses an adaptive 
contrast enhancement scheme to improve the quality of the image prior to segmentation. The general shape of the flame 
front is then highlighted using segmentation, while the edge detection method is used to refine the results and highlight the 
flame front more accurately. The performance of the algorithm is tested on a dataset of high-speed PLIF images and is shown 
to achieve high accuracy in finely wrinkled turbulent hydrogen-enriched flames with order of magnitude improvements in 
computation speed. This new algorithm has potential applications in the experimental study of turbulent flames subject to 
intense wrinkling and low signal-to-noise ratios.

Graphic abstract

1 Introduction

Identifying the instantaneous position of the flame front 
and its representative geometric features is one of the most 
common tasks in the post-processing of optical images of 
turbulent flames. Indeed, accurate flame front detection 
gives access to an array of quantities such as curvature 
and flame surface density which are essential to relating 
turbulence and reaction rates. A common definition 
of the flame front is the location of peak heat release 
(Sweeney and Hochgreb 2009). Direct, spatially resolved 
measurements of heat release rate are hardly feasible; 
instead, alternatives such as planar Rayleigh scattering 
can be used to measure two-dimensional temperature 
fields. This method is, however, known to yield low 
signal-to-noise ratio (SNR) images and presents a number 
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of experimental difficulties when simultaneous particle-
based velocity measurements are desired (Sweeney 
and Hochgreb 2009; Pfadler et al. 2007). Planar laser-
induced fluorescence of the hydroxyl radical (OH-PLIF) 
is therefore a popular alternative, wherein the flame front 
is determined by locating the steepest gradients of OH 
intensity (Sweeney and Hochgreb 2009). This is generally 
considered a valid tracer of the flame front as local maxima 
of OH gradients tend to be reasonably close to the location 
of peak heat release (Sweeney and Hochgreb 2009; Pfadler 
et al. 2007). A primary concern in flame front detection 
tasks, however, especially at high repetition rates, is the 
SNR which can be quite low due to variations in laser 
beam energy. This results in a non-homogeneous intensity 
profile across the same image and intensity fluctuations 
on a shot-to-shot basis. To address this issue, common 
practice is either to use pixel binning or Gaussian filtering 
of the images, which results in an inevitable loss of spatial 
resolution (Boxx et al. 2015). Other difficulties stem from 
the convoluted nature of turbulent flames, often featuring 
a number of reactant and product pockets in the corrugated 
flamelet regime (Tyagi et  al. 2019, 2020). Additional 
challenges arise when thermodiffusively unstable (i.e., 
lean hydrogen/air) flames are investigated, which feature a 
wide range of cellular structures and thin elongated fingers 
(Berger et al. 2019, 2022; Day et al. 2009; Bell et al. 2007; 
Howarth and Aspden 2022). In these situations, common 
flame front detection algorithms may reach their limits, 
which highlights the need for more robust and systematic 
approaches. As a general principle, flame front detection 
algorithms should meet a set of essential criteria. First, 
the algorithm should accurately identify the location 
of the flame front (associated with peak gradients) and 
its key geometric features such as curvature. Second, 
the algorithm should require as little supervision as 
possible, meaning it is capable of adapting its parameters 
autonomously based on the quality and SNR of the image 
it is given. Third, the algorithm should be computationally 

undemanding and therefore practical for processing larger 
image sets from high-speed diagnostics.

In this work, we examine and compare the two common 
routes to flame front detection, namely segmentation 
and edge detection, in processing low-SNR OH-PLIF 
images of turbulent hydrogen-enriched flames. A pre-
processing scheme based on adaptive contrast adjustment 
is proposed to improve the accuracy of segmentation. We 
then propose a hybrid edge detection method, the Filtered 
Canny algorithm, combining both segmentation and edge 
detection for accurate, unsupervised, and low-cost flame 
front identification. The algorithm is evaluated against a 
high-performance, computationally intensive alternative, 
the Augmented Canny algorithm (Sweeney and Hochgreb 
2009), and is shown to produce results of comparable 
accuracy with a considerable reduction in computational 
time. The proposed method showcases excellent accuracy 
in hydrogen-rich cases and is able to accurately trace the 
shape of the flame front and detect all isolated flame pockets.

2  Experimental methodology

Measurements were conducted in flames generated with 
the DLR Bunsen Burner (Pareja et al. 2022). This burner 
has an internal geometry similar to that used by Coppola 
and Gomez (2009). It consists of a cylindrical plenum that 
terminates at a high blockage ratio turbulence generator 
plate, which is followed by a straight conical contraction. 
The nozzle has a contraction angle of 15◦ , followed by a 
straight section of 10 mm. It has an outlet diameter of d = 15 
mm. The turbulent generator plate located at the base of 
the conical contraction has four circular holes (4.8 mm in 
diameter) evenly spaced around a ring of 36 mm in diameter, 
which yields a blockage ratio of 96%.

Experiments were conducted at atmospheric conditions 
(1 atm, 300 K) and are presented in Table 1. An initial 

Table 1  Experimental 
conditions investigated in this 
study

The laminar flame speed and (thermal) flame thickness, denoted sL and �L , respectively, were obtained from 
1D Cantera simulations of freely propagating unstretched laminar flames using the GRI-Mech 3.0 
mechanism (Goodwin et al. 2022; Smith et al. 1999). The bulk flow velocity U

0
 was estimated based on the 

total mass flow rate of reactants ṁ . Velocity fluctuations were estimated using the root-mean-square radial 
and axial components of velocity u′ =

√

u′2r + u′2z  , measured by particle-image velocimetry (PIV) (Pareja 
et al. 2022). The integral lengthscale was obtained from scaling estimates lt ≈

u�

U0

d . The turbulent Reynolds 
ReT and Karlovitz Ka numbers were estimated assuming a mixture density equal to that of air: 
� = 15.69 × 10−6 m 2 s−1

Case �H2
 (%) � (−) sL (m s−1) �L (mm) U

0
 (m s−1) u′ (m s−1) lt (mm) ReT (−) Ka (−)

1 0 1.00 0.38 0.44 2.13 0.46 3.20 93.81 1.61
2 40 0.80 0.38 0.44 2.18 0.48 3.30 100.96 1.69
3 70 0.65 0.35 0.47 2.12 0.45 3.20 92.78 1.81
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methane-air flame (Case 1) was stabilized on the DLR 
Bunsen Burner and then enriched with a variable amount of 
hydrogen (Cases 2 and 3). Hydrogen enrichment (denoted 
�H2

 ) is defined here as the volume fraction of hydrogen in the 
cold fuel mixture. The burner was operated at low velocity 
and turbulence characteristics were kept constant across all 
the conditions investigated. The unstretched laminar flame 
speed was kept constant by tuning down equivalence ratios 
( � ) as hydrogen was added to the reactant flow.

Flames in this burner were imaged using a high-speed (10 
kHz acquisition rate) OH-PLIF imaging system. This system 
has been described extensively in previous papers (Kushwaha 
et al. 2021). For completeness, a brief description is provided 
here. The OH-PLIF system is based on a frequency-doubled 
dye laser, pumped by a highspeed, pulsed Nd:YAG laser 
(Edgewave IS400-2-L, 150 W at 532 nm and 10 kHz) and 
an intensified high-speed CMOS camera system. The dye 
laser system (Sirah Credo) produces approximately 5.3 to 
5.5 W at 283 nm and 10 kHz repetition rate (i.e., 0.53−0.55 
mJ/pulse). The dye laser was tuned to excite the Q1(6) line of 
the A2�+ − X2� ( �′ = 1, �′′ = 0) band. The PLIF excitation 
beam is formed into a sheet approximately 50 mm (high) × 
0.2 mm (thick) using three fused-silica, cylindrical lenses (all 
anti-reflective coated to maximize transmission). OH-PLIF 
fluorescence signal was imaged using a high-speed CMOS 
camera (LaVision HSS6) and external two-stage intensifier 
(LaVision HS-IRO). The OH-PLIF camera was equipped 
with a UV-capable objective lens (Cerco, f = 100 mm, f/2.8) 
and a bandpass filter (300–325 nm). The projected pixel 
resolution of the camera was 0.07 mm/px, with an array size 
of 768 × 768 px2 . A total of 19,400 8-bit grayscale images 
were collected for each experimental condition. Mean values 
of the SNR ranged between 1.9 and 2.5 in this study, with 
recorded standard deviations between 0.15 and 0.2. These 
were estimated from raw images using a similar definition 
to the one in Sweeney and Hochgreb (2009) with additional 
details provided in “Appendix.”

3  Flame front detection

The vast majority of flame front detection algorithms in 
experimental combustion literature fall under two categories: 
segmentation or edge detection. In this section, we briefly 
discuss the background of the two most popular state-of-the-
art algorithms: Otsu segmentation and Canny edge detection 
(Fig. 1).

3.1  Segmentation

Segmentation is particularly attractive for its simplicity and 
low computational cost. It relies on binarizing the image 
into two distinct regions corresponding to a foreground 
(burnt gases) and a background (unburnt gases). Given 
an arbitrary intensity threshold i∗ , pixels are classified as 
either background ( i ≤ i∗ ) or foreground ( i > i∗ ) pixels 
based on their intensities i. The boundary or perimeter of the 
binarized image is then labeled as the flame front (Fig. 1). 
Many past investigators have made use of segmentation by 
setting an intensity threshold i∗ manually (Kobayashi et al. 
2005; Zhang et  al. 2014; Mohammadnejad et  al. 2021; 
Tachibana et al. 2004; Gulder and Smallwood 2007; Lawn 
and Schefer 2006; Wabel et al. 2017) or statistically based 
on the image histogram (Tyagi et al. 2020; Halter et al. 2009; 
Malbois et al. 2019; Fan et al. 2022). The latter approach 
is referred to as Otsu segmentation and can be used to 
estimate an optimal binarization threshold dynamically 
and fully unsupervised (Otsu 1979). The method originally 
proposed in the pioneering work of Otsu (1979) assumes 
the image histogram (Fig. 2) follows a bimodal distribution 
and tries to identify the optimal value of i∗ which ensures 
both are “maximally separated” (Burger and Burge 2016). 
Separability is assessed using a discriminant criterion known 
as the intra-class (or within-class) variance (Otsu 1979): 
for a given intensity threshold i∗ , the intra-class variance 

Fig. 1  Flowchart of flame front detection algorithms. Stages requiring supervision are shown in red
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�2
i∗
 is a weighted sum of the variances of background and 

foreground pixel intensities:

where �c and �2
c
 are the probability and variance of class 

c, respectively, c = 0 being background pixels ( i ≤ i∗ ) 
and c = 1 foreground pixels ( i > i∗ ) (Otsu 1979). The 
probability �c refers to the cumulative distribution function 
of class c, or simply the proportion of pixels in c out of 
the total number of pixels which make up the image (with ∑1

c=0
�c = �0 + �1 = 1 ). The algorithm identifies the 

optimal threshold as the value of i∗ which minimizes the 
intra-class variance �2

i∗
 and hence yields two narrow and 

well-separated distributions with minimal variances. This 
is illustrated in Fig. 2 for an OH-PLIF image of a methane-
air flame with moderate hydrogen enrichment (Case 2).

Despite its low cost and lack of supervision, Otsu 
segmentation tends to be less accurate as the flame fronts 
obtained are usually shifted from the location of peak 
gradients, as has been observed in Sweeney and Hochgreb 
(2009). As will be seen later, these shifts can be significant 
and are non-trivial as they can result in inaccurate estimation 
of flame surface area, particularly when flames are subject 
to intense wrinkling. These inaccuracies are inherent to the 
algorithm as the obtained flame front is more sensitive to the 
shape of the global image histogram than the sudden jumps 
in OH intensity near the reaction zone. This raises questions 
on the accuracy of segmentation, knowing histograms can 
be easily affected by nonhomogeneities caused by the laser 
beam energy or the variable concentration of OH in the post-
combustion region.

(1)�2
i∗
=

1∑
c=0

�c�
2
c
= �0�

2
0
+ �1�

2
1

3.2  Edge detection

Edge detection is a common alternative to segmentation 
in flame front detection tasks. The aim is to locate the 
steepest gradients of OH intensity in PLIF images, which 
makes it a more accurate tracer of the position of the 
flame front. It is also a more attractive approach when 
the PLIF signal varies across the image, as gradients 
tend to be more reliable and resilient to noise than raw 
intensity values. Basic edge detection relies on computing 
a two-dimensional gradient map of the image, then 
using gradient magnitudes and their direction to trace a 
flame front and its relevant geometric features (Burger 
and Burge 2016). Many methods exist (Sobel, Prewitt, 
LoG, etc.) and have been used to locate the flame front 
from OH-PLIF imaging data (Burger and Burge 2016; 
Bayley et al. 2012; Boxx et al. 2015; Stöhr et al. 2012; 
Verbeek et al. 2013). Among these methods, the Canny 
edge operator, initially developed by John Canny in 1986 
(Canny 1986), continues to be a state-of-the-art go-to edge 
detection algorithm and remains the most popular choice 
in experimental combustion literature (Sweeney and 
Hochgreb 2009; Hartung et al. 2009; Sweeney et al. 2011; 
Wabel et al. 2017; Zheng et al. 2022). In a comparative 
study (Reisenhofer et al. 2016), it was also found to be 
relatively resilient to noise, yielding comparable results 
to more sophisticated algorithms based on shearlets, when 
applied to artificially distorted OH-PLIF images.

The algorithm (Fig. 1) can be broken down to four steps 
illustrated in Fig. 3: 

Fig. 2  Illustration of a segmentation operation applied to an 
OH-PLIF image of a turbulent premixed hydrogen-enriched methane-
air flame (left) and the associated normalized image histogram 
(right). Each bar in the image histogram represents the frequency of 
a given intensity i in the 8-bit grayscale PLIF image, normalized to 
the [0, 1] range, pi . The dark vertical dotted line is the optimal (Otsu) 
threshold corresponding to the global minimum of the intra-class 
variance �2

i∗
 traced in blue color. This threshold partitions the PLIF 

image into two distinct regions highlighted in red (burnt) and gray 
(unburnt), respectively, with the flame front (white) separating both

1 mm

Fig. 3  Illustration of the Canny edge detection process: a Raw 
OH-PLIF image (zoomed section from the snapshot in Fig. 2), b Pre-
processed image ( � = 2 ), c Two-dimensional gradient map of the 
filtered image, colors correspond to gradient magnitudes normalized 
to the [0, 1] range, d Thinned gradient map, e Gradient magnitudes 
of the thinned gradient map, f Final binary flame front after hysteresis 
thresholding. Optimal parameters ( tlow = 0.19 , thigh = 0.35 ) were 
determined by trial and error
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1. Pre-processing: The image I(x,  z) is smoothed by 
convolution (denoted ⊛ ) with a Gaussian kernel G of 
width � defined by the user. 

 where x and z correspond to the radial and axial 
coordinates, respectively.

2. Gradient computation: The two-dimensional gradient 
of the smoothed image |∇P| is computed by convolution 
with a gradient kernel, then normalized to the [0, 1] 
range.

3. Thinning / Non-maxima suppression (NMS): The 
gradient map is thinned to produce an image T consisting 
of edges of single pixel width. This is typically done by 
placing a 3 × 3 px2 box at each pixel and comparing its 
gradient magnitude |∇P| to that of its adjacent pixels in 
the direction of the gradient � . 

 The local gradient magnitude is kept only if it is higher 
than its neighbors in the direction given by � . This 
ensures only local maxima are preserved.

4. Hysteresis thresholding:  This step aims at eliminating 
low gradient edges due to noise and non-uniformities. 
Two hysteresis (gradient) thresholds, tlow and thigh , 
are defined by the user. All pixels in T with gradient 
magnitudes |∇P| higher than thigh are highlighted as 
part of the flame front Fa . Then, pixels whose gradient 
magnitudes are situated between tlow and thigh are 
classified as flame edge pixels so long that they are 
adjacent to previously defined flame edge points in Fa . 
Hence, a final flame front F is obtained. 

 where d(Fb,Fa)
 is the distance between each point in Fb 

and its closest point in Fa , � =
√
2 px is the minimum 

distance for adjacency (i.e: 8-connectivity). This 
process tends to be more effective than setting one rigid 
gradient threshold, as OH gradient magnitudes can vary 
significantly across the flame front.

At this stage, it is important to mention that the Canny 
algorithm, unlike Otsu segmentation, is supervised and 
requires that three operating parameters ( � , tlow , and thigh ) be 
specified by the user. Provided that a robust filtering scheme 
is implemented in the pre-processing stage preceding edge 

(2)

{
P = G𝜎 ⊛ I

G𝜎(x, z) =
1

2𝜋𝜎2
e
−

x2+z2

2𝜎2

(3)� = arctan
∇xP

∇zP

(4)

⎧⎪⎨⎪⎩

Fa = T�∇P�≥thigh
Fb = T�∇P�∈[tlow ; thigh)

F = Fa ∪
�
Fb ∩ (d(Fb,Fa)

≤ �)
�

detection, � can be set to a low and constant value (i.e., � = 2 
in this work) with negligible effect on the final result. The 
same cannot be said about the hysteresis thresholds, tlow , and 
thigh . In fact, the selection of optimal thresholds constitutes a 
real challenge as they are ultimately the deciding factor in the 
success (or failure) of the flame front detection. Approaches 
based on a priori selection of a single combination of tlow and 
thigh are known to perform poorly when the SNR is low and 
variable (Sweeney et al. 2011). Notice, for example, the large 
variance in gradient magnitudes across the flame front due to 
noise in Figs. 3c, e and 4a. Hence, accuracy and robustness 
entail that both parameters be selected dynamically on an 
image-by-image basis, and autonomously such that large 
datasets can be processed within reasonable computation 
times. However, and to the authors’ best knowledge, there is 
currently no state-of-the-art, fast, and unsupervised method 
of determining the optimal gradient thresholds. Some 
authors have documented the use of the Otsu threshold to 
predict both parameters (Azam et al. 2020; Setiawan et al. 
2017). This usually involves setting thigh to the Otsu threshold 
and tlow to a fraction of it, usually one-half. This is a clever 
way of computing hysteresis thresholds unsupervised, 
but the flame fronts obtained using this approach were 
deemed unsatisfactory. A more sophisticated method, the 
Augmented Canny algorithm, was demonstrated by Sweeney 
and Hochgreb (2009) and tested on OH-PLIF images of 
variable SNR. The algorithm treats parameter selection as 
a search-based optimization problem against a statistically 
derived ground-truth. This was found to produce excellent 
results but at high computational cost, as highlighted by the 
original authors. This makes it unattractive for processing 
larger data sets which is key in investigations involving data 
from high-speed diagnostics.

Hence, in spite of its excellent accuracy, edge detection 
requires reasonable supervision to ensure optimal parameters 
are chosen. Methods based on autonomous parameter 

1 mm

Fig. 4  a Two-dimensional gradient map for an OH-PLIF image at 
70% hydrogen enrichment normalized to the [0, 1] range, b Thinned 
gradient map of a high SNR region (dashed white box in a) after 
NMS
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selection, like the Augmented Canny algorithm, can help 
address this downside but at the expense of computational 
time, which is undesirable when processing large batches of 
experimental data.

3.3  Hybrid segmentation and edge detection

At this stage, a few interesting observations can be made. We 
have on the one hand a quick, unsupervised, but inaccurate 
algorithm (Otsu segmentation) and on the other hand an 
accurate but supervised algorithm (Canny edge detection) 
which can only run unsupervised at the cost of precious 
computation time. In light of this, it is clear that a hybrid 
method combining both approaches would be of interest. 
The goal would be to use the approximate location of the 
flame front obtained using segmentation to guide the edge 
detection algorithm and eliminate the need for supervision. 
This involves finding a way around the problematic 
hysteresis thresholding stage which is the major point of 
supervision in the Canny algorithm. This idea is further 
explored in Sect. 4.3 and forms the basis of the hybrid 
Filtered Canny algorithm proposed in this work.

A second motivation for a segmentation and edge 
detection hybrid stems from the thermodiffusive nature of 
lean hydrogen-air flames which causes the concentration 
of the OH radical to vary with the local curvature of the 
flame front. As can be seen in Fig. 4b, gradients of the 
OH-PLIF signal can reach global minima when the flame 
front is concave toward reactants which is likely due to a 
lower OH concentration in the reaction layer as observed in 
direct numerical simulations (Bell et al. 2007). Gradients at 
the tip of these flame fingers are of comparable magnitude 
to the spurious edges. This adds an extra layer of difficulty 
to hysteresis threshold selection, knowing the noisy nature 
of images poses challenges of its own (Fig. 4a). In this case 
specifically, no single combination of parameters tlow and 
thigh was able capture the accurate shape of the flame front. 
Hence, there is a real need for alternatives to hysteresis 
gradient thresholding when dealing with thermodiffusively 
unstable mixtures.

3.4  The importance of pre‑processing

Prior to flame front detection, it is common practice to pre-
process images using a suitable combination of filters and 
contrast enhancement techniques. The goal is to improve 
the quality of the raw images and reduce some of the 
experimental noise to render any further processing possible. 
Filtering the image also helps produce smoother flame 
fronts unpolluted by high-frequency noise and undesirable 
zigzag effects. Here, we briefly highlight the importance of 
ensuring compatibility between flame front detection and 

pre-processing techniques, which is often overlooked in 
combustion literature.

A wide variety of filters have been used to process PLIF 
images in the past, ranging from simple linear filters based 
on averaging or low-pass filtering (moving mean, Gaussian, 
Wiener) to more sophisticated non-linear, edge-preserving, 
filters (median, bilateral, nonlinear diffusion, wavelet...) 
(Boxx et al. 2015; Tyagi et al. 2020; Mohammadnejad et al. 
2021; Lawn and Schefer 2006; Bayley et al. 2012; Skiba 
et al. 2022; McManus and Sutton 2020; Barlow 2007). The 
latter tend to be preferred over their linear counterparts 
which can significantly degrade the image resolution and 
smear its characteristic features such as gradients and 
curvature (Malm et al. 2000). Edge-preserving filters are 
attractive as their smoothing behavior varies based on the 
local structure of the image. In other words, smoothing 
is maximum in uniform regions and tuned down as high 
gradient regions of the image are approached (Burger and 
Burge 2016). This allows for considerable noise reduction 
in the burnt and unburnt gas regions while preserving the 
location and magnitude of gradients in the vicinity of the 
reaction zone. It is important to state that edge-preserving 
filters, which are gradient-sensitive by definition, show good 
compatibility with edge detectors but not with segmentation 
techniques. This confusion stems from an abuse of language, 
wherein the term “edge detection” is used to refer to gradient 
and non-gradient methods interchangeably. This is illustrated 
in Fig. 5 for OH-PLIF snapshots filtered using non-linear 
diffusion (NLD), a state-of-the-art edge-preserving filter 
particularly popular in experimental combustion literature 
(Malm et al. 2000; Perona and Malik 1990). The chosen 
snapshots feature multi-scale product or reactant pockets 
which should be detected alongside the main flame front. 
The number of iterations of filtering N is varied to cover 
a reasonable range of low, moderate, and high filtering 
settings. The flame fronts obtained using segmentation 
(s1-6) are strikingly sensitive to filtering and indicate 
significantly different flame surface geometries depending 
on filtering intensity. In the first image, the thin corridors 
separating the isolated product pockets and the main flame 
front appear to shrink with increasing N which is likely 
due to the blurring effect of filtering. Notice how the flame 
surface in (s3) is almost unrecognizable from its original 
shape in the raw OH-PLIF image, as the two product pockets 
are absent and the algorithm detects two erroneous small 
reactant pockets downstream. Similar observations can be 
made about the second image, where the small reactant 
pockets shrink gradually with filtering until they disappear 
completely when N reaches 100. Conversely, flame fronts 
computed using Canny edge detection (e1-6) are remarkably 
resilient to filtering and become smoother as N is increased. 
They also seem to benefit from edge-preserving filtering 
in the second snapshot as the algorithm is able to detect 
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the isolated reactant pockets with greater ease. This is an 
additional testament to the excellent compatibility between 
edge-preserving filtering and gradient-based flame front 
detectors. Hence, if edge-preserving filters are to be used 
jointly with segmentation as has been done in a handful past 
investigations (Sweeney and Hochgreb 2009; Tyagi et al. 
2019, 2020; Malbois et al. 2019), caution must be exercised 
to avoid erroneous flame fronts.

Although less common than filtering, contrast 
enhancement methods have been used in a handful past 
experimental investigations, mostly looking at limit-
phenomena (extinction and auto-ignition) where the SNR 
is typically very low (Qi et al. 2019; Manosh Kumar et al. 

2019). The most basic contrast adjustment technique is 
histogram equalization (HE) which remaps the global image 
histogram to approximate a uniform distribution (Burger 
and Burge 2016). To avoid excessive noise amplification, 
adaptive histogram equalization (AHE) methods are used 
instead, where the image is divided into a number of boxes 
(or tiles) and HE is applied in each box individually using 
the local histogram. This results in a significant gain in 
SNR with relatively low noise amplification and ensures 
the global image histogram retains its characteristic bimodal 
distribution. A variant known as contrast-limited adaptive 
histogram equalization (CLAHE) (Zuiderveld et al. 1994; 
Pizer et al. 1986) is used in this work to improve the accuracy 

Fig. 5  Effect of NLD filtering 
on the flame fronts obtained 
using Otsu segmentation (s1-
6) and Canny edge detection 
(e1-6) for two different 
OH-PLIF snapshots. The 
number of filtering iterations 
N is varied from low ( N = 10 ) 
to high ( N = 100 ) filtering. 
The flame fronts obtained 
using segmentation and edge 
detection are traced in red with 
the associated burnt and unburnt 
gas regions shown in white and 
black color, respectively
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of segmentation and allow for accurate pocket detection. It 
was not used with edge detection as it was found to smear 
OH gradients across the flame front, which reiterates the 
importance of investigating compatibility between pre-
processing and flame front detectors.

3.5  Performance evaluation of flame front 
detection algorithms

Once the pre-processing is completed, the performance of 
flame front detection algorithms can be evaluated based on 
accuracy and computational time. The Augmented Canny 
algorithm (Sweeney and Hochgreb 2009) was used to 
generate a total of 1500 flame fronts (500 per experimental 
condition) which here are considered ground-truth (GT). 
These are the benchmarks for testing against the detected 
contours (DC) using the proposed algorithms. Accuracy 
is assessed in two different ways: localization errors and 
curvature differences.

Localization errors are assessed using the following 
metrics:

– Euclidean distances, d: 

 where a(xa, za) is an arbitrary point in the detected 
contour DC, and b(xb, zb) is the closest point to it in the 
ground-truth GT.

– Precision and recall using receiver operating 
characteristics (ROC) (Kraemer 1992) (Table  2). 
Here, precision represents the fraction of accurately 
identified edge points among the edge points reported, 
and recall denotes the fraction of accurately identified 
edge points out of the true edge points we expect to 
find. Both quantities are normalized between 0 and 1 by 

(5)d(a, b) =

√
(xb − xa)

2 + (zb − za)
2

definition and maximum accuracy entails maximizing 
both. Precision and recall punish the algorithm in case 
of overestimation and underestimation of edge points, 
respectively.

While ROCs are strict metrics which penalize the algorithm 
if the DC and GT do not perfectly overlap, Euclidean 
distances can be used to measure the mean shift between 
both contours which offers additional leeway. Knowing the 
flame fronts obtained using segmentation do not necessarily 
correspond to the location of peak gradients which 
constitute the ground-truth obtained via the Augmented 
Canny algorithm, this ensures fair comparisons can be 
made. Moreover, as will be seen in Sect. 4.2, knowledge of 
Euclidean distance statistics is key to the implementation of 
the hybrid Filtered Canny algorithm proposed in this work.

Two-dimensional curvature � is the second measure 
of accuracy considered in this study. It evaluates the 
algorithm’s ability to capture the overall shape or geometry 
of the flame front faithfully. Points along the flame front are 
indexed using a routine script and an arc length function 
s(x, z) is defined by measuring the distance across the flame 
front. The two-dimensional curvature can then be estimated 
using the formula:

where x� = dx

ds
 and z� = dz

ds
 . Derivatives with respect to the 

curvilinear coordinate s are estimated at each point by 
fitting a second-order polynomial using the nearest 20 
adjacent points (10 on either side) (Haq et al. 2002; Chrystie 
et al. 2008). The optimal order and number of points were 
determined by calibration against synthetic ground-truths 
(Chrystie et al. 2008). The usual sign convention is followed: 
Points are assigned positive curvature values if their center 
of curvature is located in the burnt gases and vice versa.

The final metric, computation time t, is estimated using 
 MATLAB®’s stopwatch timer. The computation time will 
vary for each image based on the complexity of the flame 
front structure and the quality of the image. Therefore, we 
choose to record it for each snapshot independently so that 
reliable statistics can be computed.

4  Hybrid flame front detection

The hybrid flame front detection method is presented in 
this section. The pre-processing scheme used to improve 
the performance of Otsu segmentation is first introduced. 
For brevity, this will be referred to as the Enhanced Otsu 
segmentation algorithm in the remainder of the paper. 

(6)� =
x�z�� − x��z�

(x�2 + z�2)3∕2

Table 2  Receiver operating characteristic metrics used for accuracy 
evaluation

GT refers to the ground-truth (Augmented Canny algorithm), while 
DC refers to the detected contour using the relevant algorithm. 
Both GT and DC are binary sets. The modulus |. | symbol refers to 
cardinality or the total number of pixels in the chosen set. The symbol 
(.̄) refers to the complement of the chosen set

Symbol Terminology Definition

TP True positive |GT ∩ DC|
TN True negative |GT ∩ DC|
FP False positive |GT ∩ DC|
FN False negative |GT ∩ DC|
– Precision TP

TP+FP

– Recall TP

TP+FN
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The accuracy of the improved scheme is then quantified 
using Euclidean distance statistics. We then demonstrate 
how this information can be used to develop a hybrid and 
unsupervised edge detection algorithm we refer to as the 
Filtered Canny algorithm.

4.1  Enhanced Otsu segmentation

The Enhanced Otsu segmentation process is illustrated in 
Fig. 6 and is similar to the original algorithm with two main 
differences. The first difference lies in the pre-processing 
stage where a contrast-enhancement scheme (CLAHE) is 
applied before filtering the image using NLD. The second 
difference lies in the two-stage nature of the algorithm 
(Fig. 6). As will be seen shortly, an additional “pocket 
identification” stage is required to ensure all reactant pockets 
are indeed true pockets and not noise artifacts.

In the pre-processing stage,  MATLAB®’s implementation 
of CLAHE (adapthisteq) is used to adjust the contrast in 
the image. This is done by dividing the image into 64 equal 

tiles (8-by-8 grid) then applying histogram equalization to 
each one. About ClipLim = 1% of the total mass of each 
histogram is clipped and redistributed evenly across the 
full grayscale range to prevent over-saturation. The chosen 
settings are typical (Zuiderveld et al. 1994) and are kept 
constant for all the images processed in this work. Non-
linear diffusion with quadratic settings and a low number 
of iterations ( N ≤ 20 ) is used to filter the image. The pre-
processed image is then binarized using the Otsu threshold 
and an initial flame front is highlighted by selecting the 
perimeter.

In the second stage of the algorithm, flame edges are 
classified into three categories: main front, product pockets, 
and reactant pockets using simple image manipulation via 
 MATLAB® (more details on this process in “Appendix”). 
As can be seen in Fig. 7a, the algorithm does a much better 
job at identifying the main flame front and product pockets 
(shown in red color) than the standard Otsu segmentation 
algorithm in Fig. 5 (s1-6). However, a number of holes 
appear in the burnt gas region as a result of slight noise 

Fig. 6  Flowchart of the enhanced Otsu algorithm

Fig. 7  Pocket identification 
methodology for the two 
PLIF snapshots in Fig. 5: a 
Preliminary flame front F0 
after classification: the main 
front and product pockets are 
highlighted in red and reactant 
pockets are shown in gray color, 
b Two-dimensional gradient 
map of reactant pockets |∇Prp| , 
c True reactant pockets of mean 
gradient |∇Prp| > .2 , d Final 
flame front F after combining 
the main front, product pockets, 
and true reactant pockets
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amplification in low SNR regions, which overestimates the 
number of reactant pockets. Hence, a pocket identification 
stage is implemented to distinguish real reactant pockets 
from noise. First, all isolated pockets in the burnt gas region 
(shown in gray in Fig.  7a) are highlighted and labeled 
as “potential” flame pockets. Second, two-dimensional 
gradients magnitudes are computed across all potential flame 
pockets. Third, the mean gradient magnitude across each 
pocket is computed and a 20% gradient threshold is applied. 
This way, all pockets whose mean gradient magnitude is 
below the threshold are suppressed which ensures only real 
pockets are preserved (Fig. 7c). This approach was found to 
produce excellent results as erroneous pockets are typically 
present in uniform low-SNR regions characterized by low 
gradient magnitudes |∇Prp| . Finally, the true reactant pockets 
are combined with the main front and product pockets to 
yield the final flame front. By comparing the obtained flame 
fronts F in Fig. 7d to those obtained by Otsu segmentation in 
Fig. 5 (s1-6), one can clearly notice the perks of the proposed 
contrast enhancement scheme. The flame fronts obtained 
are qualitatively similar to those computed by Canny edge 
detection in Fig. 5 (e1-6) which is an additional testament to 
the fidelity of the proposed pre-processing scheme.

4.2  A first quantification of segmentation accuracy

We mentioned previously that the accuracy of segmentation 
can be improved by adaptive contrast enhancement and 
illustrated that for images containing a number of multi-
scale pockets. In this section, we go one step further and 
quantify the merit of this pre-processing scheme. The 
objective is twofold: first, to optimize Otsu contours and 
ensure they are as close as possible to the location of peak 
gradients highlighted by the Augmented Canny algorithm, 
then second, quantify their localization error with increasing 
hydrogen enrichment by means of Euclidean distances. 

This is illustrated in Fig. 8 where probability histograms 
of normalized Euclidean distances d∕�L are shown for a 
variable hydrogen enrichment with and without CLAHE. A 
perfect histogram would be a delta function at zero.

A first observation can be made on the effect of hydrogen 
enrichment on the shape of the histograms, which appear 
to flatten with increasing hydrogen content due to a higher 
variance. This pushes the upper limit of the 90% confidence 
interval (CI), dCI , beyond unity due to the intense wrinkling 
induced by hydrogen and the prevalence of thin elongated 
flame fingers hard to capture by the algorithm. Overall, there 
is strong evidence that the proposed pre-processing scheme 
improves the accuracy of segmentation. Notice, for example, 
how the dCI limit is decreased by a factor of three in the 
methane-air case, resulting in 90% of points being within a 
distance of half the laminar flame thickness from peak OH 
gradients. The same can be said for the hydrogen-enriched 
methane-air flames where factors of 15 and 12 were recorded 
for 40% and 70% , respectively. Indeed, while the upper 
limit plateaus at dCI = 1.5�L when the proposed scheme 
is used, it can reach exceedingly large values ( dCI > 10𝛿L ) 
when CLAHE is omitted in the hydrogen-enriched cases. A 
visual interpretation of this confidence interval is presented 
in Fig. 9 for a flame front from the 70% hydrogen case. The 
flame front is estimated using Enhanced Otsu segmentation, 
and its Euclidean distance transform is then computed. By 
thresholding the Euclidean distance map with the measured 
90% CI (i.e: dCI = 1.5�L for the hydrogen-enriched cases), 
one can draw a binary region around the Otsu flame front 
where the peak OH gradients are likely to reside. This 
concept is the foundation of the hybrid approach presented 
in the next section.

Fig. 8  Histogram of Euclidean distances normalized by the laminar 
flame thickness d∕�L for a variable hydrogen enrichment. Flame 
fronts obtained using the standard Otsu algorithm (dashed gray) are 
compared to those obtained using Enhanced Otsu segmentation (solid 
black). The 90% confidence interval (CI) relative to the Enhanced 

algorithm is overlayed in red. Dotted vertical lines represent the 
upper limits dCI of the 90% confidence intervals. The upper limits of 
the standard algorithm do not appear in hydrogen histograms as they 
exceed the d∕�L ∈ [0, 2] range
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4.3  Filtered Canny algorithm

The Filtered Canny algorithm revolves around using 
the approximate position of the flame front obtained by 
Enhanced Otsu segmentation to filter the image’s gradient 
map prior to thinning. As can be seen in Fig.  10, this 
suppresses the need for hysteresis thresholding.

A preliminary flame front is first obtained using the 
Enhanced Otsu algorithm, then used to construct a binary 
90% CI in the same fashion as in Fig. 9. The upper limits of 
the confidence interval dCI are determined from the results 
in Fig. 8 for each experimental condition: dCI = 0.5�L for 
the methane-air case, and dCI = 1.5�L for both hydrogen-
enriched cases. One obtains a binary mask which will be 
used to filter the gradient map later on. In parallel, the 
Filtered Canny algorithm follows the same initial steps as 
the original algorithm in Fig. 1. A pre-processing scheme 
combining two edge-preserving filters, the bilateral and 
NLD filters, is used to filter the image. The bilateral filter’s 

standard deviation and degree of smoothing are set to 10 
and 500, respectively, to ensure a good balance between 
smoothing quality and computation time, and a moderate 
value of N = 50 is used for NLD. The two-dimensional 
gradient map is computed from the pre-processed image 
and then filtered using the binary mask M obtained from 
segmentation. Mathematically, this is treated as a simple 
element-wise (Hadamard) matrix product, denoted using 
the circled dot symbol “ ⊙ ,” and yields a filtered gradient 
map |∇Pf |:

In doing so, only gradients residing in the super - equilibrium 
region are kept and later thinned to produce the final flame 
front. Conversely, gradients in the reactant and product sides 
are suppressed completely, which eliminates the need for 
hysteresis thresholding. Flame edges are hence extracted 
from the filtered gradient map regardless of their gradient 
magnitudes to produce a thin and continuous flame front. 
This is illustrated in Fig. 11 for a PLIF snapshot from the 
70% hydrogen enrichment case. Notice how the thinned 
flame edge obtained from the filtered gradient map in 
Fig. 11d captures both the flame front and isolated flame 
pockets and is unpolluted by noisy spurs which are prevalent 
in the unfiltered gradient map shown in Fig. 11c. By using 
the CI as a spatial filter, one is able to detect the flame front 
without resorting to the problematic hysteresis thresholding 
stage. In a handful images, small discontinuities ( < 5px) 
can, however, be encountered across the flame edge which 
are inherent to the Canny algorithm. These gaps were 
filled using a simple directional edge linker similar to the 
one used in Sweeney and Hochgreb (2009), with more 
information in “Appendix.” All in all, the Filtered Canny 
method is identical to the original Canny algorithm with 
hysteresis thresholding omitted and replaced by a masking 
stage before thinning. Since no hysteresis thresholds are 

(7)|∇Pf | = M ⊙ |∇P|

1 mm 1 mm

Fig. 9  Visual interpretation of the estimated CI for a flame front 
from the 70% H2 condition. a Euclidean distance d map of a flame 
front obtained by Enhanced Otsu segmentation (traced in white) 
normalized by the laminar flame thickness �L , b Binary confidence 
interval (colored in red) obtained by thresholding the Euclidean 
distance map by the upper limit of the 90% CI dCI∕�L = 1.5

Fig. 10  Flowchart of the Filtered Canny algorithm
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required, the proposed algorithm is fully unsupervised and 
does not require any user intervention. The only parameter 
required to obtain the final flame front is in fact the upper 
limit dCI for which suitable ranges are documented. In the 
next section, we evaluate the accuracy and computation time 
of the Filtered Canny algorithm against its high-performance 
Augmented counterpart.

5  Performance evaluation

The performance of the Filtered Canny algorithm is 
evaluated against the ground-truth Augmented Canny 
algorithm based on accuracy (localization errors and 
curvature) and computation time using the metrics 
introduced in Sect. 3.5.

5.1  Localization errors

Localization errors are evaluated using precision and recall. 
Both quantities are measured on an image-by-image basis, so 
reliable statistics can be computed. The results are provided 
in Table 3 for the Filtered Canny algorithm at variable 
hydrogen content. Results for Enhanced and standard Otsu 
segmentation are also provided for reference. As expected, 
the latter performs the poorest yielding low values of 

precision and recall for all three experimental conditions. 
When CLAHE is used, both precision and recall increase 
by a factor of 2 for 0% and 40% hydrogen enrichment 
and barely increase in the 70% case. Both metrics remain 
relatively low with only one in four pixels, at best, perfectly 
overlapping with its counterpart in the ground-truth. In 
light of the statistics presented previously in Sect. 4.2, we 
conclude that although CLAHE reduces the mean shift of 
Otsu contours relative to the position of peak OH gradients, 
the overlap remains low and unsatisfactory, especially with 
hydrogen addition. The Filtered Canny algorithm, on the 
other hand, performs remarkably well and yields high values 
of precision and recall. Mean values remain in the 90% range 
when hydrogen is added with a slight increase in standard 
deviation. These results showcase the algorithm’s ability 
to successfully detect flame fronts with limited over and 
underestimation of flame edge points.

5.2  Curvature

Probability density functions (pdf) of two-dimensional 
curvature are computed for both the Filtered and Augmented 
Canny algorithms and are presented in Fig. 12. As can 
be seen, the obtained curvature pdfs are identical which 
showcases the Filtered Canny algorithm’s ability to capture 
the geometry of the flame front with a great degree of 
accuracy. As hydrogen is added to the mixture, the flame 

Fig. 11  Illustration of the Filtered Canny edge detection process: a 
Raw OH-PLIF image, b Pre-processed image using the bilateral-NLD 
filtering scheme, c Gradient map of the pre-processed image |∇P| , its 
thinned version is overlayed in gray, d Gradient map filtered using the 

binary mask |∇Pf | , its thinned version is overlayed in gray, e Final 
binary flame front obtained by thinning the filtered gradient map 
|∇Pf |

Table 3  Comparison of ROC 
statistics for a variable hydrogen 
enrichment

68.3% confidence intervals for precision and recall are shown in the format: ��+�
�−� , where � and � represent 

the mean and standard deviation, respectively

Method 0% H
2

40% H
2

70% H
2

Precision Recall Precision Recall Precision Recall

Filtered Canny 0.99
1.00

0.96
0.99

1.00

0.95
0.95

1.00

0.84
0.96

1.00

0.88
0.95

1.00

0.83
0.93

0.99

0.87

Enhanced Otsu 0.22
0.27

0.17
0.23

0.28

0.18
0.20

0.26

0.14
0.21

0.27

0.15
0.17

0.22

0.12
0.18

0.23

0.13

Otsu (standard) 0.12
0.18

0.06
0.12

0.18

0.06
0.10

0.17

0.03
0.10

0.16

0.04
0.14

0.21

0.07
0.15

0.21

0.09
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experiences a higher degree of wrinkling which results in a 
broader range of curvatures across the flame front. As can 
be observed in Fig. 12, the proposed algorithm is able to 
capture this transition in the global geometry of the flame 
front and remains just as accurate at maximum hydrogen 
enrichment. In all three conditions, the absolute difference is 
symmetric and highest at the point of zero curvature due to a 
slight shift between Augmented and Filtered pdf modes. As 
the study was only limited to 500 flame fronts per condition 
due to the time required to compute ground-truths, we expect 
these small differences to disappear if a larger sample size 
of images is used. Overall, the results suggest that the flame 
fronts obtained using the Filtered Canny algorithm are of 
comparable accuracy to its Augmented counterpart.

We conclude that accurate mapping of turbulent flame 
fronts can be achieved using the proposed hybrid scheme. 
The algorithm is able to detect flame edge points with 
comparable accuracy to its sophisticated high-performance 
alternative and identifies the global shape of complex and 
highly convoluted flame fronts faithfully.

5.3  Computation time

Finally, the execution times of both the Filtered and 
Augmented Canny algorithms are recorded for each 
experimental condition on an image-by-image basis. Both 

algorithms are implemented in  MATLAB® (R2021b) which 
is commonly used for post-processing tasks in experimental 
combustion. The same implementation and settings of the 
Augmented algorithm presented in Sweeney and Hochgreb 
(2009) are used for consistency, with � kept constant 
( � = 2 ) and both tlow and thigh varied in the 0.1 to 0.9 range 
with a small step size of �t = 0.1 . The Filtered algorithm 
does not require input parameters, and mask construction 
is facilitated by  MATLAB®’s built-in function bwdist 
for time-efficient computation of 2D Euclidean distance 
transforms. Computation times are reported in Table 4 
and were all recorded on the same 8-core CPU Macbook 
Air M1 workbench. The results highlight the impressive 
computational speed of the proposed algorithm which is, 
on average, at least 30 times quicker than its Augmented 
counterpart. The Filtered algorithm can process up to three 
instantaneous OH-PLIF snapshots per second, while the 
Augmented algorithm needs at least ten seconds to process 
a single snapshot. Although the analysis was restricted 
to 500 flame fronts per condition in this study, a larger 
sample size of images is typically required to compute 
fully converged flame statistics relevant to the study of 
turbulent flames. In fact, a residual analysis showed that 
around 19,300 instantaneous flame fronts were required 
to reach full convergence of flame statistics. The expected 
total computation time ttotal of each algorithm was therefore 
estimated using mean runtimes t. Using the Augmented 
algorithm, one should expect total runtimes between 56 and 
65 h, while the Filtered algorithm is expected to process a 
full data set (19,300 images) in record time, estimated at 
2 h approximately. The reported runtimes include the edge 
detection stage only. Therefore, any further processing (i.e., 
instantaneous curvatures, flame surface density, etc.) will 
most likely increase the total computation time. Thus, it is 
evident the proposed hybrid algorithm, in addition to being 
just as accurate, is quicker and more time-efficient than the 
high-performance Augmented algorithm. This facilitates 
the processing of larger data sets of turbulent and highly 
wrinkled flame fronts within reasonable computation times.

Fig. 12  Probability density function of two-dimensional curvature 
� normalized by the laminar flame thickness �L for the Augmented 
(solid dark lines) and Filtered (dashed red lines) Canny algorithms 
for a variable hydrogen enrichment. The absolute difference between 
pdfs is shown in solid gray color

Table 4  Comparison of 
algorithm runtimes for a 
variable hydrogen enrichment

68.3% confidence intervals for computation time per image t are shown in the format: ��+�
�−� , where � and � 

represent the mean and standard deviation, respectively. The expected total computation time t
total

 required 
to reach fully converged flame statistics is computed from the mean value of t and rounded to the nearest 
hour for better visibility

Method 0% H
2

40% H
2

70% H
2

t (s) t
total

 (h) t (s) t
total

 (h) t (s) t
total

 (h)

Augmented Canny 10.5
11.9

9.2
56 12.2

13.6

10.7
65 10.8

12.5

9.1
58

Filtered Canny 0.35
0.38

0.32
2 0.31

0.32

0.30
2 0.34

0.36

0.32
2
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6  Conclusion

The paper presents a hybrid and unsupervised approach 
to flame front detection in noisy PLIF images combining 
Otsu segmentation and Canny edge detection: the Filtered 
Canny algorithm. An adaptive contrast enhancement 
method, CLAHE, is proposed to improve the accuracy of 
segmentation with little increase in computational overhead. 
The contours obtained using segmentation can then be 
used to filter two-dimensional gradient maps in the Canny 
edge detection algorithm, which suppresses the need for 
hysteresis thresholding and hence supervision. The proposed 
hybrid Filtered Canny algorithm is evaluated against a high-
performance alternative, the Augmented Canny algorithm 
(Sweeney and Hochgreb 2009), and is found to produce 
results of comparable accuracy with a significant reduction 
in computational time (factor of 30). The method produces 
excellent results in finely wrinkled hydrogen-rich flames and 
is able to pick out all crucial geometric features and isolated 
flame pockets. Additionally, the proposed algorithm can be 
easily implemented in MATLAB software using standard 
libraries which makes it accessible. The result of this work 
highlights the performance of simpler, computationally 
inexpensive flame front detection methods, provided that 
compatible pre-processing techniques are applied. Most 
importantly, this study demonstrates that segmentation and 
edge detection, which are both typically looked at as rivals 
in flame front detection tasks, can in fact benefit from each 
other to produce more accurate results at low computational 
cost.

Appendix

Signal‑to‑noise ratio computation

To compute the SNR, a total of 10,000 images per 
condition were binarized into products and reactants after 
edge detection. The SNR was then computed for each 
instantaneous image using the expression (Sweeney and 
Hochgreb 2009):

where � and � correspond to the mean and standard deviation 
of OH intensities in the product (burnt) or reactant (unburnt) 
regions. Probability density functions of the signal-to-noise 
ratio are provided in Fig. 13 for each experimental condition 
and show a shift toward lower SNR values with increasing 
hydrogen addition. This was found to be due to decreasing 
values of mean OH intensities in the post-combustion region 

(8)SNR =
�products − �reactants

�products

�products when moving from case 1 to 3. This is consistent 
with the results of the 1D laminar flame simulations provided 
in Fig. 13 where the mass fraction of the OH radical in the 
product region downstream the flame front decreases from 
case 1 to 3. The shift observed in SNR pdfs is also due to a 
slight increase in standard deviations �products from case 1 to 
3. This is likely due to the thermodiffusive effects mentioned 
previously in Sect. 3.3 which lead to higher variations in 
OH intensities in the product region directly downstream 
the flame front. This is particularly pronounced in case 3 
due to high hydrogen enrichment and a low equivalence ratio 
which decreases the effective Lewis number of the mixture 
(Bouvet et al. 2013).

Flame object classification

In the Enhanced Otsu segmentation algorithm, a pocket 
identification stage is implemented to discard erroneous 
pockets caused by slight noise amplification in the burnt 
gas region. Prior to this stage, flame objects are classified 
into one of three categories: main front, product pockets, and 
reactant pockets (Fig. 14). This step is implemented using 
 MATLAB®’s built-in capabilities (via the Image Processing 
Toolbox) and the steps are as follows: 

1. Discarding pockets: Starting from the initial binary 
image obtained via segmentation, all the gaps in the 
burnt gas region are filled using the function imfill.

2. Main front identification: The binary image obtained 
after discarding the pockets is then considered. The 
function bwconncomp is used to identify all connected 
objects in the image. Each object represents a collection 

Fig. 13  (Left): Probability density functions of signal-to-noise 
ratios obtained from a sample size of 10,000 raw OH-PLIF 
snapshots per experimental condition. (Right): OH mass fraction 
YOH as a function of the normalized distance from the flame front 
x̂ = (x − xmax(|∇YOH |))∕𝛿L for each experimental condition, obtained 
from 1D laminar flame simulations. The normalized distance is 
defined here such that x̂ = 0 corresponds to the flame front location 
(peak OH gradients), with positive values x̂ > 0 being the product 
region downstream the flame front
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of 8 - connected non-zero pixels in the image which 
make up one isolated area. The largest object is typically 
the burnt gas area, while other objects correspond to 
product pockets. The main flame front is thus obtained 
by selecting the perimeter of the largest object (highest 
pixel count) in the image using the function bwperim.

3. Product pocket identification: The remaining objects 
identified in the previous steps are then highlighted 
individually. Their perimeters are traced in a similar 
fashion and they are then classified as product pockets.

4. Reactant pocket identification: Finally, reactant pockets 
are obtained by subtracting the main front and product 
pocket from the perimeter of the initial binary image 
(i.e., before step 1 was applied).

Flame edge linking

Small discontinuities of the order of a few pixels can persist 
in binary flame edges (1’s and 0’s) after flame front detection 
using the Canny edge detection algorithm. If continuous 
edges are needed (i.e., to binarize the image into reactants 
and products), a separate edge linking strategy is needed. 

An approach similar to the one described in Sweeney and 
Hochgreb (2009) is followed in this work with a number of 
modifications. The steps of the edge linking script are as 
follows: 

1. Locating discontinuities: The script starts by identifying 
all endpoints corresponding to discontinuities across the 
flame front. This is done by locating flame front pixels 
with no more than one non-zero adjacent pixel in the 
8-neighborhood.

2. Finding pairs: Endpoints are paired up based on 
their Euclidean distances. This comes down to an 
optimization problem: we try to find the optimal and 
unique pairs of points such that the Euclidean distance 
between pairs is minimized.

3. Edge tracing: The algorithm proceeds to link each pair 
of endpoints in an iterative and pixelwise manner. At 
each iteration, the direction of the target endpoint is 
used to select a quadrant in the 8 - neighborhood of the 
current pixel (Fig. 15). The three adjacent pixels within 
the same quadrant (pixels A, B, and C in Fig. 15) are 
then highlighted and their gradient magnitudes are 
compared. Typically, one of two cases will arise: 

Fig. 14  Illustration of a flame 
object classification operation 
applied to a binarized image 
obtained by segmentation: a 
Initial binary image with all 
flame objects highlighted in 
red color, b Main flame front 
(MF), c Product pocket (PP), d 
Reactant pockets (RP)

Fig. 15  Illustration of the edge 
linking process
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(a) Case 1: A unique maximum is identified (i.e., 
the gradient magnitude of point C in Fig. 15 is 
highest). The pixel with the highest gradient 
magnitude is classified as a flame edge pixel and 
thus assigned a value of 1.

(b) Case 2: There is a non-unique maximum (i.e., 
the gradient magnitudes of points A, B, and C in 
Fig. 15 are equal). In this case, the pixel which 
minimizes the search angle � relative to the 
direction of the target (i.e., pixel A in Fig. 15) is 
chosen instead and then assigned a value of 1.

   The location is then shifted to the newly identified 
flame edge pixel and the process is repeated until the 
target pixel is reached.
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