Condition Monitoring for Heliostat Fields Using Artificial Intelligence (PhD project)

<u>Dominik Steinberg¹</u>, Marc Röger², Daniel Maldonado Quinto³, Robert Pitz-Paal³ German Aerospace Center (DLR), Institute of Solar Research: ¹Jülich, ²Almería, ³Cologne

Motivation

Malfunctions, wear and ageing of heliostats

Maintaining a high reliability for thousands of heliostats can also prove challenging.¹

Heliostats arranged in a large field are concentrating incident sunlight onto a central receiver mounted on the top of a tower. Concentrated solar power tower plant (DLR-owned) in Jülich, Germany.

Mirrors & Facets (29%)

Facets (29%)

Overview of important heliostat components and associated availability issues, derived from the CSP Best Practices Study¹.

Concept

 Focus on heliostat drives, motors, control units and communication systems

|×2600

Methodology

- Machine learning-based multi-layered analysis of large amounts of time series data
- Relevant condition data from sensors (real/ virtual)

Tools:			
Time series visualization		Stat. analysis, aggregation	
N mat	pletlib	📫 pandas 🧯	NumPy
Classical time series models		Anomaly detection	
sta	tsmodels	6 4 2 0 -2 4 -6 -6 -4 -6 -7 -7 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	Q
Spectral		Decision trees,	

Preliminary Results

Statistical overview of different heliostat operating states and the amount of time the heliostats are in these states.

Research questions

- What relevant status data from heliostats can be recorded with low-cost sensors?
- How can virtual sensors ("soft sensors") be used to accurately map operating states?
- Which AI techniques are optimal for the development of automated condition monitoring?

 Goal: Extracting information hidden in measurement data and deriving valuable insights Comparison of movement speed of the motors of the two heliostat axes.

Discussion & Next steps

- Preliminary analysis of first small data set shows no heliostats faults or ageing effects
- Gaining access to further measurement data, carrying out own measurement campaign

References

¹Mehos, M. et al. (2020). Concentrating Solar Power Best Practices Study. NREL/TP-5500-75763.

Should you have any questions, please do not hesitate to contact me at: <u>dominik.steinberg@dlr.de</u>