# STAND-ALONE COSMIC-RAY TOMOGRAPHY WITH SECONDARY PARTICLES

Muographers2023, Naples

Maximilian Pérez Prada Institute for the Protection of Maritime Infrastructures 21.06.2023





The growing success of cosmic-ray tomography applications is based on two

main measurement concepts: muon scattering and muon absorption



The growing success of cosmic-ray tomography applications is based on two main measurement concepts: muon scattering and muon absorption

- The scattering angle correlates with the density of the examined volume
- The absorption rate correlates with the density of the examined volume
- → Both methods allow a detailed
  3D volume reconstuction





# A missing piece: secondary particles



The interaction of muons leave traces: secondary particles





#### Maximilian Pérez Prada, Institute for the Protection of Maritime Infrastructures, 21.06.2023

5

Image sources: Research Gate, Laboratory for Nuclear Technologies, ELENA

### A missing piece: secondary particles

The interaction of muons and other cosmic-ray shower particles leave traces: secondary particles





# A missing piece: secondary particles



The interaction of muons and other cosmic-ray shower particles leave traces: secondary particles



Maximilian Pérez Prada, Institute for the Protection of Maritime Infrastructures, 21.06.2023

6

Image sources: Research Gate, Laboratory for Nuclear Technologies, ELENA

### Let's put it to a test



#### Previous publication: MDPI Instruments, DOI 10.3390/instruments6040066

#### Scenario:

- 4 detector layers with perfect acceptance & efficiency: above, below, left & right of container
- Container: steel box (4 mm thick walls) with 20 ft ISO dimensions



#### **Reconstruction procedure**



**Step 1:** Selection and combination of different secondary particles and detection layers

 $\rightarrow$  Possible discrimination between materials due to different secondary particle kinematics

|                           | Photons    | Neutrons | Electrons |
|---------------------------|------------|----------|-----------|
| Upper detector            | <i>M</i> 1 | M2       | _         |
| Sidewise detectors        | M3         | M4       | _         |
| Lower detector—production | M5         | M6       | _         |
| Lower detector—absorption | M7         | M8       | M9        |

# **Reconstruction procedure**



**Step 1:** Selection and combination of different secondary particles and detection layers

 $\rightarrow$  Possible discrimination between materials due to different secondary particle kinematics

|                           | Photons    | Neutrons | Electrons |
|---------------------------|------------|----------|-----------|
| Upper detector            | <i>M</i> 1 | M2       | _         |
| Sidewise detectors        | M3         | M4       | _         |
| Lower detector—production | M5         | M6       | _         |
| Lower detector—absorption | M7         | M8       | M9        |

#### Step 2: 3D voxel map creation

- $\rightarrow$  Ray-tracing: trace back the secondary particles from their point of detection through the whole voxelized volume
- $\rightarrow$  The more crossings (score) a voxel has, the higher its

#### density or atomic number

9

Maximilian Pérez Prada, Institute for the Protection of Maritime Infrastructures, 21.06.2023



#### **Example 3D maps**



#### One lead and one water block – empty container subtracted

Lead optimized combination



#### Water optimized combination



#### More Details:

Pérez Prada, M.; Barnes, S.; Stephan, M. Analysis of Secondary Particles as a Complement to Muon Scattering Measurements. *Instruments* 2022, *6*, 66. https://doi.org/10.3390/instruments6040066

# **Getting more realistic**



Previous work was based on the assumption of perfect detection resolution and efficiency

# **Getting more realistic**



- Previous work was based on the assumption of perfect detection resolution and efficiency
- More realistic scenario includes:
  - Possible detector setup
    - $\rightarrow$  Inclusion of realistic material thickness
    - to simulate impact on secondary particles



# **Getting more realistic**



- Previous work was based on the assumption of perfect detection resolution and efficiency
- More realistic scenario includes:
  - Possible detector setup
    - $\rightarrow$  Inclusion of realistic material thickness to simulate impact on secondary particles
  - Implementation of spatial resolution and detection efficiency
    - $\rightarrow$  Only offline, no readout from the scintillator material is simulated  $\rightarrow$  No particle ID simulated, but using
    - GEN-truth information instead



#### Secondary particle detector setup





- 3 layers of plastic scintillator
- Plastic scintillator layer thickness: 50 mm
- Spacing between layers: 10 cm, 20 cm
- Detection efficiency per layer: 80%, 60%, 40%

#### Secondary particle detector setup



- 3 layers of plastic scintillator
- Plastic scintillator layer thickness: 50 mm
- Spacing between layers: 10 cm, 20 cm
- Detection efficiency per layer: 80%, 60%, 40%



 Distance between wavelength shifting (WLS) fibers: 10 mm, 20 mm, 30 mm

Maximilian Pérez Prada, Institute for the Protection of Maritime Infrastructures, 21.06.2023

#### **Test setup & scenarios**

- Cosmic-ray shower generation:
  - CRY library with all particles enabled and max. shower size of 30
  - 100M cosmic-ray shower from 10 m × 10 m
    plane (equivalent to ~30 min of scan time)



Source: CMS

A graphic representation of cosmic rays producing showers of particles



#### **Test setup & scenarios**

- Cosmic-ray shower generation:
  - CRY library with all particles enabled and max. shower size of 30
  - 100M cosmic-ray shower from 10 m × 10 m plane (equivalent to  $\sim$ 30 min of scan time)
- Test object:
  - Cube with volume of 1 m<sup>3</sup> in the center of a simplified container
  - Material: water or lead
- Reconstruction:
  - Retuned the selection and combination of particle and detection layer for new setup
  - Voxel size in 3D map: 1 dm<sup>3</sup>



A graphic representation of cosmic rays producing showers of particles



#### **Performance metrics**



- To ensure a consistent measurement of the performance metrics, clustering is performed using the reconstructed density map as input
- Clustering method: set voxel with highest score as seed, loop over surrounding voxel and add them to the cluster, if its density score is at least 80% of the average score of the cluster

#### **Performance metrics**

- To ensure a consistent measurement of the performance metrics, clustering is performed using the reconstructed density map as input
- Clustering method: set voxel with highest score as seed, loop over surrounding voxel and add them to the cluster, if its density score is at least 80% of the average score of the cluster

#### **Cluster metrics:**

- Reconstructed object density score (average)
- Reconstructed object size: volume, side lengths
- Reconstructed object shape: Chamfer distance\* between reconstructed and GEN-truth object



\* Chamfer distance: sum of the squared distances between nearest neighbor correspondences of two point clouds (X, Y) centered at origin

### **1-layer vs. 3-layer detection: lead block**

20000

19000

Density Score

16000

- 15000

-2

 $^{-1}$ 

0 + Imi

1

2

1-layer



- 100% eff., perfect res.
- 1-layer: •

6500

6250

6000

- 5750 -Density Score

5250

5000

4750

-2

-1

0 + lmi

1

2

3-layer, 10 cm

Particle is detected and perfectly reconstructed from 1st layer only

3-layer: •

> Particle is detected only if it hits all layers and reconstructed by fitting the layer hits

**GEN-truth** 3-layer, 10 cm spacing 3-layer, 20 cm spacing 1-layer 17829 5668 Score 5896 ---Size [m<sup>3</sup>] 1,210 0,942 1,388 1,332 dx [m] 1,1 1,1 1,1 1,1 dy [m] 1,0 1,0 1,0 1,0 dz [m] 1,1 1,2 1,9 1,8 Chamfer 4,8 12,1 11,2 \_ \_ \_

2.0

1.5 1.0

0.5

-0.5

-1.0

-1.5

-2.0

-4 -3

-2

-1

0 Y [m]

1

2

3

4

Z [m] 0.0

- Setup has an acceptance of ~33%
- Significant size increase in z-direction
- Slight increase in Chamfer distance

20

2.0

1.5

1.0

0.0 -0.5

-1.0

-1.5

-2.0

-4

-3 -2

-1

0 Y [m]

1

2

3

4

Z [m] 0.5

### 1-layer vs. 3-layer detection: water block

5600

5400

5200

0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 0005 - 00

4600

4400

4200

-2

-1

+ Imi

0

1

2

1-layer



- 100% eff., perfect res.
- 1-layer:

- 2900

- 2800

2700

- 2600 ឫ

Density

2400

- 2300

-2

 $^{-1}$ 

+ Imi

0

2

3-layer, 20 cm

Particle is detected and perfectly reconstructed from 1st layer only

3-layer:

Particle is detected only if it hits all layers and reconstructed by fitting the layer hits

**GEN-truth** 3-layer, 10 cm spacing 3-layer, 20 cm spacing 1-layer 5182 2762 2755 Score ---Size [m<sup>3</sup>] 1,210 1,050 1,078 1,066 dx [m] 1,1 1,1 1,0 1,0 dy [m] 1,0 1,0 1,0 1,0 dz [m] 1,1 1,4 1,7 1,7 Chamfer 4,6 6,4 8,0 \_ \_ \_

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

-4 -3

-2

-1

0 Y [m]

1

2

3

4

Z [m]

- Setup has an acceptance of ~53%
- Small size increase in zdirection
- Slight increase in Chamfer distance

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

-4

-3 -2

-1

0 Y [m]

1

2

3

4

Z [m]

# Impact of detection efficiency: lead block

100% Eff.

6500

6250

6000

sity Score

- 5500 อี

5250

5000

4750

-2

 $^{-1}$ 

+ Imi

0

1

2



10 cm spacing, perfect resolution

20% Eff.

- 1400

- 1350

1300

- 1220 -Isity Score

- 1200 อี

- 1150

- 1100

1050

-2

 $^{-1}$ 

+ Imi

0

1

2

- For simplicity, all particles in all energy regimes have same efficiency
- Cor. Score corrects for the loss in effective scan time

|            | 100% Eff. | 80% Eff. | 60% Eff. | 40% Eff. | • |
|------------|-----------|----------|----------|----------|---|
| Cor. Score | 5896      | 6020     | 6475     | 7367     |   |
| Size [m³]  | 1,388     | 1,371    | 1,117    | 0,627    |   |
| dx [m]     | 1,1       | 1,1      | 1,1      | 1,1      | • |
| dy [m]     | 1,0       | 1,1      | 1,1      | 1,1      |   |
| dz [m]     | 1,9       | 2,0      | 1,7      | 1,6      | • |
| Chamfer    | 12,1      | 14,1     | 5,3      | 7,6      |   |

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

-4

-3 -2

-1

0 Y [m]

1

2

3

4

[m] Z

- Significant increase in density score with lower efficiency
- Size reduction in z-direction
- Slight decrease in Chamfer distance

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

-4

-3 -2

-1

0 Y [m]

1

2

3

4

Z [m]

# Impact of detection efficiency: water block

100% Eff.

2.0

1.5

1.0

0.0

-0.5

-1.0

-1.5

-2.0

-4

-3 -2

-1

0 Y [m]

1

2

3

4

Z [m] 0.5

23

2900

2800

- 2700

- 2600 ឫ

- 2500 อี

- 2400

- 2300

2200

-2

-1

+ Imi

0

1

2

sitv



10 cm spacing, perfect resolution

50% Eff.

- 1550

- 1500

1450

- 1400 - 1400 - Density Score

1300

- 1250

-2

 $^{-1}$ 

+ Imi

0

2

- For simplicity, all particles in all energy regimes have same efficiency
- Cor. Score corrects for the loss in effective scan time

|            | 100% Eff. | 80% Eff. | 60% Eff. | 40% Eff. |
|------------|-----------|----------|----------|----------|
| Cor. Score | 2762      | 2962     | 3255     | 3983     |
| Size [m³]  | 1,078     | 1,132    | 1,079    | 0,551    |
| dx [m]     | 1,0       | 1,1      | 1,1      | 1,1      |
| dy [m]     | 1,0       | 1,1      | 1,0      | 1,1      |
| dz [m]     | 1,7       | 1,8      | 1,8      | 1,5      |
| Chamfer    | 6,4       | 10,9     | 7,1      | 7,1      |

2.0

1.5

1.0

0.5

-0.5

-1.0

-1.5

-2.0

-4

-3 -2

-1

0 Y [m]

1

2

3

4

Z [m] 0.0

- Significant increase in density score with ower efficiency
- Size reduction in z-direction

Maximilian Pérez Prada, Institute for the Protection of Maritime Infrastructures, 21.06.2023

### Impact of detection resolution: lead block





- 10 cm spacing, 100% effciency
- Resolution due to scintillator thickness: 50 mm
- Resolution due to WLS fiber grid spacing: 10 mm, 20 mm, 30 mm
- For simplicity, all particles in all energy regimes have same resolution

|           | Perfect Res. | 10:50 mm Res. | 20:50 mm Res. | 30:50 mm Res. | • |
|-----------|--------------|---------------|---------------|---------------|---|
| Score     | 5896         | 5726          | 5573          | 5266          |   |
| Size [m³] | 1,388        | 1,357         | 1,352         | 1,419         |   |
| dx [m]    | 1,1          | 1,0           | 1,0           | 1,2           | • |
| dy [m]    | 1,0          | 1,0           | 1,0           | 1,2           |   |
| dz [m]    | 1,9          | 2,0           | 2,0           | 1,9           |   |
| Chamfer   | 12,1         | 16,3          | 17,7          | 11,5          |   |

- Small reduction of density score with higher resolution
- Small increase in size,
  mostly in x- and y direction with very high
  resolution

# Impact of detection resolution: water block



• 10 cm spacing, 100% effciency

30:50 mm Res.

- 2600

- 2500

- 2400 - 2400 - 2400 Density Score

- 2200

- 2100

-2

 $^{-1}$ 

+ Imi

0

2

- Resolution due to scintillator thickness: 50 mm
- Resolution due to WLS fiber grid spacing: 10 mm, 20 mm, 30 mm
- For simplicity, all particles in all energy regimes have same resolution

- Small reduction of density score with higher resolution
- No significant statement about the correlation between size and resolution possible
- Slight increase in Chamfer distance



|           | Perfect Res. | 10:50 mm Res. | 20:50 mm Res. | 30:50 mm Res. |
|-----------|--------------|---------------|---------------|---------------|
| Score     | 2762         | 2697          | 2640          | 2505          |
| Size [m³] | 1,078        | 1,053         | 0,988         | 1,050         |
| dx [m]    | 1,0          | 1,1           | 0,9           | 1,1           |
| dy [m]    | 1,0          | 1,0           | 1,0           | 1,0           |
| dz [m]    | 1,7          | 1,7           | 2,0           | 1,8           |
| Chamfer   | 6,4          | 5,6           | 9,5           | 10,7          |

 $^{-1}$ 

0 Y [m]

1

2

3

4

# Impact of layer spacing



#### Calculate ratio 10 cm / 20 cm layer spacing scenario for density score and size

| Water     | Perfect Eff. & Res. | 80% Eff. | 60% Eff. | 40% Eff. | 10:50 mm Res. | 20:50 mm Res. | 30:50 mm Res. |
|-----------|---------------------|----------|----------|----------|---------------|---------------|---------------|
| Score     | 1,003               | 1,014    | 1,020    | 1,017    | 0,996         | 0,961         | 0,926         |
| Size [m³] | 1,011               | 1,154    | 1,255    | 1,611    | 1,021         | 1,035         | 1,087         |
|           |                     |          |          |          |               |               |               |

| Lead      | Perfect Eff. & Res. | 80% Eff. | 60% Eff. | 40% Eff. | 10:50 mm Res. | 20:50 mm Res. | 30:50 mm Res. |
|-----------|---------------------|----------|----------|----------|---------------|---------------|---------------|
| Score     | 1,040               | 1,039    | 1,066    | 1,040    | 1,020         | 1,007         | 0,967         |
| Size [m³] | 1,042               | 1,011    | 0,882    | 1,161    | 0,996         | 0,988         | 1,065         |

- $\rightarrow$  Only small difference between spacing scenarios for lead block, no difference for water block
- $\rightarrow$  Only small or no significant difference for efficiency and resolution variations
- $\rightarrow$  Allows for some variability in the optimal detector layout



#### Calculate ratio lead / water block scenario for density score and size

| 10 cm layer spacing | Perfect Eff. & Res. | 80% Eff. | 60% Eff. | 40% Eff. | 10:50 mm Res. | 20:50 mm Res. | 30:50 mm Res. |
|---------------------|---------------------|----------|----------|----------|---------------|---------------|---------------|
| Score               | 2,135               | 2,032    | 1,989    | 1,849    | 2,123         | 2,111         | 2,102         |
| Size [m³]           | 1,288               | 1,211    | 1,035    | 1,138    | 1,289         | 1,368         | 1,351         |
|                     |                     |          |          |          |               |               |               |

| 20 cm layer spacing | Perfect Eff. & Res. | 80% Eff. | 60% Eff. | 40% Eff. | 10:50 mm Res. | 20:50 mm Res. | 30:50 mm Res. |
|---------------------|---------------------|----------|----------|----------|---------------|---------------|---------------|
| Score               | 2,057               | 1,983    | 1,904    | 1,809    | 2,072         | 2,016         | 2,013         |
| Size [m³]           | 1,250               | 1,382    | 1,473    | 1,579    | 1,322         | 1,434         | 1,379         |

 $\rightarrow$  Only small or no significant difference for efficiency and resolution variations

 $\rightarrow$  Material discrimination is possible and stable for realistic efficiencies and resolutions

### **Final remarks**

- The usage of secondary particles provides a promising and complimentary approach for cosmic-ray tomography
- The discussed detector conditions simulate realistic material budget, resolution and efficiency
- Even with a more realistic detection setup, our stand-alone method can succesfully reconstruct simple geometric objects located inside a container and discriminate their material



- Further work will try to optimize the setup, considering a wider range of detector materials
- Further planed improvements: machine learning based reconstruction, automized material parameter scan, ...