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Deep reinforcement learning 
for microstructural optimisation 
of silica aerogels
Prakul Pandit 1*, Rasul Abdusalamov 2*, Mikhail Itskov 2 & Ameya Rege 1,3

Silica aerogels are being extensively studied for aerospace and transportation applications due to 
their diverse multifunctional properties. While their microstructural features dictate their thermal, 
mechanical, and acoustic properties, their accurate characterisation remains challenging due to their 
nanoporous morphology and the stochastic nature of gelation. In this work, a deep reinforcement 
learning (DRL) framework is presented to optimise silica aerogel microstructures modelled with 
the diffusion-limited cluster–cluster aggregation (DLCA) algorithm. For faster computations, two 
environments consisting of DLCA surrogate models are tested with the DRL framework for inverse 
microstructure design. The DRL framework is shown to effectively optimise the microstructure 
morphology, wherein the error of the material properties achieved is dependent upon the complexity 
of the environment. However, in all cases, with adequate training of the DRL agent, material 
microstructures with desired properties can be achieved by the framework. Thus, the methodology 
provides a resource-efficient means to design aerogels, offering computational advantages over 
experimental iterations or direct numerical solutions.

Silica aerogels have a fascinating history dating back to 1930’s, when the first ‘aerogel’ was synthesised by  Kistler1. 
This pioneering work in the synthesis of these porous materials, in which the liquid phase is extracted from the 
pores of a gel, laid the foundation for the development of various types of aerogels, which are now considered 
to be among the lightest solid materials in use. For example, silica aerogel is synthesised by drying a silica gel 
and is characterised by very low density ( < 0.20 g/cm3),high porosity (up to 99.98 v/v ), low thermal conductiv-
ity (up to 0.01Wm−1 K−1 ), and sound velocity as low as 20.00m s−12. Due to such exceptional properties, the 
properties and potential applications of silica aerogels, including but not limited to thermal insulation, stardust 
collection, packaging, and biomedicine have intensively been  explored3,4. These features, ranging from thermal 
conductivity to diverse mechanical and optical properties, are strongly influenced by the microstructure of the 
material, such as pore size distribution, particle connectivity, and specific surface  area5–7. Traditional aerogel 
synthesis relies on recipes or trial-and-error approaches based on chemical principles, which sometimes limits 
the exploration of new and sustainable synthesis routes. This is also compounded by the additional lack of a 
comprehensive understanding of the complex structure–property relations in aerogels, making it difficult to 
predict the behaviour of these materials under different environmental and loading conditions. Therefore, the 
ability to optimise the microstructure of silica aerogels through targeted synthesis and, in turn, to tailor their 
properties for a given application remains a significant challenge.

In the last decade, deep learning and artificial intelligence (AI) approaches have gained significant attention 
in several domains such as image  processing8, optimisation  problems9, or even general game  playing10. Recently, 
the influence of AI has also spread to the natural sciences, especially engineering, physics, materials science, 
or even  chemistry11. In particular, large amount of data makes it possible to pursue new approaches, e.g., the 
prediction of protein  folding12, the description of material  behaviour13–15, microstructure  optimisation16,17, or 
even the discovery of materials with novel  properties18–20. Moreover, in the field of porous materials, data-
driven approaches have been utilised also for rapid material characterisation, to enable accelerated materials 
 synthesis21,22. In addition to such data-driven applications, reinforcement learning is being utilised to develop 
self-learning laboratories for autonomous exploration of advanced  materials23. This aspect of designing and 
developing novel materials leads to huge opportunities for the future. Moreover, the application of deep learning 
is limited not only to materials but has also been applied in the development of meta-materials. Recently, deep 
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learning methods for the structure–property map inversion of truss meta-materials have been  reported24. In the 
context of meta-materials with nature-inspired architectures, an unsupervised generative adversarial model was 
developed to design, model, and print 3D structures for diverse  applications25.

With the aim of describing the complex structure-property relations in silica aerogels, several reports on their 
computational modelling have been communicated in the literature, particularly with, molecular  dynamics27–30, 
coarse-grained  simulations31–33 as well based on tomographic imaging through CT-scans34,35. A computational 
model can be defined to be a digital twin of any material, only when the model accurately describes the physical 
and chemical characteristics on a multi-dimensional scale. Thus, it is essential to model not only the morphol-
ogy but also the chemical kinetics of the formation of the gelled structure. On a coarse-grained scale of silica 
aerogels, the diffusion limited cluster–cluster aggregation (DLCA) algorithm has been shown to effectively 
model the structural  morphology32 and also their mechanical  behaviour31. For example, in Fig. 1a a hierarchical 
clustered network morphology of a silica aerogel sample observed under a scanning electron microscope (SEM) 
is represented. Figure 1b visualises its corresponding computational parallel, generated through stacking of 2D 
slices of DLCA structures. Moreover, it has also been shown to qualitatively describe the gelation kinetics post 
the nucleation of the secondary particles during the sol–gel  process36,37. Thus, the DLCA models, if optimised, 
present the opportunity to be extrapolated for the controlled synthesis of silica aerogel in an automated deep-
learning laboratory, while expediting the process and facilitating the discovery of more efficient and sustainable 
aerogel synthesis pathways.

All modelling approaches have a common process characteristic: they require considerable computation 
times. Therefore, it is a major computational challenge to investigate how certain input parameters influence 
the mechanical properties of the generated aggregated structures. Usually, to this end, an exhaustive search is 
performed, to generate a tailored structure to fit the desired properties. Machine learning (ML) approaches can 
significantly contribute to improving this process by acting as surrogate models for property predictions. Dif-
ferent ML modes such as support vector machine (SVM)38,39, random  forest40,41, convolutional neural networks 
(CNNs)42–44, multi-layer perceptrons (MLP)45, and graph-based neural  networks46–48 have been adopted as sur-
rogate models to relate the microstructures or microstructural features into the material properties in many 
applications. In the context of silica aerogels, as an extension of the inversed design method presented  in49, this 
work explores the combination of random forests with reinforcement learning for performing microstructural 
optimisation of silica aerogels. Thereby, a deterministic type agent performs actions in the design environments 
to achieve a maximum reward. By specifying the inputs of the DLCA method as actions and the fractality as well 
as the mechanical properties as states, a tailored aggregated structure can be generated. However, here the key 
question arises as to which of the several properties of silica aerogels should be optimised. While silica aerogels 
are primarily investigated as thermal insulators, choosing thermal conductivity would be the quintessential 
choice. However, it has been thoroughly investigated in the past decades. What remains fascinating is to simul-
taneously improve their mechanical characteristics. In this work, the main objective is to investigate their elastic 
modulus (E) as well as their fractal characteristics, based on fractal dimension (fd) . A key objective is to improve 
the mechanical strength of aerogels by understanding their microstructure, enabling aerogels to withstand loads 
without collapsing or breaking. The inter particle connectivity of the microstructure has a crucial influence on 
the overall macroscale  behaviour50.

The paper is organized as follows. The results of the data generation, the surrogate model prediction of 
material properties, and also the inverse design with the DRL framework are presented in “Results”. A general 
discussion and outlook of the research is presented in “Discussion”, followed by the methodology of generating 
the data and a detailed description of the development and application of the DRL framework in “Methods”.

Results
This section presents the data generation through DLCA algorithm and its pre-processing results as well as results 
on the microstructure optimisation with DRL.

Figure 1.  (a) A transmission electron microscopy (TEM) image of silica aerogel  from26. (b) Voxelised 
computational reconstruction from DLCA models to show the DLCA microstructure morphology in 2D.
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Data generation and analysis
In the present study, for the development of the DRL framework, a total of 1708 aggregates were generated using 
the DLCA algorithm developed in Matlab. To analyze their mechanical response, these aggregated microstruc-
tures were simulated under 10.00% compressive strain in Abaqus. More details about the finite element simula-
tions can be found in “Finite elements simulations of representative volume elements”. While the initial pool of 
aggregates was larger, convergence errors in conjunction with shorter elements along with the lack of formation 
of a backbone structure resulted in only realising 1708 meaningful simulations. This was an expected outcome, 
due to the randomness involved in the DLCA algorithm and the wide range of inputs provided for the genera-
tion of the data set. This resulted in structures with fewer cluster–cluster interactions, leading to localised cluster 
formation, which in turn led to the absence of backbone formation in certain cases. The representative volume 
elements (RVE)s lacking backbones are non-physical and were therefore not considered for the training data, as 
silica aerogels always exhibit a load-bearing backbone when exposed to compressive forces. Exemplary aggregated 
structures for the concentrations of c1 = 10.00% , c2 = 8.75% , c3 = 7.50% and c4 = 6, 25% are depicted in Fig. 2a. 
Here, r denotes the particle radius, ss and sw are the step sizes of seeds and walkers. The general 3D network 
of the aggregated structure together with a cross-section visualisation is shown in the center. Additionally, the 
RVE compression simulations up to 10.00% are visualised along with their mechanical response for the different 
concentrations. Figure 2b demonstrates the influence of the concentration on the mechanical behaviour. It can 
be observed that increasing the concentration enhances the stiffness of the aerogel model. This seems reasonable 
enough following the scaling behaviour observed typically in porous materials. Furthermore, the influence of 
skeletal Young’s modulus is visualised for the aggregated structure of concentration c3 (see Fig. 2c). It can be seen 
that the stiffness of the beam elements increases directly in a linear fashion with increasing ES,3 . The validation 
of the beam element Young modulus can be performed experimentally by calculating skeletal Young’s modulus 
of the silica aerogel. This increase is justified since amongst the three modes of deformation, bending contributes 
at most to stresses in silica aerogels and within the elastic regime, the bending stress is proportional to Youngs’s 
modulus as shown by Ma et al.52.

As discussed in “Introduction”, the DLCA model can be defined as a digital twin only after multi-dimensional 
validation of the material morphology and chemical kinetics. To this extent, the Fig. 2d describes the validation of 
the scaling exponent of the elastic modulus of the silica aerogel microstructure modelled with DLCA algorithm. 
The exponent of 3.95 (calculated for different concentrations of aggregates with r = 3.00 nm , ss = 0.30 nm and 
sw = 0.30 nm ) in this study closely aligns with the exponent of 3.80 obtained from experimental measurements. 
Moreover, it can be seen in Fig. 2e, that the DLCA gelation kinetics qualitatively describes the post-nucleation 
sol-gel growth of the structure. For the computational model, these kinetics is influenced by the step size of the 
walkers (explained in “Methods”): the higher the step size, the faster the growth. Thus the step size is a numerical 
construct of the influence of temperature on the secondary particles.

The data set generated from DLCA and its mechanical simulations was cleaned to remove variance for train-
ing of the property predictor. The variance is introduced into the system due to the randomness involved in the 
DLCA process. As such, the converged 1708 samples were averaged over each sample, thus leading to a final 
data set of 200 structures. The training data set is described with a box plot in Fig. 3a. It was observed that the 
averaging helps to remove several outliers from the training data set, thus enabling accurate regression analysis 
by the surrogate model.

To understand the correlation between the DLCA parameters and material properties of the generated aggre-
gates as well as the mechanical response, a correlation matrix was calculated, and is illustrated in Fig. 3b. It is 
immediately apparent that both particle step sizes have nearly no effect on any other parameter. This can be 
explained by the fact that the step size is a mathematical construct to model the influence of temperature in 
the gelation process, and as such it only affects the time of gelation in sol-gel  processes53. Note that the particle 
position is additionally adjusted during aggregation to prevent particle overlap. This is a helpful step to avoid 
very small elements, such that the distance of the aggregated particles is exactly equal to the sum of the radii. 
As already known from literature there exists a positive correlation between the elastic modulus E and the con-
centration c54, which can be itself validated from the correlation matrix. The concentration has also a positive 
correlation with the fractality. Furthermore, the analysis of the matrix reveals an inverse relationship between 
the radius and the elastic modulus. One other interesting observation is that the correlation between the elastic 
modulus E and the graph network density ψ is negative. This leads to the assumption that as the number of net-
work connections increases, the number of cluster localisations grows, implying that fewer particles can actually 
contribute to the backbone structure.

Microstructure optimisation with DRL framework
To reduce computational resources utilised, a surrogate model/property predictor was developed to replace 
the finite element method (FEM) simulations while performing the inverse design in the DRL framework. The 
pre-processed data as discussed in “Data generation and analysis” was utilized to train a random forest algo-
rithm as the surrogate model for predicting the material properties directly from the DLCA parameters and the 
graph density. The pre-processed data was split into training ( 90.00% ) and testing sets ( 10.00% ), so as to avoid 
information leak during normalisation from the training set to the data set utilised for validation. These sets 
were then individually normalised between (− 1,1). The property predictor was evaluated on the basis of the 
mean absolute error (MAE) metrics. To achieve the best metric, the hyper-parameters were tuned with a ‘brute-
force’ approach. The trained surrogate model was validated on the test data set and had a R2 score of 0.94. These 
validation results over the test set can be seen in Fig. 4a,b. Further details of the random forest architecture are 
discussed in “Numerical surrogate environment”.



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1511  | https://doi.org/10.1038/s41598-024-51341-y

www.nature.com/scientificreports/

The deep deterministic policy gradient (DDPG)  algorithm55 coded in the Stablebaselines3 
 framework56 was utilised to perform the inverse microstructure optimisation over a custom DLCA environment 
(the details of the environment along with the reward function shaping is explained in “Reinforcement learning 
framework”). The schematic representation of the DDPG agent working in combination with the environment for 
the DRL framework can be seen in Fig. 4c. The DRL inverse optimisation problem was tested with respect to two 
difficulty levels: the ‘low-complexity scenario’, wherein the DDPG model was trained over a single combination 
of target material features and a ‘high-complexity scenario’ wherein the trained DDPG model was trained over 

Figure 2.  (a) Visualisation of four aggregated structures for different concentrations, showing the 3D particles, 
a visualisation of the cross-section in the center, and the compression tests from FE simulations. In addition, the 
(b) shows the stress–strain response for the four concentrations including a comparison to literature  data51. The 
influence of the varying modulus of elasticity of each beam element is also shown for the aggregated structure 
of concentration c3 in (c). The comparison of the scaling exponent of the elastic modulus from the DLCA 
computational results to the experimental  data31 in (d) and the gelation kinetics of DLCA to experimental 
 data37 in (e) are visualised.
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different target material features possible in the production scenario in each episode to achieve generalisability 
during the production cycle. As compared to a single target learning problem, this increases the complexity 
involved in learning the Q-function, however, enables the deployment of a single agent for synthesising silica 
aerogels with diverse properties. In both environments, the DDPG agent learns a policy to maximise the average 
episodic reward to solve the environment (see “Reinforcement learning framework” for more details). For the 
‘low-complexity’ training case, the environment was defined to have material property constant over all epi-
sodes. This enabled faster training of the agent to achieve optimised structures at the expense of generalisability. 
To achieve the optimal inverse design with the DDPG agent in this environment, the DDPG hyperparameters 
were tuned with Optuna over 100 trials for different combinations. The agent hyperparameters were selected 
based on the highest episodic mean reward received. The critic and actor loss of the DDPG agent based on the 
best-selected hyperparameters in the low-complexity environment are shown in Fig. 4d. Figure 4e describes 
the average episodic reward for the ‘low complexity’ environment. It can be observed that in the initial training 
epochs, the agent achieves negative rewards based on the reward function defined (explained in “Numerical 
surrogate environment”). However, as it learns from its experience by interacting with the environment over the 
training time, the reward increases gradually towards the maximum, indicating that the agent can take actions 
(DLCA parameters) to solve the provided environment for the desired states ( E, fd) . Thus these achieved actions 
from the trained agent at the end of training, provide the user with the optimised microstructure for the desired 
material properties. To validate the results from the DRL framework, the microstructures with returned actions 
were regenerated with DLCA and analysed with FEM. In Fig. 5a–c, selective results of the output of the opti-
mised microstructure based on the constant target property environment are presented. It can be observed that 
the agent effectively optimises the silica aerogel microstructure and predicts the exact DLCA model parameters 
which would provide the target properties. These structures are accurate to an MAE of about 1.00% for cases 
existing in the training data, however on interpolating the material features and as such exploring material 
properties unseen by the framework during the training phase, results in microstructures with average MAE 
of approx 10.00% . The training over single material targets allows quicker training times and easy deployment, 
as accurate optimisations can be achieved after training the agent for 10,000 epochs. Due to the single material 
property optimised, the episodic length remains constant, which simplifies the learning process. However, to 
optimise silica aerogels with diverse properties, retraining the agent in a similar environment but with different 
targets would be necessary.

To solve this problem of retraining the agent each time, a second environment for material optimisation 
was developed. What differentiates these environments is the definition of the target properties (more details 
in “Methods”). For each episode, the agent learns how to achieve a different material property, wherein these 
material properties are sourced from all the possible combinations possible in the material production and can 
be inputted by the user, thus making it a ‘higher-complexity’ problem. Due to this increase in the complexity 
of the environment, the agent requires more training epochs to achieve convergence. Accordingly, based on 
the hyper-parameter optimisation with Optuna, the agent converged with highest mean episodic reward after 
training for 125,000 epochs. Moreover, the length of each upside is also not constant due to the switch of the 
material properties over the training period of each episode. It is important to consider that a higher number 
of training epochs is required to train the ‘high-complexity’ environment, to get a similar accuracy as the ‘low-
complexity’ environment. Figure 5d–f visualises some of the selective structures optimised through the general 
environment with switching material properties over episodes. For most of the required structures, the RL agent 
achieves the inverse design by optimising the parameters of the DLCA parameters with an MAE of about 6.00% . 
However, it was also observed that certain material properties optimised were in a range of about 15.00–25.00% 
MAE, which is due to the diverse targets experienced by the agent over the number of episodes. This can mostly 
be related to the higher variance experienced in the FEM simulations, which in turn required an averaged data 

Figure 3.  (a) Boxplot visualisation of the training dataset’s target properties E and fd after data pre-processing. 
(b) Correlation matrix between the particle radius r, the concentration c, the seed step size ss , the walker step 
size sw , the fractal dimension fd , the elastic modulus E and the graph network density ψ.
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set to be utilised for training. This also effects the generalisability of the surrogate model over outlying material 
targets. This lack of training data persists in the ‘high-complexity’ scenario, wherein the DRL framework is not 
able to build generalised training history in the replay buffer.

Discussion
Silica aerogels exhibit an unearthed potential for diverse applications, making their reverse synthesis for targeted 
applications critical. The computational design of silica aerogels with improved strength is a challenging task 
owing to the complexities of their microstructure. The DRL framework presented above aims to solve this task. 
The main goal of this research is to design tailored silica aerogel microstructures by utilising the DLCA algorithm 
for targeted applications. Previous works by our group have focused on ANN based approaches, to perform an 
inverse structure–property mapping. However, the problem of non-uniqueness appeared to be non-trivial. To 
overcome this challenge, reinforcement learning techniques are therefore explored. A deterministic algorithm 
is trained over two environments of varied complexity. What differentiates a deterministic policy algorithm is 
that it chooses a single action for each state, while a stochastic policy selects from a probability distribution over 
actions for each state. For the goal of reverse engineering, the DLCA method in combination with FE simulations 
is used for the data generation. The generated data provides insight into the correlation between the structural and 

Figure 4.  (a,b) Comparison of predicted vs actual material properties for the random forest model over the test 
set. (c) Schematic visualisation of the DRL framework with an agent trained over the environment. (d) The actor 
and the critic loss during the training process of the DRL agent in the ‘low-complexity’ environment. (e) Mean 
episodic award over the training.
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mechanical parameters. The importance of the correlation between concentration and Young’s modulus known 
from the literature was affirmed. In addition, an interesting observation regarding the effect of network con-
nectivity on the elastic modulus can be found. Accordingly, localised connections weaken the existing backbone 
structure. Although trained over a limited data set, the proposed RL framework can identify targeted mechanical 
and structural parameters. The approach has been tested for two levels of complexity, resulting in an average 
MAE of 10.00% depending upon the complexity of the environment. A key observation is the ability to generalise 

Figure 5.  Optimisation of the microstructures with DRL and their validation: visualisation of some selective 
optimised structures based on desired target properties in the (a–c) specific-defined ‘low-complexity’ 
environment and (d–f) in the generalised ‘high-complexity’ environment. To validate the results through 
the RL approach the specified DLCA algorithm inputs were determined and the resulting structures for both 
environments were validated by microstructure generation with DLCA and their subsequent FEM analysis.
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over a continuous input space from comparatively few data points to obtain satisfactory results. Nevertheless, 
the current approach of reverse engineering is limited only to the elastic modulus and the fractality of the silica 
aerogels. Certainly, the extension to thermal and acoustic simulations for tailoring further properties directly 
be achieved in the basis of existing micromechanical  models57. To account for potential biases or uncertain-
ties, it remains important to improve the training data set. Potential improvements can also be made by the FE 
technique. This work illustrates a potential solution for a significant improvement of the mechanical properties 
of silica aerogels by providing a deeper understanding of the micro structural relations and their influence on 
macroscale properties. The presented research is a first step towards tailor-developing silica aerogels, with the 
potential for expansion through the incorporation of digital twins emulating the multi-scale behavior of aero-
gels. This work in itself must not be seen as a direct tool for reverse engineering silica aerogels. Primarily, this 
approach opens applications for inverse designing aerogels, using DRL to control synthesis process conditions 
as actions (such as chemical precursors, acid concentration, and reaction temperature). Beyond microstructure 
optimisation, the application of DRL extends to metamaterials. In this context, the DRL framework can be trained 
to predict topological features as actions to attain specific material properties as states. This DRL framework is 
directly applicable in realising (meta)-material microstructures through manufacturing processes like additive 
manufacturing and 3D printing. Consequently, it provides a resource-efficient means to design aerogels, offer-
ing computational advantages over experimental iterations or direct numerical solutions. This approach has the 
potential to significantly reduce the time and cost associated with developing novel aerogel material structures.

Methods
There are two main methodological aspects involved in this work for the optimisation of the silica aerogels: the 
computational modelling and simulation of aggregated structures and the development of a DRL framework to 
solve an optimisation problem generating a target microstructural morphology. In “Computational modelling 
and mechanical simulation of the silica aerogel microstructure”, the generation of the silica aerogel microstruc-
ture and the mechanical simulations of the RVEs using FEM are discussed. The fundamentals of DRL using a 
deterministic policy gradient are presented in “Reinforcement learning framework”.

Computational modelling and mechanical simulation of the silica aerogel microstructure
An initial data set is required to effectively model the morphological and mechanical properties of the micro-
structure. The inverse prediction is based on the desired elastic modulus and fractal dimension, reflecting the 
geometric and mechanical characteristics of silica aerogels. To this end, the DLCA algorithm is utilised to create 
computational silica aerogel microstructures.

Diffusion‑limited cluster–cluster aggregation method
As discussed in “Introduction”, the DLCA algorithm has been extensively researched for computational model-
ling of silica aerogel microstructures. Hasmy et al.32 showed that structures generated by DLCA matched closely 
with the small angle neutron scattering (SANS) data for silica aerogels. The starting point of this algorithm is a 
box with periodic boundary conditions where a total number of Nall = NS + NW of seeds and walker particles 
are initialized (see Fig. 6 for a 3D visualization). These particles can be placed randomly or in an arranged way 
within the box. In this example the particles are initialized on random points and they can move freely and 
periodically according to the random walk theory. For this purpose a seed and walker step size, sS and sW , are 
defined. With time, all the walkers diffuse to the seeds and clusters are formed. As soon as two particles of two 
different clusters exceed a critical distance the two clusters are connected to form one single cluster. The algorithm 
continues until only one periodically spanning network remains in the system, representing the microstructure 
of the aerogel. This algorithm was adapted by Abdusalamov et al.31 and comparable results in terms of scaling 
relationships between simulations and experimental results were obtained. A slightly modified DLCA model was 
developed for this paper as a continuation of the latter work: the random walk process was redefined allowing all 
particles to move based on a spherical walk. In addition, overlaps of particles are prohibited and corrected at the 
first aggregation. While this overlap can be considered in the models to describe effects of Oswald  ripening58 in 
silica aerogels, their elimination helps to simplify the FEM process and avoid convergence issues. The projection 
of the particle is adjusted based on the connection vector between two particle positions, ensuring that the con-
nection length equals the sum of both particle radii. The algorithm inputs are the particle radius r, the step sizes 
of seeds ss and walkers sw , the relative density c for a constant RVE domain size of 200.00 nm . Refer to Fig. 6 for 
a visualisation of the general process of the DLCA algorithm.

Finite elements simulations of representative volume elements
FEM was utilised to describe the mechanical properties of the generated aggregated structures. Based on the 
DLCA algorithm the particle positions and connections were extracted. In order to perform an FEM simulation, 
an RVE was generated for each aggregated structure. Thereby, the dimensions of the RVE corresponded to the 
dimensions of the DLCA simulation box. In addition, periodic boundary conditions were  applied31. Accordingly, 
each bounding surface of the RVE was used to generate additional nodes for connections over the boundary. Note 
that all particles are modeled as nodes, while the connections are exported as beam elements. The simulations are 
performed in Abaqus  using the linear B31 element formulation based on the Timoshenko beam theory. This 
formulation guarantees that all three types of bond deformations are considered: bending, torsion, and stretching. 
Young’s modulus and Poisson’s ratio of each beam are taken have been provided in literature for silica  aerogels33 
with ES = 10.00MPa and ν = 0.29 . For this work, the Young’s modulus of each beam was determined through 
a correlation to experimental data as ES = 6.95 kPa . To ensure that compression is symmetric with respect to 
the centre, additional points in the centre of the RVE are fixed. However, to eliminate convergence issues in the 
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process of data generation, unlike in previous works, the contact between all beam elements is not taken into 
account. As the RVE is only compressed up to 10.00% , no significant contact between the beams occurs and 
therefore no effect on the initial stiffness response is noticeable. The simulations are generated as input decks in 
Matlab  and executed for uniaxial compression in Abaqus. The deformation as well as the force response are 
exported to analyse the mechanical properties of the aggregated silica aerogel structures.

Graph density for microstructural connectivity
Connectivity plays a pivotal role in understanding elastic behaviour of porous materials, offering critical insights 
into the relationship between microstructure and mechanical properties. Power law exponents (E ∝ ρm) describe 
the connection between the mechanical behaviour of materials and their density. High connectivity within the 
material significantly influences the elastic modulus and other mechanical attributes. Increased connectivity 
in the microstructure leads to a lower power exponent due to enhanced load distribution capacity, whereas 
decreased connectivity results in a higher power law exponent resulting from the formation of backbone paths, 
indicating greater sensitivity to changes in porosity and structural disorder. Graph theory can be utilised for 
quantifying the connectivity of porous materials. One such metric is the density of a graph. For a graph, its 
density ( ψ ) is defined as:

where |E| and |V| represent the number of edges and nodes in the graph, respectively. For calculation of the 
graph density and the microstructural connectivity, the particles of the DLCA model were exported as nodes 
and their respective bonds as edges using the NetworkX package. Incorporating graph density as a quantitative 
metric enhances the precision of characterising the connectivity-dependent elastic behaviour of porous materials, 
facilitating comparative analysis between the optimised to desired microstructures.

Reinforcement learning framework
Reinforcement learning is a closed-loop ML technique that deals with understanding how an agent interacts in 
an environment (real or simulated) to achieve desired goals. In this process, an intelligent agent performs actions 
to achieve maximum feedback in the form of a reward. During this process, the agent interacts with the environ-
ment trying to adjust, identify and learn the most suitable actions making a trade-off between exploration and 
exploitation. An RL framework is commonly described based on the Markov decision process and consists of:

(1)ψ =
2E

V(V − 1)
,

Figure 6.  Visualisation of the DLCA algorithm. (a) Walkers (blue) and seeds (yellow) initialized in the domain. 
(b–e) Walkers diffuse towards the seeds and aggregate together to form a cluster on reaching a critical distance ǫ . 
(f) Final aggregated structure after all the walkers and seeds connect to form a domain-spanning aggregate.
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• a set of states s for states S,
• a set of actions a taken for actions A,
• transition probabilities P(s′ | s, a) from a state s to a state s′ for an action a,
• as well as the reward r̃ for the transition from state s to a state s′ for an action a.

A reward is a measure of how successful the actions of the agent were with respect to the desired state. In this 
work, a deterministic policy gradient algorithm was employed on a custom DLCA environment and will shortly 
be discussed in the following section.

Deterministic policy gradient algorithms
In general, both deterministic and stochastic policy gradient-based algorithms can be used for continuous 
action spaces. However, stochastic policies suffer from a major difficulty, which is the lack of computational effi-
ciency due to the computation of a parametric probability distribution responsible for the stochastic selection of 
 actions59. Stochastic policy gradients rely on integration over state and action spaces, resulting in a larger number 
of training samples. In the case of deterministic policies, the integration is only performed over the state space. 
Although the action space for the inverse mapping is not high dimensional, DDPG allows sufficient exploration of 
the action space while still learning the deterministic target policy. As stated  in59,60 the DDPG algorithm consists 
of two components: an actor and a critic network. The actor learns a deterministic policy µ(s) that maps states 
to actions, while the critic learns an action-value function Q∗(s′, a) that estimates the expected return of follow-
ing the actor’s policy from a given state. The action-value function, also called the Q function is calculated as:

where �·�′ represents the transition to the next state or action, where s′ is sampled by the environment from a 
probability distribution P(· | s, a) and γ is the discount factor. Equation (2) is the starting point for learning an 
approximator to Q∗(s, a) . This approximator is often modelled in the form of a neural network with parameters 
φ , which have to be optimised through the evaluation of two target networks with respect to the mean-squared 
Bellman error (MSBE). This leads to the evaluation of the target value y(r̃, s′, d) given by:

where d is the boolean indicating whether s′ is terminal or not. Based on this calculated target value, the action-
value function can be updated as:

which in turn is used to calculate the step-wise policy gradient given by:

where B is the batch of transitions from a replay buffer D . The target network hyperparameters are updated 
based on the Polyak averaging

where ρ̃ is a hyperparameter ranging between 0 and 1.

Numerical surrogate environment
The DRL framework consists of two different complexities. The ‘low-complexity’ environment has the same mate-
rial property over all training episodes, which are provided by the user as an input. While the ‘high-complexity’ 
environment switches the target material properties at the end of each episode. These material properties are 
provided by the user and take into account all possible material features that can exist based on the test data set 
from the surrogate model. The inputs to the DLCA algorithm act as actions within the framework, while the 
target material properties are the expected states obtained from these actions. These action ranges were as follows: 
r ∈ [2.5, 3.5], ρ ∈ [0.05, 0.1], ss ∈ [0.1, 0.5], sw ∈ [0.1, 0.5] . Furthermore, from the generated aggregate structures 
we can calculate the graph network density ψ ∈

[

1.67 × 10−4, 7.27 × 10−4
]

 , which act as an additional action 
to validate the inversely generated microstructures. The graph density gives a measure of the total connections 
present in the aggregated structure and is calculated as a ratio of the total number of connections by the total 
number of possible connections between the nodes, wherein each particle is considered as a node and the inter-
particle bond as the connection. Due to the sparse nature of bonds formed in DLCA, we observe such low values 
of ψ . We also limit the observation space for the material outputs, i.e. the fractality df ∈ [2.45, 2.75] and elastic 
modulus E ∈ [1.00 kPa, 930 kPa] , so that feasible and experimentally validated solutions can be guaranteed.

A random forest is used as a surrogate model to avoid the high computational and time requirements of 
iterative training with FEM during microstructure optimisation. This surrogate model is separately trained 
using supervised learning based on offline generated data from the compression simulation of the RVEs. The 
random forest consists of five input nodes, i.e. the model parameters of the DLCA, the graph density ( ψ ), and 

(2)Q∗(s, a) = E
s′∼P

[

r̃ + γ max
a′

Q∗(s′, a′)

]

,

(3)y(r̃, s′, d) = r̃ + γ (1− d)max
a′

Qφ(s
′, a′) ,

(4)∇φ

1

| B |

∑

(s,a,r∗ ,s′ ,d)∈B

(

Qφ(s, a)− y(r̃, s′, d)
)2
,

(5)∇φ

1

| B |

∑

(s,a,r̃,s′ ,d)∈B

Q(s,µθ(s)),

(6)φtarg ← ρ̃φtarg + (1− ρ̃)φ,
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two outputs, i.e. the fractal dimension and the elastic modulus. In the context of DRL, we examine a framework 
that confronts an inverse optimization problem, differentiating between two distinct scenarios, namely the ‘low-
complexity’ and ‘high-complexity’ environments. In the ‘low-complexity’ environment, the DDPG agent is tasked 
with optimizing a fixed set of target material properties (E, fd) , as provided by the user. In this setting, the target 
material properties remain fixed throughout episodes, and the DDPG agent strives to maximize the cumulative 
reward by optimising the specified material properties over a constant episode length.

In contrast, the ‘high-complexity’ environment presents a more dynamic challenge. Here, the agent is required 
to optimise a diverse range of target material properties, with each episode introducing a novel set of properties. 
Unlike the ‘low-complexity’ setting, the target material properties vary from one episode to the next, leading 
to a more challenging and dynamic task. Furthermore, the episode length can vary depending on the specific 
target properties, adding an element of unpredictability. This nuanced differentiation between ‘low-complexity’ 
and ‘high-complexity’ environments within the DRL framework enables the exploration of adaptive solutions 
for diverse optimisation problems. For training of DDPG on ‘high-complexity’ environment, each episode was 
set with terminal condition of 700 training epochs or if the average reward achieved per episode was more than 
− 0.05 (normalised). If the terminal condition is met, the episode resets to a new target material property and 
the training continues. During these episodes, in both of the environments, the surrogate model predicts the 
states achieved for a set of actions sampled from the replay buffer at every epoch. To train the RL agent, and to 
achieve deterministic optimised actions for the desired states, an episodic reward signal based on relative error 
was defined as:

where sT (fd ,E) is the target material state and the s(fd ,E) is the states predicted by the surrogate model for the 
set of actions taken.
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