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Abstract
Porous media such as aerogels can exhibit unique properties including low
thermal conductivity, low bulk density, and low sound velocity. However, the
limited mechanical properties of aerogels restrict their widespread application.
This study focuses on understanding the mechanical behavior of aggregated
silica aerogels by investigating their microstructural connectivity and densifica-
tion mechanisms under uniaxial compression. The interparticle connectivity is
generated using the diffusion-limited cluster–cluster aggregation (DLCA) algo-
rithm, and the particle connections are modeled by beam elements that account
for contact interaction. The mechanical response of representative volume ele-
ments (RVEs) is analyzed in both linear and nonlinear regimes while applying
periodic boundary conditions. The model is correlated with experimental com-
pression test data to validate the simulation results. With increasing compressive
strain, load transitions between multiple backbone paths appear in the network
structure. Thus, the simulationmodel provides insight into the compression pro-
cess. Moreover, the simulation model enables the examination of the influence
of various model parameters and facilitates the evaluation of the power–law
relationship between the elasticity modulus and porosity of aerogels.

1 INTRODUCTION

Aerogels encompass a unique class of materials that originated with Kistler’s invention in 1931 using a supercritical dry-
ing technique and have persistently drawn the scientific community’s attention due to their broad-spectrum application
potential [1]. The intrinsicmicrostructure of aerogels is similar to a three-dimensional, open network of nanoparticles, and
is often described as a “pearl necklace” configuration [2]. This uniquemicrostructure gives aerogels exceptional properties
such as a large specific surface area (>1000 m2/ g), low thermal conductivity(<0.02 W/mk), and remarkably low density
(<0.05 g/cm3) [3, 4]. However, this porous nature also leads to brittleness and limits their wider use beyond pure insula-
tion applications. Understanding the unique mechanical structure–property relationship of silica aerogels is essential to
unlock their full potential through reverse engineering.
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In the last decade, silica aerogels have been studied computationally in order to gain a deeper understanding of their
properties. Two major approaches include molecular dynamics simulations as well as mesoscopic models [1]. With
increasing computational power, the length scale differences between these approaches have become less distinct; for
instance, Gonçalves et al. have fully atomistically modeled silica aerogels within a 100-nm cube [5]. Although this
mesoscale atomistic model is able to capture the structural and mechanical properties, the atomistic nature does not
allow for modeling of the sol–gel process, which involves condensation reactions. Currently, the following approaches
for sol–gel representation are gaining more attention [1, 6]: (i) algorithm based on the Smoluchowski equation [7, 8], (ii)
Langevin dynamics [9, 10], (iii) percolation theory and cluster aggregation models [11–13]. Among these, percolation the-
ory and cluster aggregation have provided significant insights into the internal gel structure [6, 8], correlating synthesis
parameters with microstructure [13].
Through computational modeling and experimental investigations [14], the fractal nature of silica aerogels is a well-

recognized attribute. These fractal structures, that is, self-similar features discernible at different length scales, are also
a prerequisite for coarse-grained models [1]. Using diffusion-limited aggregation approaches, the generated fully gelled
network has been shown to be fractal [15]. The generated network is commonly assumed to be the microstructure of
aerogels after supercritical drying. Prior research suggests that the microstructure of silica aerogels aligns well with
diffusion-limited aggregation-based (DLCA) models [14, 16].
Ma et al. [11, 17] further modified the DLCA model to describe the mechanical properties of silica aerogels, by treat-

ing bonds between particles as beams, since beams can capture the possible deformation of bonds including stretching,
bending, and torsion. The study simulated hydrostatic compression on an off-lattice 2D DLCA model and obtained a
power-law between bulkmodulus𝐾 and the volume fraction 𝜌 as𝐾 ∝ 𝜌3.6. Their subsequent study [18] showed that, with
a linear elasticity formulation, the strain applied to the network does not affect the scaling exponent, implying the need
to incorporate nonlinearity to study the strain–stress response. Recently, Abdusalamov et al. [12] extended this approach
to 3D representative volume elements (RVEs) and subjected the RVEs to uniaxial compression using periodic boundary
conditions (PBCs) in the finite element package. The mechanical characterizations of DLCAmodels have found that only
a small portion of the bonds bear the majority of the load along certain backbone paths, leaving the rest stress-free. This
phenomenon is also observed in colloidal materials [19].
More recently, Borzecka et al. [6] have developed a 3D diffusion-limited (DLCA) and reaction-limited (RLCA) aggrega-

tionmodel to study the kinetic curves. They obtained the relationship between porosity and collision probability, which is
validated by both experimental and numerical results. Further investigations and studies on the applicability of the DLCA
model for describing silica aerogels are referred to in recent reviews [19–21]. Armedwith this knowledge, the present study
seeks to explore more structural and mechanical details of DLCA models on silica aerogels.
This study will leverage the DLCAmodel to simulate the fractal structure of silica aerogels. Themodel assumes that the

gel’s structure remains unchanged during supercritical drying, thereby preserving the aerogel’s structural integrity. This
study will explore the mechanical behavior of aerogels under compression through simulations with the DLCA model,
correlate the model’s parameters to experimental findings, and examine how these parameters influence the properties
of aerogels.

2 METHODS

2.1 Cluster–cluster aggregated model

In the context of gelation, structures composed of connected particles, referred to as “clusters” or “aggregates,” eventually
merge to form a single large cluster that spans the entire system. This single cluster transforms into a solid network in the
solvent after the sol–gel process. To address the complexity of the cluster–cluster aggregation process, we employ DLCA
models since Hasmy et al. [16] showed that these correlate best with the scattering data of silica aerogels. A unit cell in
the shape of a cubic box has been chosen considering the cluster–cluster aggregates are not spherical [22].
The DLCA model developed by Abdusalamov et al. [12] is based on the diffusion-limited aggregation algorithm, in

which a batch of particles is dropped into a given cubic volume with PBCs and undergoes randomwalks due to Brownian
motion. In detail, the starting point is the initialization of particles, which are categorized into seeds and walkers. We
denote the number of seeds and walkers as 𝑁𝑆 and 𝑁𝑊 , respectively, so the number of particles will be 𝑁all = 𝑁𝑆 +

𝑁𝑊 . Here, “seeds” are special particles that grow by incorporating “walkers” or merging with other “seeds.” Thus, only
particle–cluster and cluster–cluster bond formation occurs within the volume. The seeds are placed in an ordered fashion,
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F IGURE 1 Sticking probability between clusters.

F IGURE 2 (A) A DLCA model generated in a 200- nm cube with 𝜌 = 0.02. (B) The FE-model transformed from the DLCA model.

while the walker particles are randomly initialized. The relative concentration, denoted as 𝜌, is the ratio of the particle
volume 𝑉𝑝 to the bulk volume 𝑉𝑏

𝜌 =
𝑉𝑝

𝑉𝑏
=
4𝜋

∑𝑁all
𝑖=1

𝑟3
𝑖

3𝐿3
, (1)

with 𝑟𝑖 representing the individual particle radius and 𝐿 the size of the cubic box. As soon as a particle reaches a seed,
its Brownian motion is stopped based on a critical distance 𝜖crit defined relative to seeds [12]. The particle diffuses and,
with a sticking probability 𝑝𝑠, binds rigidly to the seed. The cluster–cluster aggregation [23] happens when several pairs
of particles from two different clusters (seeds) reach their critical distance 𝜖crit.
In contrast to the previous study [12], the sticking probability will be less than one (0 < 𝑝𝑠 < 1); that is, the bond is

not necessarily formed after reaching 𝜖crit. The concept of sticking probability is similar to the acceptance ratio used in
molecular dynamics trajectories [24, 25]. Borzȩcka et al. [6] have recently demonstrated how the probability parameter,
based on the Arrhenius equation, can show the relationship between synthesis parameters and model parameters, such
as translating the time of gelation into the probability of an effective collision. The implementation of this study is as
follows: the particle–cluster connection will be formed with a probability of 𝑝𝑠 upon reaching the 𝜖crit, while the cluster–
cluster connection is established only if more than 50% of potential connections between two clusters are formed (see also
Figure 1).

2.2 Finite element model

Strictly speaking, themodels generated by DLCA (see Figure 2A) are purely mathematical construct at mesoscale without
atomic degrees of freedom and the particles in models are rigid [1, 19, 26]. The methodological basis for determining the
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F IGURE 3 View on X–Y-plane of the RVE (A) before compression (B) after compression caused by movement of dummy node.

mechanical properties involves transforming the DLCA model to a finite element model. We adopt the approach of Ma
[17] for modeling bonds as beams, which is shown in Figure 2B. Specifically, the interparticle bonds were modeled using
the B31 element type, a three-dimensional two-node Timoshenko beam element, in Abaqus.
To simulate themacroscopic response, PBCs have been applied to themodel, treating the unit cell as a RVE. This model

uses an implementation similar to that of Abdusalamov et al. [12]. This study applies a linear constraint to the boundary
nodes using the “dummy node” concept as a method of implementing the PBC. The dummy node was introduced to
indicate the bulk deformation of the cubic box. Tomaintain the integrity of themodel, we constrained each pair of opposite
boundary nodes, denoted as 𝑎𝑖 and 𝑏𝑖 , using the following linear equation:

𝑢
𝑎𝑗
𝑖
− 𝑢

𝑏𝑗
𝑖
= 𝛿𝑖𝑗𝑢̂𝑖 , 𝑖, 𝑗 ∈ {1, 2, 3},

(
𝑥
𝑎𝑖
𝑖
> 𝑥

𝑏𝑖
𝑖

)
, (2)

𝜓
𝑎𝑗
𝑖
= 𝜓

𝑏𝑗
𝑖
, 𝑖, 𝑗 ∈ {1, 2, 3} , (3)

where indexes 𝑗 indicates the direction of the boundary on which the nodes lie; 𝑢𝑖 and 𝜓𝑖 are the translational and rota-
tional DOFs, respectively; 𝛿𝑖𝑗 is the Kronecker delta whose value is 1 if the subscripts are equal (𝑖 = 𝑗) and 0 otherwise;
𝑢̂𝑖 is the translational displacement of the dummy node. Figure 3A presents a view of the X–Y plane, showing a blue
dummy node at the top corner of the box enforcing the PBC in the 𝑥-direction (𝑗 = 1) and constraining the dummy node
with nodes from left and right boundaries, namely 𝑢𝑎1

𝑖
− 𝑢

𝑏1
𝑖
= 𝛿𝑖1𝑢̂𝑖 . The box will be compressed in the 𝑥-direction if the

dummy nodes have positive displacement as shown in Figure 3B. After deformation, the boundary surfaces of the RVE
do not remain flat; forcing flatness would over-constrain the RVE [27].

3 RESULTS

In this study, DLCA models are generated in MATLAB. All models are generated within a cube of size 𝐿 = 200 nm, as
shown in Figure 2A, and have varying relative densities with a fixed seed number of 𝑁𝑊 = 9. The particle radius 𝑟 =
3.1 nm, the critical distance 𝜖crit = 2.3𝑟, and the particle step size 𝑠 = 𝑟∕20 are constants in the model.
A MATLAB script is also used to generate the input files for the finite element (FE) simulations of the DLCA models.

The simulations are done in Abaqus 2020. The Young’s modulus and Poisson’s ratio of the beams are set to 𝐸 = 210000
and 𝜈 = 0.3, respectively. These values do not correspond to any physical material properties, as discussed in Ref. [11].
Large deformations of beam elements are considered. The results are discussed in this context.

3.1 Structural characterization

To characterize the structural properties, the fractal dimension 𝑑𝑓 is evaluated as a function of relative density. This is
determined by the relation between the mass𝑚(𝑟) inside a sphere and the radius 𝑟 of the sphere. The sphere’s placement
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F IGURE 4 Influence of the relative density and sticking probability on the fractal dimension.

F IGURE 5 (A) Log-log plot of the elastic modulus versus the relative density from simulation. (B) Plot of experimental data.

can be arbitrary due to the assumed periodicity of the unit cell. At the nanometer length scale, the relationship can be
precisely described by𝑚(𝑟) ∝ 𝑟𝑑𝑓 , where𝑑𝑓 is the slope of the functionwhenplotted in a log–log scale. The obtained fractal
dimensions are collected and plotted as a function of 𝜌 in Figure 4, which also includes the influence of the probability
𝑝𝑠. For 𝑝𝑠 = 1, the curve is exactly the same as in the previous study [12]. As the probability decreases, so does the fractal
dimension, resulting in a highly porous structure. The common range of fractal dimension reported by recent experiments
[5, 19, 21] is highlighted in yellow in Figure 4. As the density increases beyond 0.1, the fractal dimension tends to approach
close packing with 𝑑𝑓 = 3. Hsieh et al. [13] reported a similar phenomenon for the 3D DLCA model at a relative density
greater than 0.05, concluding that the Langevin dynamics approach is more realistic for a constant size of the unit cell.
However, since the fractal dimension decreases with decreasing probability 𝑝𝑠, the DLCA model should also be able to
reproduce the fractal dimensions observed in aerogels with higher densities.

3.2 Mechanical characterization

As described in Section 2.2, we export the DLCAmodels discussed above to the Abaqus/CAE software package to subject
them to compression tests.
The focus is first on the elastic model. By averaging the FEmodels’ responses, we obtain isotropic mechanical behavior,

allowing for the determination of Young’s modulus in the linear elastic region (at 𝜖 ≈ 0.01). The relationship between
Young’s modulus and density can be described as a power law 𝐸 ∝ 𝜌𝑚 with a scaling exponent𝑚. In our simulations, as
shown in Figure 5A, the value of 𝑚 is found to be 3.78, which correlates well with the experimentally obtained value of
𝑚 = 3.80. Additionally, the Poisson’s ratio 𝜈 of the unit cell can be determined, since it is subjected to uniaxial compression.
The Poisson’s ratio 𝜈, as shown in Figure 6A, is generally insensitive to the densities, which agrees withMa’s findings [17].
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F IGURE 6 (A) Poisson’s ratio obtained from simulation. (B) Comparison of stress–strain response of the model with the experimental
results.

This insensitivity suggests a power law relationship between bulk modulus 𝐾 and density 𝜌, characterized by the same
exponent 𝑚 (𝐾 ∝ 𝜌𝑚). However, the response correlates well with the experiment only in the linear elastic region up to
3%. To accurately describe the nonlinear response beyond this point, additional nonlinear factors should be included.
Inclusion of contact interactionmeans inclusion of nonlinear boundary conditions. For dense aerogels, themodel shows

a quantitatively good agreementwith experimental data up to 40% compressive strain as shown inFigure 6B. Furthermore,
we observed that the model can successfully capture the three stages of the compression test, namely the linear, plateau,
and densification stages. To correlate at larger compressive strains (𝜖 > 0.4), an elasto-plastic model is needed to capture
yielding and a failure model is needed to predict where damage will occur.

4 SUMMARY

In this study, we developed a coarse-grained model for silica aerogels based on diffusion-limited cluster–cluster aggre-
gation (DLCA) with additional consideration of sticking probability. This approach allowed us to replicate the classical
structure of silica aerogels for a wider range of relative densities, effectively capturing their key features while reducing
complexity and simulation time. Our finite elementmodelwas able to reproduce the compressive response of these unique
materials. Furthermore, the model’s response at low compressive strains is in good agreement with experimental data,
demonstrating its capability. By incorporating elastic, plastic, and failure models, we expect to gradually gain valuable
insights into the behavior of aerogels under compressive loading conditions. While our model has provided correlated
results, further refinements are needed to develop a more applicable model for the mechanical behavior of silica aero-
gels. More physics-based implementations, such as the diffusion coefficient satisfying the Einstein–Stokes equation and
varying particle neck size, could be incorporated for better understanding in material properties and reverse engineering.

ACKNOWLEDGMENTS
Open access funding enabled and organized by Projekt DEAL.

ORCID
WeiboXiong https://orcid.org/0009-0000-8332-0787
RasulAbdusalamov https://orcid.org/0000-0003-4988-4794
AmeyaRege https://orcid.org/0000-0001-9564-5482

REFERENCES
1. Gelb, L. D. (2023). Simulation and modeling of aerogels using atomistic and mesoscale methods. In M. A. Aegerter, N. Leventis, M. Koebel,

& S. A. Steiner III (Eds.), Springer handbook of aerogels (pp. 273–288). Springer International Publishing.
2. Steiner, S. A., & Pierre, A. C. (2023). The story of aerogel. In M. A. Aegerter, N. Leventis, M. Koebel, & S. A. Steiner III (Eds.), Springer

handbook of aerogels (pp. 1–50). Springer International Publishing.

 16177061, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pam

m
.202300224 by D

tsch Z
entrum

 F. L
uft-U

. R
aum

 Fahrt In D
. H

elm
holtz G

em
ein., W

iley O
nline L

ibrary on [04/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0009-0000-8332-0787
https://orcid.org/0009-0000-8332-0787
https://orcid.org/0000-0003-4988-4794
https://orcid.org/0000-0003-4988-4794
https://orcid.org/0000-0001-9564-5482
https://orcid.org/0000-0001-9564-5482


XIONG et al. 7 of 7

3. Luo, H., Malakooti, S., Churu, H. G., Leventis, N., & Lu, H. (2023).Mechanical characterization of aerogels. In M. A. Aegerter, N. Leventis,
M. Koebel, & S. A. Steiner III (Eds.), Springer handbook of aerogels. (pp. 197–229). Springer International Publishing.

4. Anderson, A. M., & Carroll, M. K., (2023).Hydrophobic silica aerogels. In M. A. Aegerter, N. Leventis, M. Koebel, & S. A. Steiner III (Eds.),
Springer handbook of aerogels (pp. 335–365). Springer International Publishing.

5. Gonçalves, W., Morthomas, J., Chantrenne, P., Perez, M., Foray, G., & Martin, C. L. (2018). Elasticity and strength of silica aerogels: A
molecular dynamics study on large volumes. Acta Materialia, 145, 165–174.
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