
Journal

ROpen FOAM

Volume 3 [Full Papers], Pages 200–224
ISSN: 2753-8168

TwoPhaseFlow: A Framework for Developing Two Phase Flow Solvers in OpenFOAM

Henning Scheufler1 and Johan Roenby2

1DLR German Aerospace Center, Institute of Space Systems, 28359 Bremen, Germany
Email address: henning.scheufler@web.de

2IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark

Email address: johan@ruc.dk

DOI: https://doi.org/10.51560/ofj.v3.80
Results with version(s): OpenFOAM® v2206
Repository: https://github.com/DLR-RY/twophaseflow

Abstract. We present a new OpenFOAM based open-source framework, TwoPhaseFlow, enabling fast

implementation and testing of new phase change and surface tension force models for two-phase flows

including interfacial heat and mass transfer. Capitalizing on the runtime-selection mechanism in Open-
FOAM, the new models can easily be selected and benchmarked against analytical solutions and existing

models. The framework currently includes the following three interface curvature calculation methods

for surface tension: 1) the height function method, 2) the parabolic fit method and 3) the reconstructed
distance function method. As for phase change, two models are available: 1) Interface heat resistance

and 2) direct heat flux. These can be combined in three solvers: 1) InterFlow for isothermal, incom-

pressible two-phase flow, 2) compressibleInterFlow for compressible, non-isothermal two-phase flow and
3) multiRegionPhaseChangeFlow for compressible, non-isothermal two-phase flow with conjugated heat

transfer. By design, addition of new models and solvers is straightforward and users are encouraged to

contribute their specific models, solvers, and validation cases to the library.

1. Introduction

In almost all engineering design processes involving fluid flows, simulations with Computational Fluid
Dynamics (CFD) software play an ever bigger role as a complement, and sometimes even as a replacement,
to empirical laws and physical experiments. A computationally very challenging subset of these problems
is those involving multiple fluid phases with heat and mass transfer between them. Here models and
numerical methods are still relatively immature, and so the use of CFD for design optimisation is still
limited within this arena. In this paper, we present a numerical modeling framework based on OpenFOAM
that simplifies implementation and verification and thus enables faster development of more accurate
models.

The formulation of the heat and mass transfer or surface tension force models is highly influenced
by the numerical representation of the fluid interface. With interface tracking methods the interface is
represented directly as the mesh faces separating the two fluid regions. This makes implementation of
the surface tension and mass transfer across the interface relatively straightforward. The main drawback
of this approach is the difficulty in dealing with large topological changes of the fluid interface. With
interface capturing methods, like Volume of Fluid (VOF) and Level-Set (LS), topology changes are
handled automatically. However, the implementation of phase change and surface tension models is
more challenging and depend on the numerical interface representation. With VOF methods the fluid
interface is represented by a volume fraction field, also sometimes called the colour function. The volume
fraction of a computational cell is simply the fraction of the cell’s volume occupied by the reference fluid
(typically chosen to be the heavier fluid). OpenFOAM’s standard VOF method is a so-called algebraic
VOF method, employing an artificial interface compression term to prevent numerical smearing of the
fluid interface, and employing the flux limiter, MULES, to keep the volume fraction field bounded. For
brevity, this is often referred to simply as the MULES method. The other VOF method available in
OpenFOAM® v2206 is the geometric VOF method, isoAdvector, which employs a geometric interface

∗ Corresponding author

Received: 16 February 2022, Accepted: 9 August 2023, Published: 2 December 2023

©2023 The Authors. This work is an open access article under the CC BY-SA 4.0 license

200

https://orcid.org/0000-0003-1578-9772
https://orcid.org/0000-0002-7254-0546
https://doi.org/https://doi.org/10.51560/ofj.v3.80
https://github.com/DLR-RY/twophaseflow
https://creativecommons.org/licenses/by-sa/4.0/

TwoPhaseFlow: A Framework for Developing Two Phase Flow Solvers in OpenFOAM 201

reconstruction step in the updating of the volume fraction field [1, 2]. This ensures a sharp and well–
defined fluid interface at all times. The width of the fluid interface is typically 3-5 cells with MULES
and 1-3 cells with isoAdvector. On the other hand isoAdvector is restricted to Courant numbers less
than 1, whereas MULES has no such restriction. MULES and isoAdvector will form the basis for our
implemented phase change and surface tension models. The TwoPhaseFlow framework makes it easy to
implement other interface capturing models and combine them with available surface tension models and
phase change models.

The choice of interface representation is important for implementation of phase change models. Hardt
and Wondra [3] presented an interface heat resistance model using an algebraic VOF method. It is based
on the Schrage equation and applies the temperature source terms in all computational cells containing
fluid interface. In order to avoid interface smearing and numerical pressure oscillation, the mass source
terms were not active directly in interface cells, but only in the nearest neighbours to the interface cells.
Nabil and Rattner [4] released an open-source framework for the simulation of incompressible phase change
phenomena with the addition of new surface tension models. The framework offers the implementation
of interface heat resistance models, which are coupled explicitly with the governing equations. Among
other phenomena, Nabil and Rattner [4] successfully simulated film condensation. Another class of phase
change models is direct heat flux (DHF) models, which Kunkelmann and Stephan [5] found to be more
accurate at the same spatial resolution when compared to the model of Hardt and Wondra [3]. These
types of models require a geometrical interface representation which was achieved by reconstructing
the 0.5-isosurface of the volume fraction field provided by the VOF model. The model assumes that
the reconstructed interface is always at saturation temperature and computes the mass flux from the
temperature gradient at the interface. Pressure oscillations were avoided using the same mass source
distribution method as in Hardt and Wondra [3]. Batzdorf [6] found that the explicit treatment of the
source terms in the energy equation leads to a time step restriction and instability of the model. Batzdorf
formulated the gradient calculation implicitly and successfully solved these time step and stability issues.
Sato and Niceno [7] constructed the interface in the same way as Kunkelmann and Batzdorf, but modified
the calculation of the distance between the cell centres and the interface position to achieve an implicit
coupling.

The accuracy of the phase change models depends on the precision of the temperature field, which is
influenced by the spurious velocities (sometimes also referred to as parasitic currents) caused by numerical
errors in the surface tension model [7]. Therefore, accurate simulations of small-scale phase change
phenomena require a precise prediction of the surface tension forces. The spurious velocities occur due
to discretisation errors in the pressure jump conditions at the fluid interface. The main challenge is
to convert a force acting on a surface to a volumetric force in line with the cell volume averaging of
the finite volume method. The pressure jump at the interface equals the surface tension multiplied by
the curvature. For a constant curvature e.g. a sphere, a well-balanced solution was found by Francois
et al. [8]. Thus, an exact curvature model applied to a sphere would result in near-machine precision
accuracy. However, computing a curvature that converges with mesh refinement has proven very difficult.
Brackbill et al. [9] proposed what is probably the most widely used surface tension model, calculating the
curvature from the gradient of the volume fraction. This unfortunately produces large spurious velocities
and a curvature estimate that does not converge with mesh refinement. A more accurate prediction of
the curvature can be achieved with geometric VOF by exploiting the interface reconstruction data. With
a parabolic fit [10] or with Reconstructed Distance Function (RDF) [11] the accuracy of the curvature
calculation can be improved by more than an order of magnitude, however, still without convergence
with mesh refinement. Currently, the most accurate approach to calculate the interface curvature is
the height function method [10, 11], which is usually paired with geometric VOF. It achieves second-
order convergence in reconstruction of a static sphere or disc. Yet, for advection of a sphere or disc in
a prescribed, constant velocity field, it does not converge with mesh refinement [10, 12]. The spurious
velocities are well-known for surface tension force, but can also arise from gravity forces as demonstrated
by Wroniszewski et al. [13], where the choice of discretisation of the gravity term significantly affects
the results. Here it is convenient to incorporate the hydrostatic potential into the pressure because this
leaves us with a gravity source term which is only active on the fluid interface. The modified pressure
(sometimes referred to as the dynamic pressure) then has a jump at the interface similar to the pressure
jump caused by surface tension when the interface curves.

This paper presents a novel coding framework incorporating well-established VOF methods and new
implementations of surface tension and phase change models. The framework facilitates the implemen-
tation of new user-defined models by simplifying the implementation and provides a benchmark suite
of well-established analytical cases for easy comparison. One of the library’s objectives is to encourage

202 H. Scheufler and J. Roenby

Overview of the Library

Solver Models

interFlow

• two incompressible isothermal phases
• mesh motion including AMR

compressibleInterFlow

multiRegionPhaseChangeFlow

Volume of Fluid Model

Surface Force Model

Phase Change Model

• two compressible non-isothermal phases
• mesh motion including AMR

• two compressible non-isothermal phases
• mesh motion including AMR
• coupling with conjugated heat transfer

• two advection schemes
• multiple reconstruction schemes
• callable via the object registry

• surface tension forces
• acceleration forces
• extensible with new models

• computes mass flux at the interface
• returns mass source terms
• returns energy source terms
• returns volume fraction source terms

interface centre
interface normal

Figure 1. Schematic overview of the TwoPhaseFlow library.

the OpenFOAM community to contribute their code, boosting the reuse of already implemented models.
The library extends the current capability of OpenFOAM® v2206 to simulate flows with surface tension
and phase change phenomena. The accuracy of the models is compared with standard phase change and
surface tension benchmarks.

2. Library Overview and governing equations

The library consists of three main modules and three solvers depicted in Fig. 1. The core of the library is
the Volume of Fluid module, which advects the volume fraction field, α, and also reconstructs the interface
inside each interface cell by calculating the polygon separating liquid and vapor inside the cell. The surface
force and phase change modules utilize this data to compute e.g. curvature or phase change mass. This
data is then provided to the top-level solvers shown in Fig. 1. The simplest solver is an incompressible
solver without heat and mass transfer called interFlow. This is essentially identical with the standard
interFoam solver of OpenFOAM® v2206, albeit with an option to choose between isoAdvector and
MULES for the interface advection. The compressibleInterFlow solver extends interFlow with heat
transfer and a compressible formulation. This solver is identical to the compressibleInterFoam solver
available in OpenFOAM® v2206, with the option added to choose between isoAdvector and MULES.
The most complex solver, multiRegionPhaseChangeFlow, is then built from compressibleInterFlow

by adding mass transfer and conjugated heat transfer. All solvers are capable of utilizing automatic mesh
refinement and mesh motion. The governing equation for the most general solver, multiRegionPhase-
ChangeFlow are now given.

The transport equation for the volume fraction field, α, is given by1 [14–17]

∂α

∂t
+∇ · (uα)− α̇pc = α∇ · u+ α(1− α)

(
ψv

ρv
− ψl

ρl

)
Dp

Dt
. (1)

Here u is the velocity field, p is the pressure, ψ is the compressibility and, ρ is the mass density. The
superscript, l, denotes the liquid phase, and v denotes vapor phase. The two terms on the right-hand
side account for the effects of volumetric changes due to heating or compression and can therefore be
neglected in case of incompressible flow. The phase change is considered in the explicit source term,
α̇pc, as explained in Section 3.2. The first and second terms on the left hand side together represent the

1Strictly speaking, the volume fraction is a cell averaged quantity, not a field in the mathematical sense, and so its usage in
a partial differential equation is not properly defined. In finite volume literature it is, however, common practice to ignore
this, and write the partial differential equation as short-hand notation for their cell volume integrated counterpart.

TwoPhaseFlow: A Framework for Developing Two Phase Flow Solvers in OpenFOAM 203

passive advection of the volume fraction field. The discretisation of these two terms can be performed
using either MULES or isoAdvector, as discussed in [1] and [2].

The Navier-Stokes equations are written in the form

∂(ρu)

∂t
+∇ · (ρuu)−∇ ·

{
µeff(∇u+ (∇u)T)

}
= −∇prgh + (g · x)(ρl − ρv)n̂sδs + f . (2)

Here the density is calculated based on α as

ρ = αρl(T, p) + (1− α)ρv(T, p), (3)

where ρl and ρv are the densities of the liquid and vapour phase, each depending on the temperature, T ,
and pressure, p, via the user-specified equations of state (e.g. the ideal gas law). The effective turbulent
viscosity, µeff is defined by

µeff = αµl(T, p) + (1− α)µv(T, p) + µt, (4)

where µl and µv represent the dynamic viscosity in the liquid and vapour, respectively, each depending
on temperature and pressure via user-specified viscosity models (e.g. Newtonian fluid). The turbulent
eddy viscosity, µt, is calculated by the user-specified turbulence model (µt = 0 for laminar flow). The
auxiliary quantity, prgh, is defined as

prgh = p− (g · x)ρ, (5)

where g is the gravity vector, x is the position vector. The vector, n̂s in Eqn. 2 represents the unit interface
normal (pointing into the liquid), while δs is a 3D Dirac delta function used to mark the instantaneous
position of the fluid interface. Numerically, working with prgh rather than p has the advantages that
the specification of boundary conditions becomes simpler, and that the remaining gravity term with the
Dirac delta function is only nonzero at the fluid interface. The last term, f , on the right hand side of
Eqn. (2) accounts for additional source terms such as surface tension. In the finite volume framework,
the governing equations are averaged over cell volumes, and the fields (ρ,u, p etc.) are represented by
their volume averaged values in the computational cells. In particular, for cells containing both liquid
and vapor the fields represent a mixture of the local liquid and vapor field values in the cell.

The energy equation is formulated in terms of the temperature, T i, in a two-field approach, where i is
either v for vapor or l for liquid,

∂αiρicipT
i

∂t
+∇ · (αiρicipT

iu) = ∇ · (λi∇T i) + qipc + qi. (6)

Here, cp is the specific heat and λ is the thermal conductivity. The source term, qpc, accounts for
energy changes caused by phase change. The choice between explicit or implicit discretisation of Eqn. 6
depends on the selected phase change model, which is discussed in Section 3.2. Other effects, such as e.g.
compressibility of the gas phase, are accounted for by the last term, q.

In the solid region, the heat transfer is calculated by

∂ρshs

∂t
−∇ ·

(
λs

csp
∇hs

)
= 0, (7)

where hs is the enthalpy, ρs is the density, csp is the heat capacity, and λs is the thermal conductivity of
the solid.

3. Methods

In the following, we present the implementation details of the three modules forming the basis the
three described solvers.

3.1. Volume of fluid module.
The Volume of Fluid module is the core part of the library as it provides the interface reconstruction
data for the other models. It has already been released as open source by Scheufler and Roenby [2]. The
library consists of two base classes: One for the interface reconstruction scheme and one for the interface
advection scheme as illustrated in Fig. 2. The advection scheme base class facilitates the potential
integration of interface advection methods beyond the VOF type, such as Level Set (LS) or phase field
methods. These currently unavailable models are symbolized by “...” in Fig. 2 and must also be derived
from advectionSchemes. Currently, the module includes the two previously mentioned VOF methods
already available in OpenFOAM® v2206, namely MULES and isoAdvector. Here MULES does not
provide the geometric interface data which we need for our phase change and surface tension models.
Therefore in this work, when using MULES, we calculate the α = 0.5 isosurface and derive the required
interface position and orientation data based on that. This is a standard approach which is, however,
limited to first-order accuracy. For the isoAdvector method, a more accurate interface reconstruction

204 H. Scheufler and J. Roenby

Volume of Fluid Module

advectionSchemes
(alpha1,U,phi)

reconstructionSchemes
(alpha1,U,phi)

isoAdvector
(alpha1,U,phi)

MULES
(alpha1,U,phi)

advect()

• compressible formulation
• incompressible formulation

advect volume fraction field

reconstruct()
reconstruct the interface from
volume fraction field

interface normal
interface centre

volVectorField

isoAlpha
(alpha1,U,phi)

plicRDF
(alpha1,U,phi)

isoRDF
(alpha1,U,phi)

...
(alpha1,U,phi)

class

function

data

derived

runtime selectable

Figure 2. Schematic overview of the VOF module.

method is used which is described in [2]. It is based on a reconstruction scheme base class and two derived
classes, isoAlpha and plicRDF. Here isoAlpha calculates the interface in a cell as an isosurface of the
volume fraction as described in Roenby et al. [1]. The plicRDF method implements a PLIC (Piecewise
Linear Interface Construction) scheme, where the interface orientation is computed as the gradient of a
Reconstructed Distance Function (RDF) as described in [2]. The isoAlpha scheme is the fastest, but also
the least accurate compared to plicRDF, which was demonstrated in [2] to be second-order convergent
with respect to mesh refinement on hexahedral, tetrahedral and polyhedral meshes.

Both reconstruction methods ensure that the interface segment inside a cell cuts the cell into subcells
with volumes in accordance with the cell’s volume fraction value. With linear/planar interface segments,
this means that the interface lacks C0 continuity as illustrated in Fig. 3. The PLIC and isosurface-based
reconstruction both compute the polygonal representation of the interface segment inside a cell. For each
interface cell they store the interface centre point as well as the area vector of the interface segment.
Each of these are stored in a volVectorField. For cells that are not intersected by the fluid interface,
the interface centre and area vectors are set to the zero vector. These interface centre and area vector
fields are required for the geometric VOF scheme, but are also used in other submodules. The global
object registry manages a pointer to the reconstruction scheme, thus allowing easy access to the interface
position and orientation data from other classes. The surface tension module uses this information to
compute (among other things) the curvature of the surface which will then rely on the accuracy of
the interface reconstruction scheme. As shown in Scheufler and Roenby [2], the interface position and
orientation can be accurately predicted by the RDF method on arbitrary unstructured meshes for cases
where the interface does not touch the domain boundaries. We now propose a method to extend the
RDF method by enabling a prescribed contact angle, θ, on boundaries. Let Ψ̃cc,xs

denote the distance
from a cell centre, xcc, to the centre of an interface segment, xs, along the interface normal, n̂s,

Ψ̃cc,xs
= n̂s · (xcc − xs), (8)

TwoPhaseFlow: A Framework for Developing Two Phase Flow Solvers in OpenFOAM 205

1.0 1.0 1.0

1.0

0.0

0.1

0.0

0.4

0.71.0

0.4 0.2

Figure 3. Example of a PLIC interface.

Dx
xcc

xBc

xs

2Dx
q = 45°

Ycc,xs

boundary with
a contact angle of
q = 45°

~

Figure 4. Idea behind boundary extrapolation of the fluid interface.

From these distances, the RDF in the centre of cell cc is calculated as

Ψcc =

∑
nei wneiΨ̃cc,xs∑

nei wnei
, (9)

where the sum is over all point neighbours of (i.e. cells that share a vertex with) cell cc that are interface
cells, and the weighting factor is chosen to be

wnei =
|n̂s · (xcc − xs)|2

|xcc − xs|2
. (10)

The interface normal is then approximated with a least square fit as:

n̂s = ∇Ψ. (11)

Since the accuracy of the normal calculation only depends on the estimation of the RDF function, special
treatment must be applied at boundary cells, where the user may want to specify a contact angle. For a
boundary cell with a calculated interface centre we propose to define a ghost interface point on the other
side of the cell’s boundary face as illustrated in Fig. 4. This ghost point is defined by first drawing a line
through the interface centre, intersecting the boundary face at the user defined angle (dashed line on the
left of Fig. 4). The ghost interface point is then chosen as the point along this line which is 2∆x from the

206 H. Scheufler and J. Roenby

Phase Change Module

TSource()

singleComponentPhaseChange

massSource()

energySourceTermModel

computes the surface
heat flux [W/m²]

singleComponentSatProp

computes the
saturation temperature [K],

 Latent Heat [J/kg],
 saturation pressure [Pa]

massSourceTermModel

computes the mass
 source terms [kg/(m³s)]

implicitGrad

explicitGrad

Schrage

HardtWondra

HardtWondraGas

ClausiusClapeyron

singleComponentFunction

directEvaporation

alphaSource()

class

function

data

derived

runtime selectable

Figure 5. Schematic overview of the phase change module.

interface centre, where ∆x is the distance from the boundary cell centre to the boundary face centre. The
orientation of the ghost interface normal is chosen so that its angle with the boundary face normal equals
the user-specified contact angle. These choices of ghost interface point and orientation are illustrated
in Fig. 4. The ghost cell interface points and normals satisfying the contact angle requirement on the
boundary are used in the weights in Eqn. (10) defining the value of the RDF function in the cell centres
as determined by Eqn. (9). This method for coping with contact angles is far from optimal but is our best
current approach based on extensive numerical experimentation with various approaches. Generally, the
literature is very sparse with regard to interface reconstruction with the inclusion of boundary handling.

3.2. Phase change module.
The phase change module computes the mass transfer at the liquid/gas interface in a one-species system.
The schematic overview of the module is shown in Fig. 5 and is utilised in the custom solver multi-

RegionPhaseChangeFlow. The module consists of the wrapper class singleComponentPhaseChange that
provides source terms for the Volume of Fluid, energy and continuity equation. It wraps three runtime
selectable classes implementing the specific models that are described in the following section.

The massSourceTermModel computes the source terms for the VOF and mass equation while the
energySourceTermModel computes the energy source terms. The material properties relevant for satu-
ration are managed by a class called singleComponentSatProp.

3.2.1. Saturation properties.
The singleComponentSatProp class provides the saturation temperature, saturation pressure and heat
of evaporation. Currently, two options to specify the properties are available:

(1) Clausius–Clapeyron relation :

ln(p/p1) = −L

R

(
1

T1
− 1

T

)
(12)

(2) Functions of temperature and pressure:

TSat = f(p),

pSat = g(T), (13)

L = h(p)

TwoPhaseFlow: A Framework for Developing Two Phase Flow Solvers in OpenFOAM 207

373 373 373

373

376

375

375

373

373373

374 374

Cell centre

Angle to Interface
Segment

d

Figure 6. Gradient estimation of the explicitGrad model.

In the Clausius–Clapeyron relation, one must specify the latent heat, L, the specific gas constant, R,
as well as a point, (T1, p1) on the saturation curve in order to describe the saturation temperature and
pressure. For a large pressure range, the assumption of constant latent heat can be erroneous. Specifying
the saturation properties as a polynomial function of pressure or temperature or interpolating it from a
table is a more accurate approach, which is, therefore, an option in the implemented code.

3.2.2. Energy source terms.
The class, energySourceTermModel, is the core of the phase change library. It computes the energy
source terms and provides it to the energy equation of the solver, Eqn. (6), by returning a matrix.
Additionally, these source terms are also used in the mass source term model that (currently) smears and
scales the provided source terms. In the literature, two types of energy source models are described [5]: 1)
gradient-based models and 2) interface heat resistance, both of which are implemented in the framework.
The gradient-based models compute the volume-specific power associated with phase change as

qpc = qlpc + qvpc = λl∇T l · n̂s + λv∇T v · (−n̂s). (14)

The interface heat resistance models calculate the power as

qpc = qlpc + qvpc =
T l − TSat

Rint
+
T v − TSat

Rint
, (15)

where TSat is the saturation temperature. The models are implemented as derived classes of energy-
SourceTermModel and compute heat transfer due to phase change. The computed heat flow at the
interface is used to model the phase change mass flow and the resulting velocity jump, which is described
in more detail in Section 3.3.

explicitGrad
This model is a simple implementation of a gradient-based model and is similar to the model described in
Kunkelmann [5]. With the assumptions that the interface is on saturation temperature and that energy
can only be transported by diffusion over the interface, the heat flux qpc can be computed by the Fourier
law. The challenging part is the discretisation of the temperature gradient at the interface depicted in
Fig. 6. For an interface cell with interface centre xs and interface normal n̂s, we chose to calculate the
one-sided temperature gradient on the liquid side based on the temperature Tnei in the neighbour cell
towards which n̂s is pointing. That is, if a neighbour cell has centre xnei, then we choose the neighbour
where xnei−xs makes the smallest angle with n̂s. From this choice, we then approximate the temperature
normal derivative as

n̂s · ∇T l ≈ Tnei − TSat

n̂s · (xs − xnei)
. (16)

The one-sided normal temperature gradient in the vapor phase, n̂s ·∇T v is calculated in the same way, but
with the chosen neighbour cell in the vapor phase, i.e. the cell pointed at by −n̂s due to the convention
that n̂s points out of the vapor region.

With the normal gradients computed both on the vapor and liquid side of the fluid interface, we can
calculate the heat flux using Eqn. (14). The computed heat flux is multiplied by the interface area within
a cell (provided by the Volume of Fluid module) and applied as explicit source term in Eqn. (6). Due to
the explicit nature of the source term, a stability criterion enforces a time step limitation on the solver [6].

208 H. Scheufler and J. Roenby

373 373 373

373

376

375

375

373

373373

374 374

Cell centre

Angle to Interface
Segment

Valid angle
region

d

Figure 7. Gradient estimation of the implicitGrad model.

implicitGrad
To circumvent the time step constraint and stability problems that may arise with the explicit variant
of the gradient-based models, Batzdorf [6] proposed an implicit formulation that forms the basis for the
implicitGrad model. The basic idea of this approach is to include part of the gradient on the diagonal
of the matrix in the discretised energy equation,

qipc =
∑
nei

wneiλ
i

dnei
TSat −

∑
nei

wneiλ
i

dnei
Tnei with wnei =

(
cos θnei∑
m cos θm

)4

. (17)

The angle θnei = n̂s · (xnei−xs), and for a given interface cell the sums are over all neighbour cells, where
this angle is less than 70 degrees. Figure 7 illustrates this choice of neighbour cells. In contrast to the
explicit variant, the source term is not applied directly in the interface cells but in the neighbouring cells.
The second sum in Eqn. (17) is treated implicitly and hence adds to the diagonal of the matrix, while
the first sum is added to the source term of the matrix equation. With this approach, no explicit time
step criterion exists, which significantly improves the stability of the solver.

Schrage
The Schrage model is implemented as an interface heat resistance model. In this type of model the heat
flux is computed from the temperature difference between the cell temperature, T , and the saturation
temperature, TSat, as follows,

qpc = qlpc + qvpc =
T l − TSat

Rint
+
T v − TSat

Rint
, (18)

where the coefficient, Rint, is defined by

Rint =
2− Cacc

2Cacc

T
3/2
Sat

√
2πRgas

ρvL2
. (19)

Here Cacc is the accommodation factor, Rgas is the specific gas constant and L is the latent heat. As in
the implicit gradient model, the first term of Eqn. (18) is added to the source of the matrix, while the
second term adds to the diagonal of the matrix. This implicit treatment increases the stability of the
solver. The difference between our implementation and the model proposed by Hardt and Wondra [3]
is in the calculation of the interface area where they use |∇α| while we use the geometrically calculated
interface area provided by the VOF module. Furthermore, our implementation employs a temperature
field for each equation rather than a single field.

Direct evaporation
The direct evaporation model is a combination of the interface heat resistance model and the gradient-
based model. This “engineering model” requires the specification of the superheated temperature and an
interface heat resistance coefficient. If the temperature exceeds the superheated temperature the liquid is
evaporated but with the assumption that the resulting volume increase instantly moves to the interface.

TwoPhaseFlow: A Framework for Developing Two Phase Flow Solvers in OpenFOAM 209

3.3. Mass source terms.
Phase change causes a velocity jump at the interface, which is modeled by applying source terms in the
pressure Poisson equation. The magnitude of the velocity jump is proportional to the volume-specific
mass flux, ρ̇sharp, at the interface, which we calculate as

ρ̇sharp =
qpc |ns|
LV

. (20)

Here qpc is the heat flux from the energySourceTermModel, |ns| is the surface area in the cell obtained
from the VOF model. L and V are the latent heat and the cell volume, respectively. This results in a sharp
source term distribution at the interface, especially for the kind of geometrically reconstructed interface
used here. Applying the resulting source term field directly at the interface results in pressure and
velocity oscillation as well as a smearing of the interface [3]. The implemented mass source term models
circumvent the problem by smearing the source terms and by only applying them in the neighbourhood
of the interface and not directly at the interface. The massSourceTermModel provides the source terms
for the continuity equation and for the VOF equation.

3.3.1. HardtWondra.
The Hardt and Wondra [3] model avoids the pressure oscillation and a smearing of the interface by
smoothing the sharp source term distribution provided by the energySourceTermModel. A detailed
description of the implementation can be found in Kunkelmann [5] and Batzdorf [6]. In the first step,
the sharp source term distribution is smeared with a Laplacian function,

ρ̇smeared −∇2(Dρ̇smeared) = ρ̇sharp, (21)

with the numerical diffusion coefficient defined by D = (C∆x)2, ∆x being the cell size. The coefficient, C,
is roughly the number of cells over which the interface is smeared (the default value is set to C = 3). The
second step is to set all source terms to zero in the interface region defined by: cutOff < α < 1− cutOff
with the default value cutOff = 1 · 10−3. Laplacian smoothing keeps the volume integral of the source
terms constant and is therefore a conservative operation. Obviously, setting the source terms to zero
inside the interface region violates this conservation. Therefore, in the next step the source terms of the
liquid and gas part are scaled in such a way that the volume integral matches the initial volume integral
in the gas and liquid phase:∫

ρ̇sharp dV = Nv

∫
αvH(αcutOff − αl)ρ̇smeared dV

= Nl

∫
αlH(αcutOff − αv)ρ̇smeared dV

(22)

The last step is to switch the sign of the smeared source terms in the liquid part to account for the mass
loss. We end up with two source term distributions with different signs on the two sides of the interface
where the volume integral of the mass source term distribution is zero. With this operation, we subtract
mass from the liquid side and add it to the gas side. Hence, no source terms are needed for the VOF
equation because changes in the liquid content are handled by the continuity equation.

The advantage of this approach is that it is easy to implement and that it works for arbitrary cell
shapes. The disadvantage is that the smearing may cause the non-physical removal of liquid and requires
a fine resolution near the interface.

3.3.2. HardtWondraGas.
The HardtWondraGasmodel is identical to the Hardt andWondra model just described, with the exception
that the liquid loss is accounted for in the VOF equation. Hence, there are no source terms in the pressure
Poisson equation in the liquid. Instead, a sharp source based on ρ̇sharp from Eqn. 20 is used in the VOF
equation:

α̇pc = ρ̇sharp/ρl. (23)

With this approach, velocities caused by the mass source terms in the liquid are no longer present. On
the other hand, the shrinkage in a thin liquid film can be represented more accurately by the sharp
source term, because it ensures removal or addition of liquid in the correct locations. An additional
benefit is that in some scenarios, the stability of the solver can be improved since inaccuracies in the
mass conservation can lead to the creation of cells with a tiny amount of liquid (α ≈ 10−6). In the case
of the geometric VOF scheme, a small interface segment would be found in that cell which may cause
a significant amount of phase change in that region. With the Hardt and Wondra model [3] these tiny
liquid volumes cannot evaporate and may accumulate during the simulation.

210 H. Scheufler and J. Roenby

Surface Forces Module

surfacesForces
(alpha1,U,phi)

surfaceTensionForces()

accelerationForces()

surfaceTensionModels

computes the
surface tension [N/m]

surfaceTensionForceModel

computes the
surface tension force [N/m3]

accelerationForceModel

computes the
acceleration forces [N/m3]

deltaFunctionModel

computes the
deltaFunction [m²/m³]

GradAlpha

RDF

FitParaboloid

heightFunctionMethod

gravity

alphaCSF

class

function

data

derived

runtime selectable

Figure 8. Schematic overview of the surface forces module.

3.4. Surface force module.
One challenge in the simulation of multiphase flows is the reduction of spurious velocities. These spurious
velocities are induced around the interface by an imperfect discretisation of the pressure jump condition.
This effect is well known for surface tension-driven flow but can also arise from external accelerations
[13,18].

Both the surface tension and acceleration forces induce a pressure jump over the interface. In the case
of surface tension, this is the expected behaviour. All the OpenFOAM interfacial flow solvers, inter-
Foam, interIsoFoam and compressibleInterFoam employ a pressure where the hydrostatic potential is
subtracted, prgh = p − ρg · x. This formulation reduces the spurious velocities [13] and simplifies the
definition of the hydrostatic pressure boundary condition [19]. The acceleration force can be written in
the form,

Fa,f = (ρl − ρv)(a · x)n̂sδs, (24)

where a is the acceleration vector. The surface tension takes a similar form,

Fst,f = σκn̂sδs, (25)

with the surface tension σ and the curvature κ. Both forces share the same mathematical background,
which is explained in Popinet [19] and Ghidaglia [20] in more detail. Both the acceleration force and
surface tension force must be calculated on the face centre to achieve a well-balanced formulation with
the pressure equation.

This formulation forms the basis of the surface forces module and is depicted in Fig. 8. It shows an
overview of the implemented framework with runtime selectable classes and the currently available models,
which will be described in the following subsections. The class, surfaceForces, handles the interface to
the solver used in Eqn. 2. The accelerationModel reflects the factor a · x, the deltaFunctionModel

the factor n̂sδs, the curvatureModel the factor κ and surfaceTensionModels the factor σ. This design
allows body force implementations based on other interface representations than VOF, e.g. LS or front-
tracking, to be integrated. Marangoni convection could be modelled with the surfaceTensionModels as
it allows for the definition of temperature dependent surface tension, σ. However, throughout this paper,
we assume that the surface tension is constant.

3.4.1. Delta function model.
The surface forces act on a microscopic region at the interface that is typically significantly smaller than
the cell size. But the discretisation of the function in the finite volume framework requires a region
of at least one cell size to convert it into a volumetric force. There are multiple approaches found in
literature [19] to discretise n̂sδs. Currently, only the Continuous Surface Force (CSF) method proposed

TwoPhaseFlow: A Framework for Developing Two Phase Flow Solvers in OpenFOAM 211

by Brackbill et al. [9] is available in our framework,

n̂sδs = ∇α, (26)

where the gradient discretisation scheme is chosen in fvSchemes.

3.4.2. Curvature model.
The prediction of the curvature is essential for an accurate simulation of the surface tension-driven flow.
If the exact curvature is known, the spurious velocities will drop to zero as the well-balanced formulation
of the force is implemented here as in the standard solver in OpenFOAM. The computation of the curva-
ture is extremely challenging and numerous models have been proposed to tackle that issue. This library
provides multiple implementations of curvature models that can be selected in transportProperties

for the interFlow solver and in thermophysicalProperties for compressibleInterFlow and multi-

RegionPhaseChangeFlow.

gradAlpha
The gradAlpha method is identical to the standard OpenFOAM formulation in the multiphase solvers.
The model is based on the paper of Brackbill et al. [9] and computes the curvature directly from the
volume fraction field, α. The computation consists of two steps: 1) the computation of the normal with
the default gradient operator:

n̂α =
∇α
|∇α|

(27)

2) Subsequently, the normals are interpolated to the faces, normalised and the curvature is computed as
the divergence of the normals on the faces,

κ =
1

V

∫
V

∇ · n̂αdV ≈ 1

V

∑
f

n̂α,f · Sf , (28)

where the integral is over the cell volume, V , and the sum is over all faces of the cell (assuming here the
face area vectors, Sf , to point out of the cell). The contact angle in this implementation is treated by
setting the interface normal on the boundary face to the prescribed contact angle. The implementation of
this model is straightforward and is probably the most frequently used model for curvature computation
in combination with VOF based multiphase solvers. The accuracy of the model can be increased drasti-
cally by using a least square based gradient method, pointCellLeastSquares, for the volume fraction
field in fvSchemes.

Reconstructed Distance Function
The Reconstructed Distance Function method (RDF) is based on an implementation of the model pro-
posed by Cummins et al. [11]. The RDF model shares a lot of similarities with coupled LS-VOF models.
The most significant difference is that in the RDF model the signed distance function, Ψ, is not found
by solving a PDE as in the LS method, but is instead constructed geometrically based on the volume
fraction field.

The first step of the algorithm is the reconstruction of the signed distance function, Ψ, in a narrow
band around the interface. The value of Ψ in every cell centre of the narrow band is computed as

Ψcc = n̂s · (xcc − xs). (29)

After that, we calculate the gradient of the RDF:

n̂Ψ =
∇Ψ

|∇Ψ|
(30)

By definition, the gradient of a signed distance function has a length equal to one, but due to discretisation
errors, this is not necessarily the case after the numerical calculation. Therefore, we normalise the
calculated vector by dividing it by its length.

The curvature is then computed by interpolating the normal, n̂Ψ, from cell centres to faces and applying
the Gauss-Green gradient method,

κ = ∇ · n̂Ψ → κcc ≈
1

Vcc

∑
f

n̂Ψ,f · Sf , (31)

where Vcc is the cell volume, the sum is over all the cell’s faces and Sf is the face area vector pointing out
of the cell. This method is accurate on structured grids but causes inaccuracies on unstructured grids
due to interpolation errors. These can be reduced by computing the curvature as

κ = tr(∇n̂Ψ). (32)

212 H. Scheufler and J. Roenby

While the two formulations are mathematically identical, the latter allows the usage of the numerical least
square gradient method, which is more accurate on unstructured grids because the Gauss-Green gradient
method is only zeroth order accurate on unstructured grids [21]. By setting the keyword curvFromTr, the
user can switch between the two formulations. After the computation of Eqn. (32), we have the curvature
at the cell centres, which would limit the scheme to first-order accuracy. The accuracy can be increased
by interpolating the curvature to the interface centres using OpenFOAM’s cellPointInterpolation

class, which interpolates cell-centred data to any point in the computational domain.
To improve the accuracy of the normal calculation near boundary faces, they are included in the

stencil. The value of the signed distance function, Ψ on the boundary is computed with the extrapolated
interface information described in Section 3.1. After the computation of the normal with the gradient
operator, the boundary values of the normals are set to the prescribed contact angle as in gradAlpha

model.
The accuracy of the method can be significantly influenced by the accuracy of the gradient operator

specified in fvSchemes, which makes OpenFOAM’s pointCellLeastSquares the recommended choice.

fitParaboloid
The fitParaboloid method estimates the curvature by fitting a local parabola (2D) or paraboloid (3D)
to the interface centres in a cell and its neighbours as provided by the interface reconstruction scheme.
The local function is approximated by:

f(x, z) = C0x+ C1x
2 + z 2D

f(x, y, z) = C0x+ C1x
2 + C2y + C3y

2 + C4xy + z 3D
(33)

Here x, y and z refer to a local rotated coordinate system with z pointing along the interface normal. The
coefficients of the equation are found with a least square minimisation procedure, where the resulting
linear system is efficiently solved using LU factorisation. After obtaining the coefficients, the derivatives
of the Eqn. 33 can be calculated analytically and the curvature is computed as

κ =

fxx

(1+f2
x)

3/2 2D

fxx(1+fx)+fyy(1+fy)−2fxfyfxy

(1+f2
x+f2

y)
3/2 3D

(34)

The handling of prescribed boundary conditions is straightforward and achieved by including the extrap-
olated centre value in the stencil (see Section 3.1).

Height Function Method
The Height Function Method (HFM) is a simple and second-order accurate method for the computation
of curvature [10]. The height function method estimates the curvature directly from the volume fraction
field in a way similar to the method proposed by Brackbill [9]. However, it does not compute the curva-
ture based on the gradient of the volume fraction field, but instead with column heights. These columns
represent the interface in the form H(x, y, f(x, y)) and the derivatives of this function H are used to
compute the curvature given in Eqn. (34). The derivatives are computed with a central second-order
accurate finite difference operator. The implementation is straightforward on structured grids and is
successfully used in the basilisk flow solver [22]. Attempts to implement this method on unstructured
grids result in considerably more complex implementation, but so far without achieving the second-order
accuracy [23] [24]. The following variant of the height function method is only utilised in structured
parts of the mesh, where the cells are cubes. The open source meshing tools cfMesh [25] or snappy-
HexMesh [26] generate a mesh with cubic cells in the interior of the domain and body-fitting polyhedra
at the boundary as depicted in Fig. 11. This allows usage of the accurate height function method in the
interior (the majority) of the mesh while falling back to less accurate methods near the boundaries. The
general outline of such a hybrid approach is given in Algorithm 1.

First, we have to classify the cubic cells in the grid. A cell is defined as cubic, if 1) it has six faces
and 2) all vectors from the cell centre to the neighbour cell centres form an orthogonal base (with an
angle tolerance of 0.001 degrees. An example of such a classification is depicted in Fig. 11 where cells
marked red are considered cubes. If an interface cell is not a cube, or the height function method fails,
a paraboloid is fitted in the neighbouring interface centres as described in Section 3.4.2.

The height function, H(x, y, f(x, y)), is the accumulated volume fraction field in the coordinate direc-
tions, x, y or z, of the structured grid. Figure 9 shows computed column heights for a structured grid in
the x-direction. The computation of the heights for a given cell is considered successful if all columns at
a given column index only contain liquid on one side and only gas on the other side. This is the case in
Fig. 9 if we look two cells to the right and two cells to the left from the central column. So the average

TwoPhaseFlow: A Framework for Developing Two Phase Flow Solvers in OpenFOAM 213

Algorithm 1: Outline of the height function method

1 Classify cuboid cells

2 Calculate interfaceCells: A list of all the interface cell indices, i.e. i ∈ interfaceCells if ϵ < αi < 1− ϵ.

3 for celli in interfaceCells do
4 if isCuboid then
5 vector n = surfaceNormal[celli].normalise()

6 for dir in sortAbsoluteComponents(n) do
// function computeHeight is described in Algorithm 2

7 curv, foundHeight = computeHeight(dir)

8 curvature[celli] = curv

9 if foundHeight then
10 break

11 end

12 end

13 if not foundHeight then
14 curvature[celli] = fitParaboloid()

15 end

16 else
17 curvature[celli] = fitParaboloid()

18 end

19 end

1.0 1.0 1.0

1.0

0.0

0.1

0.1

0.4

0.81.0

1.0 0.7

added Column Height

1.8

2.9

3.4

column Index

0 112

0.0

0.0

0.0

2

Figure 9. Volume fraction field with the computed column heights.

of the column to the left of the surface would be one and the average of the surface to the right of the
interface would be zero.

Algorithm 2 describes the procedure of adding the heights in the given direction. The basic idea is to
compute the height for the first column index (see Fig. 9) and then advance in the positive and negative
directions and add the height in that location. After the accumulation of the height values, second-order
accurate finite difference operators are used to compute the heights.

To advance in the given direction, the unstructured cell-point-cell stencil needs to be sorted to mimic
structured stencil addressing as depicted in Fig. 10. The position in the stencil of 27 (in 3D) or 9 (in 2D)
cells is calculated with structured coordinate directions i, j and k as position = i + 3j + 9k. With this
addressing, the next cell label in the unstructured grid for the given positive and negative direction can
easily be computed.

In parallelised cases, where the next cell in the current direction is on a neighbour processor, this
neighbour processor will continue to accumulate heights. For this task, the neighbour processor needs
the direction and status of the iteration as well as the cell index for which the height functions need to
be computed. With this information, the neighbour processor can perform the height accumulation and
send the results back to the original processor.

214 H. Scheufler and J. Roenby

Algorithm 2: ComputeHeights.

1 def computeHeight(direction):
// construct 2D direction-aligned stencil

2 twoDimFDStencil cols(celli,dir)

// compute column height for col index 0

3 cols.addColumnHeight(celli)

4 label dirpos, dirneg = cols.nextCellsInDirection()

// advance the col index in pos and neg direction Fig. 9

5 avgHeightValPos, avgHeightValNeg = 0.5

6 for iter in [1 ... 7] do
// is column empty avgHeight = 0 , full avgHeight = 1

7 if foundHeight(avgHeightValPos) then
8 avgHeightValPos = cols.addColumnHeight(dirpos)

9 label dirpos = cols.nextCellsInDirection(pos=True)

10 end

11 if foundHeight(avgHeightValNeg) then
12 avgHeightValNeg = cols.addColumnHeight(dirneg)

13 label dirneg = cols.nextCellsInDirection(pos=False)

14 end

15 end

// full and empty col found?

16 bool foundHeight = foundHeight(avgHeightValPos,avgHeightValNeg)

17 scalar curv = cols.calcCurvature()

18 return curv, foundHeight;

7 320

9

8

25

5

1090

40

Column index

2

1

0

Row Index

1 20

0 1 2

3 4 5

876

unstructured addressingstructured addressing

Figure 10. Height function sten-
cil.

Figure 11. Cubic cells are
marked in red.

3.5. Acceleration model.
It is well-documented in literature that spurious velocities can arise at the fluid interface for surface
tension-dominated flows due to inaccurate curvature estimation. Perhaps less well–known are the spurious
velocities arising from numerical errors introduced in the discretisation of the gravity term (second term on
the right hand side of Eqn. (2)). There is a need for experimenting with different solutions to this problem.
The framework offers the possibility to implement new gravity or acceleration models. Currently, only a
single gravity model is available which is identical to the standard OpenFOAM implementation, i.e.,

Fa,f = (g · xf)n̂f · ∇ρ, (35)

TwoPhaseFlow: A Framework for Developing Two Phase Flow Solvers in OpenFOAM 215

where xf is the face centre and n̂f the unit normal to the face.

4. Validation

In the following, several benchmark test cases for the validation of the surface tension and phase change
model are presented and compared to analytical solutions.

The framework allows easy implementation of new models and simplifies the testing by providing
established numerical benchmarks. To simplify the parameter studies needed to verify the implementation
and compare results with different models, we use the open-source library caseFoam [27]. It provides an
easy way of generating a series of simulation test cases where various parameters are scanned within
a specified range. The post processing data of the parameter studies can then easily be analysed and
compared.

4.1. Phase change.
The easiest and most accurate way to test an implementation is to compare its results with known
analytical solutions. For the phase change model, three analytical solutions are widely used: The Stefan
problem, the sucking interface problem and the Scriven problem. The different models can be selected
by changing the entries in the phaseChangeProperties dictionary:

// options: selectedGradExplicit implicitGrad Schrage

energySourceTermModel implicitGrad;

implicitGradCoeffs

{

}

// options: hardtWondra hardtWondraGasPhase

massSourceTermModel hardtWondra;

hardtWondraCoeffs

{

}

satProperties

{

singleComponentSatProp function;

Tmin 100;

Tmax 500;

pSat constant 1e5;

TSat constant 373.15;

L constant 2.26e6;

}

4.1.1. Stefan problem.
This one-dimensional validation test case describes the interface motion away from a superheated wall
and is one of the most frequently used validation test cases [7] [5] [6] [3]. A gas column separates the
superheated wall and the liquid. Due to energy transfer from the wall through the gas phase to the liquid
interface, evaporation at the interface occurs, causing an interface displacement away from the wall. The
analytical interface motion is given by

x(t) = 2β
√
avt. (36)

where av is the thermal diffusivity, and β is the solution to the transcendental equation (see [7])

β · exp(β2) · erf(β) =
cvp(TWall − TSat)√

πL
. (37)

In our test case, the wall is superheated with TWall = TSat + 5K and the thermodynamic properties of
the fluids are given in Tab. 1. The grid is one-dimensional and has a length of 10 mm with a resolution
of 50 (Grid1), 100 (Grid2) or 200 cells (Grid3). The solutions of the simulations are shown in Fig. 12a
and 12b. All models deliver accurate results for all grid sizes and advection schemes.

216 H. Scheufler and J. Roenby

Table 1. Thermal properties of the mesh regions.

R [J/(kgK)] ρ [kg/m3] cp [J/(kgK)] λ [W/(mK)] L [kJ/kg]

vapor 461.4 0.581 2030 0.025 2260
liquid - 958.4 4216 0.671 2260

0 20 40 60 80 100
t [s]

0

1

2

3

4

5

x(
t)

[m
m

]

analytical
Method

implicitGrad
explicitGrad
Schrage

Resolution
grid1
grid2
grid3

(a) Geometric VOF (isoAdector).

0 20 40 60 80 100
t [s]

0

1

2

3

4

5

x(
t)

[m
m

]

analytical
Method

implicitGrad
explicitGrad
Schrage

Resolution
grid1
grid2
grid3

(b) Algebraic VOF (MULES).

Figure 12. Stefan problem: Interface position as function of time. All calculated curves
coincide with the analytical solution.

0.1 0.2 0.3 0.4 0.5 0.6
t [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x(
t)

[m
m

]

Method
implicitGrad
explicitGrad
Schrage
Resolution
grid1
grid2
grid3
analytical

(a) Geometric VOF (isoAdector).

0.1 0.2 0.3 0.4 0.5 0.6
t [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x(
t)

[m
m

]

Method
implicitGrad
explicitGrad
Schrage
Resolution
grid1
grid2
grid3
analytical

(b) Algebraic VOF (MULES).

Figure 13. Sucking interface: Comparison of the interface position.

4.1.2. Sucking interface.
Another frequently encountered and slightly more complex one-dimensional test case is the sucking in-
terface problem introduced by Welch and Wilson [28] which became one of the standard test cases [5] [7].
The model describes the interface movement for a one-dimensional superheated column. As in the Stefan
problem, gas is located between a wall and the liquid but here the liquid is superheated and both gas and
wall are at saturation temperature. The superheated liquid evaporates at the interface, creating volume
and pushing the liquid away from the wall.

In our case setup, the values of the analytical solution are given with the thermophysical properties
of Tab. 1 and with a superheated fluid temperature of 5 Kelvin. As in the previous simulation, the
length of the domain is 10 mm, but we now use grids with cell counts of 100, 200 and 400. Figure 13a
and 13b show the parameter study for the three grid sizes and the available models. The influence of
the advection scheme is observed to be neglectable, whereas a strong dependency on the choice of phase
change treatment can be observed. The most accurate is the implicitGrad model, followed by the
explictGrad model, whereas the Schrage model is significantly less accurate.

TwoPhaseFlow: A Framework for Developing Two Phase Flow Solvers in OpenFOAM 217

0.0004 0.0006 0.0008 0.0010 0.0012 0.0014 0.0016 0.0018 0.0020
t [s]

0.06

0.08

0.10

0.12

0.14

0.16

ra
di

us
 [m

m
]

analytical
Method

implicitGrad
explicitGrad
Schrage

Resolution
grid1
grid2
grid3

(a) Geometric VOF (isoAdector).

0.0004 0.0006 0.0008 0.0010 0.0012 0.0014 0.0016 0.0018 0.0020
t [s]

0.06

0.08

0.10

0.12

0.14

0.16

ra
di

us
 [m

m
]

analytical
Method

implicitGrad
explicitGrad
Schrage

Resolution
grid1
grid2
grid3

(b) Algebraic VOF (MULES).

Figure 14. Bubble in superheated liquid: Comparison of the interface position.

4.1.3. Bubble in superheated liquid.
The last phase change benchmark test case included here is the bubble in a superheated liquid. An
analytical solution for this test case was provided by Scriven [29], which was adopted as a benchmark
test case [5] [7] [6] for phase change models. The analytical evolution of the radius is similar to the Stefan
Problem and is given by

x(t) = 2βS
√
αlt, (38)

where βS is the solution of the transcendental equation,

ρlclp(T∞ − TSat)

ρv(L+ (clp − cvp)(T∞ − TSat))
= 2β2

S

∫ 1

0

e
−β2

S

(
(1−ξ)−2−2

(
1− ρv

ρl

)
ξ−1

)
dξ. (39)

The initial bubble radius, R, and radial temperature distribution must be specified. For r ≤ R we set
the initial T = TSat. For r > R we use

T = T∞ − 2β2
S

ρv(L+ (clp − cvp)(T∞ − TSat))

ρlclp
×

∫ 1

1−R/r

e
−β2

S

(
(1−ξ)−2−2

(
1− ρv

ρl

)
ξ−1

)
dξ (40)

Results are shown in Fig. 14. As for the sucking interface problem, the gradient-based schemes deliver
the most accurate result, followed by the Schrage results, which behave similarly to the sucking interface.
In contrast to the previous two test cases, the combination of geometric VOF and phase change model is
slightly more accurate compared to the MULES advection scheme.

4.2. Surface tension models.
For the validation of the surface tension models, multiple test cases, ranging from static reconstruction
test cases to moving interface cases with non-constant curvature, are available. As in the previous
examples, different curvature models can be selected by changing the entry in the transportProperties
or thermophysicalProperties depending on the solver:

surfaceForces

{

sigma 0.01; // surface tension in SI units

// options: gradAlpha RDF heightFunction fitParaboloid

curvatureModel gradAlpha;

accelerationModel gravity;

deltaFunctionModel alphaCSF;

}

The most challenging part in the simulation of surface tension is an accurate description of the pressure
jump at the interface. The proposed models simulate the pressure jump by applying forces proportional
to the local curvature at the mesh face centres. OpenFOAM uses the well-balanced surface tension
formulation [30], resulting in an accuracy of machine precision if the correct curvature is specified. In
other words, the accuracy of the curvature calculation is the main limiting factor for the accuracy of the

218 H. Scheufler and J. Roenby

10
1

10
2

Resolution per Radius

10
5

10
4

10
3

10
2

10
1

10
0

10
1

cu
rv

at
ur

e
er

ro
r

Method
gradAlpha
RDF
fitParaboloid
heightFunction

error
Emax

Curv

E1
Curv

(a) Hexahedral grid.

10
1

10
2

Resolution per Radius

10
1

10
0

10
1

10
2

10
3

cu
rv

at
ur

e
er

ro
r

Method
gradAlpha
RDF
fitParaboloid

error
Emax

Curv

E1
Curv

(b) Triangular prism grid.

Figure 15. Comparision of the curvature error for a circle for structured and unstruc-
tured grids.

surface force model. However, this is non-trivial as the curvature is proportional to the second derivative
of a scalar field leading to small errors in the scalar field resulting in large errors in the curvature
computation. We use two curvature error measures: The average error,

E1
Curv =

1

κexact

Nic∑
i

|κi − κexact|
Nic

,

and the maximum error,

Emax
Curv =

1

κexact
maxi(|κi − κexact|),

where the sum and max are over all the Nic interface cells. There are four models available for curvature
computation, but it is worth noting that HFM operates exclusively on structured grids.

The first test case is the static reconstruction of a circle. For this, a domain with dimensions 2m×2m
is created and a circular liquid region of radius 0.5 m is initialised. To test the proposed models, the cell
type and resolution of the mesh are varied. The results are shown in Fig. 15. The difficulty in modeling
surface tension is clearly seen by the five orders of magnitude in difference between the most accurate
model, HFM, and the least accurate model, gradAlpha, in Fig. 15a. In this test, only the HFM model
shows a converging behavior which flattens with refinement. This can be explained by the imperfect
initialisation of the circle, as also mentioned by Coquerelle and Glockner [31]. The fitParaboloid and
RDF models show zero-order convergence, which is an improvement in curvature computation of up to 1
to 2 orders of magnitude compared to the current standard model, gradAlpha. Unfortunately, applying
the HFM on unstructured grids is not possible, which is why only three models can be compared on the
triangular prism mesh shown in Fig. 15b. As on structured grids, the new models are able to achieve up
to 1 to 2 orders of magnitude more accurate results.

The reconstruction of a sphere of radius 1m on a 2m×2m domain gives a similar picture as shown
in Fig. 16. Again, the HFM is the most accurate method, followed by RDF, fitParaboloid and finally
gradAlpha.

4.2.1. Curvature of a disc for various contact angles.
In this test case, the accuracy of the curvature computation with the presence of a boundary is simulated.
To test the implementation, a 4m×2m domain is created and multiple circles cutting the domain boundary
with angles 15, 30 , 45 ,60 and 75 degrees are initialised. As in the reconstruction test case, the resolution
and grid type are varied in addition to the contact angle at the boundary.

This test case quantifies the accuracy of the contact angle implementation. The curvature error (see
Figs. 17a and 17b) shows a diverging behaviour as in the previous test case with the maximum error
being slightly larger for smaller contact angles. This increase in error for lower contact angles is most
pronounced for the RDF and fitParaboloid model as depicted in Figs. 17c to 17f.

4.2.2. Translating circle.
So far, we have tested the capabilities of the different curvature models for a static interface configuration.
The next step is to test them in combination with a flow solver, including the errors in pressure, velocity

TwoPhaseFlow: A Framework for Developing Two Phase Flow Solvers in OpenFOAM 219

10
1

10
2

Resolution per Radius

10
3

10
2

10
1

10
0

cu
rv

at
ur

e
er

ro
r

Method
gradAlpha
RDF
fitParaboloid
heightFunction

error
Emax

Curv

E1
Curv

(a) Hexahedral grid.

10
2

Resolution per Radius

10
1

10
0

10
1

10
2

cu
rv

at
ur

e
er

ro
r

Method
gradAlpha
RDF
fitParaboloid

error
Emax

Curv

E1
Curv

(b) Tetrahedral grid.

Figure 16. Comparison of the curvature error for a sphere for structured and unstruc-
tured grids.

and advection. The most basic test case is the pure advection of a circle in a spatially and temporally
constant flow. The circle moves with the same velocity as the surrounding gas, but the pressure inside
the bubble is increased due to the Young-Laplace law. The channel has dimensions 4 m × 1 m with a
background velocity of 1 m/s. The gas and liquid are assumed to have identical density and kinematic
viscosity, 1000 kg/m3 and 3.333 · 10−5 m/s2, respectively. We compare the time-averaged deviation
of curvature and the maximal curvature error for hexahedral and triangular prism grids with different
resolution using the proposed methods. Figure 18a shows the two curvature error measures as functions
of grid resolution. As in the static reconstruction test case, the most accurate results are achieved by
the HFM, but the maximum error does not seem to converge, which was also observed by Popinet [10].
As in the previous test case, the implemented models are significantly more accurate than the standard
curvature model gradAlpha. On unstructured meshes, we see the same trend, that fitParaboloid and
in particular RDF are significantly more accurate than the standard OpenFOAM model.

4.2.3. Sine wave.
The next step is the verification of the models with the analytical solution of Prosperetti [32]. He found
an analytical solution for the movement of a cosine wave, including the effect of viscosity and surface
tension. The main differences to the previous test case are that it includes the effect of the boundaries and
that the curvature is not constant over the surface. Our domain and fluid properties are identical to the
ones proposed by Popinet [10]. As in the previous benchmarks, the models are compared for different grid
types, grid resolutions and interface advection methods. Figure 19a shows the evolution of the maximum
height of the sine wave for the structured grids in combination with the geometric VOF method. The
RDF and fitParaboloid methods are able to capture the amplitude, frequency and damping with good
accuracy. Only the gradAlpha method deviates substantially from the analytical solution. The HFM

method is not shown since it is not able to handle contact angles in our current implementation. In
Fig. 19b the geometric VOF method is replaced by MULES. We observed that only the RDF method is
capable of accurately representing the analytical function. The comparison of both advection methods
with the available surface tension models reveals that the geometric VOF method is more accurate with
the implemented surface tension methods.

The combination of geometric VOF also shows good accuracy on unstructured grids, which is shown in
Fig. 20. The gradAlpha and fitParaboloid methods show a significantly reduced accuracy compared to
the structured grid. However, the fitParaboloid method at least qualitatively shows behaviour similar
to the analytical solution in contrast to gradAlpha.

5. Conclusion

The OpenFOAM based code framework, TwoPhaseFlow, offers new phase change and surface tension
models. The phase change module offers three phase change models denoted explicitGrad, implicit-
Grad and Schrage. The implementations have been validated using simple analytical benchmark cases
from the literature. Currently, three surface tension models are available: The Height Function Method,
the Reconstructed Distance Function method and the fitParaboloid method. These new models are

220 H. Scheufler and J. Roenby

10
2

Resolution per Radius

10
0

10
1

10
2

cu
rv

at
ur

e
er

ro
r

ContactAngle
alpha=15
alpha=30
alpha=45
alpha=60
alpha=75
error
Emax

Curv

E1
Curv

(a) gradAlpha - hexahedral grid.

10
2

Resolution per Radius

10
1

10
2

cu
rv

at
ur

e
er

ro
r

ContactAngle
alpha=15
alpha=30
alpha=45
alpha=60
alpha=75
error
Emax

Curv

E1
Curv

(b) gradAlpha - triangular prism grid.

10
2

Resolution per Radius

10
2

10
1

10
0

cu
rv

at
ur

e
er

ro
r

ContactAngle
alpha=15
alpha=30
alpha=45
alpha=60
alpha=75
error
Emax

Curv

E1
Curv

(c) RDF - hexahedral grid.

10
2

Resolution per Radius

10
2

10
1

10
0

cu
rv

at
ur

e
er

ro
r

ContactAngle
alpha=15
alpha=30
alpha=45
alpha=60
alpha=75
error
Emax

Curv

E1
Curv

(d) RDF - triangular prism grid.

10
2

Resolution per Radius

10
2

10
1

10
0

10
1

cu
rv

at
ur

e
er

ro
r

ContactAngle
alpha=15
alpha=30
alpha=45
alpha=60
alpha=75
error
Emax

Curv

E1
Curv

(e) fitParaboloid - hexahedral grid.

10
2

Resolution per Radius

10
2

10
1

10
0

cu
rv

at
ur

e
er

ro
r

ContactAngle
alpha=15
alpha=30
alpha=45
alpha=60
alpha=75
error
Emax

Curv

E1
Curv

(f) fitParaboloid - triangular prism grid.

Figure 17. Comparison of the curvature error for different contact angles for structured
and unstructured grids.

validated with surface tension benchmarks and show a reduction of the spurious velocities by more than
an order of magnitude, depending on the model choice. The library offers three solvers of which the
most general is able to simulate compressible two phase flow, including the effects of the phase change
and surface tension. All models work with both the isoAdvector geometric VOF method as well as the
MULES method for interface advection. The TwoPhaseFlow framework exploits the runtime selection
mechanism of OpenFOAM, allowing easy implementation and verification of new models. The framework
is released under the GPL v3 and the source code is publicly-available in a software repository [33].

TwoPhaseFlow: A Framework for Developing Two Phase Flow Solvers in OpenFOAM 221

101 102

Resolution per Radius

10 5

10 4

10 3

10 2

10 1

100

cu
rv

at
ur

e
er

ro
r

Method
gradAlpha
RDF
fitParaboloid
heightFunction

Error
E1

Curv

Emax
Curv

(a) Hexahedral grids.

101 102

Resolution per Radius

10 4

10 3

10 2

10 1

100

101

cu
rv

at
ur

e
er

ro
r

Method
gradAlpha
RDF
fitParaboloid

Error
E1

Curv

Emax
Curv

(b) Tetrahedral grids.

Figure 18. Advected circle: Comparision of the curvature error for structured and
unstructured grids.

0 5 10 15 20 25
Non-dimensional time

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
am

pl
itu

de

Method
gradAlpha
RDF
fitParaboloid
nCells
32
64
128
analytical

(a) Geometric VOF (isoAdector).

0 5 10 15 20 25
Non-dimensional time

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
am

pl
itu

de

Method
gradAlpha
RDF
fitParaboloid
nCells
32
64
128
analytical

(b) Algebraic VOF (MULES).

Figure 19. Oscillating sine wave: Comparison of the interface position on hexahedral
grids.

0 5 10 15 20 25
Non-dimensional time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
el

at
iv

e
am

pl
itu

de

Method
gradAlpha
RDF
fitParaboloid
nCells
32
64
128
analytical

Figure 20. Oscillating sine wave: Comparison of the interface position on triangular
prism grids.

222 H. Scheufler and J. Roenby

Acknowledgement

This work was supported by German Aerospace Center - DLR. JR acknowledges support from In-
dependent Research Fund Denmark (Grant-ID: 9063-00018B). The authors would like to thank Grega
Belsak, Lionel Gamet and Christoph Wilms for testing the library and reporting numerous bugs.

Author Contributions: Methodology, H.S. and J.R.; software, H.S.; validation, H.S.; writing—original draft
preparation, H.S. and J.R.; writing—review and editing, H.S. and J.R.; All authors have read and agreed to the
published version of the manuscript.

TwoPhaseFlow: A Framework for Developing Two Phase Flow Solvers in OpenFOAM 223

Appendix A. Thermodynamic model

In this paper only phase change models caused by temperature gradients are implemented but for
numerous engineering application concentration based phase change is crucial. In this framework we
try to offer a possibility to simplify the implementation of the concentration based phase change. The
solver multiRegionPhaseChangeFlow is able to account for mixture of different species in each phase by
utilising a thermodynamic framework similar to the one found in icoReactingMultiphaseInterFoam.
The activation of multiple components in phase is done by switching a keyword:

phases (liquid gas);

liquid

{

type purePhaseModel;

}

gas

{

type multiComponentPhaseModel;

Sc 0.7;

residualAlpha 1e-3;

}

The multiComponentPhaseModel is based on OpenFOAM’s rhoReactionThermomodule and therefore
opens the possibility of including reactions in the future as well. In the current state of TwoPhaseFlow,
the concentration fields only affect the phase density and do not accounted for phase change at the
interface.

224 H. Scheufler and J. Roenby

References

[1] J. Roenby, H. Bredmose, and H. Jasak, “A computational method for sharp interface advection,” Royal Society Open

Science, vol. 3, no. 11, p. 160405, 2016.

[2] H. Scheufler and J. Roenby, “Accurate and efficient surface reconstruction from volume fraction data on general
meshes,” Journal of Computational Physics, vol. 383, pp. 1–23, 2019.

[3] S. Hardt and F. Wondra, “Evaporation model for interfacial flows based on a continuum-field representation of the
source terms,” Journal of Computational Physics, vol. 227, no. 11, pp. 5871–5895, 2008.

[4] M. Nabil and A. S. Rattner, “interThermalPhaseChangeFoam—a framework for two-phase flow simulations with

thermally driven phase change,” SoftwareX, vol. 5, pp. 216–226, 2016.
[5] C. Kunkelmann, “Numerical modeling and investigation of boiling phenomena,” Ph.D. dissertation, Technische

Universität, Darmstadt, May 2011. [Online]. Available: http://tuprints.ulb.tu-darmstadt.de/2731/

[6] S. Batzdorf, “Heat transfer and evaporation during single drop impingement onto a superheated wall,” Ph.D.
dissertation, Technische Universität, Darmstadt, 2015. [Online]. Available: http://tuprints.ulb.tu-darmstadt.de/4542/

[7] Y. Sato and B. Ničeno, “A sharp-interface phase change model for a mass-conservative interface tracking method,”

Journal of Computational Physics, vol. 249, pp. 127–161, 2013.
[8] M. M. Francois, S. J. Cummins, E. D. Dendy, D. B. Kothe, J. M. Sicilian, and M. W. Williams, “A balanced-force

algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework,” Journal

of Computational Physics, vol. 213, no. 1, pp. 141–173, 2006.
[9] Brackbill, Jeremiah U., Douglas B. Kothe, and Charles Zemach, “A continuum method for modeling surface tension,”

Journal of Computational Physics, vol. 100, no. 2, pp. 335–354, 1992.
[10] S. Popinet, “An accurate adaptive solver for surface-tension-driven interfacial flows,” Journal of Computational Physics,

vol. 228, no. 16, pp. 5838–5866, 2009.

[11] S. J. Cummins, M. M. Francois, and D. B. Kothe, “Estimating curvature from volume fractions,” Computers &
Structures, vol. 83, no. 6-7, pp. 425–434, 2005.

[12] T. Abadie, J. Aubin, and D. Legendre, “On the combined effects of surface tension force calculation and interface

advection on spurious currents within volume of fluid and level set frameworks,” Journal of Computational Physics,
vol. 297, pp. 611–636, 2015.

[13] P. A. Wroniszewski, J. C. Verschaeve, and G. K. Pedersen, “Benchmarking of navier–stokes codes for free surface

simulations by means of a solitary wave,” Coastal Engineering, vol. 91, pp. 1–17, 2014.
[14] M. Jadidi, M. Tembely, S. Moghtadernejad, and A. Dolatabadi, “A coupled level set and volume of fluid method with

application to compressible two-phase flow,” in Proceedings of the 22nd Annual Conference of the CFD Society of

Canada, Toronto, ON, Canada, 2014, pp. 1–4.
[15] S. Westermaier, W. Kowalczyk et al., “Implementation of non-newtonian fluid properties for compressible multiphase

flows in OpenFOAM,” Open Journal of Fluid Dynamics, vol. 10, no. 02, p. 135, 2020.
[16] M. Koch, C. Lechner, F. Reuter, K. Köhler, R. Mettin, and W. Lauterborn, “Numerical modeling of laser generated

cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM,” Computers & Fluids, vol.

126, pp. 71–90, 2016.
[17] S. T. Miller, H. Jasak, D. A. Boger, E. G. Paterson, and A. Nedungadi, “A pressure-based, compressible, two-phase

flow finite volume method for underwater explosions,” Computers & Fluids, vol. 87, pp. 132–143, 2013.

[18] J. Roenby, H. Bredmose, and H. Jasak, “IsoAdvector: Geometric VOF on General Meshes,” in OpenFOAM® –
Selected Papers of the 11th Workshop, J. M. Nóbrega and H. Jasak, Eds. Springer International Publishing, 2019,

pp. 281–296.

[19] S. Popinet, “Numerical models of surface tension,” Annual Review of Fluid Mechanics, vol. 50, no. 1, 2017.
[20] J.-M. Ghidaglia, “Capillary forces: A volume formulation,” European Journal of Mechanics - B/Fluids, vol. 59, pp.

86–89, 2016.

[21] A. Syrakos, S. Varchanis, Y. Dimakopoulos, A. Goulas, and J. Tsamopoulos, “A critical analysis of some popular
methods for the discretisation of the gradient operator in finite volume methods,” Physics of Fluids, vol. 29, no. 12, p.

127103, 2017.

[22] “Basilisk,” http://basilisk.fr/, 2020.
[23] M. Owkes and O. Desjardins, “A mesh-decoupled height function method for computing interface curvature,” Journal

of Computational Physics, vol. 281, pp. 285–300, 2015.
[24] F. Evrard, F. Denner, and B. van Wachem, “Estimation of curvature from volume fractions using parabolic reconstruc-

tion on two-dimensional unstructured meshes,” Journal of Computational Physics, vol. 351, pp. 271–294, 2017.

[25] C. Fields, “cfmesh,” https://www.openfoam.com/releases/openfoam-v1712/pre-processing.php, 2017.
[26] OpenCFD, “Mesh generation with the snappyhexmesh utility,” https://www.openfoam.com/documentation/

user-guide/snappyHexMesh.php, 2020.
[27] H. Scheufler and J. Pearson, “casefoam: An OpenFOAM case manipulatior and creator,” https://github.com/DLR-RY/

caseFoam, 2019.

[28] S. W. Welch and J. Wilson, “A volume of fluid based method for fluid flows with phase change,” Journal of Compu-

tational Physics, vol. 160, no. 2, pp. 662–682, 2000.
[29] L. E. Scriven, “On the dynamics of phase growth,” Chemical Engineering Science, vol. 10, no. 1-2, pp. 1–13, 1959.

[30] S. S. Deshpande, L. Anumolu, and M. F. Trujillo, “Evaluating the performance of the two-phase flow solver interfoam,”
Computational science & discovery, vol. 5, no. 1, p. 014016, 2012.

[31] M. Coquerelle and S. Glockner, “A fourth-order accurate curvature computation in a level set framework for two-phase

flows subjected to surface tension forces,” Journal of Computational Physics, vol. 305, pp. 838–876, 2016.
[32] A. Prosperetti, “Motion of two superposed viscous fluids,” Physics of Fluids, vol. 24, no. 7, p. 1217, 1981.

[33] “TwoPhaseFlow,” https://github.com/DLR-RY/TwoPhaseFlow, 2019.

http://tuprints.ulb.tu-darmstadt.de/2731/
http://tuprints.ulb.tu-darmstadt.de/4542/
http://basilisk.fr/
https://www.openfoam.com/releases/openfoam-v1712/pre-processing.php
https://www.openfoam.com/documentation/user-guide/snappyHexMesh.php
https://www.openfoam.com/documentation/user-guide/snappyHexMesh.php
https://github.com/DLR-RY/caseFoam
https://github.com/DLR-RY/caseFoam
https://github.com/DLR-RY/TwoPhaseFlow

	1. Introduction
	2. Library Overview and governing equations
	3. Methods
	3.1. Volume of fluid module
	3.2. Phase change module
	3.3. Mass source terms
	3.4. Surface force module
	3.5. Acceleration model

	4. Validation
	4.1. Phase change
	4.2. Surface tension models

	5. Conclusion
	Acknowledgement
	Appendix A. Thermodynamic model
	References

