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Quantum computing: Industry adoption

The estimated value at stake for QC in the four industries most 
likely to see impact first has now reached nearly $1.3 trillion.

Source: “Quantum computing use cases are getting real—what you need to know,” McKinsey, December 14, 2021; expert interviews
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2. | Transmission Expansion Planning Problem (TEP) >
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Objective: distribute the energy
across a network in the most
effective way so that we minimize
the cost.

How: expanding the transmission
lines of a network.

Motivation:
• Larger and more Complex 

models.
• Bad at Integer Problems (IP)
• Decentralized weather-

dependent renewable 
energy.

• Increase of Storage 
Components.

Source: PyPSA software https://pypsa.readthedocs.io/en

https://pypsa.readthedocs.io/en


2.1 | Transmission Expansion Planning Problem (TEP) >
⨂ |Brownfield and Greenfield Models >
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Brownfield model: Network
considering current
transmission lines (solid lines)
and candidate lines (dashed
lines).

Greenfield model: 
Network considering just
candidate lines (dashed
lines).
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2.2| Transmission Expansion Planning Problem (TEP) >
⨂ |Test Cases>

Figure: European network generated with PyPSA for N clusters from eGo100
data.

• Scalable Test Cases.
• Enable to work only with
   renewable energies.
• Greenfield or Brownfield model.
• Number of snapshots.



2.3 | Transmission Expansion Planning Problem (TEP) >
⨂ |Parameters and Variables>
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of decentralized weather-dependent renewable energy sources, intermittent loads, sector cou-
pling and the increase of storage components. Currently, the problem is often linearized or the
scope and granularity of the model are reduced using clustering algorithms. For this reason,
any computational time reduction will have substantial implications in closing the granularity
gap between what the current models can solve and the desired resolution needed by energy
system operators. However, since quantum computers are still not sufficiently mature, large
TEP problems cannot be solved fully by a quantum annealer. For this reason, we require hybrid
methods [24]–[28] to decompose large problems into a master problem, which can be solved by
a quantum annealer, and a sub-problem for which cutting-edge classical algorithms are going
to be applied.

4.1.1 Nomenclature

In this section we introduce the notation of the TEP problem. Let N be the set of nodes of a
given network, H the set of snapshots, C the set of candidate transmission lines and E the set of
existing lines. Then xkl , with kl 2 C, represents the binary variable of the transmission line from
node k 2 N to l 2 N – it decides if that transmission line is built xkl = 1 or not xkl = 0 –, dk(h)
represents the demand at node k 2 N in snapshot h 2 H, f 0

kl with kl 2 E represents the power
flow being transmitted in existing line from node k 2 N to l 2 N, f̄ 0

kl with kl 2 E represents
the maximum power flow being transmitted in existing line from node k 2 N to l 2 N, f 1

kl
with kl 2 C represents the power flow being transmitted in candidate line from node k 2 N to
l 2 N, f̄ 1

kl with kl 2 E represents the maximum power flow being transmitted in existing line
from node k 2 N to l 2 N, gk represents the energy produced at node k 2 N, ḡk represents the
maximum energy production at node k 2 N and rk represents the load shedding, which can be
thought as an artificial generator with a very large operational cost. Lastly, ckl is the coefficient
of investment cost of transmission line from node k 2 N to l 2 N, coc

k is the operational cost of
generator k 2 N and ck is the load shedding cost associated with rk.

Symbol Description Type
N Set of nodes of the network Set
H Set of snapshots Set
C Set of candidate transmission lines Set
Ck Set of candidate transmission lines from all nodes to node k Set
E Set of existing transmission lines Set
Ek Set of existing transmission lines from all nodes to node k Set
xkl Transmission line from node k to l Binary
f 0
kl Power flow in existing line from node k to l Integer

f̄ 0
kl Maximum power flow in existing line from node k to l Integer

f 1
kl Power flow in candidate line from node k to l Integer

f̄ 1
kl Maximum power flow in candidate line from node k to l Integer

rk Shedding load at node k Integer
dk(h) Demand of node k at snapshot h Integer
gk(h) Current generation at node k at snapshot h Integer

ḡk Maximum generation at node k Integer
ckl Investment cost of transmission line from node k to l Real

c(oc)
k Annualised operational cost per MWh of generator gk Real
ck Cost of shedding load at node k Real

Table 4.1: Description of variables involved in TEP problems [24].Table: Description of variables and parameters involved in 
TEP problems.

Parameters

Variables
Real

Real

Real

Real
Real

Real

Real

Real



2.4 | Transmission Expansion Planning Problem (TEP) >
⨂ |Mathematical Model MILP>
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4.1.4 Formulation

We formulate the TEP problem according to the work of Dilwali et al. [24] as follows

min
x, g, r, f0, f1

Â
kl2C

cklxkl

| {z }
Investment cost

+ Â
h2H

Â
k

c(oc)
k gk(h)

| {z }
Operational cost

+ Â
h2H

Â
k

rk(h)ck

| {z }
Load shedding cost

(4.2a)

s.t. dk(h) �
 

Â
l2Ek

f 0
kl(h) + Â

l2Ck

f 1
kl(h) + gk(h) + rk(h)

!
= 0 , 8k 2 N, h 2 H, (4.2b)

�� f 0
kl(h)

��� ¯f 0
kl(h)  0 , 8 kl 2 E, h 2 H, (4.2c)

��� f 1
kl(h)

���� ¯f 1
kl(h)xkl  0 , 8 kl 2 C, h 2 H, (4.2d)

gk(h) � ḡk(h)  0 , 8 k 2 N, h 2 H, (4.2e)
rk(h) � dk(h)  0 , 8 k 2 N, h 2 H, (4.2f)

d, g, r, f0, f1 � 0, (4.2g)
xkl 2 {0, 1} , 8 kl 2 C, (4.2h)

where the variables are described in Table 4.1. We next briefly describe each equation:

• Objective function Eq. (4.2a): it is the sum of investment cost of transmission lines, op-
erational cost of generators and load shedding cost.

• Power balance Eq. (4.2b): it represents the power balance constraints, i.e., if the demand
dk(h) at node k and snapshot h is fulfilled by the generator gk at node k and the power
flow incoming from other nodes f 0

kl(h) and f 1
kl(h). The term rk is the load shedding. It can

be thought of as an artificial generator whose operational cost is very large. It represents
the fine for not fulfilling the demand in a node and it guarantees that the problem is
feasible. To ensure that mathematically the demand is always fulfilled one can consider a
load shedding term that is zero when demand at node k is satisfied by the elements of the
network and rk 6= 0 when it is not fulfilled. If rk 6= 0 the demand is not fulfilled, i.e., the
electricity markets cannot offer the required energy to a given node and then pay a fine,
which is an extra cost in the objective function. If the load shedding cost is high enough
the demand is going to be always fulfilled since the load shedding term is the dominant
term we want to minimize.

• Existing circuit flow limits Eq. (4.2c): the power flow of an existing transmission f 0
kl line

cannot exceed its maximum capacity, f̄ 0
kl .

• Candidate circuit flow limits Eq. (4.2d): the power flow of a candidate transmission line
f 1
kl cannot exceed its maximum capacity, f̄ 1

kl .

• Node generation limits Eq. (4.2e): the energy produced in a node k, gk, cannot exceed its
maximum energy production, ḡk.

• Node loads limits Eq. (4.2f): the load shedding at node k, rk, cannot exceed the load dk of
that node.

4.1.5 Remarks

The previous model is called a transport model since we are not considering Kirchoff’s equa-
tions. Notice that we include the operational cost which is usually not included in the litera-
ture [30]. The reason for usually not including the operational cost is that other authors consider

(Power Balance)

(Existing circuit flow limits)

(Node generation limits)

(Node loads limits)

(Binary type)

(Positive variables)

(Candidate circuit flow limits)
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Conference Paper: Dilwali, K., Gunnaasankaraan, H., Viswanath, A., & Mahata, K. (2016). Transmission expansion planning using 
benders decomposition and local branching. In 2016 IEEE Power and Energy Conference at Illinois (PECI). 2016 IEEE Power and 
Energy Conference at Illinois (PECI). IEEE. https://doi.org/10.1109/peci.2016.7459265

Complicated Constraint
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3.1| Methods for addressing large problems >
⨂ | D-Wave Hybrid Solvers >
LeapHybridCQMSampler

Main features:
• 20 min of free trial.
• Solve MILP problems.
• Cannot know how much 

quantum solver was involved in 
the resolution.
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We do not have 
control of how 

much QA is 
involved in the 

calculations. The D-
Wave hybrid solvers 

are black boxes.



3.2| Methods for addressing large problems >
⨂ | Simulated Annealing vs Quantum Annealing>
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Figure B.1: Simulated annealing process for a 20-nodes travelling salesman problem,
where nodes are represented by black dots. The code to produce the figure can be
found in Appendix D. Left: Plot showing a random path (red) to travel the nodes and
the path (blue) obtained for an instance of simulated annealing. Right: Hamiltonian as
a function of iterations and temperature.

Figure 2.1: Eigenenergies of a random Hamiltonian as function of dimensionless time s
= t/T. The dots indicate the state of the system at each point in time. Left: when
adiabatic conditions are fulfilled, i.e., if the evolution is carried out suffi- ciently slowly,
then our system evolves continuously in time along the ground state. Right: when the
evolution is carried out not fulfilling the adiabatic con- ditions, it could happen that we
end up in a different eigenstate if our system absorbs enough energy to jump to next
level over the evolution, something that is more likely to happen close to the minimum
gap ∆. If that happens we would end up in a different eigenstate of the target
Hamiltonian which does not encode the optimal solution.

Source: Transmission Expansion Planning by Quantum Annealing (MSc Thesis)

Proceeding: Romero, R., Gallego, R. A., & Monticelli, A. (n.d.). Transmission system expansion planning by simulated annealing. 
In Proceedings of Power Industry Computer Applications Conference. Power Industry Computer Applications Conference.
IEEE. https://doi.org/10.1109/pica.1995.515195

https://elib.dlr.de/198575/1/TransmissionExpansionPlanningbyQuantumAnnealing.pdf
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Book: Conejo, A. J., Castillo, E., Minguez, R., & Garcia-Bertrand, R. (2010). Decomposition techniques in mathematical 
programming. Berlin, Germany: Springer.

Ilustration inspired on DTU Lectures from Jalal Kazempour.

1. Fix integer variables to feasible integer values.
2. Solve the resulting LP for fixed integer variables.

1. Upper Bound for the objective function.
2. Sensitivities (dual variables).

3. Solve the IP problem again with the newly added 
cuts.
1. Lower Bound for the objective function.
2. New Integer Values.

4. Check Stopping Criterion:   
           Upper_bound – Lower_bound < precision

3.2| Methods for addressing large problems >
⨂ | Benders’ Decomposition Algorithm >
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3.2 | Methods for addressing large problems >
⨂ | Benders’ Decomposition Algorithm >

4.3. Benders Decomposition in TEP 39

Benders’ decomposition algorithm

Step 1: Initialization of Benders’ decomposition

t = 1 Benders’ iteration (4.8)

z0 = �• Lower bound (4.9)

z̄0 = • Upper bound (4.10)

a0 = 0 Load shedding and operational cost (4.11)

P0
f 1
kl

= 0 8kl 2 C Lagrange multipliers (4.12)

Step 2: Master problem solved by a quantum annealer

min
xt

zt (4.13a)

s.t. zt � Â
kl2C

cklxt
kl + at�1 � Â

kl2C
Pt

f 1
kl

�
xt

kl � xt
kl
�

8 t = 1, . . . , t � 1, (4.13b)

xkl 2 {0, 1}, 8 kl 2 C. (4.13c)

Step 3: Slave problem solved by a classical solver

min
g, r, f0, f1

at ⌘ Â
k

c(oc)
k gk

| {z }
Operational cost

+ Â
k

rkck

| {z }
Load shedding cost

(4.14a)

s.t. dk �
 

Â
l2Ek

f 0
kl + Â

l2Ck

f 1
kl + gk + rk

!
= 0, 8k 2 N, (4.14b)

�� f 0
kl
��� f̄ 0

kl  0, 8 kl 2 E, (4.14c)
��� f 1

kl

���� f̄ 1
klx

t
kl  0, 8 kl 2 C, (4.14d)

gk � ḡk  0, 8 k 2 N, (4.14e)
rk � dk  0, 8 k 2 N., (4.14f)

d, g, r, f0, f1 � 0 (4.14g)

Step 4: Stopping criterion

Update the upper bound,

z̄t = min{z̄t�1, Â
kl2C

cklxt
kl + at}. (4.15)

If
�
z̄t � zt� /z̄t  e, then we found the (sub)-optimal solution, else t = t + 1 and

we have to repeat the algorithm from step 2 until the stopping criterion is satisfied.

Figure 4.6: Quantum-classical Benders’ decomposition algorithm diagram of TEP
problem. It uses a quantum solver to solve the MP and a classical solver for the
SP.
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• The cuts produced cannot be real numbers. 
(Otherwise we have to discretize)

• If the cuts are big integers numbers àmany slack 
variables.
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3.2 | Methods for addressing large problems >
⨂ | Benders’ Decomposition Algorithm >
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• PyPSA-EUR 8-Nodes Clustering of European Network.
• The data is rounded so that D-Wave can handle the

problem.
• D-Wave is not capable to find an embedding for the

master problem.
• The solution is optimal (dual gap is zero).

Figure: Plot of the upper and lower bounds of the hyrbrid Benders’
decomposition algorithm applied to a 8-nodes PyPSA-EUR clustered network of
Europe.
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3.2 | Methods for addressing large problems >
⨂ | A successful case of application of BD >

Journal Article: Magnanti, T. L., & Wong, R. T. (1981). Accelerating Benders Decomposition: 
Algorithmic Enhancement and Model Selection Criteria. In Operations Research (Vol. 29, Issue 
3, pp. 464–484). Institute for Operations Research and the Management Sciences (INFORMS). 
https://doi.org/10.1287/opre.29.3.464

Optimization Method (1) [Pareto Cuts]:
• Guiding the choice of Binary will 

provide efficient cuts.

Optimization Method (2) [R solutions from QPU]:
• Run the Dual-SP for the best R-solutions provided 

by the annealer.
• Add more cuts per iteration.
• Minimize the access time to QPU



6.| Difficulties and Future Steps >
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1. Reduce the number of slack variables (qubits that use the quantum computer to do the binary 
expansion of integer of your problem) by reformulating the problem and adding a post-processing.

2. The cuts added to the master problems are in the more straighforward way but there are smarter 
ways of adding cuts or even different “flavours” of Benders. In other words, there are redundant 
cuts.

3. Effect of not getting the optimal solution of the Master Problem (heuristic) for the Benders algorithm. 
Quality of solution. Could we avoid or improve this?

4. There exist other alternatives approaches (multi-cuts) such as the one proposed by Paterakis 
10.1016/j.compchemeng.2023.108161
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Extra | Benders’ Decomposition 
Algorithm >

4.3. Benders Decomposition in TEP 39

Benders’ decomposition algorithm

Step 1: Initialization of Benders’ decomposition

t = 1 Benders’ iteration (4.8)

z0 = �• Lower bound (4.9)

z̄0 = • Upper bound (4.10)
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Figure 4.6: Quantum-classical Benders’ decomposition algorithm diagram of TEP
problem. It uses a quantum solver to solve the MP and a classical solver for the
SP.

QUBO formulation


