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Zusammenfassung

Wir leben in einem komplexen System. Daher ist es unerlässlich, über Techniken zur Analyse
und zum Verständnis seiner verschleierten Dynamik zu verfügen, um die Entscheidungsfindung
zu verbessern. Ziel dieser Dissertation ist es, einen Beitrag zur Forschung zu leisten, die unsere
Möglichkeiten erweitert, diese komplexen Systeme für uns weniger intransparent zu machen.

Zunächst wird aufgezeigt, welche Auswirkungen es auf praktische Anwendungen hat, wenn Nicht-
linearität — ein oft vernachlässigter Faktor bei kausaler Inferenz — berücksichtigt wird. Daher
untersuchen wir die kausalen Beziehungen innerhalb dieser Systeme und beleuchten insbeson-
dere die Unterscheidung zwischen linearen und nichtlinearen Kausalitätsfaktoren. Nachdem wir
die erforderlichen Methoden entwickelt haben, wenden wir sie auf einen realen Anwendungsfall
an und zeigen, dass leichte Anpassungen bestimmter Finanzmarktmodelle durch die Auflösung
des Korrelations-Kausalitäts-Fehlschlusses zu erheblichen Vorteilen führen können.

Sobald die linearen und nichtlinearen Kausalzusammenhänge bekannt sind, können wir aus der
zugrunde liegenden Kausalitätsstruktur die Differentialgleichungen ableiten, um die Interpre-
tierbarkeit von Modellierungen und Vorhersagen zu verbessern. Durch die Feinjustierung der
Parameter dieser Gleichungen durch das Phänomen der Synchronisierung von Chaos können
wir sicherstellen, dass sie die Daten optimal darstellen.

Allerdings lassen sich nicht alle komplexen Systeme durch Differentialgleichungen adäquat be-
schreiben. Daher bietet die Anwendung von Techniken des maschinellen Lernens wie Reservoir
Computing bei der Vorhersage chaotischer Systeme erhebliche datenbasierte Vorteile. Obwohl
ihre Architektur relativ einfach ist, ist die Gewährleistung einer vollständigen Interpretierbarkeit
und Hardware-Realisierung immer noch von einer erhöhten Effizienz und reduzierten Datenan-
forderungen abhängig. In dieser Dissertation werden einige der notwendigen Änderungen an
der traditionellen Architektur vorgestellt, um physikalisches Reservoir Computing näher an die
Realisierung zu bringen.



 



Abstract

We live in a complex system. Therefore, it is essential to possess techniques to analyze and
comprehend its intricate dynamics in order to improve decision making. The objective of this
dissertation is to contribute to the research that enhances our ability to make these complex
systems less intransparent to us.

Firstly, we illustrate the impact on practical applications when nonlinearity — an often disre-
garded factor in causal inference — is taken into account. Therefore, we investigate the causal
relationships within these systems, particularly shedding light on the distinction between linear
and nonlinear drivers of causality. After developing the necessary methods, we apply them to a
real-world use case and demonstrate that making slight adjustments to certain financial market
frameworks can result in considerable advantages because of the resolution of the correlation-
causation fallacy.

Subsequently, once the linear and nonlinear causal connections are understood, we can derive
governing equations from the underlying causality structure to enhance the interpretability of
models and predictions. By fine-tuning the parameters of these equations through the phe-
nomenon of synchronization of chaos, we can ensure that they optimally represent the data.

Nevertheless, not all complex systems can be accurately described by governing equations.
Therefore, the implementation of machine learning techniques like reservoir computing in pre-
dicting chaotic systems offers significant data-driven advantages. While their architecture is
relatively simple, ensuring full interpretability and hardware realizations still relies on increased
efficiency and reduced data requirements. This dissertation presents some of the necessary modi-
fications to the traditional reservoir computing architecture to bring physical reservoir computing
closer to realization.
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Chapter 1

Introduction

We are in an era where an unprecedented amount of data is being produced, processed, and used
in decision making. This presents us with a number of challenges and opportunities when it
comes to using this vast amount of data to build models and make predictions. This can be
challenging because reality rarely adheres to linear dynamics. Both human-made systems and
nature exhibit complexity, nonlinearity, and even chaos. While simplifications and linearizations
may be sufficient for basic modeling tasks, real-world applications require a deeper understanding
of the full dynamics involved.

Physicists have traditionally been at the forefront of this investigation, developing the tools nec-
essary to study the complex relationships that govern our world. The widespread adoption of
machine learning techniques has made it possible to capture and predict the full intricate nature
of nonlinear dynamical systems, which is now a tangible reality. While effective, these meth-
ods conceal their underlying processes by operating in unexplainable, high-dimensional spaces,
leaving users to rely on trust rather than understanding. Yet, transparency is critical in fields
as diverse as climate modeling, turbulent air flows, epidemics, and financial markets — areas
where explainability is as essential as accuracy.

The convergence of physics, mathematics, and computational innovation has laid the groundwork
for novel methods to analyze nonlinearities and chaotic behavior present in various scientific
and technological fields. This dissertation aims to merge traditional principles with modern
computational techniques to reveal the intrinsic dynamics of complex systems. By integrating
physics with state-of-the-art machine learning, we will investigate methods for measuring linear
and nonlinear causality, deriving governing equations, and predicting the chaotic behavior of
complex systems.
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Complex Systems and Chaos

Chaos: When the present determines the
future, but the approximate present does
not approximately determine the future.

On a piece of paper
Edward Lorenz

In scientific investigation, few concepts have expanded knowledge and sparked imagination like
complex systems and chaos. These concepts not only exist as theoretical musings, but also es-
tablish the foundation of our world with insights that transcend various disciplines and domains.
Complex systems comprise interrelated networks of elements that exhibit intricate behaviors and
structures. They are recognized for their dynamic nature in which interactions between compo-
nents can result in hard-to-predict phenomena that cannot be explained by an understanding of
the individual components alone [1]. These systems challenge established notions of cause and
effect, from the coordinated flight of birds to the patterns of financial markets and the function-
ality of the human brain. Chaos theory, an aspect of the study of complex systems, investigates
how small alterations in initial conditions may lead to vastly differing outcomes. An emblem-
atic demonstration of this theory is the famous butterfly effect [2], a metaphor suggesting that
a butterfly flapping its wings in Brazil could potentially spawn a tornado in Texas. Chaos indi-
cates a fundamental characteristic of mathematical and physical systems that holds significant
repercussions for predictability and control.

Mathematical Properties of Chaos

By understanding chaos mathematically, researchers gain valuable insights into the behavior
of complex systems. They can predict outcomes within established boundaries and uncover
fundamental order amidst seemingly chaotic phenomena. It is important to note that chaos
and randomness are distinct, as chaos arises from deterministic dynamics that are governed by
mathematical principles. These principles are instrumental in defining and evaluating chaotic
systems [1]. Although there is no universally agreed-upon mathematical definition of chaos, the
following common principles are fundamental to this dissertation:

• Sensitivity to Initial Conditions: small shifts in parameters can drastically alter the be-
havior of a system, causing bifurcations and unpredictable transitions. Positive Lyapunov
exponents confirm this erratic nature as they indicate an exponential divergence of trajec-
tories, even from very close starting points. Together, these characteristics underscore the
inherent challenge in predicting and understanding chaotic dynamics, highlighting their
instability and complex nature [3].

• Topological Transitivity : this property guarantees that for any two open sets in the space,
trajectories from one will eventually intersect the other, reflecting the system’s inherent
mixing nature and contributing to its sensitive dependence on initial conditions [1].

• Synchronization: this phenomenon arises when two or more initially uncorrelated chaotic
systems exhibit coordinated behavior. This coordination can take the form of complete,
phase, or generalized synchronization, leading to a functional relationship between the
states of the systems. The mechanism driving this phenomenon involves coupling and
mutual adaptation [4].
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The Lorenz Attractor

The history of understanding chaotic systems has a significant presence in the field of physics.
In 1687, Newton’s solution of the two-body problem marked a significant milestone [5], but the
subsequent extension to the three-body problem revealed the complex dependence on initial
conditions, leading to chaotic dynamics. This insight, as elaborated by Henry Poincaré in the
1890s [6], led to the development of alternative strategies, such as approximate techniques and
topological methodologies, including the Poincaré map. Nevertheless, it was not until the latter
part of the 20th century that chaos theory gained significant attention and recognition, with
contributions from Edward Lorenz, Mitchell Feigenbaum, and James Yorke.

In 1963, Edward Lorenz published a groundbreaking scientific paper entitled Deterministic
Nonperiodic Flow [7]. This paper presented Lorenz’s findings on the sensitive dependence of
initial conditions within the Lorenz system, ultimately challenging the previously held belief of
predictability within complex systems. Furthermore, Lorenz’s work introduced the concept of
chaos, which has since inspired a vast array of subsequent research within the field.

The mathematical theory underlying the Lorenz system revolves around its nonlinear dy-
namics and the emergence of chaos. The three differential equations describe the evolution of
three variables: x, y, and z. These variables represent the convective flow, temperature vari-
ation, and vertical temperature variation, respectively. The equations involve parameters that
govern the system’s behavior, such as the Prandtl number σ, the Rayleigh number ρ, and a
system-specific constant β:

ẋ = σ(y − x)
ẏ = x(ρ− z)− y
ż = xy − βz .

The solutions to the Lorenz equations exhibit several distinctive properties and have had a pro-
found impact on our understanding of chaotic behavior, the limitations of deterministic models,
and the sensitivity to initial conditions. Even small variations in the initial values of x, y, and
z can lead to vastly different trajectories over time, as illustrated in Figure 1.1.

This sensitivity is a hallmark of chaotic behavior and exemplifies the butterfly effect. Ad-
ditionally, the solutions to the Lorenz system exhibit a strange attractor, which is a fractal
geometric structure that captures the long-term behavior of the system [8]. The Lorenz attrac-
tor is a globally attracting, non-periodic orbit characterized by its complex shape resembling
butterfly wings or the number eight [1]. The system’s mathematical simplicity has made it a
widely used example in textbooks, research papers, and computer simulations to illustrate key
concepts of chaos theory. The Lorenz equations have been instrumental in the development of
numerical methods, bifurcation analysis, and the study of strange attractors.

Lorenz’s research uncovered the limitations of deterministic weather prediction models, em-
phasizing the unpredictability of complex atmospheric systems. The recognition of chaos and
sensitivity to initial conditions has had far-reaching influences on meteorology, climate science,
and general comprehension of complex systems. Therefore, the implications of the Lorenz sys-
tem transcend the field of mathematics and physics. It has led scientists to adopt stochastic
models and ensemble forecasting techniques to account for the inherent uncertainties in complex
systems. The advent of computers and advancements in computational techniques facilitated
the exploration and visualization of chaotic systems, leading to applications in various scientific
disciplines, and even art. Today, the Lorenz attractor has achieved iconic status and is often
used in popular culture as a visual representation of chaos and complexity.

4



Figure 1.1: Lorenz Attractor and Chaos. The upper graph illustrates two separate trajectories
on the Lorenz attractor. One can observe why the term strange is fitting upon examining the pattern.
Both trajectories have the same parameters and are integrated over 106 steps with a step size of 10−3.
The blue trajectory begins from the initial condition (1, 1, 1)⊺, while the brown trajectory starts from
the initial condition (1 + 10−12, 1, 1)⊺. Both colors’ clarity in the plot confirms that these trajectories
follow different routes on the attractor. The lower graph exhibits a logarithmic scale view of the norm of
the discrepancy between these two trajectories. A clear linear relationship is evident in the initial phase,
which is highlighted in gray. This linearity enables the determination of the largest Lyapunov exponent
λ through the linear interpolation depicted in red. Adapted from Prosperino [9].
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Causal Inference and Decomposition

Everyone who confuses correlation with
causation eventually ends up dead.

An Internet Meme
Unknown

Understanding how simple rules and interactions can drive complex and unpredictable behavior
is crucial, as modeling, simulating, and analyzing complex systems are indispensable tools in
our rapidly interconnected world. Therefore, understanding the causal connections within a
system is of great importance. The history of causal inference dates back to the development
of scientific thinking and the quest to comprehend the relationships between cause and effect.
Scientists throughout history have confronted the intricacies of causality, leading to the emergence
of various concepts and theories [10]. In the context of classical Newtonian physics, causality
was interpreted as the simultaneous interaction of actio et reactio [5]. However, Einstein’s theory
of general relativity expanded the concept of causality, connecting events through the light cone
of spacetime and adding temporal and spatial dimensions [11]. The introduction of quantum
mechanics further complicated the notion of causality, introducing probabilistic behavior and
non-determinism, rendering the idea of a strict cause-and-effect relationship inconceivable [12].
In today’s data-driven world, it is imperative to distinguish between cause and correlation and
comprehend the complex relationship between variables over time.

Evolution of Causal Inference

The evolutionary path of causal inference mirrors the conceptual evolution of causality. This is
exemplified by Granger’s model, which captures analogous patterns through time-lagged time
series regression. The model aligns with our conventional understanding of causality, depicting
a temporally shifted series of events. Nonetheless, Schreiber [13] resolved a key drawback of
Granger Causality [14], which solely measures linear interdependencies. He utilized information
theory and probability-based metrics to gauge the decline in unpredictability between paired
time series using Transfer Entropy. As research on chaotic nonlinear systems advanced, includ-
ing the previously mentioned Lorenz attractor, causal inference techniques began to integrate
the reconstruction of the dynamic interplay between interconnected variables. One of the most
advanced and innovative techniques emerging from the so-called state space reconstruction meth-
ods is Convergent Cross Mapping [15], which is based on Takens’ Theorem and the transitive
relationships inherent in dynamic system topology.

In the early stages of causal inference, computational resource limitations were often a bot-
tleneck for researchers to leverage complex models and methods. However, advancements in
computational power expanded the horizons of possibilities for causal inference. The arrival of
powerful computing machinery, parallel processing, and optimized algorithms paved the way
for more sophisticated and effective causal analyses [10]. As we consider the future, the in-
terplay between computational resources and causal inference holds tremendous potential for
groundbreaking discoveries. The advent of quantum computing, big data analytics, and artificial
intelligence presents new opportunities and challenges, paving the way for further understanding
of causality [16].
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Decomposing Linear and Nonlinear Causality

One crucial aspect of contemporary causal analysis is disentangling the linear and nonlinear
properties, a nuanced yet vital approach that enhances our understanding of complex systems,
which constitutes the core of this dissertation. The use of Fourier Transform surrogates provides
powerful methods for evaluating and interpreting such causal relationships. The methodology
relies on the Discrete Fourier Transform of the time series, which separates linear properties
into amplitudes and nonlinear properties into phases:

X[k] =
N−1∑

n=0

x[n] · e−i 2π
N

kn .

In this expression, x[n] denotes the time series in the time domain and X[k] represents its
counterpart in the frequency domain. The frequency corresponding to a given k is k

NT Hz,
where T is the sampling interval and N is the total number of samples in the time series.

Randomizing the phases of the Fourier transform with uniformly distributed numbers selec-
tively destroys nonlinear features while leaving the linear characteristics unaffected [17]. This
elegant technique allows us not only to distinguish between linear and nonlinear behavior, but
also to probe deeper into the causal structure. It provides opportunities for advanced analysis,
allowing us to quantify nonlinear causal links and formulate governing equations based on the
foundational causal interdependencies.

Deriving Governing Equations

As seen for the Lorenz system, understanding the governing differential equations of a dynam-
ical system is paramount for precise modeling and prediction, as it provides a mathematical
representation of the system’s inherent dynamics. Expressed in forms as:

dx

dt
= F(x, t) ,

the equations encapsulate how state variables evolve over time, with x representing the state
vector, t denoting time, and F(x, t) specifying the rate of change. By employing numerical
methods such as the Runge-Kutta integration [18] for solving the equations, one can approxi-
mate the system’s future states, even when analytical solutions are intractable. Subsequently,
the governing equations facilitate the identification of equilibrium points and the assessment
of stability through techniques like linearization and the calculation of eigenvalues [19]. Ad-
ditionally, they enable sensitivity analysis, allowing for the determination of how variations in
parameters affect system behavior, which is crucial for optimization and control. Furthermore,
having a clear mathematical formulation of the system lays the groundwork for integrating ad-
vanced computational techniques, including machine learning, to enhance predictive accuracy
and handle large-scale, complex systems.

In this dissertation, we employ an integrative approach that connects the analysis and infer-
ence of causality with the derivation of governing equations within complex nonlinear systems.
This innovative mathematical technique enables us to create a clear justification for deriving
the corresponding differential equations based solely on causalities. Additionally, we use syn-
chronization of chaos to precisely calibrate the parameters of the equations. Our methodology
captures the essential features of the system while providing transparency and interpretability
— often lacking in modern computational models. Hence our research provides evidence of the
ongoing improvement in decoding complex systems.
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Figure 1.2: Causal Inference. The upper graph displays the causality pictogram depicting the linear
and nonlinear dependencies between the state variables of the Lorenz system. The bottom graph provides
an illustration of a real-world equivalent to the causal inference problem. For instance, consider a large-
scale time series dataset in the left panel originating from a complex system like the Earth’s. The goal is
to reconstruct the causal relationships illustrated in the right panel, giving equal attention to both linear
and nonlinear dependencies, along with their corresponding time lags (as indicated by the link labels).
Differentiating legitimate causal associations from false ones, which can occur due to common drivers
(e.g. X1 ← X2 → X3) or indirect transitive pathways (e.g. X2 → X3 → X4), poses a challenge. Causal
inference aims to uncover hidden links between variables, resulting in the creation of causal networks that
are less dense than mere correlation networks. Adapted from Runge, Nowack, Kretschmer, et al. [20].
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Prediction of Dynamical Systems

I never predict anything, and I never will.

Legendary Football Interview
Paul Gascoigne

When governing equations provide detailed knowledge about a system’s behavior, such as in many
physical or mechanical systems, numerical methods can be used for forecasting [21]. These models
rely heavily on the system’s rigorous mathematical underpinnings and offer a reliable approach
for comprehending and predicting system dynamics [22]. They serve as a link between theoretical
physics and real-world applications, translating equations into practical insights. However, the
terrain of dynamical systems is far from uniform, and in many cases the underlying equations
may be unidentified, only partially understood, or too computationally expensive to be feasibly
simulated. This gap between our imperfect understanding and the complicated nature of math-
ematical models presents a challenge that traditional methods cannot easily overcome. This is
where machine learning models excel, particularly in opaque terrain. Unlike knowledge-based
models, machine learning approaches to forecasting time series do not require an intimate un-
derstanding of the system’s governing equations. Machine learning relies solely on data, drawing
inferences and making predictions through computational algorithms that learn from the patterns
and structures within the data itself [23]. This data-driven approach offers new opportunities for
prediction in scenarios where standard methods fail, while also facilitating navigation of complex
systems with elusive governing equations. Nonetheless, the balance between understanding and
computational efficiency is a critical consideration.

Machine Learning and Physics

Time series data that arises from physical systems is inherently nonlinear and subject to a
multitude of interacting factors, presenting a considerable challenge for prediction. Machine
Learning algorithms have become powerful tools in the field of time series prediction [24]. The
adaptability, robustness, and flexibility of deep learning algorithms have paved the way for
predicting complex dynamic systems that were once unfeasible to simulate using traditional
methods [25]. Among these architectures, Recurrent Neural Networks and Long Short-Term
Memory networks have gained recognition for their ability to capture temporal dependencies [26].
Their natural aptitude for learning from sequences, retaining previous states, and anticipating
forthcoming states renders them particularly capable in situations where time dependence is a
critical factor [27].

Although black-box techniques have made significant strides, certain challenges still impede
their full potential. In domains like climate modeling, energy systems, and finance, where
comprehending the model’s decision-making process is as crucial as its prediction accuracy,
interpretability is vital. Physics-informed machine learning offers a promising paradigm that
combines the benefits of data-driven methods with domain-specific physical knowledge [28]. In
this hybrid approach, machine learning architectures incorporate the governing equations of
physical processes directly [29]. This yields greater predictive accuracy and interpretability,
particularly in situations with limited data — a frequent issue in physical sciences and engineer-
ing [30]. Additionally, the combination of both approaches can reveal new relationships that
may be missed by each individual approach, resulting in innovative insights [31].
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Reservoir Computing

In the ever-expanding world of machine learning and computational modeling, Reservoir Com-
puting is a prominent paradigm. It bridges the gap between intricate computations and practical
implementations [32]. Traditional recurrent neural networks require extensive training for all
connections, whereas reservoir computing simplifies the learning process by training only the
connections that lead out of a fixed, random neural network known as the reservoir [33]. This
approach has recently attracted the attention of researchers and practitioners alike due to its
simplicity, efficiency, and broad applicability, especially in the analysis of temporal data [34].
Furthermore, the simple architecture and limited number of hyperparameters facilitate inter-
pretability, prompting extensive research on the interpretation and comprehension of reservoir
computing’s learning process and how individual architecture components affect predictions [35].

However, what distinguishes reservoir computing and holds promise for advancement is its
compatibility with hardware implementation. Reservoir computing’s fixed internal connections
make it highly appropriate for physical realization [36], allowing reservoir computing’s potential
to extend beyond standard software applications. One of the most promising areas for hardware
implementation is in optoelectronic and photonic systems [37]. These systems utilize the unique
characteristics of light to create high-speed and energy-efficient reservoirs, which can process
information at a scale and speed that is impossible with just electronic means. Neuromorphic
engineering is showcasing new opportunities for embedding reservoir computing into silicon that
mimics the highly interconnected network of neurons and synapses in the brain [38]. This avenue
can promote more energy-efficient and biologically plausible hardware that sheds light on both
artificial intelligence and neuroscience. Additionally, the recent investigation of advanced com-
ponents like memristors and quantum devices introduces novel prospects in hardware-accelerated
reservoir computing [39].

Figure 1.3: Reservoir Computing. This Figure outlines the fundamental architecture of reservoir
computing. The learning efficiency is based on the simplicity of the architecture, which is mainly fixed.
The input weights (blue) and the reservoir (red) are randomly created and fixed throughout the learning
process. Merely the output weights (green) are optimized using a linear regression, making the process
very fast. Adapted from Duncan [40].
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Chapter 2

Identifying Linear and Nonlinear
Causality Drivers

H. Ma, A. Haluszczynski,
D. Prosperino & C. Räth
“Identifying causality drivers and
deriving governing equations of
nonlinear complex systems”
Chaos: An Interdisciplinary
Journal of Nonlinear Science
vol. 32, no. 10, 2022

H. Ma, D. Prosperino,
A. Haluszczynski & C. Räth

“Linear and nonlinear causality
in financial markets”

Submitted to
Chaos: An Interdisciplinary

Journal of Nonlinear Science
TBD, 2023

Understanding cause-and-effect relationships presents a significant challenge for developing ana-
lytical and predictive models in various scientific fields. While techniques for inferring causality
are consistently evolving, adequately addressing the identification of its drivers remains a major
obstacle. This issue is particularly critical when dealing with complex systems, where deter-
mining whether causality emerges from linear or nonlinear properties proves extremely valuable.
Before implementing our developed methods in real-world complex systems, we validate them on
synthetic chaotic systems and demonstrate the significance of nonlinear features in causality. In
the financial sector, researchers and practitioners must identify and measure interdependencies
among financial instruments. However, conventional techniques such as Pearson correlation
exhibit constrained descriptive aptitude and only capture linear dependencies [41]. Therefore,
we present a comprehensive approach that includes both linear and nonlinear causalities. We
detect significant nonlinear causality in stock indices in Germany and the United States. While
correlation may approximate linear causality, it fails to account for nonlinear factors, leading
to an underestimation of causality. Our research also highlights the potential use of causality in
generating market signals, implementing pair trading, and managing portfolio risk.
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2.1 Background and Motivation

Causality, one of the fundamental principles of scientific inquiry, has been extensively studied
across many generations and disciplines. Over time, understandings of causality have developed
alongside the growth in complexity of physical theories. Although causal inference mainly aims
to measure causality, investigating its properties and drivers has been of secondary importance
to research. Separating linear and nonlinear causal features is not only an academic exercise but
also has significant practical implications [42]. Incorrectly attributing a nonlinear relationship as
linear can lead to misguided conclusions, poor predictions, and potentially disastrous real-world
decisions. Conversely, recognizing nonlinearity can reveal deeper insights into the underlying
mechanisms of a system, opening the door to more effective interventions and controls.

Initial advancements in this field were achieved by Paluš, Albrecht, & Dvořák [43], resulting
in the development of a diagnostic test that was specifically designed to identify nonlinear
dynamic relationships in time series using Mutual Information. Haluszczynski, Laut, Modest,
et al. [42] then took a different approach, utilizing Fourier Transform surrogates to distinguish
linear and nonlinear components of mutual information. This approach was utilized to identify
nonlinear correlations within financial data. Additionally, Hlinka, Hartman, Vejmelka, et al. [44]
conducted further quantification of the impact of nonlinearity on connectivity, particularly in
the context of climate data.
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Figure 2.1: Causality Pictograms. The linear (lin) and nonlinear (nl) causal links of the Lorenz
(left) and Halvorsen (right) systems are represented by the labeled arrows. Their governing equations
are defined in the Equations 51 and 53, respectively. The central goal of our framework is to accurately
identify these links and then express their magnitude in a reliable manner.

Understanding the interdependence of financial assets is crucial in several financial sectors, par-
ticularly in assessing portfolio-related risks [45]. As a consequence, industry practitioners have
been closely monitoring the development of co-dependency metrics while the field of econo-
physics is receiving growing attention in the physics community, providing a fresh outlook on
traditional financial approaches [46]. This new outlook utilizes statistical physics tools, including
signal processing, agent-based market frameworks, and random matrix theory [47].

Predominantly, the co-dependencies of financial instruments are characterized by the linear
co-dependency metrics of their return time series. However, there is a growing body of research
that highlights the nonlinear characteristics of these series [48]. In particular, Mantegna &
Stanley [49] demonstrated the power-law scaling dynamics of the probability distributions of
financial indices, while Ghashghaie, Breymann, Peinke, et al. [50] identified turbulent cascades
in foreign exchange markets. Such findings call into question the adequacy of linear dependence
metrics.
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A pressing issue is the continued reliance on Pearson correlation [51] as a proxy for causality due
to the complexities of determining causality in dynamic systems. Granger’s famous study in the
1960s [14] specifically addressed the correlation-causality fallacy and led to the development of
more advanced tools for causal inference — nevertheless, the use of Pearson correlation remains
popular due to its simplicity in calculation and interpretation as seen in Equation 2.1.

However, even very simple dynamics, such as the coupled difference which is described in
Equation 56, can lead to misinterpretations regarding the quantification of co-dependence. Due
to the chaotic nature of this system [52], it exhibits so-called mirage correlations, which means
that variables may be positively correlated for long periods but can spontaneously become anti-
correlated or non-correlated. This can lead to problems when fitting models or inferring causality
from observational data [15] as shown in the Figure 2.2 below:
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Figure 2.2: Mirage Correlations and Causality. The top row shows different regimes of the
coupled difference system defined in Equation 56. It appears that the variables are correlated in the
first regime, anti-correlated in the second, and lose all coherence in the third. The bottom row shows
rolling correlation (left), causality (center), and linear causality (right). Causality is measured using
Convergent Cross Mapping. While correlation fluctuates between periods of positivity, negativity, and
zero correlation, the causality remains steady in both directions over time. The same is applicable to
linear causality. After comparing the measurements with the governing equations, it is evident that
causality offers a better representation of the co-dependence between the two state variables, and is more
stable and accurate than correlation.

This bias poses a potential danger when practitioners rely solely on correlation to assess portfolio
risk. To mitigate this risk, we propose a straightforward solution: incorporate measures of
causality into the processes of market signal inference, pair trading, and portfolio construction.
By doing so, we aim to effectively address this bias and improve the accuracy and robustness of
these financial practices.
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2.2 Causal Inference and Decomposition

The concept of causality is deeply rooted in our way of thinking and is a fundamental principle of
physics. In the following, we discuss several methods in order to infer causality within complex
systems. It is a domain where statistical techniques meet philosophical interpretation, striving
to unveil the underlying causal relationships that govern observed phenomena [53]. The search
for comprehension of complex relationships has inspired the creation of numerous techniques
aimed at unraveling causality. Among these, three prominent categories — Granger Causality,
Transfer Entropy, and Convergent Cross Mapping — have come to the forefront of contemporary
research [10].

• Granger Causality measures the extent to which the past values of one time series variable
can predict the future values of another variable [14]. It is based on the idea that a cause
should precede its effect in time. Granger Causality is widely used due to its simplicity and
interpretability, but it is limited to detecting only linear dependencies between variables.

• Transfer Entropy is an information-theoretic measure that quantifies the amount of infor-
mation transferred between time series variables. It captures the nonlinear dependencies
and can detect causal relationships even in the presence of noise. Transfer Entropy can
be interpreted as an extension of Granger causality and was shown by Barnett, Barrett,
& Seth [54] to be equivalent for Gaussian random variables.

• Convergent Cross Mapping, a state-space reconstruction method, aims to reconstruct the
underlying dynamics of a system based on embedded time series data [15]. It leverages the
topological structure of the system and its attractors to infer causal relationships between
state variables.

However, it should be noted that our framework applies to any method that can detect nonlinear
causality.

Pearson Correlation

Before delving into the methods of causal inference, we first introduce the Pearson Correlation
[41]. The coefficient is named after Karl Pearson, who developed it from a related concept that
Francis Galton introduced during the late 19th century. It was a significant development in
statistics as it allowed for the quantification of the strength and direction of a linear relationship
between two continuous variables, and has since become a standard tool in experimental design
and data analysis within numerous scientific disciplines [51].

It serves as a benchmark in our research as it continues to be widely used in the financial
industry due to its ease of calculation and interpretability. This statistical measure quantifies
the strength and direction of the linear relationship between two variables. It is computed as
follows:

ρ (x,y) ≡
∑T

i=t(xt − x̄)(yt − ȳ)√∑T
t=1(xt − x̄)2

√∑T
t=1(yt − ȳ)2

, (2.1)

where xt denotes the time series’ value at time t and x̄ = 1
T

∑T
t=1 xt signifies its expected

mean. The correlation is normalized and bounded to the interval [−1, 1] and thus allows direct
comparisons across pairwise correlations. It is used in finance to evaluate the correlation between
the returns of different financial instruments.

However, it is important to note that the Pearson correlation only measures linear relation-
ships. Therefore, it might not be a good indicator of association if the relationship between
the variables is nonlinear, or if the data does not meet the assumptions of normality and ho-
moscedasticity [51].
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Granger Causality

Named after Clive Granger, who introduced the concept in the 1960s, Granger Causality (GC)
provides a quantitative framework to determine whether the past values of one variable provide
valuable information for predicting future values of another variable [14]. It is based on the
premise that if a variable X Granger causes another variable Y , the past values of X should
contain useful information for predicting the future values of Y , beyond what is already captured
by the lagged values of Y itself. In other words, X has a causal influence on Y , if including X’s
history in a predictive model improves the forecast accuracy of Y compared to using only the
past values of Y .

The process of estimating Granger causality comprises fitting autoregressive models and
comparing the forecast accuracy of two models in competition: one model that includes the
lagged values of potential causal variables, and another that contains solely the lagged values
of the response variable. The preferred method for estimating GC is the Vector Autoregression
(VAR) model [55]. In a VAR model, each variable is regressed on its own lagged values and
lagged values of all other variables, capturing dependencies among them and facilitating causality
evaluation. The GC test compares the residual variances of two models, one with the candidate
causal variable(s) and the other without. A significant reduction in residual variance indicates
the presence of GC.

Mathematically, the causality from X to Y can be tested by comparing the following two
VAR models with p lags:

Yt =

p∑

i=1

β1,iYt−i + ϵ1,t , (2.2)

Yt =

p∑

i=1

β1,iYt−i +

p∑

i=1

β2,iXt−i + ϵ2,t , (2.3)

where ϵ1,t and ϵ2,t are the error terms of the first and second model, respectively. The null
hypothesis is that the coefficients β2,i are jointly equal to zero, indicating no Granger causality
from X to Y . Typically, the hypothesis can be tested using statistical tests such as the F -test
[56]. To render the measure both continuous and normalized, we employ a specific normalization
technique, expressed by

GCX→Y = 1−min

{(
RSS2
RSS1

)2

, 1

}
∈ [0, 1] , (2.4)

where RSSi denotes the Residual Sum of Squares (RSS) corresponding to the two distinct models
[57]. This equation ensures that the measure lies within the bounded interval [0, 1], creating a
consistent and standardized quantification.

Limitations and Considerations

GC, while a valuable tool, has some limitations that researchers must consider. First, it detects
only linear causal relationships and may fail to capture nonlinear dependencies. Nonlinear
interactions can lead to false negatives or positives in the analysis, as linear models may not
adequately represent the underlying dynamics. Second, GC does not imply a direct cause-
and-effect relationship but rather measures predictability [54]. Other factors, such as omitted
variables or common drivers, can influence both the predictor and the response variable, leading
to spurious results. Therefore, caution should be exercised in interpreting GC as definitive causal
evidence [58].

Advancements in GC have focused on addressing its limitations and extending its applica-
bility. Researchers have explored extensions of GC to incorporate nonlinear relationships by
using nonlinear autoregressive models or kernel-based approaches. These advancements allow
for capturing nonlinear interactions and detecting more complex causal relationships [59].
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Transfer Entropy

Transfer Entropy (TE) is a powerful information-theoretic measure that has gained popularity
in the field of causal inference, particularly in the analysis of time series data. After the demon-
stration of the equivalence between GC and TE, specifically for Gaussian variables as shown by
Barnett, Barrett, & Seth [54], the metric introduced by Schreiber [13] has come to be broadly
recognized as the information-theoretical extension of GC. It provides a way to quantify the
directed flow of information between variables, which allows assessing causal relationships in a
probabilistic framework. Mathematically, the TE from X to Y is defined as:

TEX→Y =
∑

xt,yt,xt−k

P (xt, yt, xt−k) log

(
P (yt|yt−1, xt−k)

P (yt|yt−1)

)
, (2.5)

where P (xt, yt, xt−k) represents the joint probability distribution of Xt, Yt, and the past values
of X (Xt−k). P (yt|yt−1, xt−k) and P (yt|yt−1) denote the conditional probability distributions of
Yt given its past and the past of Y and X, respectively. The logarithm in the formula reflects
the information gain. TE can also be expressed using joint and marginal entropies, which avoids
directly referencing conditional entropy:

TEX→Y = H(Yt+1, Yt) +H(Yt, Xt)−H(Yt+1, Yt, Xt)−H(Yt) , (2.6)

where H(Yt+1, Yt), H(Yt, Xt), H(Yt+1, Yt, Xt), and H(Yt) are the joint and marginal entropies
of the respective variables. To facilitate comparison between different estimations of TE, we
employ the subsequent normalization:

TEX→Y =
H(Yt+1, Yt) +H(Yt, Xt)−H(Yt+1, Yt, Xt)−H(Yt)√

H(Yt+1, Yt) ·H(Xt+1, Xt)
∈ [0, 1] . (2.7)

This normalization approach stems from our understanding of TE as an asymmetric causal
measure. This interpretation aligns with the concept of covariance, which, when rescaled, re-
sults in the normalized form as the Pearson correlation described in Equation 2.1. Thus, the
above normalization ensures that TE can be meaningfully compared across different instances
or applications, adhering to our theoretical framework.

Limitations and Considerations

Estimating TE from data entails the complex task of estimating underlying probability distribu-
tions, a challenge that intensifies with high-dimensional time series. Methods such as the nearest
neighbor technique, kernel-based estimators, and Bayesian approaches have been suggested to
address this issue [53]. Although histograms with equally distributed bins are commonly em-
ployed to estimate densities, Mynter [60] revealed that this strategy might introduce biases, as
the estimation process is highly reliant on specific partitioning details. Consequently, securing a
robust estimator is not straightforward. In our research, we found that using equally spaced bins
produces satisfactory results. This bin configuration has been empirically validated by Baur &
Räth [61], who employed it in constructing generalized local states in reservoir computing.

It is important to note that the application of TE can occasionally produce false causali-
ties, depending on the conditioning dimension. Interpreting causal connections, identifying true
nonlinear relationships, and the sensitivity of TE to various model parameters can be chal-
lenging. Additionally, further convolution of the measure’s applicability can be caused by its
normalization, susceptibility to noise, and the presupposition of Markovian processes [62].
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Convergent Cross Mapping

Convergent Cross Mapping (CCM) is a widely-used technique for causal inference in complex
dynamical systems [15]. Its purpose is to uncover causal connections between variables by
reconstructing their underlying dynamics. CCM is based on the premise that embedded variables
with causal links will display similar dynamic behaviors, which is known as shadowing. At the
core of this approach is Takens’ theorem, a cornerstone result in dynamical systems theory. Floris
Takens presented this theorem in 1981, establishing the mathematical basis for reconstructing
a dynamical system using solely one state variable’s observations [63]. With this approach, one
can discern the geometric and dynamical characteristics of an attractor from a one-dimensional
time series. This is incredibly valuable in practical applications where full state measurements
are not feasible.

Theorem 1 (Takens’ Theorem) Consider a dynamical system with an attractor A embedded
in Rm, and let f : Rm → Rm be the system’s evolution function. We observe the system through
a function h : Rm → R that maps states of the system to real numbers. Given a time series {xt}
of observations obtained from the system, the embedding of the system in a space of dimension
κ = 2m+ 1 can be done using delay coordinates:

yt = (xt, xt−τ , . . . , xt−(2m)τ ) ,

where τ is the time delay. The theorem now states that, under certain generic conditions, an
embedding map Φ : A→ R2m+1 is given by:

Φ(x) = (h(x), h(f(x)), . . . , h(f2m(x))) .

Thus, Φ is a diffeomorphism onto its image, and the attractor’s topology in the state space is
preserved in the embedded space.

After selecting suitable values for the embedding dimension and time delay, one can analyze the
fundamental dynamics, forecast future behavior, and reveal concealed connections within the
system. Thus, the CCM algorithm can be summarized as follows:

Algorithm 1 Convergent Cross Mapping

1: Time Delay Embedding. Embed the time series data of X and Y into higher-dimensional
spaces using the embedding dimension κ and time delay τ .

2: Library Construction. Create a library of vectors from the reconstructed state space X,
denoted as LX, and a library of vectors from the reconstructed state space Y, denoted as
LY.

3: Nearest Neighbor Selection. For each vector X(i) in the shadow manifoldMX, find its
nearest neighbor inMY, denoted as Y(j). Similarly, for each vector Y(k) inMY, find its
nearest neighbor inMX, denoted as X(l).

4: Cross Mapping. Assess the predictability of X based on Y by comparing the distances
between the vector pairs X(i) and Y(j), and the vector pairs Y(k) and X(l). A statistical
measure, such as the Pearson correlation ρ, can be used to quantify the predictability.

5: Convergence Analysis. Repeat the cross mapping procedure for different library lengths.
Evaluate the correlation as a function of the number of points used and assess the convergence
of the results. The convergence of the cross mapping indicates the presence of a causal
relationship between X and Y .
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Convergence Analysis

In the typical application of CCM, convergence necessitates visual inspection. Consequently,
we devise a more sophisticated method that uses rolling windows. For a vector of correlations
ρ with a length of n, we compute the standard deviation in each window. To be considered
convergent, the standard deviation must consistently decrease and eventually fall below a pre-
defined threshold θ. If convergence is achieved, the average of the last s values is computed to
reduce the impact of anomalies. On the other hand, if convergence is not attained, the causality
measure in CCM is assigned a value of zero. This method is mathematically expressed as:

CCMX→Y ≡
{

1
n

∑s
i=1 ρn−s+i if ρ converges

0 otherwise
∈ [−1, 1] . (2.8)

This automated process facilitates the evaluation of CCM causality for various connections
within a system at a reasonable speed. To normalize the measure to the interval [0, 1] and
render it comparable with other causal inference methods, the correlation distance, denoted as
d =

√
2 (1− ρ), can be employed.

Limitations and Considerations

CCM’s ability to identify causal relationships within time series data is impacted by various
factors. The outcomes can be altered by the presence of noise or missing values in the data
[64]. Additionally, the intricate process of selecting suitable embedding dimensions κ and time
delays τ depends on the dataset’s particular characteristics [65]. For instance, the most suitable
value for τ can be determined by identifying the initial local minimum in the mutual information
regarding τ . Furthermore, the False Nearest Neighbor algorithm can assist in locating the tiniest
embedding size that maintains the attractor’s structure, ensuring that adjacent points in the
original time series remain adjacent in the embedded version [66].

However, challenges exist within CCM. False positives and negatives may arise, particu-
larly when dealing with obscured common drivers or confounding variables. The assessment of
convergence in CCM is a complex task, and errors in this assessment can lead to misleading
conclusions [67]. Moreover, the requirement for deterministic dynamics can sometimes limit
the applicability of CCM [68]. Efforts to enhance the functionality of CCM have focused on
improving its efficiency, reliability, and versatility [69]. Innovations encompass algorithms that
decrease the computational burden, allowing CCM to analyze more complex and larger datasets.
Enhancements in the adaptive selection of ideal embedding dimensions and time delays, as well
as advanced techniques for noise reduction and missing data management, contribute to its
robustness [64]. Recent research has facilitated the application of CCM to short time series,
expanding its potential use in various domains [70].
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Figure 2.3: Convergent Cross Mapping. The graphs depict different steps of the CCM inference of
the Lorenz system. The top graph represents the initial phase where the x-coordinate is embedded in a
two-dimensional space using an embedding dimension of κ = 2 and a time delay of τ . This embedding
creates a reconstructed state space that captures the underlying dynamics of the original system. In the
middle graph, the focus shifts to the shadow manifolds of coordinates X and Y . Here, the process of
selecting the nearest neighbor is illustrated. The bottom graph demonstrates the cross mapping between
the reconstructions of the Lorenz attractor. This is where the cross mapping technique is applied to the
reconstructed state space of the coordinates, linking the dynamics of one variable to the other. Adapted
from rEDM: An R package for Empirical Dynamic Modeling and Convergent Cross Mapping [71].
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Fourier Transform Surrogates

In our investigation of the causal structure of time series systems, we utilize Fourier Transform
(FT) surrogates to separate the impact of linear and nonlinear drivers. FT surrogates are a
widely recognized tool for generating surrogate data that preserves the linear properties of the
original time series, including its power spectrum and amplitude distribution, while eliminating
nonlinear properties [17]. This methodology has been widely used in nonlinear data analysis,
especially to examine nonlinearity hypotheses. The construction of FT surrogates has been
detailed in previous literature [72]:

Algorithm 2 Fourier Transform Surrogates

1: Fourier Transform. Given a real-valued time series x = {x1, x2, . . . , xN}, compute its
Fourier transform F(x) using the Fast Fourier Transform (FFT) algorithm [73].

F(x) = FFT(x) .

2: Phase Randomization. Preserve the amplitudes but randomize the phases of the Fourier
coefficients. This can be done by multiplying the complex Fourier coefficients by a random
phase factor eiϕ, where ϕ is uniformly distributed over the interval [0, 2π]. The phase-
randomized Fourier Transform F′(x) is given by:

F′
k = |Fk| · eiϕk , ϕk ∈ [0, 2π] .

3: Inverse Fourier Transform. Compute the inverse FT of the phase-randomized coefficients
to obtain the surrogate time series x̃:

x̃ = IFFT(F′(x)) .

By keeping the amplitudes of the original data and only randomizing the phases, the resulting
surrogates maintain the power spectral density of the original time series but break the
higher-order statistical dependencies.

This method is often used to test the null hypothesis that the data is linearly coupled, as
any significant deviation in a nonlinear measure between the original time series and the FT
surrogates can be an indicator of nonlinearity.

Linear and Nonlinear Measures

In order to evaluate how much of a causal measure is attributed to linear or nonlinear effects,
we adopt a specific approach that involves the calculation of measures on surrogate time series.
The surrogate of time series x, when subjected to the random phases of realization k, is denoted
as x̃(k). Within this research, we focus on bivariate measures ψ

(
x,y

)
, which quantify the

relationship between two time series. To enhance the reliability of our findings, we average
metrics derived from surrogate time series over various instances K of random phases. The
corresponding surrogate or linear measure is defined as the average over K surrogate realizations
of both time series:

ψ̃(x,y) ≡ 1

K

K∑

k=1

ψ
(
x̃(k), ỹ(k)

)
. (2.9)

Here, the superscript k indicates adding identical random phases to both time series in a single
realization. This method ensures that phase differences are undisturbed, maintaining specific
properties such as the Pearson correlation [74].
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To further examine the nonlinear aspects of the measure, we compute the discrepancy between
the primary measure and its linear surrogate counterpart:

ψnl ≡ ψ − ψ̃ . (2.10)

However, to avoid potential spurious effects leading to negative nonlinearities, we recommend
implementing the following measure:

max
{
0, ψ − ψ̃

}
. (2.11)

This method enables us to differentiate the nonlinear aspect of the measurement in a compre-
hensible way. Moreover, we establish the cross-measure by merely substituting the first time
series:

ψcross
(
x,y

)
≡ 1

K

K∑

k=1

ψ
(
x̃(k),y

)
, (2.12)

and analogously define the reverse as the anti-measure:

ψanti
(
x,y

)
≡ 1

K

K∑

k=1

ψ
(
x, ỹ(k)

)
. (2.13)

The intuition behind the cross- and anti-measure is to analyze the influence of the linear part
of x on y under the measure ψ and vice versa.

Nested Measures

When shifting to dynamic analysis using rolling windows, the measure transforms into a vector,
ψ, which offers new possibilities for assessing nonlinearity. This shift permits the exploration of
co-dependence between two measurements with the aid of a third, nested measure ψnest.

ψnest ≡ ρ(ψ1, ψ2) . (2.14)

Particularly, the Pearson correlation coefficient ρ can be utilized to examine the correlation
between the original measure and its corresponding surrogate, stated as:

ρ(ψ, ψ̃) . (2.15)

This method also allows for the depiction of the determination coefficient using the Pearson
correlation, as referenced in [75]:

R2 = ρ2 ∈ [0, 1] . (2.16)

This equation allows us to measure the contribution of linear influences, specifically the portion
of the variance in the measure ψ that can be predicted by the surrogate measure ψ̃. Any
remaining variance arises from nonlinear characteristics:

1− ρ2(ψ, ψ̃) . (2.17)

Furthermore, there is an exploration application of the correlation-causality fallacy [76]. This
application entails calculating the proportion of causality explained by correlation:

ρ2(ψ, ρ) , (2.18)

serving as a gauge of the causal relationship that can be explained by correlation.
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2.3 Financial Data and Frameworks

After developing methodologies to quantify linear and nonlinear causality, our focus shifts to
their practical application. Here, we utilize datasets from the German and U.S. stock exchanges
and implement two financial frameworks that depend on the interdependence of financial instru-
ments. By incorporating causal inference and decomposition, we demonstrate the straightfor-
ward integration of these methods and their contribution to improved performance outcomes.
Our approach highlights the ease of integrating causality into current financial models, enabling
informed decision-making in the financial industry and potentially leading to substantial im-
provements in strategy outcomes and risk management.

Financial Data

For our real-world analysis, we select a subset of stocks from the DAX and Dow-Jones indices,
which represent the 30 most capitalized and thus most influential companies in Germany and
the U.S., respectively. Starting on January 19, 1973, our data consists of the daily closing prices
of all stocks included in the index through April 20, 2022, to provide a consistent universe of
stocks over the entire period. This results in a total of NDAX = 11 and NDJ = 17 time series
with 12785 data points. Note that the survival bias [77] is negligible for our analysis. To ensure
stationary time series, we convert the stock prices pt into logarithmic returns using:

xt = log pt − log pt−1 . (2.19)

The data’s time span is sufficient to analyze significant market occurrences, commencing with
the worldwide economic recession in the beginning of the 1980s and encompassing Black Monday
on October 19, 1987, when global stock markets collapsed for the first time after World War II.
From 1997 to 2001, excessive speculations occurred in the markets, and numerous technology
companies were overvalued, leading to the dotcom bubble [78]. The market experienced signifi-
cant price declines in July and September 2002 due to the bubble burst. Our data also covers
the 2007/2008 subprime mortgage crisis, which led to a market decline from its all-time high in
October 2007 before ultimately crashing following the collapse of Lehman Brothers on Septem-
ber 15, 2008. Between 2015 and 2016, investors sold equities globally due to a combination
of slowing GDP growth in China and the Greek debt default. The dataset also encompasses
the event known as Volmageddon on February 5, 2018, when a sizable sell-off in the American
stock market caused a surge in implied market volatility [79]. Lastly, the data incorporates the
effects of the COVID-19 pandemic, which, among other consequences, instigated an unexpected
worldwide stock market collapse on February 20, 2020. Our time period also includes a number
of important global political events. These include the fall of the Berlin Wall on November 9,
1989, triggering the collapse of the Soviet Union, the attacks of September 11, 2001, and the
Russian invasion of Ukraine on February 24, 2022.

Rolling Windows

To obtain dynamically evolving results, we divide the data into overlapping rolling windows
[80] and compute our measures for each interval following the approach of Haluszczynski, Laut,
Modest, et al. [42]. We use a sliding window of Tw = 1000 trading days, which corresponds to
about four years of data. The gap or step between successive intervals is set to δT = 20 trading
days, roughly equivalent to one month. Thus, the w-th interval is displayed as:

x(w) =
(
x1+(w−1)·δT , . . . , xTw+(w−1)·δT

)
, (2.20)

which gives a total of w = 594 overlapping windows. A (causality) measure ψ
(
x,y

)
7→ R, which

maps two time series to a real number, is thus transformed into a vector.
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Figure 2.4: Historical Stock Returns and Correlation. The top row shows the logarithmic returns
of the historical stock data of the German DAX (left) and the U.S. Dow-Jones (right) index, respectively.
Each line represents the logarithmic return of one stock over time. The bottom row shows the pairwise
correlations between the stocks. Each line displays the rolling correlation between two stocks over time,
with the black line depicting the average correlation across all stocks. The vertical lines represent impor-
tant economic or political events.

Pair Trading

Pair trading is a popular and widely used strategy in quantitative finance that seeks to capitalize
on relative price movements between two highly correlated assets [81]. The strategy is based
on the concept of mean reversion, which holds that the prices of assets that are historically
correlated tend to revert to their average historical relationship over time. When they deviate
from this correlation (i.e., one stock goes up while the other goes down or vice versa), we take
a long position in the underperforming stock and a short position in the outperforming stock,
expecting them to return to their historical correlation [82]. Going long on a position means
expecting rising returns, whereas going short on a position means expecting falling returns.
Thus, a basic form of the strategy involves the following steps:

Algorithm 3 Pair Trading

1: Correlation Calculation. We calculate the rolling historical and the short-term correlation
between two stocks.

2: Signal Generation. When the current correlation ρt deviates from its historical mean
ρ̄hist by a certain threshold, a trading signal is generated. A common approach is to use the
z-score of the difference, which measures the number of standard deviations by which the
current correlation deviates from its historical mean:

zt =
ρt − ρ̄hist
σρhist

, (2.21)

where ρ̄hist and σρhist denote the mean and standard deviation of the historical correlation,
respectively.

3: Trade Execution. When the z-score surpasses a preset threshold value (e.g., above a pos-
itive threshold for a long trade or below a negative threshold for a short trade), a trade is
triggered. Buying an underperforming asset while simultaneously shorting an overperform-
ing asset is referred to as a long trade.
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Portfolio Optimization

In finance, the Markowitz Portfolio Theory (MPT) serves as a fundamental concept for investors
and financial analysts [83]. Created by Harry Markowitz in 1952, the theory transformed the
approach to portfolio creation. Its basic tenet posits that rational investors aim to maximize
potential returns while minimizing risks. The evaluation of an asset’s risk and return should
include the context of the entire portfolio, as opposed to evaluation in isolation. Before delving
into portfolio optimization technicalities, we first introduce fundamental portfolio metrics:

• Expected Return: the expected return of a portfolio E(Rp) is calculated by taking a
weighted sum of the expected returns of its individual assets.

E(Rp) =
n∑

i=1

wi · E(Ri) , (2.22)

where wi is the weight of asset i in the portfolio, and E(Ri) denotes the expected return
of asset i. Although historical returns do not guarantee future performance, it is common
to use a historical mean as an estimation for the expected returns [82].

• Variance: the portfolio variance σ2p measures the risk of a portfolio, taking into account
individual asset variances and their correlations. The formula for portfolio variance is:

σ2p =
n∑

i=1

n∑

j=1

wi · wj · σi · σj · ρij , (2.23)

where wi and wj indicate the weights of assets i and j in the portfolio, and σij indicates
the covariance between assets i and j. Correlation can be substituted with a causality
measure ψ, or if the normalized measure ψ falls within the range of [0, 1], the sign of the
correlation can be utilized:

σ2p =
n∑

i=1

n∑

j=1

wi · wj · σi · σj · ψij · sgn(ρij) , (2.24)

where sgn(·) denotes the signum function.

• Sharpe Ratio: the Sharpe Ratio S is a measure to calculate the risk-adjusted return of
an investment portfolio [84]. Developed by William F. Sharpe, this metric helps investors
understand the return of an investment compared to its risk:

S =
E(Rp −Rf )

σp
, (2.25)

where Rf is the risk-free rate of return. The Sharpe ratio proves particularly valuable
because it offers a straightforward measurement of the excess return in relation to risk.

• Value-at-Risk : a commonly used method to assess the risk of historical portfolio perfor-
mance is the Value-at-Risk (VaR). It calculates the possible loss in value of an investment
or portfolio within a set time frame at a specific α confidence level [85]. A 1−α VaR of x
implies that there is a probability of α that the portfolio will incur losses greater than x.
Unlike portfolio variance, VaR measures tail risk without assuming a normal distribution,
making it particularly important for risk management purposes. We utilize the default α
value of 1%.
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Two portfolios of significant importance in MPT are the Minimum Risk and Maximum Sharpe
Ratio Portfolios, each serving a distinct purpose in the investment strategy aligned with the
investor’s risk tolerance. The Minimum Risk Portfolio aims to preserve capital and maintain
stability, while the Maximum Sharpe Ratio Portfolio seeks to optimize the trade-off between
risk and return. Together, these principles underpin modern portfolio theory, aiding investors
in making knowledgeable choices that align with their financial objectives and risk tolerances.

• Minimum Risk : this portfolio is crucial for risk-averse investors seeking to minimize their
risk exposure and earn satisfactory investment returns. For those who prioritize security
over higher gains, this portfolio comprises assets that, when combined, yield the least
possible variance based on historical data. This optimization problem’s solution yields the
(long-only) weights of the assets included in the portfolio:

Minimize σ2p

Subject to E(Rp) = target return
n∑

i=1

wi = 1

wi ≥ 0 for all i .

It serves as a reference point for assessing risk in other portfolios. If a portfolio has a
greater anticipated return while maintaining the same level of risk as the Minimum Risk
portfolio, it may be deemed more efficient.

• Maximum Sharpe Ratio: also known as the Tangency Portfolio, this portfolio is crucial for
investors seeking the most efficient return for the level of risk they are willing to accept.
It is considered optimal in a risk-adjusted sense because it maximizes the excess return
for every unit of risk taken and serves as a guide for investors to allocate their capital in
a way that compensates them most generously for the risks they endure:

Maximize S

Subject to

n∑

i=1

wi = 1

wi ≥ 0 for all i .

The Maximum Sharpe Ratio is often used as a reference for the market portfolio in the
Capital Asset Pricing Model (CAPM), under the assumption that all investors will choose
a mix of the risk-free asset and the market portfolio according to their risk preference [86].

We present a straightforward method for incorporating causality measures into portfolio con-
struction using these two portfolios. We regularly optimize the portfolio’s weightings to align
with current market conditions. This is accomplished by implementing the rolling causality
measures mentioned previously. Consequently, the benefits of using causality measures as the
co-dependency metric for the portfolio can be assessed, taking into account its impact on both
performance and risk management.
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2.4 Framework Validation and Application Results

After establishing the necessary methods for our framework, we present the results of our analysis
in the following Section. As was motivated by Figure 2.2 above, we observe that for complex
and chaotic systems it is difficult to measure the co-dependence of variables using correlation,
since they can exhibit different regimes of positive, negative, and no correlation, even though
they are governed by exactly the same governing equations. The rolling window analysis of the
correlation is unrobust and changes significantly over time, illustrating the need for a different
measure to reliably gauge co-dependence. Causality measures, such as TE and CCM, are a
valuable technique for measuring causality in both directions and offer consistent results over
time. Moreover, FT surrogates allow for the separation of causality into linear and nonlinear
contributions, facilitating comprehension of the complex co-dependence. Our analysis and major
findings are divided into two parts:

• Synthetic Systems: we first apply this approach to synthetic systems and demonstrate that
a considerable amount of nonlinearity drives the causality in the Lorenz and Halvorsen
systems. Although GC can exclusively detect linear causality, TE and CCM suggest that
nonlinear properties significantly determine causality. Our findings reveal that, in the
Lorenz and Halvorsen systems, the contribution of nonlinearity remains independent of
the strength of the nonlinear coupling.

• Financial Markets: after validating our methods on synthetic systems, we demonstrate
their application to financial markets, revealing noteworthy TE and CCM resulting from
nonlinear features in both the German and U.S. stock markets. Additionally, we observe
the presence of the correlation-causality fallacy since the Pearson correlation frequently
serves as a viable proxy for linear causality in the financial industry. However, investors
may underestimate the causality within their portfolio and potentially overlook portfolio
risk by neglecting nonlinear causality. We demonstrate significant benefits of pair trading
and portfolio optimization when replacing correlation with causality.

Decomposing Causality in Synthetic Systems

Our examination of the Lorenz and Halvorsen systems, which are described in Equations 50
and 52, reveals that causality is primarily driven by nonlinear properties. Figure 2.5 illustrates
this observation, where the box plots [87] demonstrate that all surrogate-based causalities mea-
sured by TE and CCM are significantly lower than the original causality. This discrepancy
arises because the surrogate time series only retain linear properties, while nonlinear effects are
eliminated.

Consequently, we observe that a substantial portion of TE and CCM can be attributed to
nonlinear properties. As anticipated, we confirm that GC accurately measures linear causality,
as both the original and surrogate GC are on the same scale. Any slight deviations are due to
the inaccuracies in the linear regression required for GC calculation. In addition, we analyze
anti- and cross-causalities, measuring the causal flow from the linear properties of one time series
to both the linear and nonlinear properties of another. We find that these causalities vanish for
all three inference methods, further indicating that the causal flows are primarily dominated by
nonlinearity.

To validate that our method only measures linear and nonlinear causality when the governing
equations are fully linear and nonlinear, we conduct the analysis for two dummy models given in
Equations 54 and 55. Figure 2.6 demonstrates that our methods are valid. The fully linear model
predominantly exhibits linear causality, as GC is significant, and the original and surrogate TE
and CCM have similar strengths. For the fully nonlinear model, we observe the opposite case,
where GC is low, and the surrogate TE and CCM are significantly lower than the original TE
and CCM.
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Figure 2.5: Causality Box Plots of Chaotic Systems. For both the Lorenz (upper row) and
Halvorsen (lower row) systems, the mean of the original, surrogate, cross, and anti-matrices were cal-
culated for GC, TE, and CCM (left to right). The sample size was 50 simulations using the standard
configuration. Surrogate causalities were averaged over 10 surrogate realizations. Lozenge symbols were
utilized to mark outliers based on the Interquantile Range (IQR) [88].
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Figure 2.6: Causality Box Plots of Dummy Systems. The systems analyzed in this Figure are the
fully linear (top row) and nonlinear (bottom row) systems. The configuration is analogous to Figure 2.5.
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Variation of Nonlinearity Strength

To investigate whether causality can be consistently attributed to nonlinearity, we add param-
eters to the Lorenz and Halvorsen systems to vary the strength of the nonlinear terms in the
governing equations. The modified governing equations are outlined in Equations 51 and 53.

We analyze variations in the degree of nonlinearity in the Lorenz and Halvorsen attractors.
While both systems diverge for nonlinearity degrees that are less than or equal to 0, the upper
bounds are arbitrarily chosen as we do not observe any significant changes to the attractor form.
We conclude that the level of nonlinearity only affects the scale of the attractors.

This behavior translates directly to the causality analysis, as shown in Figure 2.7 for the
Lorenz system. The original causality is notably greater than the surrogate causality for both
TE and CCM, across all degrees of nonlinearity. Additionally, the grids display no discernible
gradient, which suggests that causality is not influenced by the degree of nonlinearity. We find
similar results for the Halvorsen system.
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Figure 2.7: Causality for Different Nonlinearity Strengths. This Figure displays TE (top row)
and CCM (bottom row) of the Lorenz attractor for different degrees of nonlinearity. We analyze the
causalities for changes of the additional nonlinearity parameters between 0.01 and 2 respectively. The
left grid illustrates the original causality, whereas the right grid presents surrogate causality. All grid
entries are the average of 50 simulations, and the surrogate-causalities are averaged over 10 surrogate
realizations.

Furthermore, we find that TE and CCM are effective in identifying nonlinearity but not mea-
suring the strength of linear and nonlinear causal connections if the underlying dynamics are
too similar. This discovery is of consequence for Chapter 3, where we discuss how to derive
the governing equations from the underlying causal structure. Since the strength of the causal
connection cannot be reliably detected, an algorithm based on the synchronization of chaos is
used to calibrate the parameters of the governing equations.
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Historical Causality in Financial Markets

After establishing the methods, we apply them to financial data from the German and U.S.
stock markets. The data and the rolling correlations are visually depicted in Figure 2.4 above.
Notably, these correlations undergo significant shifts during and after pivotal economic and
political events. This phenomenon can be attributed to the changing behavior of investors
and other market participants in response to these impactful occurrences. Furthermore, this
effect extends to our investigation of causality measures, as demonstrated in Figures 2.8 and
2.8. These Figures reveal that linear and nonlinear causality measures, such as TE and CCM,
exhibit analogous responses to these events.

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

T
E

1980
1985

1990
1995

2000
2005

2010
2015

2020

Date

0.20

0.22

0.24

0.26

0.28

0.30

S
u

rr
o

T
E

1980
1985

1990
1995

2000
2005

2010
2015

2020

Date

Figure 2.8: Transfer Entropy. This Figure shows the historical TE of stocks within the German
DAX (left) and the U.S. Dow-Jones (right) indices, respectively. Each gray line displays the rolling TE
between two stocks over time, with the black line depicting the average correlation across all stocks. The
bottom row illustrates the corresponding surrogate TE averaged over 50 realizations. The vertical lines
represent important economic or political events.

When examining TE, it is evident that TE displays sharp fluctuations in response to events while
surrogate TE remains relatively stable and less reactive. In contrast, surrogate CCM exhibits a
stronger response than regular CCM, with significant jumps similar to the observed correlation
patterns. During these events, there were significant increases in correlation, TE, and surrogate
CCM, particularly among U.S. stocks. Three major events that demonstrate this behavior are
Black Monday in 1987, the global financial crisis in 2009, and the COVID-19 pandemic in 2020.

These observations indicate that the events caused significant changes in the market struc-
ture, which is understandable given their profound influence on the global economy. A notable
finding is that TE demonstrates more substantial fluctuations than surrogate TE during these
events, whereas the opposite is seen for CCM. This implies that the stock market’s linear dy-
namics were significantly influenced, potentially because investors simultaneously adjusted their
stock positions to respond to the crashes.

To determine the extent of nonlinear contributions to our causality measures, we analyze how
much of the causality can be explained by its surrogate. Therefore, we employ the nonlinearity
measure as defined in Equation 2.17. We evaluate the extent to which the linear properties
account for the variation in the original causality using the squared Pearson correlation. Figure
2.10 illustrates the development of nonlinear causality over time, indicating that nonlinear TE
and CCM demonstrate comparable yet not identical patterns. Both measures indicate increased
nonlinearity during the period between the burst of the dotcom bubble and the start of the
global financial crisis. However, we noticed periods of lower nonlinearity before and after this
time frame.
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Figure 2.9: Convergent Cross Mapping. The configuration is analogous to Figure 2.8.

These two significant economic events need to be evaluated differently as the dotcom bubble
caused more nonlinearity in its aftermath. In contrast, the global financial crisis, initiated by
the American housing market crisis, brought about a period of more linear market behavior.
The CCM illustrates this behavior drastically, with jumps exceeding 20%. In conclusion, our
analysis indicates that nonlinear causality presents a beneficial resource for anticipating and
evaluating financial effects, contingent upon continuous monitoring and evaluation within the
context of changing market dynamics.
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Figure 2.10: Nonlinear Causality. The top row displays the historical nonlinear TE of stocks in the
German DAX (on the left) and the U.S. Dow-Jones (on the right) indices. The bottom row presents the
nonlinear CCM. The configuration is analogous to Figure 2.8
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Correlation-Causality Fallacy

Upon examination of Figure 2.11, it becomes evident that both the original and surrogate
TE exhibit a moderate correlation. Notably, there is an intriguing exception during the period
spanning from approximately 1990 to 2002 in the U.S. stock market, where a substantial portion,
approximately 75%, of TE can be attributed to correlation. This spike coincided with the rise
and eventual burst of the dotcom bubble, suggesting that it might have served as an indicator
of abnormal market behavior during this period.
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Figure 2.11: Fallacy Transfer Entropy. The configuration is analogous to Figure 2.8.

One of the most significant findings from this analysis is the observation that fallacy surrogate
CCM is remarkably high, around 90%, in both the German and U.S. stock indices, as depicted
in Figure 2.12. This suggests that correlation effectively acted as a suitable proxy for linear
causality for the majority of the past few decades. However, in periods where this fallacy
diminishes, such as the aftermath of the dotcom bubble in 2002 and the onset of the global
financial crisis in 2008, relying solely on correlation as a measure of co-dependence significantly
underestimates portfolio risk, as nonlinear effects cannot be disregarded.
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Figure 2.12: Fallacy Convergent Cross Mapping. The configuration is analogous to Figure 2.11.
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Pair Trading and Portfolio Optimization

To effectively apply causality measures in practical financial scenarios, we introduce two popular
financial frameworks that rely on the interdependence between assets. Our first concept explores
pair trading, a logical choice based on the premise that two assets typically revert to a default
correlation, and deviations from this norm can be profitable.

In Figure 2.13, we illustrate the seamless integration of causality measures using two chemical
industry stocks from Germany, namely Bayer and BASF. Notably, although the co-dependence
measures’ evolution differences are relatively similar, the subtle distinctions over time have
a significant impact on trading performance. Of particular interest is the finding that using
surrogate CCM as a trading strategy yields significantly higher returns, approximately six times
more than using correlation, despite the measures’ apparent similarity. Moreover, both TE and
CCM perform better than correlation, while surrogate TE underperforms and even results in
negative returns. This clear example highlights the potential of employing a causality-based
pair trading strategy.
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Figure 2.13: Pair Trading. The stock prices of two companies from the DAX (Bayer and BASF)
are displayed in the top left graph. The top right graph presents the co-dependence measures over time,
with each color corresponding to a specific co-dependence measure that is included in the legend on the
right-hand side. The bottom left graph illustrates the strategy positions over time, with long position
in Bayer and short position in BASF indicated by 1, the opposite indicated by −1, and no investment
indicated by 0. The graph in the lower right corner illustrates the cumulative return achieved by the
strategy over time. The dotted horizontal lines mark the strategy’s most recent cumulative return value.
The vertical lines indicate notable economic or political events.

As previously highlighted, relying solely on correlation can potentially lead to an underestimation
of risk, a perilous scenario when managing a portfolio. In Figure 2.14, we employ stocks from
the U.S. Dow-Jones index and minimize risk by dynamically optimizing the portfolio weights
on a monthly basis. It becomes evident that the allocations of a portfolio using correlation
and CCM exhibit visible disparities over time. This divergence is reflected in the portfolio’s
downside returns and overall performance. Notably, we observe that a portfolio employing
surrogate TE, CCM, and surrogate CCM achieves a superior 1% VaR while slightly enhancing
portfolio performance.

Similarly, in the context of optimizing the Sharpe ratio, as depicted in Figure 2.15, the
inclusion of causality measures results in a more favorable risk-return profile. When optimizing
the stocks of the German DAX index, we note a reduction in portfolio standard deviation and an
increase in portfolio value over time, particularly when employing original and surrogate CCM.
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Figure 2.14: Minimum Risk Portfolio Optimization. The top row displays the optimized Minimum
Risk Portfolio weights over time using both the correlation (on the left) and CCM (on the right) as co-
dependence measures. Each colored area represents a stock from the Dow-Jones, which is mapped in
the legend to the right. The dotted vertical lines depict significant economic or political events. In the
bottom row, the left graph illustrates the distributions of the downside returns when using different co-
dependence measures. The vertical lines depict the VaR at α = 1% level. The graph to the right displays
the portfolio’s value over time. The vertical lines denote significant economic or political occurrences. The
dotted horizontal lines denote the portfolio’s most recent value. Each color corresponds to a particular
co-dependence measure, which is mapped in the right-hand side legend.
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Figure 2.15: Maximum Sharpe Ratio Portfolio Optimization. The configuration is analogous to
Figure 2.14. The bottom left plot displays the standard deviation of the returns instead of the VaR.
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In recent times, the abundance of data and advanced computer resources have stimulated inter-
disciplinary efforts to extract governing equations directly from data. This challenge is relevant
to various fields, such as fluid dynamics, biological systems, and financial industries, with the
aim of uncovering fundamental, mathematical relationships embedded in unprocessed informa-
tion. Throughout history, mathematical models in the physical sciences have been expressed as
differential equations. These equations are essential for conveying the fundamental relation-
ships, drawing on both empirically-based findings and theoretical frameworks which often require
significant simplification for practical application. Thanks to recent technological and compu-
tational advances in data collection and analysis, we can now extract equations directly from
observed data. However, current techniques can operate in complex dimensions, rendering them
as black-box processes with obscured inner workings. In contrast, we introduce a transparent and
innovative framework that translates established causal mechanisms into mathematical equa-
tions, effectively depicting the underlying data. Through the integration of machine learning,
we determine the optimal equation parameters that accurately reflect the data based on our ini-
tial assumptions. The combination of previous expertise and empirical evidence, reinforced by
synchronization of chaos, enables us to effectively employ gradient descent algorithms. Our ap-
proach demonstrates robustness to noise and to a wide range of synthetic systems, and accurately
identifies the appropriate parameters regardless of the complexity of the system.
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3.1 Background and Motivation

The rapid expansion of computational resources has led to an unparalleled surge in data pro-
duction and processing. Various methods exist for utilizing this data to generate forecasts and
models. However, many approaches mask their process in a high-dimensional space, resulting in
opaqueness. Instead, an alternative approach involves deducing the governing equations from a
provided time series. This yields a model that is comprehensible and can be easily explained.
Models like these could be beneficial in fields where both accuracy and explainability hold equal
importance.

The path towards deriving governing equations from data has experienced profound evolution
since the initial steps in the 1990s. Early techniques were primarily rooted in applying the
Flow Method, as demonstrated by researchers such as Breeden & Hübler [89] and Eisenhammer,
Hübler, Packard, et al. [90]. Since then, the last few decades have witnessed significant expansion
in the study of these methodologies, particularly in the realm of nonlinear dynamical systems.
Notably, Brunton, Proctor, & Kutz [91] marked a significant advancement by introducing Sparse
Identification of Nonlinear Dynamics on the Lorenz attractor. This was further complemented
by novel approaches like Automated Inference of Dynamics [21] and diverse machine learning
techniques [92]. However, the number of potential terms grows exponentially for data that is
high-dimensional and nonlinear.

Therefore, we introduce a methodology that utilizes causal inference to differentiate between
linear and nonlinear effects and identify significant variables. Following our framework from
Chapter 2, we can identify and distinguish between linear and nonlinear causal connections
among system variables. Therefore, for a time series of N dimensions S = {x1, . . . , xN}, we can
now calculate the causality matrix ψ

(
x, y
)
:

Ψ
(
S) ≡




ψ
(
x1, x1

)
. . . ψ

(
x1, xN

)

ψ
(
x2, x1

)
. . . ψ

(
x2, xN

)
...

. . .
...

ψ
(
xN , x1

)
. . . ψ

(
xN , xN

)


 ,

which fully describes the causal links between the system variables. It resembles an adjacency
matrix that represents finite graphs — hence the entries Ψi,j quantify the causal flow from xi
to xj . Similarly, we can compute the corresponding surrogate-based causality matrices.

We assume that the time series originates from a deterministic dynamic system, where a
finite sample is sufficient to identify its causal structure. By separating linear and nonlinear
causalities, the terms of the governing equations become separately identifiable. Thus, we argue
that the causal structure can be fully described by a linear matrix differential equation and a
nonlinear component:

dx

dt
=

(
dx

dt

)

lin

+

(
dx

dt

)

nl

= Ψlinx+Ψnl ⊙ xn ,

where ⊙ denotes the rationale for deriving the nonlinear terms, which will be explained later,
and the superscript n denotes an n-dimensional Cartesian product. Next, the objective is to
optimize a set of dynamic equations by determining the coefficients that accurately represent
the data.

The recent expansion of deep learning technologies has led to the development of a variety of
advanced first-order optimizers. Therefore, we focus exclusively on gradient descent algorithms.
The first attempt using first-order optimizations was presented by Mariño & Mı́guez [93], but
it is limited to the Lorenz system and lacks general applicability. While Abarbanel, Creveling,
Farsian, et al. [94] further examines this topic within the field of data assimilation, there is still
a dearth of comprehensive analysis regarding synchronization and stability considerations.
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In this Chapter, we expand upon the algorithm created by Mariño & Mı́guez [93] and implement
it to a variety of chaotic systems. Our approach proves to be highly robust against external
noise and uncertainty regarding the underlying equations. We then evaluate the efficacy of our
algorithm by reconstructing the Lorenz equations from multiple sets of data.
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Figure 3.1: Causality Graphs. This Figure displays the causal graphs of the Lorenz (top row) and
Halvorsen (bottom row) systems. The CCM between the state variables is depicted on the left, while the
surrogate CCM is depicted on the right. The dashed lines indicate a lack of significant causality. These
graphs allow for a clear and effortless extraction of the governing equations’ parameters.
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3.2 Derivation of Equation Terms from Causality

As previously motivated, in order to obtain the governing equations, it is necessary to create
both linear and nonlinear causality matrices of the system beforehand. The surrogate matrix
Ψsurro

i,j represents the linear causal flow between the system variables, while the cross-matrix
Ψcross

i,j represents the linear self-loops, which are causal flows of a variable to itself:

Ψlin = δi,jΨ
cross
i,j + (1− δi,j)Ψsurro

i,j . (3.1)

Next, the nonlinear causality matrix Ψnl is calculated by utilizing the original and surrogate
matrices. This can be accomplished using the techniques delineated in Section 2.2.

To enhance the robustness of the derivation, we eliminate causalities below a predetermined
threshold of θlin and attribute them to errors in causal inference. For nonlinear terms, we select a
higher threshold of θnl to compensate for inaccuracies from two causal inferences. For simplicity,
all nonlinear terms are assumed to be of order n = 2. The terms of the equations are derived
using the following algorithm:

Algorithm 4 Derivation of Equation Terms

1: Linear Terms. The linear terms of the governing equations can be easily extracted via:

(
dxj
dt

)

lin

=

N∑

i

Θ
(
Ψlin

i,j − θlin
)
xi , (3.2)

where Θ denotes the Heaviside function.
2: Quadratic Nonlinear Term. If in one column xj of Ψnl only one entry xi ̸= xj exceeds

the threshold θnl, then the nonlinear term entering the equation is:

(
dxj
dt

)

nl

= Θ
(
Ψnl

i,j − θnl
)
x2i , (3.3)

since we assume that the entire nonlinear causal flow of the system must be accumulated in
the variable xi.

3: Mixed Nonlinear Terms. If multiple entries {xk, xk+1, . . . , xl} in Ψnl exceed the thresh-
old, then all pair combinations enter the equation:

(
dxj
dt

)

nl

=
n∑

i=k

l∑

j≤i

Θ
(
Ψnl

i,j +Ψnl
j,i − θnl

)
xixj ,

since we argue that the nonlinear causal flow must be split between all possible pairs.
4: Merging Linear and Nonlinear Terms. Then, we merge the linear and nonlinear parts

of the derivatives to construct the complete governing equations:

(
dxj
dt

)
=

(
dxj
dt

)

lin

+

(
dxj
dt

)

nl

. (3.4)

To complete the algorithm, coefficients for the individual term can be assigned and calibrated to
the data — therefore, we discuss numerous state-of-the-art gradient-descent-based algorithms
in the next Section.
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3.3 Estimating Equation Parameters using Synchronization

After identifying the terms of our governing equations, we must calibrate the parameters to
accurately represent the underlying data. For this part of our algorithm, we adhere to the
fundamental concept proposed by Mariño & Mı́guez [93]. We begin with two systems: a primary
system and a secondary system. The primary system holds the unknown parameters. The
secondary system comprises our prior knowledge of the governing equations’ structure and an
initial estimate of the parameters to calculate. We then link the secondary system to the primary
one and adjust its parameters until it synchronizes to the primary system. Once this happens,
the secondary system provides a reliable estimation for the primary system. Accordingly, we
determine the optimal parameter set that accurately describes the primary system.

Synchronization of Coupled Systems

In their study, Eroglu, Lamb, & Pereira [95] presented a method for coupling two chaotic sys-
tems of the same type, resulting in their trajectories converging to a common one. Here, we
extend their approach to synchronize a secondary system to a primary one, whereby the primary
system’s trajectory remains unaltered, while the secondary system’s trajectory is pushed to em-
ulate the primary one. In this case, it is necessary to maintain the trajectory of the primary
system without any alterations since using discrete data points as the primary system, which
cannot be modified, is one of its applications.

We define two arbitrary N -dimensional systems x, y ∈ RN . We propose augmenting the
system y with the coupling αH(x−y). As a result, x becomes the primary, driving system, while
y becomes the secondary, driven system. This results in the following dynamical description:

ẋ = F (x) (3.5a)

ẏ = F
(
y
)
+ αH

(
x− y

)
. (3.5b)

Here, F : RN → RN describes the evolution of the dynamical system and the matrixH: RN → RN

describes the coupling of the secondary system to the primary one. We require H(0) = 0,
meaning that for synchronized systems the coupling vanishes as soon as both systems are on the
same trajectory [95]. The parameter α ∈ R+ is named coupling strength.

Figure 3.2: Unidirectional External Coupling. This Figure depicts the coupling scheme of a
primary driving system and a secondary driven system for unidirectional external coupling, using the
identity matrix as the coupling matrix H. This representation describes an arbitrary three-dimensional
chaotic system. Adapted from Prosperino [9].

Following the argument presented by Eroglu, Lamb, & Pereira [95], we can demonstrate that if
the coupling strength is large enough, the systems described by Equations 3.5 synchronize. For
the purposes of this discussion, we assume identity coupling, where H = 1. This simplifies the
coupling term in Equation 3.5b to:

αH
(
x− y

)
= α

(
x− y

)
. (3.6)
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Additionally, we define a difference variable z = x− y. Utilizing Equations 3.5, we can describe
the evolution of the new variable z by:

ż = ẋ− ẏ
= F (x)− F

(
y
)
− α z . (3.7)

Now we must determine the coupling strength α at which the two systems will synchronize. To
do this, we can use a Taylor series expansion [9] to estimate a critical coupling αc. This yields
the following condition:

α ≥ αc = λ , (3.8)

where λ is the largest Lyapunov exponent of the system. Figure 3.3 demonstrates the numerical
evidence for the Lorenz system. It clearly displays a significant reduction in synchronization
loss between the two systems. This synchronization loss Es is defined as the average deviation
from synchronization between the two systems:

Es =
1

N

N∑

i=1

||xi − yi|| . (3.9)

For our optimization algorithm, this indicates that we may set the coupling strength α to a
relatively high value.
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Figure 3.3: Critical Coupling Strength and Synchronization Loss. This Figure demonstrates
a significant reduction in the synchronization loss Es when the coupling strength exceeds the largest
Lyapunov exponent for the Lorenz system. The average and standard deviation are calculated based on
100 iterations of each coupling strength.
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Loss Function and Convex Surface

If two systems share the same initial condition and derivative, they will evolve identically.
Therefore, based on the initial data point, the initial state of the secondary system is known
by construction. The states of each system are not only dependent on the parameters, but also
depend on the employed integration method. By optimizing on the derivative, we can eliminate
an intermediary step while applying the chain rule. Thus, the absolute states of a system are
not required, and the loss function does not depend on the absolute states {x} and

{
y
}
, but

instead on their derivatives.

Any mathematical norm can serve as the loss function L, but in practice, the Mean-Squared
Error (MSE) is a valuable measure of error. Instead of using an online optimization approach as
presented by Mariño & Mı́guez [93], our algorithm utilizes a predetermined number of time steps
for optimization. We refer to this fixed number of steps as the evaluation length le. Therefore,
we compute the loss by adding up the MSE across each step in the evaluation length. At each
time step i, a loss of ℓi occurs which are then summed to yield the overall loss, L, across all
steps:

ℓi =
(
ẋ i − ẏ i

)2
(3.10a)

L =
1

le

le∑

i=1

ℓi . (3.10b)

Experimentally, we find that coupling yields a convex loss surface, as depicted in Figure 3.4.
There, we compute the loss L for two coupled Lorenz systems and two uncoupled Lorenz systems.
The primary system used standard parameters, while the secondary system was held constant
at β = 8

3 and various choices for parameters σ and ρ were swept through. It is not feasible to
attempt optimization for determining the minimum on the surface of uncoupled systems, due to
the absence of a clear direction towards the minimum of the loss. However, the loss surface of
the coupled systems has a convex shape, which means that the application of gradient descent
algorithms is justified and promising.

σ

6

8

10

12

14

ρ

20 22 24 26 28 30 32 34 36

lo
ss
L

0

2500

5000

7500

10000

12500

15000

17500

20000

a Uncoupled

σ

6

8

10

12

14

ρ

20 22 24 26 28 30 32 34 36

lo
ss
L

0

500

1000

1500

2000

2500

3000

b Coupled

Figure 3.4: Loss Surfaces. This Figure illustrates the loss function L for two uncoupled Lorenz
systems (left) and two coupled Lorenz systems (right). The loss is calculated using an evaluation length
of le = 103 and the systems are coupled with a strength of α = 10. The primary system’s parameters are
represented by the black line. The right surface exhibits a convex shape, allowing for an optimizer based
on gradient descent to operate effectively.
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Update Step using Gradient Descent

Since the coupling transforms a non-convex loss surface into a convex one, we can calculate the
loss function gradient with respect to the parameters θ and take steps in the negative gradient
direction. This iterative approach leads to a decrease in the loss function for the set of parameters
with each step, resulting in a more precise description of the primary system.

The loss function ℓ is not directly dependent on the parameters θ — rather, the evolution of
the secondary system ẏ is the key factor. As a result, when calculating the derivative of the loss
function with respect to a specific parameter θ in the parameter vector θ, the chain rule must be
applied. Additionally, Equation 3.10b indicates a summation over every coordinate n within an
N -dimensional system, given that vector-valued systems are being addressed. Generally, we can
formulate the subsequent equation for the j-th entry gj of the gradient g by deriving Equation
3.10a:

gj =
∂L
∂θj

=
1

le

le∑

i=1

∂ℓi
∂θj

(3.11a)

∂ℓ

∂θj
= −2

N∑

n=1

(ẋn − ẏn)
∂ẏn
∂θj

. (3.11b)

For the purposes of readability, we exclude the i index from equation 3.11b. However, it is
important to note that this equation represents the loss term of a single sample. Note that if a
certain dimension n does not rely on the parameter θi, this term in the sum over the coordinates
will be 0. Performing the calculation for the Lorenz system leads to the following expression for
the gradients of its parameters θ = (σ, ρ, β)⊺:

∂ℓ

∂σ
= −2 (ẋ1 − ẏ1) (y2 − y1) (3.12a)

∂ℓ

∂ρ
= −2 (ẋ2 − ẏ2) y1 (3.12b)

∂ℓ

∂β
= +2 (ẋ3 − ẏ3) y3 . (3.12c)

After calculating the gradient, it is necessary to update the system parameters in the direction
that minimizes the loss function. Utilizing the gradient-descent algorithm is the most straightfor-
ward approach, in which one subtracts the direction with a negative slope from the parameters.
This method has been previously employed by Mariño & Mı́guez [93]:

θ k = θ k−1 − η ⊙ g k
, (3.13)

where ⊙ symbolizes the Hadamard product between two vectors. The index signifies the k-th step
of optimization, and we perform the optimization process until all parameters have converged.
The vector η represents the learning rate, which determines the size of the update step after
each optimization step k. Because certain parameters may be more sensitive than others in
complex systems, we select a distinct learning rate for each parameter. Heuristically, we find
that adjusting the learning rate of each parameter, such that the initial update step results in a
change of order 10−1, yields good performance.

After iterating until the loss is small enough, we evaluate the error of the parameters using
the mean absolute error Eθ of the fitted parameters θ̂ with respect to the real parameters θ
described by:

Eθ =
1

dim θ

dim θ∑

i=1

∣∣∣θi − θ̂i
∣∣∣ ,

which allows us to understand the numerical precision of our optimization.
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Modern Optimizers using Adaptive Moments

A contemporary optimizer, known as Adam and named after adaptive moment estimation, was
presented by Kingma & Ba [96]. It calculates an estimation of the gradient’s first and second
moments, which are achieved by exponentially weighting past gradients (first moment) and past
squared gradients (second moment). The vector m holds the first moment, whereas the vector v
holds the second moment. With the gradient at optimization step k denoted as g

k
, the moment

estimations are updated via:

m k = β1m k−1 + (1− β1) g k

v k = β2 v k−1 + (1− β2)
(
g
k
⊙ g

k

)
.

Both vectors, m and v, are initialized with 0. This initialization introduces a bias towards 0.
Therefore, they suggest the following bias-corrected estimate:

m̂ k =
1

1− βk1
m k

v̂ k =
1

1− βk2
v k ,

where the superscript k represents taking the value to the k-th power, resulting in the update
step:

θ k = θ k−1 − η ⊙ m̂ k ⊘
(√

v̂ k + ε
)
, (3.14)

where ⊘ represents element-wise division, and the square root is taken over each element of v̂ k.
The step size for each parameter η is determined using the method discussed in Section 3.3. We
implement the suggested parameters, β1 = 0.9, β2 = 0.999, and ε = 10−8, and observe successful
optimization with the convergence of the parameters.

An expansion to the Adam optimizer that we will present in this Section is the AMSGrad
optimizer by Reddi, Kale, & Kumar [97]. The authors discovered situations in which the Adam
optimizer fails to converge to the optimal solution. This is due to the consideration of past
squared gradients’ moving average, which is one of Adam’s primary characteristics. The problem
arises when the optimizer takes excessively large steps under certain circumstances. If the second
moment estimate v̂ j

k for a parameter j at step k becomes too small, it can cause problems. To
address this, they calculated the element-wise maximum value of the new and previous estimates.
This prevents the step size from increasing for each parameter:

v̂ j
k = max

(
v̂ j
k−1, v

j
k

)
∀j ∈ {1, ...,dim θ} .

Additionally, the optimizer is simplified by discarding the bias correction terms. As a result,
the complete update step can be calculated using:

m k = β1m k−1 + (1− β1) g k

v k = β2 v k−1 + (1− β2)
(
g
k
⊙ g

k

)

v̂ k = max
(
v̂ k−1, v k

)

θ k = θ k−1 − η ⊙m k ⊘
√
v̂ k . (3.15)

The maximum function in the upper equation is applied element-wise for each variance estima-
tion of each parameter. Again, we use the recommended values for the remaining coefficients:
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β1 = 0.99, β2 = 0.999. Unlike the original article, we use a different reference learning rate η for
each parameter as derived in Section 3.3.

We compare the performance of each optimization algorithm using the Lorenz system as the
primary system. The system has an initial state of (5, 5, 5)⊺ and a time step of dt = 10−3. To
ensure a fair comparison, the hyperparameters for each optimization algorithm remain constant
with an evaluation length of le = 103 and a coupling strength of α = 103. An initial guess of 1
is used for each parameter that requires estimation in the secondary system. The Figure below
displays the results.
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Figure 3.5: Coefficient Errors. This Figure shows the coefficient errors for different optimizers applied
on the Lorenz system. We observe that the modern optimizers, Adam and AMSGrad, outperform the
plain gradient-descent.

All optimization algorithms reach the correct solution, according to the results. However, so-
phisticated optimizers show faster convergence than plain gradient descent. Furthermore, we
observe that the AMSGrad optimizer oscillates around the true parameters while the Adam
optimizer shows no such oscillations. Our analysis does not reveal any adverse impacts on the
optimization process resulting from the oscillations. Therefore, we will use the AMSGrad opti-
mizer going forward, given its superior convergence rate in many cases compared to the Adam
optimizer [96].
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3.4 Algorithm Validation and Application Results

After presenting our algorithm for deriving governing equations from causality, we validate its
effectiveness on synthetic systems and present some key results when the algorithm is applied
to a set of synthetic chaotic systems. We find that our algorithm can accurately identify the
correct equation terms based on causality. The loss surface is transformed into a convex one
through coupling, allowing us to utilize modern machine learning techniques to calibrate equation
parameters. Our results demonstrate the algorithm’s superior performance and robustness, even
in the face of noise and potential errors in equation terms.

Translating Causality Structures to Equation Terms

Based on the framework developed in Chapter 2, this Section aims to examine the structure of
both linear and nonlinear causality for the Lorenz and Halvorsen systems. The results provide
a basis for deriving governing equations. Figure 3.6 illustrates that the x and y pair is mainly
impacted by linear properties, resulting in the surrogate causality of GC and CCM being over-
shadowed, with both directions having an equal contribution. The surrogate TE indicates that
there is mainly linear causality flowing from x to y, which accounts for approximately 41%. This
finding agrees with the governing equations, where the equation for x has a linear contribution
from y, whereas the equation for y has linear and nonlinear contributions from x. The rest
of the causality is distributed evenly across the other flows. In contrast, the causal structure
of the Halvorsen attractor illustrates that every flow contributes equally to causality across all
inference techniques and types, as displayed in Figure 3.6. This pattern aligns with the circulant
nature of the governing equations.

original surro nonlinear
0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

x  y
x  z
y  x
y  z
z  x
z  y

gc
te
ccm

original surro nonlinear
0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

x  y
x  z
y  x
y  z
z  x
z  y

gc
te
ccm

Figure 3.6: Causality Decomposition. This Figure displays the causal decomposition of the Lorenz
(top row) and Halvorsen (bottom row) systems. We calculate the original, surrogate, and nonlinear
causality for GC, TE, and CCM, respectively. To obtain each causal link’s contribution to the overall
system causality, we divide the link’s causality by the system’s. The color map displays the contribution of
individual causal flows to the total causality, while the different inference techniques are indicated by white
stripes. The individual fractions are averaged across 50 simulations using the standard configuration. The
surrogate-based causalities are averaged across 10 realizations.
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To verify the rationale for deriving governing equations, we apply it to the Lorenz and Halvorsen
systems, accompanied by their corresponding CCM-causal graphs shown in Figure 3.1. Here are
the equations derived specifically for the Lorenz system:

dx

dt
= y − x

dy

dt
= x− xz − y

dz

dt
= xy − z ,

(3.16)

while the derived equations for the Halvorsen system are given by:

dx

dt
= x− y − z − y2

dy

dt
= y − z − x− z2

dz

dt
= z − x− y − x2 .

(3.17)

After comparing our rationale to the true governing equations, we determine that it precisely
replicates the terms in the Lorenz and Halvorsen systems given in Equations 50 and 52. Our
results hold steady for thresholds where θ < 0.2. To ensure reliability, we reevaluate our analysis
with diverse initial conditions and notice that, for a simulation length of T ≥ 500, the causality
inference and equation derivation remain stable. Furthermore, our algorithm undergoes ex-
tensive testing on varied chaotic synthetic systems, demonstrating the ability to reconstruct
equation terms via their linear and nonlinear causalities.

Estimating Equation Parameters of Synthetic Systems

The results of numerous optimizations on various three-dimensional chaotic systems are pre-
sented in the following Table 3.1. In our experiments, we find that the outcomes remain stable
despite fluctuations in the hyperparameters α and le as long as they are within reasonable limits.
Our results demonstrate that parameter reconstruction is accurate to the first decimal, allowing
us to forecast the system several Lyapunov times in advance. Additionally, we discover that our
optimization algorithm is resistant to initial conditions and, as a result, to the position on the
attractor:

Table 3.1: Parameter Estimation for 3-Dimensional Chaotic Systems. This Table displays
the Synchronization Error Eθ and Forecast Horizon τ for various three-dimensional systems. Mean and
standard deviation values are provided for each system, which was tested 5 times. The systems utilize
an integration step of dt = 10−3, a coupling strength of α = 103, and an evaluation length of le = 104.

System Parameters Synch. Error Eθ Forecast Horizon τ

Thomas [98] f(xi)= sinxi, b=0.21 1.3± 3× 10−5 3.1± 0.2

Sprott [99] a=2.07, b=1.79 3.1± 1.2× 10−4 9.8± 0.8

Lorenz [7] σ=10, ρ=28, β= 8
3 4.2± 0.5× 10−3 6.88± 0.05

Dadras–Momeni [100] a=3, b=2.7, c=1.7, d=2,
e=9

7.9± 1.7× 10−3 1.89± 0.05

Rössler [101] a=0.1, b=0.1, c=14 0.011± 0.015 4.9± 0.2

Halvorsen [102] a=1.89 0.0147± 0.0007 1.094± 0.002

Lorenz86 [103] a=0.25, b=4, f=1.1, g=8 0.023± 0.006 0.75± 0.05

Three-Scroll [104] a=40, c= 5
6 , d=0.5,

e=0.65, f=20
0.037± 0.002 0.3± 0.2
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Thus far, the optimization algorithm has been exclusively applied to three-dimensional systems
encompassing a small pool of parameters. In the ensuing discussion, an assessment of the
applicability of this methodology to high dimensional problems will be made. To this end, we
will employ the Lorenz96 system [105], which can be scaled to any desirable dimensionality.
All variables are assigned a coefficient with equal value of one, thereby constructing an N -
dimensional system:

ẋd = (xd+1 − xd−2) xd−1 − xd + F d ∈ {1, ..., N} .
We assume cyclic boundary conditions as follows: x−1 = xN−1, x0 = xN , and xN+1 = x1. This
system almost perfectly aligns with our agnostic guess of 1 for each parameter. In order to extend
this model to suit our goals, we introduce a parameter for each variable in each dimension:

ẋd =
(
p 3(d−1)+1 xd+1 − p 3(d−1)+2 xd−2

)
xd−1

−p 3(d−1)+3 xd + p 3N+1 d ∈ {1, ..., N} .

The parameters are stored in a (3N +1)-dimensional vector, denoted as p. In our parametrized
Lorenz96 system, we maintain the same value of forcing constant F across all dimensions. We
store this constant as the final entry in the vector p, which is renamed to p3N+1 in the equation
above. The variables are assigned parameters p 1 to p 3N from a uniform distribution within the
interval of [0, 1] while the forcing constant, p 3N+1, is given the value of 8 consistent with the
original model [105].

Optimization tests are conducted on several Lorenz96 systems of gradually increasing di-
mensionality. We run five experiments for every dimension and use a different parameter vector
p for each. Table 3.2 reveals the outcomes of the optimizations, showcasing the effectiveness
of the process across a wide range of dimensions. Our optimization algorithm can accurately
fit parameters with a high count. Furthermore, increasing dimensionality does not hinder pre-
dictability. For each dimension, our algorithm can predict multiple Lyapunov times ahead, as
evidenced by Table 3.1. It is important to note that our algorithm does not have a preference for
any specific dimension region. This demonstrates the algorithm’s ability to function effectively
with high-dimensional systems containing multiple free parameters.

Table 3.2: Parameter Estimation for N-Dimensional Lorenz96 Systems. This Table presents
the results of the Lorenz96 system as dimensions increase. Some trials yielded outlier predictable times in
the positive direction — therefore, we only report the minimum predictable time for each dimensionality
to prevent skewed results. We utilize a precise time step of dt = 10−4, an evaluation length of le = 105,
and a coupling strength of α = 105. Due to the steep computational requirements, we only conduct a
single experiment for N = 64.

Dimensionality N # Parameters Synch. Error Eθ Min. Forecast Horizon τ

5 16 0.07± 0.07 2.3

6 19 2.4± 1.2× 10−3 6.3

7 22 1.3± 1.2× 10−3 8.1

8 25 7± 8× 10−3 8.0

9 28 2.9± 1.9× 10−3 3.6

10 31 0.05± 0.07 3.2

12 37 4± 3× 10−3 2.0

14 43 0.04± 0.05 2.0

16 49 7± 6× 10−3 1.5

32 97 0.05± 0.04 2.1

64 193 1.04× 10−3 2.0
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Robustness against Noise

Up to this point, we conducted all computations utilizing synthetic systems that are inherently
precise and free from errors. This Section aims to examine our optimization’s resilience to noise
in the primary system’s data. Accordingly, we simulate the classical Lorenz system with its
standard parameters and introduce Gaussian noise to each data point and coordinate. The
zero-mean Gaussian noise draws from a normal distribution with a standard deviation of σ.
In our experiments, the standard deviations range between 0.01 and 2. Prior to incorporating
Gaussian noise into the accurate data, we determine the Signal-to-Noise Ratio (SNR) by dividing
the power of the signal by the power of the noise. The power is assessed using squared amplitude
A, allowing us to express SNR as follows:

SNR =

(
Asignal

Anoise

)2

SNR = 10 log10

(
Asignal

Anoise

)2

dB .

The amplitude A of a time series x(t) can be calculated with:

A =

√
1

t

∫ t

0
∥x
(
t̃
)
∥2 dt̃ .

The following Figure 3.7 illustrates the results obtained by varying the coupling strength. No-
tably, we observe an intriguing trend wherein the parameter errors follow a power law within a
certain range. The observed cut-off for this power law behavior at 10−2 arises from our chosen
convergence criterion for these experiments. A decrease in coupling strength leads to a more
negative exponent in the observed power law fit. This indicates that a performance boost occurs
at lower coupling strengths, as errors do not increase as rapidly with rising noise levels.
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Figure 3.7: Robustness Against Noise. This Figure presents the performance for varying coupling
strengths. Lower coupling strengths are found to perform better on noisy data.
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In real-world data analysis, this suggests that setting the coupling strength too high produces
inferior outcomes than weaker coupling strengths. One possible explanation is that a strong
coupling compels the secondary system to perceive the primary system’s noise as real dynamics,
whereas a weaker coupling allows the dynamics term F

(
y
)
in Equation 3.5b to hold more

influence. Due to the similarity between our algorithm and the one proposed by Mariño &
Mı́guez [93], we use their algorithm as a benchmark. As stated in the previous subsection, we
implement a moderate coupling strength of α = 102. Fig. 3.8 demonstrates that, although the
benchmark algorithm occasionally performs better, our algorithm proves to be more stable and
consistently produces superior results.
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Figure 3.8: Comparison against Benchmark. This Figure depicts a comparison of the performance
of our algorithm (blue) with the benchmark algorithm (orange) as presented by Mariño & Mı́guez [93].

Incorrect Prior and Equation Terms

Another potential source of uncertainty could arise due to an inadequate prior understanding of
the governing equations. To investigate this, we incorporate an extra linear and nonlinear term
into the original Lorenz system, resulting in the following revised system:

ẋ1 = −σ x1 + σ x2 + κx2 x3 (3.18a)

ẋ2 = ρ x1 − x2 − x1 x3 + ξ x2 (3.18b)

ẋ3 = −β x3 + x1 x2 . (3.18c)

This adds the following two gradients to the set of Equations 3.12:

∂ℓ

∂κ
= −2 (ẋ1 − ẏ1) y2 y3

∂ℓ

∂ξ
= +2 (ẋ2 − ẏ2) y3 .

As in previous experiments, all parameters are initialized with a value of one, as we have no prior
knowledge of the parameters. By using a coupling strength of α = 102 and an evaluation length
of le = 103, the parameters are found as presented in Table 3.3. The algorithm successfully
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sets the parameters almost to zero, thus minimizing their impact on the governing equations.
The remaining true parameters of the system are also reconstructed correctly. Adding incorrect
terms to the prior knowledge of the primary system causes a divergence of the coefficients for
the benchmark algorithm.

Table 3.3: Parameter Estimation for Incorrect Equation Terms. This Table displays the out-
comes of executing our suggested optimization on information derived from the Lorenz system onto the
system defined by Equations 3.18. The experiment is conducted 50 times with varying initial conditions,
and the error reflects one standard deviation of the measurements.

Parameter True Value Reconstructed Value

σ 10 10.027±0.015
ρ 28 27.795±0.014
β 2.6̄ 2.676±0.003
κ 0 −0.0014±0.0004
ξ 0 0.000±0.002

We want to note two limitations of our algorithm: the coefficients κ and ξ are correctly set to
a value close to zero. However, it is currently not possible to determine whether terms with
small coefficients are irrelevant for the dynamics of the system. Therefore, we advise against
discarding terms with coefficients close to zero. Additionally, our algorithm is susceptible to
under-inclusion of terms. This implies that if a term is not present in the prior knowledge of the
system, our algorithm will fail and diverge instead. However, this can be easily resolved since
the reconstruction process tends to over-include terms, which makes it a non-issue.
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Chapter 4

Predicting Chaos with Binary and
Minimal Reservoir Computing

H. Ma, D. Prosperino,
A. Haluszczynski & C. Räth
“Efficient forecasting of chaotic systems
with block-diagonal and binary
reservoir computing”
Chaos: An Interdisciplinary
Journal of Nonlinear Science
vol. 33, no. 6, 2023

H. Ma,
D. Prosperino & C. Räth

“A novel approach
to minimal

reservoir computing”
Scientific Reports
Nature Portfolio

vol. 13, no. 1, p. 12970, 2023

Next to the construction of governing equations, the use of machine learning to predict complex
dynamic systems has gained popularity across scientific fields. Reservoir computing, a successful
technique for reproducing such systems, utilizes a sparse, random network to create the system’s
memory. In this dissertation, we advocate the use of a block-diagonal reservoir, which is essen-
tially composed of several smaller reservoirs, each of which has unique dynamics. This approach
challenges the traditional notion of the reservoir as a single network. Additionally, we remove
any randomness from the reservoir through matrices filled with ones for each block. We assess
the prediction performance of block-diagonal reservoirs and their sensitivity to hyperparame-
ters. Our results indicate that they perform similarly to sparse random networks, prompting a
discussion regarding their implications on scalability, comprehensibility, and the physical imple-
mentation of reservoir computers. Furthermore, current advancements in reservoir computation
concentrate on linear and nonlinear regressions of input data combinations, including time lags
and polynomial derivatives, completely eliminating the need for randomness. However, handling
high-dimensional and nonlinear data results in a considerable rise in the number of possible
combinations. Thus, our research demonstrates that modifying the traditional architecture of
reservoir computers to reduce computational requirements can significantly and consistently im-
prove predictive accuracy over long and short time scales. This improvement is evident even
when using relatively small training datasets and when compared to similar models. This effi-
cient design with minimal data requirements offers a practical solution for implementation in
real-world situations where data gathering is challenging or costly.
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4.1 Background and Motivation

While machine learning techniques have shown promise in accurately predicting the behavior
of dynamic systems [106], their usefulness in certain scientific applications is limited by chal-
lenges related to the vast amounts of required data, numerous hyperparameters, and limited
interpretability [107]. In many areas, however, a fundamental understanding of the models is
necessary to avoid misinterpretations in the absence of deeper methodological knowledge [108].

In the field of complex systems research, Reservoir Computing/Computers (RC) [36] has/have
emerged to quantify and predict the spatiotemporal dynamics of chaotic nonlinear systems. RCs
are a type of Recurrent Neural Network (RNN) and are commonly known as Echo-State Net-
works (ESNs) [109]. The heart of the model consists of a fixed reservoir, a complex network
with connections according to a predefined network topology, which can have a significant im-
pact on the prediction performance [110]. In current state-of-the-art models, the topology of
the reservoir is often chosen randomly [111] in the hope that the resulting dynamics will be suf-
ficiently complex to allow good performance on a given task. Nonetheless, this method can be
hit-or-miss [35], and it is unfeasible to foretell beforehand how the topology of the reservoir will
affect the system’s performance. While reservoirs modeled as random Erdős–Rényi networks
were introduced by Maass, Natschläger, & Markram [33] and Jaeger [32], research by Watts &
Strogatz [112], Albert & Barabási [113], and others has revealed that random networks are not
common in physics, biology, or sociology [114]. Instead, real-world applications often exhibit
more complex networks such as scale-free, small-world, or intermediate forms [115].

In recent years, several new approaches to improve the explainability of RC have emerged.
For instance, Haluszczynski & Räth [35] compared various network construction algorithms,
Griffith, Pomerance, & Gauthier [116] introduced low-connectivity networks, and Carroll &
Pecora [117] analyzed how network symmetries affect prediction performance. However, ques-
tions about the functionality of RCs must still be addressed to develop new algorithms, optimize
the system for specific applications, and build efficient hardware realizations of RCs.

Our work challenges the interpretation of the reservoir as a single network by intentionally
using block-diagonal matrices as reservoirs. Therefore, the reservoir is divided into multiple
smaller ones, each of which has unique dynamics. Furthermore, we utilize matrices of ones as
the blocks, which eliminates any randomness in the network altogether. Our inspiration comes
from an experiment where we constructed the reservoir as a two-dimensional Ising model [118]
and wanted to observe how a phase transition would affect the prediction performance. After
observing no significant decline in performance, we concluded that the network can be created
as a block-diagonal matrix consisting of ones.

Further research has revealed new algorithms that do not rely on randomization. These algo-
rithms employ regressions on extensive libraries of linear and nonlinear combinations constructed
from data observations and their respective time lags [119]. Innovations include Next Gener-
ation Reservoir Computers (NG-RCs) [120] and Sparse Identification of Nonlinear Dynamics
(SINDy) [91]. These algorithms are based on Nonlinear Vector Autoregression (NVAR) [121]
and the mathematical fact that a powerful universal approximator can be constructed by using
an RC with a linear activation function [34], [122]. The model presented in this dissertation is
built on the same mathematical principles as the traditional reservoir architecture. The input
weights are restructured to separately feed all coordinate combinations into the reservoir. The
randomness of the reservoir is removed by replacing it with a block-diagonal matrix of blocks of
one. Instead of introducing nonlinearity to the activation function, we add higher order reservoir
states in the readout. Applying this novel architecture to synthetic chaotic systems, we show
that these changes result in short- and long-term predictions that outperform traditional RC,
NG-RC, and SINDy.
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4.2 Prediction of Dynamical Systems

The prediction of dynamical systems is crucial for physics and computational science. While
traditional modeling approaches often encounter difficulties in addressing the growing complex-
ity of modern systems, machine learning often lacks interpretability. In this Section, we explore
the prediction of dynamical systems through RC and related approaches. We detail the ad-
vancements of NG-RC, emphasizing its capabilities and differences. Lastly, we discuss SINDy, a
method that efficiently identifies governing equations from data, thus bridging the gap between
data-driven modeling and classical physics.
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Figure 4.1: Prediction of Chaotic Systems. The leftmost column displays the Lorenz attractor’s
attractor (top) and trajectories (bottom) of training data points (including the discarded transient). In
the middle column, the attractor and trajectories of the test data are presented. The rightmost column
demonstrates the attractor (top) and absolute prediction error (bottom) of the prediction. Dashed lines
indicate the standard deviation of the test data.

Reservoir Computing

Reservoir Computing (RC) is a computational framework that has gained significant attention
in the field of machine learning and nonlinear time series analysis. It originated from two
independently proposed Recurrent Neural Network (RNN) architectures, which were introduced
as Echo State Networks (ESNs) within the field of machine learning by Jaeger [32], and Liquid
State Machines (LSMs) from the field of computational neuroscience.

The idea behind RC is to leverage the dynamics of a large, fixed, and randomly connected
recurrent neural network as a reservoir to process temporal data. This approach simplifies the
training process by only requiring the linear optimization of a readout layer, leading to com-
putational efficiency and improved performance on various tasks. Hence, it offers a powerful
approach for processing complex, temporal data, particularly in the context of prediction and
pattern recognition tasks [111]. One type of time series that has been shown to be well pre-
dictable with RC are the trajectories of chaotic systems. In these cases, RC excels not only at
creating accurate short-term predictions, but also at replicating the ergodic properties of the
system’s attractor [123].
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Fundamental Concept

In the following discussion, we limit the use of RC to tasks that create a connection between time-
varying input data u(t) and the desired output data y(t). Here, the time series data that has
been injected interacts with a complex and nonlinear dynamical system of high dimensionality,
referred to as reservoir A. As a result, the state of the reservoir r(t) evolves as a reflection of
both current and previous inputs, with the influence of older inputs diminishing over time. The
high-dimensional reservoir state r(t) is dynamically linked to the time-dependent input u(t) via
the following equation:

r(t+ 1) = f
(
Winu(t) +Ar(t)

)
, (4.1)

where r(t) is the reservoir’s rdim-dimensional state vector at time t, u(t) is the input vector of
dimension udim at time t. Win is an rdim×udim matrix, representing the input weights, A is an
rdim× rdim adjacency matrix, representing the reservoir weights, and f is a nonlinear activation
function, typically the hyperbolic tangent. A visual depiction of the fundamental RC structure
is available in Figure 1.3.

Input Weights

Before feeding the data to the reservoir, it is embedded into a high-dimensional, random space
through the use of an input matrix. The elements of the input matrix, noted as Win,ij , indicate
the connection strength between the input variable uj and the reservoir node ri. Commonly, Win

is populated with random numbers originating from a uniform distribution spanning [−σ, σ].
In this context, σ represents the input strength. A higher input strength signifies a stronger
linkage from the input to the reservoir. As proposed by Lu, Hunt, & Ott [124], we employ a
configuration, wherein each reservoir node ri is exclusively connected to a random input variable,
ensuring that each row of Win contains just one non-zero element.

Reservoir

Our approach leans toward the conventional method of constructing a large, random, and sparse
network, an approach known to invoke complex reservoir dynamics, as underscored in the pi-
oneering research of Jaeger [32]. Following Lu, Hunt, & Ott [124], the network is constructed
using a weighted Erdős-Rényi random network [125]. There, we begin by initializing an all-zero
adjacency matrix. Then, with a probability of p, we assign a value of 1 for every off-diagonal
element. On average, each node is connected to d = p × (rdim − 1) distinct nodes. This is
a crucial parameter referred to as the average node degree. Subsequently, we assign a random
value within the uniform distribution between −1 and 1 to each previously assigned 1, weighting
the matrix.

Ensuring optimal reservoir operation requires adherence to the Echo State Property (ESP),
which dictates that reservoir states should gradually become independent of initial conditions
over time. To maintain the ESP, it is necessary to scale the spectral radius ρ of the reservoir
matrix A. The spectral radius of a square matrix corresponds to its largest absolute eigenvalue,
representing the maximum scaling factor that occurs after matrix operations:

ρ(A) = max {|λi(A)|} , (4.2)

where λi(A) refers to the eigenvalues of A. Therefore, the chosen spectral radius target ρ∗

within the reservoir network is critical for determining the impact of previous reservoir states
on future ones. As such, A undergoes scaling to adjust to the desired spectral radius, where
0 < ρ∗ < 1, in order to finalize the reservoir matrix.

A 7→ ρ∗

ρ(A)
A . (4.3)
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Readout

The iterative equation, represented by Equation 4.1, yields the reservoir states, denoted as r.
To enhance prediction accuracy by breaking symmetries, Herteux & Räth [126] introduced an
innovative technique that involves applying a readout function to these reservoir states before
the training. Following this methodology, we further enrich our states by including squared
reservoir states, resulting in an augmented reservoir state matrix termed r̃:

r̃ =
[
r1, . . . , rrdim , r

2
1, . . . , r

2
rdim

]
, (4.4)

where each element in the reservoir states undergoes a squaring operation. Hence, the generalized
reservoir states at time t are denoted as r̃(t).

Training and Prediction

The training process centers around fine-tuning Wout to minimize the discrepancy between the
prediction and the actual data. A commonly used methodology for this purpose is ridge regres-
sion in linear regression analysis, which helps to address multicollinearity and avoids overfitting
in situations with numerous predictor variables [127]. The main difference between ridge regres-
sion and Ordinary Least Squares (OLS) regression, is the inclusion of a regularization term in
the loss function. In its matrix expression, ridge regression is given by:

Wout =
(
R̃T R̃+ βI

)−1
R̃TY , (4.5)

where Wout is the output weights matrix with dimensions udim×2rdim. It is the only component
of the RC that undergoes training. Y is the training data matrix, with dimensions udim × T ,
that carries the desired output values. R̃ is the matrix of size 2rdim × T containing the stacked
generalized reservoir states. The regularization parameter β controls the strength of the penalty
for large parameter values, which ensures stability. For β = 0 the ridge regression reduces to an
OLS regression. I is is the identity matrix.

Thus, the output of the RC is a direct linear projection of the reservoir states and the output
weights.

y(t) = Woutr̃(t) . (4.6)

The benefit of the recursive Equation 4.1 lies in its ability to make predictions of arbitrary
lengths. Thus, the iterative prediction equation is:

r(t+ 1) = f (WinWoutr̃(t) +Ar(t)) . (4.7)
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Next-Generation Reservoir Computing

In 2021, Gauthier, Bollt, Griffith, et al. [120] unveiled the advanced architecture of the Next-
Generation Reservoir Computing (NG-RC). This novel approach stood out due to its determin-
istic nature, fewer variables, and notably faster performance relative to conventional method-
ologies. While traditional RC relies on reservoir matrices with random initialization for its
network structure and utilizes a linear readout, NG-RC employs a series of distinct polynomials
for nonlinear dimensionality enhancement at its foundation. Once the input data’s state space is
defined, it undergoes systematic training via ridge regression to align with the intended output.

The d-dimensional data points x of the input data X = [x0, . . . ,xn] undergo transformation
via a polynomial multiplication dictionary P into a space of increased dimensions. Within this
dictionary, unique polynomials of specific orders O present in P[O] are identified by an index.
To provide clarity, we consider an input data point xt = (xt,1, xt,2)

T . This data point is then
altered using the unique polynomials of the first and second order:

P[1,2](xt) =




xt,1

xt,2

x2t,1
x2t,2

xt,1 · xt,2




(4.8)

Moreover, Gauthier, Bollt, Griffith, et al. [120] introduced the concept of a time-shift expansion
Ls
k to the input data, setting the NG-RC apart from traditional NVAR techniques [121]. Here,

the embedding dimension k represents the number of past data points merged with the current
data point, while the lag s depicts the temporal distance between these points. When this
expansion is applied to the input, it shapes the NG-RC’s linear reservoir layer, which yields:

r(t+ 1) = P[1,2]
(
Ls
k(xt)

)
= P[1,2]







xt,1

xt,2

xt−1,1

xt−1,2





 =




xt,1

xt,2

xt−1,1
...

xt,1 · xt−1,2

xt,2 · xt−1,2




, (4.9)

where r(t + 1) represents the state vector. Analogous to the conventional RC, this vector is
mapped using an output matrix Wout to achieve the desired output target yt. The training
within NG-RC is also conducted using ridge regression.

During the training phase of NG-RC, the input training data, denoted as XT , of a specific
duration T , undergoes a transformation to yield the state matrix R = P[O](Ls

k(XT )). It is
essential to consider that based on the values of k and s, a preparatory phase or warm-up
duration of δt = k · s becomes necessary since for periods t < δt, the entries in the state matrix
remain undefined.

One of the most notable attributes of the NG-RC is its ability to provide results that are
interpretable. According to the Equation:




ẋi

ẋi+1
...

ẋn




=
1

dt
WoutP

[O] , (4.10)

the governing equations of the system can be discerned directly, where dt represents the incre-
mental time step of the data.
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Figure 4.2: Next-Generation Reservoir Computing. The top part of the Figure shows a classical
RC processing time series data of the Lorenz attractor (blue, center left). The predicted form of this
attractor (red, middle right) is derived from a linear combination of the states within the reservoir. On
the other hand, the lower part shows NG-RC, which generates predictions by using a linear combination
of time-delayed states from the time series data. It is worth noting that two such time-delay states are
demonstrated here. Further enhancing its capabilities, the NG-RC incorporates nonlinear transformations
of the data, with the quadratic function demonstrated as an example in this context. Adapted from
Gauthier, Bollt, Griffith, et al. [120].
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Sparse Identification of Nonlinear Dynamics

Sparse Identification of Nonlinear Dynamics (SINDy) was introduced by Brunton, Proctor, &
Kutz [91] in 2016 as a powerful technique for system identification and model discovery from
data. The motivation behind SINDy was to develop a method that can identify the governing
equations of a system directly from data, without requiring prior knowledge of the system’s
dynamics. By leveraging sparsity-promoting techniques and optimization algorithms, SINDy
has proven to be effective in capturing the essential dynamics of complex systems.

The mathematical theory of SINDy revolves around the concept of sparse regression, where
the goal is to identify a parsimonious set of governing equations that describe the dynamics of
a system. Given a set of state variable measurements of a dynamical system x(t), the goal of
SINDy is to find a sparse representation of the governing equations in the form:

ẋ(t) = Θ(x(t))ξ , (4.11)

where ẋ(t) is the time derivative of the state variables. Θ(x(t)) is a library of candidate func-
tions constructed from the state measurements. It can include polynomial terms, trigonometric
functions, or any other relevant nonlinear terms. ξ is a coefficient vector, which will be sparse,
indicating that only a few terms in the library Θ are required to represent the dynamics.

Algorithm 5 Sparse Identification of Nonlinear Dynamics

1: Data Collection. Gather measurement data x(t) and compute its time derivative ẋ(t).
2: Library Construction. Construct the library of candidate functions Θ(x(t)). This can be

constructed by considering a set of potential functions of the state variables, such as:

Θ(x) =
[
1 x x2 sin(x) . . .

]T
. (4.12)

3: Sparse Regression. Solve the following optimization problem:

min
ξ
||ẋ−Θ(x(t))ξ||22 + λ||ξ||1 , (4.13)

where ||.||22 is the L2 norm, capturing the least squares fit. ||.||1 is the L1 norm, promoting
sparsity in the coefficients ξ. λ is a regularization parameter controlling the trade-off between
fit and sparsity.

4: Model Extraction. From the sparse coefficient vector ξ, we extract the governing differ-
ential equations. Only the non-zero coefficients in ξ will correspond to the terms in the
equations.

The effectiveness of the SINDy algorithm largely depends on the library Θ that is chosen [128]. A
poorly constructed library might not capture the true dynamics, leading to imprecise outcomes.
Equally crucial is the determination of the regularization parameter λ. In situations where λ
is too small, the algorithm may produce overly complex models, a classic sign of overfitting.
Conversely, an excessively large λ might yield an oversimplified model [129]. Another aspect to
be wary of, is the presence of noise in the input data. SINDy, being a data-driven method, is
susceptible to noisy data. To counteract this, one can employ strategies such as data filtering
or the application of more resilient norms [130].
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Figure 4.3: Sparse Identification of Nonlinear Dynamics. This Figure illustrates the SINDy
algorithm implemented on the Lorenz system. The data is first collected from the system, comprising of
both the states of X and its derivatives of Ẋ. Following that, a library of nonlinear functions of the states,
denoted Θ(X), is formulated. This library facilitates the identification of the minimal set of necessary
terms to satisfy the equation Ẋ = Θ(X)ξ. Within the vectors of ξ, which are determined through sparse
regression, the few non-zero entries identify the important terms that make up the dynamic right-hand
side of the system. Adapted from Brunton, Proctor, & Kutz [91].
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4.3 Evaluating Predictions of Chaotic Systems

When predicting nonlinear dynamical systems with chaotic attractors, our objective exceeds the
mere replication of short-term paths. It is equally essential to replicate the long-term statistical
features of the system, often referred to as its climate. This emphasis stems from the fact that
chaotic systems are intrinsically sensitive to initial conditions, which means that minor devia-
tions can escalate exponentially over time. Even with flawless short-term forecasting, numerical
inaccuracies can still cause the predicted path to diverge from the actual trajectory. However,
in many cases, this divergence is insignificant as long as the predicted trajectory remains aligned
with the same attractor. To accurately assess this complex dynamic, it is essential to use quan-
titative metrics that capture the multifaceted behavior of the system. Thus, adhering to the
approach of Haluszczynski & Räth [35], we employ the following metrics: Lyapunov exponents,
correlation dimension, and forecast horizon.

Lyapunov Exponents

Lyapunov exponents are named in honor of Russian mathematician Aleksandr Mikhailovich
Lyapunov, who in the late 19th century conducted research on motion stability [3]. Instead
of determining precise solutions, Lyapunov focused on examining their stability and created
methods to evaluate the stability of equilibrium points. The concept of the Lyapunov exponent,
which measures the average exponential divergence or convergence of trajectories within a phase
space, first emerged in the 20th century. Its importance grew with the discovery of deterministic
chaos, where it serves as a chaos quantifier. Today, the Lyapunov exponent has proven invaluable
in nonlinear dynamics and is utilized across a wide range of scientific fields.

For a dynamical system trajectory x(t) described by ẋ = f(x), the ith Lyapunov exponent,
λi, is articulated as:

λi = lim
t→∞

1

t
ln

( ∥δxi(t)∥
∥δxi(0)∥

)
, (4.14)

with δxi(t) denoting minor perturbations in the ith direction at a given time t.
An n-dimensional system yields n Lyapunov exponents. A sorted spectrum of these expo-

nents paints a thorough picture of system dynamics, with interpretations as:

• λi > 0: Suggests trajectories diverging in the ith direction, hinting at chaos.

• λi = 0: A neutral stance, often present in quasi-periodic systems.

• λi < 0: Signals trajectory convergence in the ith direction, signifying stability.

The foremost focus in this work is the largest Lyapunov exponent, λmax. A positive value
confirms chaotic system dynamics. Its magnitude offers insight into trajectory divergence rates:

d(t) = C · eλmax·t , (4.15)

Here, d(t) represents the phase space distance between two initially proximate states, with C
being the constant indicating the initial separation. Hence, by solely determining the largest
exponent, one can largely decipher the underlying system behavior. The Rosenstein algorithm
is the standard method for estimating λmax from time series data [131]:
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Algorithm 6 Rosenstein Algorithm

1: Time Series Embedding. Embed the time series x(t) into higher-dimensional spaces using
the embedding dimension κ and time delay τ :

X(t) = [x(t), x(t+ τ), x(t+ 2τ), ..., x(t+ (κ− 1)τ)] . (4.16)

2: Nearest Neighbors. For each point Xi in the phase space, find its nearest neighbor Xj

(excluding temporally close points to avoid autocorrelation effects). The Euclidean distance
metric is typically used to determine closeness.

3: Time Evolution. Track the distance between each point Xi and its nearest neighbor Xj

as they evolve in time. More precisely, compute the average divergence d(t) of pairs of
trajectories over time t:

d(t) =
1

N − t
N−t∑

i=1

ln ∥Xi+t −Xj+t∥ , (4.17)

where N is the total number of data points.
4: Linear Fit. Plot the average logarithmic divergence ln(d(t)) against time t. The slope of the

linear region of the resulting divergence plot provides an estimate for the largest Lyapunov
exponent:

λmax =
1

t
ln(d(t)) . (4.18)

This process is illustrated in Figure 1.1.

Correlation Dimension

The concept of correlation dimension stems from the larger investigation of fractal geometry
and the necessity of measuring the intricacy of strange attractors in chaotic dynamical sys-
tems. In the late 1970s to early 1980s, Grassberger & Procaccia [132] introduced this measure,
which has since become fundamental in chaos theory. The correlation dimension allows for the
categorization of an attractor’s structure by determining its fractional dimensionality.

The correlation dimension ν is one of the scaling dimensions used to characterize chaotic
dynamical systems and is especially useful when examining the geometry of strange attractors.
While an attractor might be embedded in a higher-dimensional phase space, its actual structure
might be constrained to a fractional or non-integer dimension. This fractional dimensionality
indicates that the attractor fills its embedding space in a complex, fractal manner. Formally,
the correlation dimension is defined using the correlation integral C(r):

C(r) = lim
N→∞

1

N2

N∑

i=1

N∑

j=1

Θ(r − |xi − xj |) (4.19)

where Θ is the Heaviside step function, r is a small distance, and xi and xj are state vectors
from the time series. The correlation dimension ν is then defined as:

ν = lim
r→0

log(C(r))

log(r)
(4.20)

The Grassberger-Procaccia algorithm is a widely recognized method used for estimating the
correlation dimension:
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Algorithm 7 Grassberger-Procaccia Algorithm

1: Time Series Embedding. Embed the time series x into higher-dimensional spaces using
the embedding dimension κ and time delay τ :

X(t) = [x(t), x(t+ τ), x(t+ 2τ), ..., x(t+ (κ− 1)τ)] . (4.21)

2: Distance Calculation. For each point Xi in this reconstructed phase space, compute the
distance to every other point Xj in the space. Usually, the Euclidean distance is used:

d(Xi, Xj) =

√√√√
m∑

k=1

(Xi,k −Xj,k)2 . (4.22)

3: Pairs Counting. For a range of length scales r, count the number of point pairs (Xi, Xj)
such that their distance d(Xi, Xj) is less than r. The result is a function C(r), where:

C(r) =
2

N(N − 1)

N∑

i=1

N∑

j=i+1

Θ(r − d(Xi, Xj)) . (4.23)

4: Linear Fit. Plot ln(C(r)) as a function of ln(r). In the resulting plot, if the system behaves
chaotically or has a fractal structure, there will be a linear region. The slope of this linear
region gives the estimate of the correlation dimension ν:

ν = lim
r→0

ln(C(r))

ln(r)
. (4.24)

Forecast Horizon

To evaluate the accuracy of our short-term trajectory predictions, we use the forecast horizon,
denoted by τ , as introduced by Haluszczynski & Räth [35]. This method determines the con-
secutive time intervals during which the predicted trajectory ypred(t) varies from the reference
test data ytest(t) by a margin below the standard deviation of the test dataset, σtest. Thus,
the forecast horizon indicates the time duration during which the gap between the predicted
trajectory and the actual trajectory remains within acceptable limits. For each coordinate i this
condition can be expressed mathematically as:

|ypred,i(t)− ytest,i(t)| < σtest,i , (4.25)

To relate the forecast horizon to the underlying chaotic dynamics of the system, we rescale it
using the Lyapunov exponent. This expresses the forecast horizon in multiples of the Lyapunov
time [133]. In detail, we scale the forecast horizon by multiplying the time discretization, dt,
and the largest Lyapunov exponent of the test data λmax,test:

τ 7→ τ · dt · λmax,test . (4.26)

Our objective is to ensure that any small deviations around the actual trajectory do not prompt
an immediate identification of the prediction as non-conforming. This metric evaluates the
extent to which our prediction aligns with the correct trajectory before the system’s inherent
chaos triggers a rapid divergence. It should be noted that the trajectory distances typically
exceed the threshold values as soon as there is any error in the short-term prediction due to the
differing ranges of state variables across different systems.
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4.4 Block-Diagonal Reservoirs

One central objective of this research is to validate the ability to divide a reservoir into numerous
sub-reservoirs without compromising its predictive power. To achieve this, we utilize a block
diagonal matrix as the topology for our d×d dimensional reservoir. The matrix is composed of Ji

blocks, each with dimensions of b× b, where i ∈
{
1, 2, · · · ,

⌊
d
b

⌋}
. Hence, each block corresponds

to an independent sub-reservoir:

A =




J1 0 · · · 0

0 J2 · · · 0
...

...
. . .

...

0 0 0 J⌊ db ⌋



. (4.27)

As previously mentioned, the reservoir topology is rescaled to a target spectral radius ρ∗. Thus,
it is essential to compute the spectral radius and, consequently, the eigenvalues of the matrix
A. The time complexity for computing the eigenvalues of a d-dimensional matrix through bi-
diagonalization is O

(
d3
)
[134]. However, the eigenvalues of a block diagonal matrix are the list

of eigenvalues of the blocks:

ρ (A) = max
{
ρ (J1) , . . . , ρ

(
J⌊ db ⌋

)}
, (4.28)

which speeds up the computation by a factor of:

d3

b3 ·
⌊
d
b

⌋ ≈
(
d

b

)2

. (4.29)

Figure 4.4: Reservoir Topologies. This Figure depicts different reservoir topologies containing d =
500 nodes. The top row displays the network connections via white entries. The bottom row presents the
corresponding spring-layouts [135], where each node is a white circle outlined in black, and connections
are depicted by black lines. The first topology is the ordinary topology utilizing an Erdős–Rényi graph.
The second topology is a block-diagonal topology comprising different Erdős–Rényi graphs with a size
of b = 125 as blocks. The third topology is also a block-diagonal topology but utilizes equal-sized
Erdős–Rényi graphs with a size of b = 125 as blocks. The fourth topology uses matrices of ones with a
size of b = 2 as blocks in a block-diagonal topology. Finally, the fifth topology uses matrices of ones with
a size of b = 125 as blocks in a block-diagonal topology.
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Blocks of Erdős–Rényi Networks

First, we choose the individual blocks Ji as Erdős–Rényi networks [112]. In our analysis, we
differentiate between two cases:

• Individual Blocks: each block, Ji, is constructed separately using a distinct random seed.

• Equal Blocks: all blocks are identical, hence only one construction of the Erdős-Rényi
network is needed. Furthermore, this leads to an additional acceleration in the eigenvalue
computation by a factor of

⌊
d
b

⌋
:

J1 = J2 = · · · = J⌊ db ⌋ .

Blocks of Matrices of Ones

To eliminate the reservoir’s randomness, we construct each block Ji as a matrix of ones. This
approach has multiple implications. Firstly, there is no need to calculate the reservoir’s spectral
radius ρ (J) because it is equivalent to the block size b:

A =
ρ∗

b
J . (4.30)

Furthermore, this reservoir architecture implies that in each iteration, each block Ji functions
as an averaging operator on the reservoir states, resulting in a reduction of dimensionality. This
mechanism is akin to the average pooling layers of other machine learning methodologies in
which the features that are accentuated are more robust and less susceptible to noise [136]. The
mean between the ith and jth row of the reservoir state r(t) is denoted as:

r̄i:j(t) ≡
1

j − i+ 1

j∑

i

ri(t) . (4.31)

Each block produces a vector of size b× 1 with identical values. For instance, the initial row of
the multiplication J · r(t) is:

[

b︷ ︸︸ ︷
1, . . . , 1,

d−b︷ ︸︸ ︷
0, . . . , 0] · r(t) =

b∑

i=1

ri(t) = b · r̄1:b(t) . (4.32)

This is repeated for the first b rows. Thus, the product of the reservoir A and r(t) from Equation
4.42 produces:

A · r(t) = ρ∗

b
J · r(t) = ρ∗




r̄1:b(t)

r̄1:b(t)
...

r̄(i−1)·b+1:i·b:k·b(t)

r̄(i−1)·b+1:i·b:k·b(t)
...

r̄d−b+1:d(t)

r̄d−b+1:d(t)
...




. (4.33)

Therefore, the multiplication contribution of the reservoir is identical for every block, resulting
in uniform reservoir memory for each training step. Consequently, this leads to a reduction in
computational expenses.
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4.5 Minimal Reservoir Computing

While block-diagonal and binary reservoirs do enhance the computational efficiency of RC, the
randomness of the input weights remains a factor of uncertainty. While the use of randomness
has demonstrated success in certain tasks, its effectiveness is inconclusive [35]. Predicting how
the performance of the system will be affected by the reservoir’s topology is unattainable before
any experimentation takes place. Moreover, the random components of RC pose challenges in
interpretation despite its simple architecture. Therefore, we recommend slight modifications
to the standard RC architecture that not only augment transparency but also eliminate ran-
domness, following the methods proposed by Gauthier, Bollt, Griffith, et al. [120] and Brunton,
Proctor, & Kutz [91]. To aid comprehension, we first provide a brief overview of the adjustments
and the algorithm for minimal RC at a high level:

Algorithm 8 Minimal Reservoir Computing

1: Combinatory Input Weights. The input weights Win are designed so that each combi-
nation of the coordinates of the data is fed into the reservoir separately.

2: Block-Diagonal and Binary Reservoir. The reservoir A is a block-diagonal matrix
consisting of matrices of ones with block size b.

3: Linear Reservoir States. We do not use a nonlinear activation function in order to
construct the reservoir states r(t). Hence the iterative update equation reduces to:

r(t+ 1) = A · r(t) +Win · u(t) , (4.34)

where u(t) denotes the training data at time t. It is important to note that the reservoir
states are only linear. For the specific case where the target spectral radius is ρ∗ = 0, this
means that linear combinations of the data are fed directly into the reservoir.

4: Nonlinear Readout. Instead of only inserting the squared reservoir states [126], our
generalized states r̃ contain all orders up to a nonlinearity degree η:

r̃ =
{
r, r2, . . . , rη−1, rη

}
. (4.35)

Therefore, the readout fully captures the nonlinearity of the data.
5: Training. As in traditional RC, we stack the training data u and the corresponding reservoir

states r̃ to matricesU and R̃ respectively. We subsequently solve the EquationWout ·R̃ = U
through ridge regression as described in Equation 4.5.

6: Prediction. The prediction process for the reservoir states remains the same, utilizing the
updated equation for updating:

r(t) = A · r(t) +Win ·Wout · r̃(t) . (4.36)

Note that the reservoir A only operates on the simple reservoir state r. The second term
acting on Wout is r̃, which includes all the nonlinear powers. The predicted time series y(t)
can be obtained through multiplication.

y(t) = Wout · r̃(t) . (4.37)
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Combinatory Input Weights

To feed the input data u(t) into the reservoir, an input weight matrix Win is defined, which
determines how strongly each coordinate influences each node of the reservoir network. In a
traditional RC, the elements of Win are uniformly distributed random numbers between [−1, 1].
In our novel framework, we follow a structured approach for selecting the elements instead of
random selection. Firstly, to eliminate randomness, we select a set of equally spaced values
between 0 and 1 for each block size of b:

w = (w1, w2, . . . , wb)
T =

(
1,
b− 2

b− 1
, . . . ,

1

b− 1
, 0

)T

. (4.38)

To avoid non-invertible matrices and numeric instabilities, we take the square root values of

all weights w =
(√
w1, . . . ,

√
wb

)T
. Then we specifically structure the input matrix so that the

different combinations of input data coordinates, also called features, are fed separately into
the reservoir. In the case of a 3-dimensional system with coordinates u(t) = (x, y, z)T (t) and a
nonlinearity order η = 2, the input matrix (multiplication) looks like:

Win · u(t) =




w 0 0

0 w 0

0 0 w

w w 0

w 0 w

0 w w




· u(t) =




x

y

z

x+ y

x+ z

y + z




(t)⊗w , (4.39)

where ⊗ denotes the tensor product and hence each block represents one feature f . For n-
dimensional data the feature space contains nf = 2n − 2 elements. Thus, the dimension of the
reservoir is d = nf · b.

Block-Diagonal and Binary Reservoir

To maintain the independence of individual features, we choose the reservoir as a block diagonal
matrix composed of blocks of ones of size b, as discussed in Section 4.4. As a result, each block
Ji is specifically associated with a particular feature:

J =




J1 0 · · · 0

0 J2 · · · 0
...

...
. . .

...

0 0 0 Jnf



7−→




Jx 0 · · · 0

0 Jy · · · 0
...

...
. . .

...

0 0 0 Jy+z



. (4.40)

As previously mentioned, we adjust the spectral radius ρ(J) of the reservoir to match a target
spectral radius ρ∗.

74



Linear Reservoir States

As is typical in traditional reservoir RC, we use a recurrent update equation to capture the
dynamics of the system in the so-called reservoir states r(t). To accomplish this, a nonlinear
activation function g(·), which captures the nonlinear properties of the data, is normally required.

However, as previously noted, we shift the nonlinearity entirely to the readout. Consequently,
state evolution over time is determined through iterative processes:

r(t+ 1) = g
(
A · r(t) +Win · u(t)

)
(4.41)

−→ A · r(t) +Win · u(t) . (4.42)

Due to our architecture selection, the states of the reservoir can be acquired separately for each
feature:

r(t) =




rx

ry

rz

rx+y

rx+z

ry+z




(t) =




rx,1

rx,2
...

rx,b

ry,1
...

ry+z,b




(t) . (4.43)

Therefore, we can gather all reservoir states that belong to a single feature rf (t) — which are
referred to as feature states — and examine them independently. This allows us to comprehend
that the reservoir serves as an averaging mechanism for the feature states:

Af · rf (t) =
(
ρ∗

b

b∑

i=1

rf,i(t)

)
· Ib = ρ∗ · r̄f (t) , (4.44)

where Ib is a vector of ones of size b. Thus, in each iteration, the features’ states are normalized
to the average of previous feature states r̄f (t) while adding a varying strength, determined by
the input weight, to the new feature data f(t):

rf (t+ 1) = ρ∗ · r̄f (t) +w · f(t) . (4.45)

where f can be replaced by any other feature without loss of validity. The average, or memory,
of each feature is monitored in the final row of the feature states since wb = 0. This is indicative
of the target spectral radius ρ∗ and its impact on the retention of data memory during each
iteration step.
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Nonlinear Readout

While a quadratic readout, specifically the squared reservoir states r2, is frequently included
in a traditional RC to eliminate the symmetry of the activation function [126], a readout that
can capture the nonlinearity of the data is necessary. As a result, we add even higher orders of
nonlinearity to the so-called generalized states r̃. For a given degree of nonlinearity η, they take
the following form:

r̃ =
{
r, r2, . . . , rη−1, rη

}
. (4.46)

Therefore, given a degree of nonlinearity η and a block size of b, the number of elements in the
readout, which also corresponds to the number of parameters to optimize, equals:

nout = (2n − 2) · η · b =
(

n∑

k=1

(
n

k

)
− 1

)
· η · b , (4.47)

which we rewrite to binomial coefficients for better comparison.
When dealing with high-dimensional data possessing a high level of nonlinearity, fewer vari-

ables need to be optimized as compared to comparable predictive models like NG-RC [120] or
SINDy [91]. This is because NG-RC and SINDy require combinations of lagged time series,
resulting in a larger feature space. For a system of dimension n and a nonlinearity degree η the
number of features is (at least):

nf =

η∑

k=1

(
n+ k + 1

k

)
=

(
n+ η

n

)
− 1 , (4.48)

which grows much faster for larger n and η than the expression for nout in Equation 4.47.

Addressing Collinearity

To address the challenge of collinearity in linear regression models, which can lead to instability
in the coefficient estimates and difficulty in interpreting the results, one effective strategy is
to eliminate linearly dependent features. This approach ensures a more robust model without
sacrificing predictive performance. By including this step before the training of minimal RC, we
can further enhance prediction performance and robustness.

In the context of a three-dimensional system, consider the state variables x, y, and z. Linear
combinations such as x + y, x + z, and y + z can be expressed as linear dependencies on the
original variables x, y, and z when the coefficient η is equal to 1. By omitting these linearly
dependent combinations, we maintain the integrity of the model and ensure a more accurate
and interpretable representation of the underlying relationships in the data.
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4.6 Prediction Results and Parameter Robustness

In this dissertation, we introduce block-diagonal reservoirs, indicating the possibility of compos-
ing a reservoir from smaller ones, each with distinctive dynamics. Additionally, we eliminate
the randomness of the reservoir by using matrices of ones for the individual blocks. This de-
viates from the common interpretation of the reservoir as a single network. On the example
of the Lorenz and Halvorsen systems, we examine the performance of block-diagonal reservoirs
and their sensitivity to hyperparameters. We discover that the performance is comparable to
sparse random networks and explore the implications of scalability, explainability, and hardware
realizations of reservoir computers.

Additionally, we introduce a new RC framework that surpasses similar approaches in both
short- and long-term forecasting with an equivalent demand for minimal training data and com-
putational resources. The architecture is modified by restructuring the input weights and the
reservoir so that combinations of input data coordinates are fed into the reservoir separately.
Thus, a block-diagonal matrix of ones serves as the reservoir, operating as an averaging mecha-
nism for the reservoir states during each update step. Comparable to average pooling layers in
other machine learning approaches, this can be explained as a technique for mainly acquiring
features that demonstrate greater robustness. Instead of utilizing a nonlinear activation function
for generating the reservoir states, we capture the nonlinearity of the data in the readout layer
by adding higher orders of the reservoir states before performing ridge regression. Using the
Lorenz system and other synthetic chaotic systems as examples, we show that these changes
lead to excellent short- and long-term predictions that significantly outperform traditional RC,
NG-RC, and SINDy.

While the evaluation of prediction performance on chaotic systems is typically assessed
through visual means, we utilize three quantitative metrics described in Section 4.3: the largest
Lyapunov exponent, correlation dimension, and forecast horizon. Our results are also rigorously
validated through the use of multiple attractor starting points, varying training data size, and
discretizations.

Block-Diagonal Reservoirs

In this Section, we present the results of our investigation into variations of different parameters
that demonstrate the strength of our improved design. The parameters that underwent changes
are as follows:

• Network Dimension: we vary the network dimension between d ∈ {400, 450, . . . , 600} as
these are reasonable values in RC research. We intentionally choose multiples of 50 to
ensure a sufficient number of block sizes b, as determined by

⌊
d
b

⌋
.

• Block-Size: we vary the block-size b by setting it to all divisors of the network dimension
d, excluding the divisor b = 1 as it essentially removes the reservoir. Additionally, we do
not utilize b = d as it represents a single network, similar to the traditional architecture.

• Target Spectral Radius: we vary the target spectral radius from ρ∗ ∈ {0.1, 0.2, . . . , 2.0} and
find that, similarly to the traditional architecture, the target spectral radius of ρ∗ = 0.1
yields the most robust prediction results. Henceforth, we set ρ∗ = 0.1 as default.

• Attractor Starting Points: we choose 500 different starting points on the attractor.

• Random Seeds: we choose 100 different random seeds across all components of the RC
architecture which have randomness — the input weights Win and the reservoir A for
block-diagonal Erdős–Rényi networks.
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We solve the differential equations of the synthetic system utilizing the Runge-Kutta method
[18] for 70, 000 steps with a discretization of dt = 0.02. We exclude the initial transient of
T = 50, 000 steps to ensure a sufficient manifestation of the attractor. The remaining steps are
used for training Ttrain = 10, 000 and testing Ttest = 10, 000 of the RCs. To ensure reliable
results, we use rounded last points of one data sample as starting points for the next, thereby
varying the attractor’s starting points. The Lorenz and Halvorsen systems are initiated with
(−14,−20, 25) and (−6.4, 0, 0), respectively. This configuration is similar to those utilized by
Griffith, Pomerance, & Gauthier [116] and Haluszczynski & Räth [35].

In order to make the figures easier to visualize, we calculate the fraction of connection and
use the root of it as the x-axis:

√
b

d
. (4.49)

Thus, the higher the fraction the bigger the blocks and the number of connections in the network.
This is necessary because the number of divisors for each network size d is different and the
divisors are not equally spaced.

Blocks of Erdös–Renyi Networks

As mentioned above, we distinguish between two cases for the Erdős–Rényi blocks. First, where
all the blocks are individual networks and second, where all blocks are equal.
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Figure 4.5: Prediction for Different Random Seeds of Individual Erdős–Rényi Blocks. This
Figure shows the prediction performance of the Lorenz (left column) and Halvorsen (right column) systems
for different random seeds of individual Erdős-Rényi blocks. The differently colored lines represent
different network dimensions, and the corresponding shaded area represents the standard deviation over
the variations. The lower, dashed line reflects the average prediction performance of the traditional
RC architecture, while the higher, dotted line displays the average correlation dimension and largest
Lyapunov exponent of the test data.

As shown in Figure 4.5, all prediction measures for individual blocks in the Lorenz and Halvorsen
systems closely match the respective benchmark values of traditional RC and the test data.
Furthermore, they even exceed these benchmarks for a network size of 600. Generally, we
observe that small block-sizes have a worse long-term prediction quality with regards to the
correlation dimension and the largest Lyapunov exponent. However, they appear to have a
better short-term forecast horizon. The standard deviation over the variation of random seeds
is comparable to the benchmarks. The results are illustrated in Figure 4.5.
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Similar results can be observed for the equal blocks as shown in Figure 4.6 below — however, the
standard deviation is slightly lower. This can be explained by the reduced level in randomness
since only one block is randomly constructed.
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Figure 4.6: Prediction for Different Random Seeds of Equal Erdős–Rényi Blocks. This Figure
shows the prediction performance of the Lorenz (left column) and Halvorsen (right column) systems for
different random seeds of equal Erdős-Rényi blocks. The configuration is analogous to Figure 4.5.

Generally, we observe that the prediction performance stabilizes for
√

b
d > 0.3, for both indi-

vidual and equal blocks. This has been detailed in Equation 4.29, which demonstrates that it
quickens the calculation of the reservoir spectral radius by a factor of approximately 123 for
individual blocks and 412 for equal blocks.

Furthermore, the modified architecture displays superior performance over traditional RC
in long-term predictions, though slightly lower performance in short-term predictions. This is
evident from the higher correlation dimensions and largest Lyapunov exponents, which surpass
those of the traditional RC architecture and approach the true values of the test data.

Comparable short-term prediction performance can be achieved by increasing the network
dimension to d = 600. This phenomenon indicates that the forecast horizon matches the tra-

ditional architecture’s value and outperforms it slightly for small block-sizes of
√

b
d ≈ 0.05.

Remarkably, the spectral radius’ calculation speed is increased by a factor of 160, 000 and
3, 200, 000 for individual and equal blocks, respectively. This finding is valid for both the Lorenz
and Halvorsen systems.

Blocks of Matrices of Ones

For the blocks of matrices of ones, the randomness of the reservoirs is removed. Therefore, our
focus is on the remaining randomness present in the input weights Win and the variation of the
starting point of the attractor.

We find that for varying the input weights, all prediction measures for both the Lorenz
and Halvorsen systems are close to the respective benchmarks, and for some network sizes even
exceed them. We observe in general that the performance is slightly worse than using blocks of
Erdős-Rényi networks. As anticipated, the standard deviation over the input weight variation is
comparable to the benchmarks and lower than for randomly constructed reservoirs. The results
are shown in Figure 4.7.
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Figure 4.7: Prediction for Different Input Weights. This Figure shows the prediction performance
of the Lorenz (left column) and Halvorsen (right column) systems for different input weights. The
configuration is analogous to Figure 4.5.

A comparable behavior can be observed for the variation of the attractor starting points.
Nonetheless, it is noteworthy that for certain block sizes, network dimensions of d = 600 surpass
the benchmarks. Figure 4.8 depicts the results.
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Figure 4.8: Prediction for Different Attractor Starting Points. This Figure shows the prediction
performance of the Lorenz (left column) and Halvorsen (right column) systems for different starting
points on the attractors. The configuration is analogous to Figure 4.5.

Overall, we observe that utilizing blocks of ones as the reservoir leads to stable prediction quality,
even when input weights and attractor starting points are varied. For specific block-sizes, the
modified architecture exceeds benchmark performance for both short- and long-term predictions.

Determining the most effective instance of these reservoirs can be accomplished through a
few iterations while varying the block size for a sufficiently large network dimension. Since
calculating the spectral radius of the reservoir is not necessary in this setup, fine-tuning the RC
architecture through a parameter scan is both efficient and scalable.
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Minimal Reservoir Computing

In this dissertation, we show how small changes to the traditional RC architecture can signifi-
cantly improve its prediction capability of chaotic systems especially for low data requirements.
Using the Lorenz system as an example of synthetic chaotic systems, we demonstrate that the
mentioned modifications result in superior short- and long-term predictions, surpassing those
produced by traditional RC, NG-RC, and SINDy models.

Therefore, similar to Gauthier, Bollt, Griffith, et al. [120], we use the minimal data setup
for the Lorenz system with a discretization of dt = 0.025 and Ttrain = 400 training data points.
The default RC architecture used in this work has block-size b = 3, spectral radius ρ∗ = 0.1,
and a nonlinearity degree η = 2. This equals 36 variables per coordinate.

In order to obtain robust results we repeat the analysis for 1, 000 different starting points
on the attractor and compare the prediction performance to the other models. In Figure 4.9 we
see that the novel RC architecture significantly outperforms them with regards to short-term
predictions with an average forecast horizon of approximately 7.0 Lyapunov times — this is
around 2.5 times more than the averages of the other models.
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Figure 4.9: Prediction Performance of Minimal Reservoir Computing. This Figure shows the
prediction measures (columns) of different models (rows) for 1000 different starting points on the Lorenz
attractor. The relative error with respect to the test data is computed for the correlation dimension and
the Lyapunov exponent. The mean and standard deviation of each distribution are indicated by a dashed
and a dotted black line respectively.

The long-term prediction is marginally superior due to the average relative errors of the corre-
lation dimension and the Lyapunov exponent, which are approximately 3.5 · 10−4, respectively.
This equates to around 9.0 and 39.7 times less than that of comparable models.

We verify the robustness of our novel RC to variations in discretization and length of training
data. In Figure 4.10 we observe that it is quite robust and as expected, performs significantly
better than comparable models especially with regards to short-term prediction. Here, we only
see a decline in prediction performance for coarse discretizations dt > 0.045. The robustness of
the long-term prediction is similar to traditional RC and SINDy. Interestingly, we see a decline
in performance of NG-RC for larger training lengths Ttrain > 700 and finer discretizations
dt < 0.02.
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Figure 4.10: Prediction Performance for Different Data Discretizations and Lengths. This
Figure displays the various prediction measures (columns) for differing models (rows) when using varying
discretizations of the training data and lengths of the Lorenz system. The training data discretization
(x-axis) and length (y-axis) varies between (0.01, 0.05) and (300, 1000) respectively. We calculate the
relative error to the respective test data for the correlation dimension and Lyapunov exponent. The
forecast horizon is scaled logarithmically in color. Each heatmap value represents the average of 100
variations of attractor starting points.

Furthermore, we find out the model to be reasonably robust to changes in hyperparameters and
noise up to a SNR of ∼ 38dB. Additionally, we analyze the prediction performance of our model
on different chaotic systems, which have different nonlinear behavior. We choose the models so
that we can understand the inner workings of our RC better. For example, the Halvorsen system
has only quadratic nonlinearities with no interacting coordinates and hence the input matrix
only needs the first three blocks (which represent the distinct coordinates). Another example
to point out is the Rabinovich-Fabrikant system [137], which has cubic nonlinearities. Here, we
see that a nonlinearity degree of η ≥ 3 is necessary for a reasonable prediction.

We addressed the issue of collinearity in further research, as outlined in Section 4.5. Through
a recent parameter scan, we uncovered intriguing patterns in prediction performance. The
results of the parameter analysis are illustrated in Figures 4.11, 4.12, and 4.13. The Figures
display the largest Lyapunov exponent, correlation dimension, and forecast horizon for various
parameterizations under minimal data requirements with Ttrain = 400 and dt = 0.025.

An important finding is the achievement of a decent prediction horizon of about 4 Lyapunov
times for an even more minimal architecture with a block size of b = 1 and a target spectral radius
of ρ∗ = 0. This implies that linear combinations of the data can be directly fed into the reservoir,
and that training a chaotic system with an OLS regression is sufficient. Additionally, we observe
that the climate of the attractor can be accurately predicted using a minimal architecture with
a block size of b = 1 and small degrees of nonlinearity. In this case, the extraction of recursive
equations that reconstruct the Lorenz attractor becomes easily obtainable.

Furthermore, increasing the block size to 2 significantly improves the forecast horizon for
nonlinearity of η > 3. Certain parameterizations of the target spectral radius and regularization
parameter allow for a forecast horizon to extend beyond 10 Lyapunov times. Therefore, incor-
porating input weights with a value of 0 to average the feature states, as described in Section
4.5, yields remarkable results.
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Figure 4.11: Largest Lyapunov Exponent. This Figure illustrates the largest Lyapunov for different
parameterizations of minimal RC. Each heatmap varies the regularization parameter β along the x-axis
and the target spectral radius ρ∗ along the y-axis. β is varied between 0 and 1, while ρ∗ is varied between
0 and 1e−7. The arrangement of heatmaps forms a grid, where the block size b increases from top to
bottom in each row, and the nonlinearity degree increases from left to right in each column. The block
sizes vary between 1 and 20, while the nonlinearity degree varies between 1 and 6. Therefore, the size of
the architecture increases from top left to bottom right. Each value displayed on the heatmap represents
the mean of 100 attractor starting point deviations. A brighter color indicates a better performance.
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Figure 4.12: Correlation Dimension. This Figure illustrates the correlation dimension for different
parameterizations of minimal RC. The configuration is analogous to Figure 4.11.
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Figure 4.13: Forecast Horizon. This Figure illustrates the forecast horizon for different parameteri-
zations of minimal RC. The configuration is analogous to Figure 4.11.
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Summary and Outlook

The inherent complexity of the world we inhabit presents a compelling challenge: to analyze and
comprehend its intricate dynamics for better decision-making. This dissertation aimed to con-
tribute to the body of research focused on demystifying these complex systems and enhancing our
understanding and interaction with them. By addressing the nuances of nonlinearity in causal
inference, deriving and calibrating governing equations using synchronization of chaos, and ad-
vancing machine learning techniques for the prediction of chaotic systems, we moved closer to
making these complex systems more transparent and comprehensible. The methodologies and
findings presented in this dissertation offer both theoretical advancements and practical appli-
cations. They are particularly relevant in areas where interpretability plays a crucial role in
decision-making processes. In the following we present the main findings of our research and
suggest potential avenues for future research.

How to be aware of nonlinearity. We began our journey by focusing on the often over-
looked aspect of nonlinearity in causal inference. Although methods for inferring causality are
constantly evolving, adequately addressing the identification of its drivers has remained a major
obstacle. This problem is especially crucial when dealing with complex systems, where deter-
mining whether causality arises from linear or nonlinear elements proves extremely valuable.
We validated our framework on synthetic chaotic systems and demonstrated the significance of
nonlinear features in causality. We applied our findings to financial markets, where researchers
and practitioners need to identify and measure interdependencies among financial instruments.
However, conventional techniques like Pearson correlation have limited descriptive ability and
only capture linear dependencies. We presented a comprehensive approach that incorporates
both linear and nonlinear causalities. Our findings reveal significant nonlinear causality in stock
indices in both Germany and the United States. While correlation may serve as a useful proxy
for linear causality, it neglects to consider nonlinear factors, thus resulting in an underestima-
tion of causality. Furthermore, this research highlights the potential use of causality in pair
trading, portfolio optimization, and risk management. A natural extension is to incorporate
further causal inference techniques into this framework and apply it to other real-world complex
systems. As we have shown, it does not take much to enhance existing methodologies by simply
being aware of nonlinearity.

How do machines learn chaos. After developing methods to better understand the linear and
nonlinear causal links between state variables, we derived governing equations to describe the
dynamics of the underlying system. Compared to other black-box approaches, our framework
offers transparency by directly translating causal structures into differential equation terms.
To refine the equation parameters, we utilize the synchronization of chaos. By coupling data
to equations, we transform the inherently difficult chaotic optimization problem into convex
one. This enables us to incorporate gradient descent, a widely used technique in machine
learning, to identify the equation parameters that best reflect the data. While this effect was
discovered empirically, the next step is to mathematically prove why the coupling results in
convex optimization. Furthermore, our recent research revealed an interesting behavior: when
we apply the algorithm to equations containing all possible combinations of variables, it identifies
alternative equations to the Lorenz system that also yield the iconic butterfly attractor. Hence,
one question that arises is how machine learning algorithms actually learn chaos. This question
also arises in the next part of our journey, where we delve into predicting chaotic systems using
machine learning.
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Figure 4.14: Learning Chaos. This Figure displays the results of fitting multiple samples of Lorenz
data to an equation containing all possible combinations of state variables up to second order. The
coefficients in Figure (a) differ from the correct Lorenz system equations — nonetheless, as presented in
Figure (b), the integrated trajectories lead to a comparable butterfly shape. Adapted from Prosperino,
Ma, & Räth [138].



How can machines help us. Acknowledging that not all complex systems can be accurately
captured by governing equations, we explored the use of machine learning techniques, specifically
reservoir computing. While providing data-driven advantages and a relatively simple architec-
ture, challenges remain in ensuring its interpretability and efficient hardware implementations.
Therefore, we proposed modifications to the traditional reservoir computing architecture to
eliminate the need for randomness and render its components more interpretable. This novel
approach of minimal reservoir computing consistently enhances predictive accuracy over long and
short time scales, while significantly reducing computational requirements. This improvement
is evident even when using very small training datasets. Moving forward, we seek to take a step
toward incorporating reservoir computing to address real-world problems. Our latest research
shows that an exciting application of reservoir computing is the control of nonlinear dynamics,
which is useful in various stabilization tasks ranging from rocket launches to pacemakers and
power grids. Initial results have already shown that our model performs exceptionally well in the
example of forcing a chaotic parameterization of the Lorenz system into intermittent dynamics.
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Figure 4.15: Controlling Chaos. This Figure illustrates the example of forcing a chaotic parame-
terization of the Lorenz system into intermittent dynamics using traditional (blue) and minimal (red)
reservoir computing. It is demonstrated that minimal reservoir computing excels at this task and requires
significantly less training data. Specifically, the Figure displays the average and standard deviation of
the largest Lyapunov exponent (left) and correlation dimension (right) of the controlled system, based
on various experiments with differing amounts of training data. The gray reference bar indicates the
corresponding values for the simulated system in its original state. Adapted with updated results from
Haluszczynski, Koeglmayr, & Räth [139].

While the journey of this dissertation ends here, as is the nature of research, many avenues
for further exploration are now open. The reader may wonder what the author of this disserta-
tion will do next. Well, after three years, he is looking forward to read for fun again. The reader
is most warmly invited to send in recommendations. However, please do not suggest A Brief
History of Time, the Feynman Lectures, or any other physics-related literature, as the author is
already required to read them in preparation for his doctoral examination and are therefore not
considered as fun.

Wish him luck



 



 



 



Synthetic Systems

In this Appendix, we present the governing equations and default parameterizations for all
synthetic systems examined in this dissertation [140]. The differential equations are solved
using the fourth-order Runge-Kutta method [18].

Lorenz

The Lorenz system was originally developed to model atmospheric convection [7]. Therefore, the
state variables represent the convective flow, temperature variation, and vertical temperature
variation:

ẋ = σ(y − x)
ẏ = x(ρ− z)− y
ż = xy − βz .

(50)

The adjusted equations controlling for nonlinearity are:

ẋ = σ(y − x)
ẏ = x(ρ− λ1z)− y
ż = λ2xy − βz .

(51)

Parameter values Initial point u(0) Time step dt Lyapunov λmax

σ = 10, ρ = 28, β = 8/3 [−14,−20, 25] 0.025 1.989

Halvorsen

While the Lorenz system contains mixed nonlinearity terms, the Halvorsen system has quadratic
nonlinearities [140]. Furthermore, the equations have a cyclic symmetry:

ẋ = −ax− 4y − 4z − y2

ẏ = −ay − 4z − 4x− z2

ż = −az − 4x− 4y − x2 .
(52)

The adjusted equations controlling for nonlinearity are:

ẋ = −ax− 4y − 4z − λy2

ẏ = −ay − 4z − 4x− λz2

ż = −az − 4x− 4y − λx2 .
(53)

Parameter values Initial point u(0) Time step dt Lyapunov λmax

a = 1.3 [−6.4, 0, 0] 0.025 0.790



Fully Linear

To confirm that a system that is entirely linear only results in the identification of linear causality
by the framework introduced in Chapter 2, we introduce the following dummy system:

ẋ = sin(y)

ẏ = x+ z

ż = x− y .
(54)

Initial point u(0) Time step dt

[1, 1, 1] 0.01

Thoai Fully Nonlinear

To ensure that the framework we introduced in Chapter 2 only detects nonlinear causality in a
fully nonlinear system, we analyze the following system [141]:

ẋ = αyz

ẏ = 1− z2

ż = βx3 + yz .

(55)

Parameter values Initial point u(0) Time step dt

α = β = 1 [1, 1, 1] 0.01

Coupled Difference

A simple example of a system that exhibits chaotic behavior is the coupled difference [52], which
was also used by Sugihara, May, Ye, et al. [15] to illustrate Convergent Cross Mapping :

x(t+ 1) = x(t) · [rx − rxx(t)− βy→xy(t)]

y(t+ 1) = y(t) · [ry − ryx(t)− βx→yx(t)] .
(56)

Parameter values Initial point u(0)

rx = 3.8, ry = 3.5, βy→x = 0.02, βx→y = 0.1 [0.2, 0.4]
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ABSTRACT

Identifying and describing the dynamics of complex systems is a central challenge in various areas of science, such as physics, finance, or
climatology. While machine learning algorithms are increasingly overtaking traditional approaches, their inner workings and, thus, the drivers
of causality remain elusive. In this paper, we analyze the causal structure of chaotic systems using Fourier transform surrogates and three
different inference techniques: While we confirm that Granger causality is exclusively able to detect linear causality, transfer entropy and
convergent cross-mapping indicate that causality is determined to a significant extent by nonlinear properties. For the Lorenz and Halvorsen
systems, we find that their contribution is independent of the strength of the nonlinear coupling. Furthermore, we show that a simple rationale
and calibration algorithm are sufficient to extract the governing equations directly from the causal structure of the data. Finally, we illustrate
the applicability of the framework to real-world dynamical systems using financial data before and after the COVID-19 outbreak. It turns
out that the pandemic triggered a fundamental rupture in the world economy, which is reflected in the causal structure and the resulting
equations.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0102250

Understanding cause–effect relationships is a key challenge in

many areas of science, as it forms the basis for developing ana-

lytical and predictive models. However, while methods for causal

inference are constantly evolving, finding the drivers of causality

is a critical aspect that is often not adequately addressed. Particu-

larly when analyzing complex nonlinear systems, it is very useful

to know whether causality stems from linear or nonlinear proper-

ties. In this work, we separate the causality in linear and nonlinear

contributions and observe that a significant part can be attributed

to nonlinear properties. Furthermore, we present a framework by

which knowledge of the causal structure can be directly translated

into equations that describe the underlying data. Potentially, this

methodology can be used to find equations for real systems that

allow for precise analysis and prediction.

I. INTRODUCTION
Causality, as one of the basic principles of scientific thought,

has been intensively researched over many generations and dif-
ferent disciplines. Throughout history, interpretations of causality
have evolved with the increasing effort and complexity of physical
theories. While in Newton’s classical understanding action and reac-
tion were defined as simultaneously coupled, Einstein introduced
a temporal and spatial component by defining causality as events
connected by the cone of light.1 Subsequently, the disruption of
quantum mechanics led to a probability-dominated understanding
of physics, where causality is an unimaginable concept in a non-
deterministic world. With the advent of chaos theory, causality was
placed in the context of stability and equilibria of dynamical systems,
which became known to the general public as the butterfly effect.2

Chaos 32, 103128 (2022); doi: 10.1063/5.0102250 32, 103128-1

© Author(s) 2022



Chaos ARTICLE scitation.org/journal/cha

Encouraged by the explosion of computation resources, the
development of causal inference methods took a similar but accel-
erated path. Beginning with Granger causality in the 1960s,3

many techniques of increasing complexity were developed, ranging
from information-theoretic measures4 to state-space reconstruction
methods;5 Runge6 provides an excellent overview.

However, while causal inference is primarily concerned with
measuring the presence of causality, research on its properties and
drivers has remained secondary. A first step in this direction was
taken by Paluš et al.7 who developed a diagnostic test for identify-
ing nonlinear dynamic relationships in time series based on mutual
information. Another approach, using Fourier transform surro-
gates, was taken by Haluszczynski et al.,8 who separated linear and
nonlinear contributions of mutual information to capture nonlin-
ear correlations in financial data. The contribution of nonlinearity
to connectivity in climate data was quantified by Hlinka et al.9

While initial approaches for deriving governing equations from
data in the 1990s were based on applying the flow method by inter
alia Breeden and Hübler10 and Eisenhammer et al.,11 research on
this topic has expanded considerably in the last few decades. In
the context of nonlinear dynamical systems, Brunton et al.12 intro-
duced sparse identification on the chaotic Lorenz attractor. Other
techniques include automated inference of dynamics13 and machine
learning approaches.14

In this work, we combine the inference and analysis of causal-
ity with the derivation of governing equations in nonlinear complex
systems. Therefore, we separate the linear and nonlinear contribu-
tions to causality using Fourier transform surrogates and develop
a transparent rationale based only on the causalities to derive the
differential equations.

II. BENCHMARK MODELS
In this work, we first validate our approach on four syn-

thetic systems before demonstrating its applicability on a real-world
example. If not stated otherwise, we solve the differential equa-
tions of the synthetic system using the Runge–Kutta method15 for

T = 10 000 steps and a discretization of dt = 0.01. We discard the
initial transient of T = 50 000 steps for the analyses.

A. Lorenz system
In order to analyze the effect of nonlinearity on the causal-

ity structure, we introduce two additional parameters λ1 and λ2 to
control the nonlinear terms of the Lorenz system, which models
atmospheric convection,16

dx

dt
= σ(y − x),

dy

dt
= x(ρ − λ1z)− y,

dz

dt
= λ2xy − βz,

(1)

where the standard parametrization is σ = 10, ρ = 28, β = 8/3,
and λ1 = λ2 = 1. The implied linear and nonlinear connections
between the variables are depicted in Fig. 1.

Figure 2 illustrates the attractor for a selection of different
parameter configurations: While the system diverges for nonlin-
earity degrees less or equal to 0, the upper bounds can be chosen
arbitrarily as we do not observe significant changes to the butterfly
form even for extreme values (λ1, λ2 ≈ 1000).

B. Halvorsen system
While the nonlinearity terms of the Lorenz system are mixed

products of two different variables, the circulant Halvorsen system17

entails quadratic nonlinearities,

dx

dt
= ax − 4y − 4z − λy2,

dy

dt
= ay − 4z − 4x − λz2,

dz

dt
= az − 4x − 4y − λx2,

(2)

where a = 1.3 and λ = 1 are the standard parameters.

FIG. 1. Causality pictogram of the Lorenz (left) and Halvorsen (right) system. The linear (lin) and nonlinear (nl) causal links are depicted by the labeled arrows.
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FIG. 2. Lorenz (top row) and Halvorsen (bottom row) attractors for different degrees of nonlinearity. While the standard parameters for the Lorenz system are set at σ = 10,
β = 8/3,ρ = 28, the nonlinearity parameters from left to right areλ1 = λ2 = 0.01,λ1 = λ2 = 1, andλ1 = λ2 = 2. For the Halvorsen system, the nonlinearity parameters
from left to right are λ = 0.01, 1, 2.

Analogously, we control the nonlinearity strength through the
additional parameter λ. As observed for the Lorenz system, the basic
form of the Halvorsen attractor also stays intact for variations in
nonlinearity, as illustrated in Fig. 2.

C. Fully linear system
In order to verify that a fully linear system leads to only linear

causality to be detected, we include the following system into our
analysis:

dx

dt
= sin(y),

dy

dt
= x + z,

dz

dt
= x − y.

(3)

We would like to point out that purely linear systems do not
exhibit chaotic behavior and that this system serves solely as a verifi-
cation of our methods. The time series for the first T = 30 000 steps
after the initial transient are shown in Fig. 3.

D. Fully nonlinear system
In contrast, we also include a fully nonlinear system specified

by the following equations:18

dx

dt
= αyz,

dy

dt
= 1 − z2,

dz

dt
= βx3 + yz,

(4)

where we set α = β = 1 for chaotic behavior. The attractor of this
system is depicted in Fig. 3.

E. Stock indices
In order to demonstrate the applicability of our framework to

real-world systems, we consider the global financial market around
the outbreak of the COVID-19 pandemic. Therefore, we choose the
six major economies and their corresponding MSCI stock indices
between November 2018 and May 2021: Europe (EU), United States
(US), China (CN), Emerging Markets (EE), Japan (JP), and Pacific
excluding Japan (PX). We convert the daily prices pt to log-returns,

xt ≡ log pt − log pt−1, (5)

and divide the series into two phases: the time before the outbreak
of the pandemic in February 2020 and the time after. This yields
two sets of time series each with length T = 325, respectively. The
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FIG. 3. Time series of the fully linear (left) and nonlinear (right) systems. The left figure depicts the first T = 30 000 time series steps after the initial transient of the fully
linear system, while the right figure shows the attractor of the fully nonlinear system.

FIG. 4. Log returns of stock indices from six major economies. The illustrated time series are Europe (EU), United States (US), China (CN), Emerging Markets (EE), Japan
(JP), and Pacific excluding Japan (PX). The black dashed vertical line depicts the outbreak of the COVID-19 pandemic in February 2020.
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structural change in the dynamics of the stock indices triggered by
the outbreak of COVID-19 can be observed in Fig. 4.

III. METHODS
In the following, we present the methods used in this work,

which we assign to four different categories: Causality measures,
Fourier transform surrogates, network measures, and the derivation
of governing equations.

A. Causality measures
We select three techniques representing the main categories

currently used in causal inference6—however, it is important to note
that our framework is applicable to any method capable of detecting
nonlinear causality.

1. Granger causality using linear autoregressive model
As one of the first causal inference approaches, Granger causal-

ity (GC) tests whether the prediction error of the next time step of
a time series y can be decreased by including the history of another
time series x—in this case, x is said to Granger cause y.19 Its original
form compares the prediction error of a restricted autoregression
model,

ŷt =
τmax
∑

τ=1

ατ yt−τ + εt, (6)

to its corresponding augmented model,

ŷt =
τmax
∑

τ=1

ατ yt−τ +
τmax
∑

τ=1

βτxt−τ + ηt, (7)

where ατ and βτ are coefficients at lag τ and εt and ηt denote inde-
pendent error terms. While GC is mostly used as a binary statistical
hypothesis test,19 we quantify the strength of the causal coupling
using the following normalization:

ψGC

(

x, y
)

= 1 − min

{

1,

(

RSSaug

RSSrest

)2
}

, (8)

where RSSrest and RSSaug denote the residual sum of squares (RSS)
of the restricted and augmented model, respectively. Hence, when
the regression of the augmented model performs better than the
restricted model (RSSaug < RSSrest), the fraction on the right-hand
side is small—this implies stronger causality.

Since there exists no universal method to determine the optimal
maximum lag τmax, we repeat the procedure for several values of the
maximum lag τmax and average the result. Therefore, we take N = 20
equally distributed values between 1 and the time series length T:
τmax = 1, T/N, 2T/N, . . . , T. As we do not find a significant differ-
ence, we conclude that the average is a good estimator within the
scope of this work.

2. Transfer entropy
Following the proof of equivalence between GC and transfer

entropy (TE) for Gaussian variables,20 the measure introduced by

Schreiber4 has been widely regarded as the information-theoretical
extension of GC. Analogously, TE quantifies the reduction of uncer-
tainty on future values of y by accounting for past values of x given
the history of y. In essence, it is a special case of conditional mutual
information (CMI),

ψTE

(

x, y
)

≡ I
(

y; xt−1: | yt−1:

)

= H
(

y, yt−1:

)

+ H
(

xt−1:, yt−1:

)

− H
(

xt−1:, y, yt−1:

)

− H
(

yt−1:

)

,

where the colon indicates all previous steps of the time series and
where H denotes the (joint) entropy of the time series calculated via

H
(

x, y
)

= −
T

∑

t=1

T
∑

t=1

p
(

xt, yt

)

log p
(

xt, yt

)

. (9)

For better comparability to other inference methods, we propose the
following normalization:

ψTE

(

x, y
)

7→
ψTE

(

x, y
)

√

H
(

y, yt−1:

)

H (x, xt−1:)

. (10)

Our reasoning for this normalization is based on our interpretation
of TE as an asymmetric causal measure, similar to covariance, which
is rescaled to obtain the normalized cross correlation.

We would like to point out that the calculation of empirical
probability densities p and, hence, information-theoretic measures
raise unexpected difficulties exceeding the scope of this work. While
it is common to use histograms with equally distributed bins to esti-
mate densities, Mynter21 showed that this method potentially leads
to biases since the estimation is highly dependent on the partition
details—hence, finding a robust estimator is non-trivial. However,
for the purpose of our research, we find that for time series of length
T a number of

√
T/4 equally distributed bins performs reasonably

well. This was also empirically confirmed by Baur and Räth22 who
used this binning configuration for the construction of generalized
local states in reservoir computing. Furthermore, it is worth men-
tioning that TE might capture false causalities depending on the
dimension of conditioning.23

3. Convergent cross mapping
Another category of causal inference is state-space methods

such as convergent cross-mapping (CCM), which was developed by
Sugihara et al.5 Its underlying idea is based on Takens’ theorem,
which states that the full state-space can be reconstructed from a
single embedded coordinate of the system, also called shadow mani-
fold. Due to transitivity, two coordinates within one system can then
be mapped to each other through neighboring states in their respec-
tive shadow manifolds—this enables a cross prediction. Hence, if x
causes y, the prediction of the future ŷt using the shadow manifold
Mx should be identical to the actual value yt. In the context of CCM,
the prediction is extended from a single value to a series. Therefore,
both time series are divided into training and test sets, where the for-
mer are used to construct the shadow manifolds and the latter serve
as benchmarks to evaluate the prediction performance.
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While CCM is defined as the Pearson correlation ρ between
the prediction ŷ|Mx and the test set of y, we propose another evalu-
ation measure, the correlation distance d =

√
2 (1 − ρ), in order to

rescale the correlation to a positive interval. This entire procedure
is repeated for an increasing training set fraction, which delivers a
series d consisting of D correlation distances. This series should the-
oretically converge to a maximum since the prediction is enhanced
for finer resolutions of the shadow manifolds.

While originally CCM requires visual judgment of the con-
vergence, we introduce an algorithmic approach using overlapping
sliding windows of size d. For each window, we calculate the stan-
dard deviation and set a threshold of 0.1. The convergence is fulfilled
if the standard deviation decreases continuously and falls below the
preset threshold. If d converges, we calculate the mean of its last five
values in order to smooth outliers. In case of non-convergence, we
set the CCM causality to 0,

ψCCM

(

x, y
)

≡
{

1
5

∑5
i=1 dD−5+i if d converges

0 else
∈ [0, 1] . (11)

We would like to point out that there exist reservations toward
CCM regarding some synthetically created systems—however, its
wide range of successful applications is testament to its importance
for causal inference.24 We determined the optimal lag by finding the
first minimum of the lagged mutual information—this yielded a lag
τ = 1. The optimal embedding dimension κ = 3 was found by using
the false-nearest-neighbor algorithm.25

4. Limits of causality measures
We would like to point out that we are aware of the limi-

tations of the causal inference methods presented and of causal
inference in general. However, in this paper, we use them only to
illustrate a framework of how causality can be partitioned into linear
and nonlinear contributions and how, assuming correct measure-
ments, governing equations can be derived. It is beyond the scope
of this paper to analyze whether they measure true causality and
how robust the methods are. For a more detailed discussion of these
points, we refer to their original papers Granger,3 Schreiber,4 and
Sugihara et al.5

With respect to GC, we recognize that its main requirement,
separability of variables, poses problems, especially when applied
to deterministic dynamical systems.19 Therefore, GC only serves as
a verification for our analysis, since it is based on autoregression
and should, therefore, only capture causality arising from linear
properties. We refer to Ref. 3 for more details.

Furthermore, we are aware that TE and CCM work with recon-
structed spaces and that their application to variables within an
attractor has theoretical weaknesses. However, the analysis in this
paper is performed on simulated data and not on a theoretical
basis. We refer the reader to Cummins et al.26 for a detailed dis-
cussion of the effectiveness of state-space reconstruction methods
in determining causality.

Lastly, we would like to note that we are aware that real-
world system can be contaminated by different kinds of noise, which
affects the performance of our methods. However, these issues lie
beyond the scope of this work since they are addressed in the papers

which describe the causality inference methods. Since the methods
work when the causality graphs are correct, their robustness to noise
lies entirely in the robustness of the individual inference models
against noise. We refer to Overbey and Todd27 and Krishna and
Tangirala28 for analyses on TE and CCM, respectively. Empirically,
we find our method to be robust to white noise for Signal-to-Noise
ratios (SNRs) > 50 dB.

B. Fourier transform surrogates
In order to dissect the causality structure of time series systems

into contributions from linear and nonlinear contribution drivers,
we utilize Fourier transform (FT) surrogates. They destroy the non-
linear characteristics of a time series x while keeping the linear ones
unaffected.29

1. Algorithm
First, we perform a Fourier transformation to separate the

linear properties into the amplitudes and the nonlinear ones into
the phases. Through randomizing the phases of its Fourier trans-
formation by adding uniformly distributed numbers φk, solely the
nonlinear features are destroyed. Hence, the back-transformation
only contains the linear properties of the time series,

x̃(k) = F−1
{

F {x} eiφk
}

. (12)

We increase the robustness of our results by averaging measures that
are calculated on surrogate time series, over multiple realizations of
random phases. Unless otherwise specified, we repeat our measure-
ments for K = 10 realizations. A discussion on surrogate generation
is provided by Räth et al.30

2. Surrogate-based measures
Within the scope of this work we understand a bivariate mea-

sure ψ
(

x, y
)

as a function that maps two time series to a real
number. Hence, we define its corresponding surrogate measure as
the average over K surrogate realizations of both time series,

ψ surro
(

x, y
)

≡ 1

K

K
∑

k=1

ψ

(

x̃(k), ỹ(k)
)

. (13)

As indicated by the superscript k, we add the same random phases
to both time series within one realization. This leaves the phase
differences unaffected, which, for example, preserves the Pearson
correlation.31

Furthermore, we define the cross-measure by only surrogating
the first time series in the argument,

ψ cross
(

x, y
)

≡ 1

K

K
∑

k=1

ψ

(

x̃(k), y
)

, (14)

and analogously define the reverse as the anti-measure,

ψanti
(

x, y
)

≡ 1

K

K
∑

k=1

ψ

(

x, ỹ(k)
)

. (15)
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The intuition behind the cross- and anti-measure is to analyze the
influence of the linear part of x on y under the measure ψ and vice
versa.

3. Nonlinear measures
In the next step, we use these alterations to construct non-

linearity measures extending the idea of nonlinear correlation.8

Therefore, we assume every measure to be composed of a linear part,
represented by the surrogate, and a remaining nonlinear part.

Hence, the most intuitive form is given by the difference,

ψnl ≡ ψ − ψ surro. (16)

As we rule out negative nonlinearities attributing them to spurious
effects, we propose the measure

ψnl ≡ max {0,ψ − ψ surro} . (17)

Further nonlinearity measures can be easily derived by, e.g., normal-
ization or interchanging surro-, cross-, and anti-measures.

C. Evaluation of causality matrices
Given an N-dimensional time series S = {x1, . . . , xN}, we can

hence compute the causality matrix corresponding to an arbitrary

measure ψ
(

x, y
)

,

9 (S) ≡











ψ (x1, x1) . . . ψ (x1, xN)

ψ (x2, x1) . . . ψ (x2, xN)

...
. . .

...
ψ (xN, x1) . . . ψ (xN, xN)











,

which fully describes the explicit links between the individual vari-
ables. In the case of causality measures, they are similar to an
adjacency matrix representing finite graphs—hence, the entries 9i,j

quantify the causal flow from xi to xj.
Especially for high-dimensional systems, it is useful to directly

evaluate the measure of the whole system. Therefore, we develop
intuitive matrix measures, which map a matrix 9 to a real number.
As indicated, a possibility could be to construct a graph from the
measure matrix and to compute its corresponding properties. How-
ever, as causality measures do not necessarily fulfill the conditions
of mathematical distances, we propose the matrix mean

µmean (9) ≡ 1

N2 − N

N
∑

i=1

N
∑

j=1

(

1 − δi,j

)
∣

∣9i,j

∣

∣ , (18)

where we use the Kronecker delta δi,j to dismiss the diagonal entries
of the matrix since ψ (x, x) is equivalent for arbitrary time series x.

Considering our focus on causality measures, causality should
only be present in a system if no impasse exists which breaks the
causal chain. Therefore, we use the geometric mean as it only returns

FIG. 5. Causality box plots of the standard Lorenz (top row) and Halvorsen (bottom row) systems. We compute the mean of the original-, surro, cross-, and anti-matrices
for GC, TE, and CCM, respectively. The sample consists of 50 simulations under the standard configuration. The surrogate-causalities are averaged over K = 10 surrogate
realizations. The Lozenge symbols indicate outliers according to the interquantile range (IQR).32
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a nonzero value if all entries are nonzero,

µgeo (9) ≡





N
∏

i=1

N
∏

j=1

(

1 − δi,j

)
∣

∣9i,j

∣

∣ + δi,j





1
N2−N

. (19)

Note that we include the matrix diagonals for cross- and anti-
measures since their entries offer insights into the linear structure
of the individual time series.

D. Derivation of governing equations
While extracting governing equations from data is key to build

models in diverse fields of science,12 existing methods often require
sophisticated and specifically tailored algorithms. The major diffi-
culty stems from the problem that there is an infinite number of
possible governing equations that represent a finite time series. Even
though the number of possibilities reduces for increasing length, the
individual terms stay unidentifiable.

Hereby, we illustrate a simple rationale to derive equations
directly from the causality matrices inferred from the underlying
time series data. Therefore, we assume that the time series stem from
a deterministic dynamical system, where a finite sample suffices to
identify its underlying causal structure. Hence, by separating lin-
ear and nonlinear causalities, the terms of the governing equations

become separately deducible. Thus, we argue that the causal struc-
ture can be fully described by a linear matrix differential equation
and a nonlinear part,

dx

dt
=

(

dx

dt

)

lin

+
(

dx

dt

)

nl

= 9 linx + 9nl � xn,

where � denotes our rationale for deriving the nonlinear terms and
the superscript n indicates an n-dimensional Cartesian product. For
simplicity, we assume all nonlinearity terms to be of order n = 2.
However, this can be easily extended which is primarily relevant for
high-dimensional systems.

First, we extract the linear terms from the surrogate- and cross-
matrices. While the cross-matrix represents the linear causal flow of
a variable to itself, we can extract the flow of the other variables from
the surrogate-matrix,

9 lin = δi,j9
cross
i,j +

(

1 − δi,j

)

9 surro
i,j . (20)

Since we discard entries smaller than a preset threshold θ = 0.1
attributing them to inaccuracies of the causal inference, the individ-
ual equations are given by

(

dxj

dt

)

lin

=
N

∑

i

2

(

9 lin
i,j − θ

)

xi, (21)

where2 is the Heaviside-function.

FIG. 6. Causality box plots of the fully linear (top row) and nonlinear (bottom row) systems. We compute the mean of the original-, surro, cross-, and anti-matrices for GC, TE,
and CCM, respectively. The sample consists of 50 simulations under the standard configuration. The surrogate-causalities are averaged over K = 10 surrogate realizations.
The Lozenge symbols indicate outliers according to the interquantile range.
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In the next step, we calculate the nonlinear causality-matrix
9nl using the original- and surrogate-matrices. Since it incorpo-
rates inaccuracies stemming from two causal inferences, we raise
the threshold to 2θ . The nonlinear part of the equations can then
be constructed by adhering to two simple rules,

• If in one column xj of 9nl only one entry xi 6= xj exceeds the
threshold, then the nonlinear term entering the equation is

(

dxj

dt

)

nl

= 2

(

9nl
i,j − 2θ

)

x2
i , (22)

since we reason that the entire nonlinear causal flow of the
system must be accumulated in xi.

• If multiple entries {xk, xk+1, . . . , xl} in 9nl exceed the threshold,
then all permutation of pairs enter the equation

(

dxj

dt

)

nl

=
n

∑

i=k

l
∑

j≤i

2

(

9nl
i,j +9nl

j,i − 4θ
)

xixj,

since we argue that the nonlinear causal flow must be split
between all possible pairs.

FIG. 7. TE (top row) and CCM (bottom row) causality of the Lorenz attractor for different degrees of nonlinearity. We compute the causalities for variations of λ1 and
λ2 between 0.01 and 2, respectively. The left grids illustrate the original-causality while the right grid shows the surrogate-causality. All grid entries are averaged over 50
simulations under the standard configuration. The surrogate-causalities are averaged over K = 10 surrogate realizations.
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Then, we merge the linear and nonlinear parts of the derivatives to
construct the full governing equations,

(

dxj

dt

)

=
(

dxj

dt

)

lin

+
(

dxj

dt

)

nl

. (23)

Finally, we assign coefficients to the individual terms and calibrate
them to the data by using the gradient-descent based algorithm
developed by Mariño and Míguez.33

IV. RESULTS
In the following, we present the results of our analysis, which

are divided into four categories: Evaluation of causality matri-
ces, nonlinear strength variation, analysis of causal structures, and
derivation of governing equations.

A. Evaluation of causality matrices
Our analysis of the Lorenz and Halvorsen systems indicates

that the causality is predominantly driven by nonlinear proper-
ties. This is illustrated in Fig. 5, where the box plots show that all
surrogate-based causalities measured by TE and CCM are signifi-
cantly lower than the original causality. This is because the surrogate
time series only exhibit the same linear properties as the original

time series while nonlinear effects are destroyed. We observe that
a significant portion of TE and CCM can be attributed to nonlin-
ear properties. As expected, we confirm that GC is indeed restricted
to measuring linear causality as the original- and surrogate-GC are
both on the same scale. The small deviations stem from the inaccura-
cies of the linear regression required for the calculation of GC. Anal-
ogously to Prichard and Theiler,31 we repeat the calculation where
we use different random phases when calculating the surrogate-GC
between two time series. Since the surrogate-GC almost diminishes,
we conclude that GC—just as Pearson correlation—only depends
on phase differences. Furthermore, our developed anti- and cross-
causalities, which measure the causal flow from the linear properties
of one time series to both the linear and nonlinear properties of
another, vanish for all three inference methods. This further suggests
that the causal flows are mainly dominated by nonlinearity.

To verify that our method only measures linear and nonlinear
causality when the governing equations are fully linear and non-
linear, we performed the analysis for the models given in Eqs. (3)
and (4). Figure 6 highlights the validity of our methods, as the
fully linear model has predominantly linear causality because GC
is significant and the original and surrogate TE and CCM have
similar strengths. For the fully nonlinear model, we observe the
opposite case, where GC is low and the surrogate TE and CCM are
significantly lower than the original TE and CCM.

FIG. 8. Causality decomposition of the standard Lorenz (top row) and Halvorsen (bottom row) systems. For GC, TE, and CCM, we compute the original-, surrogate-, and
nonlinear-causality, respectively. In order to obtain the contribution of each individual causal link to the causality of the whole system, we divide the causality of each link by the
causality of the system. The contributions of the individual causal flows to the causality are mapped by color, while the different inference techniques are indicated by white
stripes. The individual fractions are averaged over 50 simulations under the standard configuration. The surrogate-based causalities are averaged over K = 10 surrogate
realizations.
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B. Nonlinear strength variation
For the Lorenz and Halvorsen attractors, the analysis is

repeated for variations in the degree of nonlinearity. While both sys-
tems diverge for nonlinearity degrees less or equal to 0, the upper
bounds can be chosen arbitrarily as we do not observe significant
changes to the attractor form. We conclude that the level of non-
linearity solely affects the scale of the attractors. Figure 2 illustrates
the attractors for a selection of different parameter configurations.
This behavior directly translates to the causality as indicated for
the Lorenz system in Fig. 7. As expected, we find that the original
causality is significantly larger than the surrogate causality for both
TE and CCM across all degrees of nonlinearity. Furthermore, we
observe that the grids show no visible gradient, which implies that
the causality is independent of the degree of nonlinearity.

C. Analysis of causal structures
On a finer scale, we find that the causal structure of linear

and nonlinear causality differs significantly for the Lorenz system,
as illustrated in Fig. 9. We observe that the x and y pair is mainly
driven by linear properties as it dominates the surrogate-causalities
of GC and CCM—with both directions contributing equal amounts.
In contrast, the surrogate-TE indicates that the direction x to y
dominates the linear causality with a fraction of around 41%. This

result is in line with the governing equations as the equation for x
contains a linear contribution from y, while the equation for y con-
tains a linear and nonlinear contribution from x. The rest of the
system-causalities are more or less split evenly across the remaining
flows.

In comparison, all flows in the Halvorsen attractor contribute
approximately equally to the causality across all causality types and
inference techniques, as depicted in Fig. 8. This causal structure is
expected due to the circulant nature of the governing equations.

D. Derivation of governing equations
In order to verify our rationale, we apply it to the Lorenz and

Halvorsen systems with their corresponding CCM-causal graphs, as
computed from Eqs. (11) and (20), depicted in Fig. 9. The equations
derived for the Lorenz system are

dx

dt
= y − x,

dy

dt
= x − xz − y,

dz

dt
= xy − z,

(24)

FIG. 9. CCM-causality graphs of the standard Lorenz (top row) and Halvorsen (bottom row) systems. The graphs depict the original (left) and the linear (right) CCM causality
between the variables. The dashed lines indicate that the measured causality is not significant (θ < 0.1). Note that the causalities in the loops are determined using the
cross-CCM. The surrogate-based causal links on the right are averaged over K = 10 surrogate realizations.
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TABLE I. Governing equations of the stock indices. This table depicts the derived governing equations for the six economies. The first column shows the time derivative of the

economy while the second and third columns contain the linear and nonlinear terms before the COVID-19 outbreak, respectively. Analogously, the fourth and fifth columns contain

the terms after the COVID-19 outbreak.

Economy Before outbreak linear Before outbreak nonlinear After outbreak linear After outbreak nonlinear

dxeu
dt

xeu + xus + xcn + xee

+ xjp + xpx

xeu xpx xeu + xus + xcn + xee + xpx

xjpxpx + xusxcn + xusxee

+ xusxjp + xcnxee + xcnxjp

+ xeexjp + xeexpx + xeexpx

+ xcnxpx + xusxpx

dxus
dt

xeu + xus + xcn + xee + xjp + xpx xcn xpx xeu + xus + xcn + xjp + xpx xcnxpx + xeexpx + xcnxee

dxcn
dt

xeu + xus + xcn + xee + xjp + xpx xeu xus xcn + xee + xpx

xeuxee + xusxee + xeuxus

+ xeuxpx + xeexpx + xusxpx

dxee
dt

xeu + xus + xcn + xee + xjp + xpx xjp xpx xeu + xus + xcn + xee + xjp + xpx

xeuxcn + xusxcn + xjpxpx

+ xusxjp + xcnxjp + xeuxjp

+ xeuxus + xeuxpx + xcnxpx

+ xusxpx

dxjp

dt
xcn + xjp + xpx + xeuxee

xeuxcn + xusxcn + xusxee

+ xcnxjp + xeuxus + xeuxpx

+ xeexpx + xcnxpx + xusxjp

xus + xcn + xee + xjp + xpx xusxee + xeuxus + xeuxee

dxpx

dt
xeu + xcn + xee + xjp + xpx xus xpx xeu + xcn + xee + xjp + xpx xusxee + xeuxus + xeuxee

while the equations for the Halvorsen system are given by

dx

dt
= x − y − z − y2,

dy

dt
= y − z − x − z2,

dz

dt
= z − x − y − x2.

(25)

By comparing them to Eqs. (1) and (2), we find that our ratio-
nale reproduces the terms of the Lorenz and Halvorsen differential
equations correctly. The calibration of the coefficients using the
algorithm by Mariño and Míguez33 yielded the correct coefficients
σ = 10, ρ = 28, and β = 8/3 for the Lorenz system and a = 1.3 for
the Halvorsen system with errors less than 1e−4, respectively.

These results are stable for thresholds θ < 0.2. In order to
ensure robustness, we repeat the analysis for different initial con-
ditions and find that for a simulation length T ≥ 5000 the causality
inference and, hence, the equation derivation is stable.

In the following, we apply our rationale to a real-world sys-
tem and derive the governing equations from the causal interactions
between stock indices of six major economies: European Union,
United States, China, Emerging Markets, Japan, and Pacific exclud-
ing Japan. The derived equations are shown in Table I, where we find
that all economies except Japan have only one nonlinear term before
the February 2020 COVID-19 pandemic outbreak. In contrast, the
equations for the post-pandemic outbreak phase have at least three
nonlinear terms in all economies, suggesting that nonlinearity has
increased in the financial market. We find this result to be robust to
changes in causal inference technique and thresholds θ < 0.2. Fur-
thermore, we would like to emphasize that we repeated the analysis,

where we remap the rank-ordered time series onto a Gaussian distri-
bution. Since the results remain practically unchanged, we conclude
that our results are mainly driven by dynamic nonlinearities.

This result suggests that the COVID-19 pandemic has led to a
fundamental change in the global financial market, which seems to
make sense in light of the equity rally that was detached from the real
economy.34 Looking forward, as indicated by Haluszczynski et al.,8 a
large amount of nonlinearity in the market can potentially serve as
an early indicator for financial crises.

Note that we do not assign coefficients to the individual terms
of the equations as the calibration method by Mariño and Míguez33

fails due to limited data and high dimensionality. Other equation
derivation algorithms, such as Sparse Identification of Nonlinear
Dynamics (SINDy),12 also face this problem. SINDy is capable of
generating equations with coefficients, but the equations diverge
after a few simulation steps. Developing more sophisticated calibra-
tion methods to solve this problem is part of future research that is
beyond the scope of this paper.

V. DISCUSSION
In this work, we analyzed the linear and nonlinear causal

relations between variables in dynamical systems using different
inference techniques and Fourier transform surrogates, which fil-
ter out the nonlinear properties of time series. We find for Lorenz
and Halvorsen that nonlinearity is a key driver of causality and
that nonlinear causality is independent of the strength of nonlin-
ear terms in the governing equations. Furthermore, we developed
a constructive and fully transparent rationale to derive the correct
governing equations of the Lorenz and Halvorsen attractors directly
from their causal structures—the resulting ease of interpretation is
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the main advantage in comparison to black-box machine learning
approaches. Finally, we applied our methods to stock indices from
different economies and found that the outbreak of the COVID-
19 pandemic triggered a structural change in the global financial
markets.

This work can be extended in several directions. First, the
provided framework can be deployed with further causal infer-
ence techniques and applied to other synthetic systems to confirm
the universality of our results. Furthermore, new methods for cal-
ibrating the equation coefficients can be developed in order to
address the problems of limited data and high dimensionality in
real-world applications—this would enable precise predictions and
the detection of unknown chaos and attractors.
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ABSTRACT

The prediction of complex nonlinear dynamical systems with the help of machine learning has become increasingly popular in different areas
of science. In particular, reservoir computers, also known as echo-state networks, turned out to be a very powerful approach, especially for the
reproduction of nonlinear systems. The reservoir, the key component of this method, is usually constructed as a sparse, random network that
serves as a memory for the system. In this work, we introduce block-diagonal reservoirs, which implies that a reservoir can be composed of
multiple smaller reservoirs, each with its own dynamics. Furthermore, we take out the randomness of the reservoir by using matrices of ones
for the individual blocks. This breaks with the widespread interpretation of the reservoir as a single network. In the example of the Lorenz
and Halvorsen systems, we analyze the performance of block-diagonal reservoirs and their sensitivity to hyperparameters. We find that the
performance is comparable to sparse random networks and discuss the implications with regard to scalability, explainability, and hardware
realizations of reservoir computers.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0151290

The application of reservoir computers to various fields in
science and technology yields very promising and fast advancing
results due to their capabilities in forecasting chaotic attractors,
inferring unmeasured values in systems, and recognizing speech.
While the construction of a reservoir computer is rather simple in
comparison to other machine learning techniques, the architec-
ture and functionality of them is in many regards still a black-box
since at its core, the reservoir is usually still chosen as a ran-
dom network. Thus, we replace the network with block-diagonal
matrices dividing it into multiple smaller reservoirs, take out
the randomness, and show that these alterations still deliver an
equal quality of short- and long-term predictions. This architec-
ture breaks with the common interpretation of the reservoir as a
single network and may prove to be more scalable and easier to
implement in hardware than their more complex variants while
still performing as well.

I. INTRODUCTION
The analysis and modeling of complex dynamic systems is a

key challenge across various disciplines in science, engineering, and

economics.1 While machine learning approaches, like generative
adversarial networks, can provide excellent predictions on dynam-
ical systems,2 difficulties with vast data requirements, the large
number of hyperparameters, and lack of interpretability limit their
usefulness in some scientific applications.3 However, it is required
to fundamentally understand how, when, and why the models are
working in order to prevent the risk of misinterpreting the results if
deeper methodological knowledge is missing.4

In the context of complex system research, reservoir comput-
ers (RCs)5 have emerged for quantifying and predicting the spa-
tiotemporal dynamics of chaotic nonlinear systems. They represent
a special kind of recurrent neural networks (RNNs) and are often
referred to as echo-state networks (ESNs).6 The core of the model
is a fixed reservoir, which is a complex network with connections
according to a predefined network topology. The input data are fed
into the nodes of the reservoir and solely the weights of the readout
layer, which transform the reservoir response to output variables,
are subject to optimization via linear regression. This makes the
learning extremely fast, comparatively transparent, and prevents the
vanishing gradient problem of other RNN methods.7

The topology of a reservoir, or the arrangement of the nodes
and connections within it, can have a significant impact on the
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performance of a reservoir computing system.8 In current state-
of-the-art models, the topology of the reservoir is often chosen
randomly,9 with the hope that the resulting dynamics will be suf-
ficiently complex to allow for good performance on a given task.
However, this approach can be hit-or-miss,10,11 and it is impossible
to know a priori how the topology of the reservoir will affect the
performance of the system.

While Maass et al.12 and Jaeger13 introduced ESNs with reser-
voirs being modeled as a random Erdös–Renyi network, Watts and
Strogatz,14 Albert and Barabási,15 and others have shown that ran-
dom networks are far from being common in physics, biology, or
sociology. Instead, more complex networks like scale-free, small-
world, or intermediate forms of networks16,17 are most often found in
real-world applications. Further approaches to make reservoir com-
puting more explainable have been made in recent years, with, e.g.,
Haluszczynski and Räth11 comparing different network construc-
tion algorithms, Griffith et al.18 introducing very low connectivity
networks, and Carroll and Pecora10 analyzing the effect of net-
work symmetries on prediction performance. However, there still
remain open questions about the functionality of reservoir comput-
ers, which need to be answered for developing new algorithms, for
fine-tuning the system for specific applications, or building efficient
hardware realizations of RCs.

In this work, we break with the interpretation of the reservoir
as a single network by deliberately using block-diagonal matrices as
reservoirs. This implies that we decompose the reservoir into mul-
tiple smaller reservoirs as outlined in Sec. II B. Furthermore, we
use matrices of ones as the blocks, which take out the randomness
of the network completely. We assess the ability of block-diagonal
reservoirs for short- and long-term predictions by comparing the
measures discussed in Sec. II C to the standard RC setup.

II. METHODS
We structure our methods section into three different parts:

benchmark models, reservoir computing, and prediction perfor-
mance measures.

A. Benchmark models
We perform our analyses on two synthetic example mod-

els, which exhibit chaotic behavior and are three-dimensional
autonomous, dissipative flows.

1. Lorenz system
As in Pathak et al.19 and Lu et al.,20 we use the Lorenz system,

which was initially used for modeling atmospheric convection,21

as an example for replicating chaotic attractors using reservoir
computing,

dx

dt
= σ(y − x),

dy

dt
= x(ρ − z) − y,

dz

dt
= xy − βz,

(1)

where the standard parameterization for chaotic behavior is σ = 10,
ρ = 28, and β = 8/3.

2. Halvorsen system
As in Herteux and Räth,22 we use the Halvorsen system for our

analyses, which has a cyclic symmetry. While the nonlinear terms of
the Lorenz system are mixed products of two different variables, the
Halvorsen system23 entails only non-mixed quadratic nonlinearities,

dx

dt
= ax − by − bz − y2,

dy

dt
= ay − bz − bx − z2,

dz

dt
= az − bx − by − x2,

(2)

where a = 1.3 and b = 4 are the standard parameter choice.

3. Simulating and splitting data
If not stated otherwise, we solve the differential equations of the

synthetic system using the Runge–Kutta method24 for T = 70 000
steps and a discretization of dt = 0.02 in order to ensure a suf-
ficient manifestation of the attractor. We discard the initial tran-
sient of T = 50 000 steps and use the remaining steps for training
Ttrain = 10 000 and testing Ttest = 10 000 of the RCs. In order to get
robust results, we vary the starting points on the attractor by using
the rounded last point of one data sample as the starting point for the
next. The initial starting points for the Lorenz and Halvorsen sys-
tems are (−14, −20, 25) and (−6.4, 0, 0), respectively. This setting is
comparable to the ones used by Griffith et al.18 and Haluszczynski
and Räth.11 Figure 1 illustrates the attractors and trajectories of the
simulated data.

B. Reservoir computing
A reservoir computer (RC)12,13,25,26 is an artificial recurrent neu-

ral network (RNN) that relies on a static internal network called
reservoir. The term static means that, unlike other RNN approaches,
the reservoir remains fixed once the network is constructed. The
same is true for the input weights. Therefore, the RC system is com-
putationally very efficient since the training process only involves
optimizing the output layer. As a result, fast training and high model
dimensionality are computationally feasible, making RC well suited
for complex real-world applications.

1. Algorithm
The reservoir A is usually constructed as a sparse Erdös-Rényi

random network27 with dimensionality or number of nodes d. How-
ever, in this paper, we replace the network structure of the reser-
voir with a block-diagonal matrix of ones. This breaks with the
widespread interpretation of the reservoir as a single network.

To feed the n-dimensional input data u(t) into reservoir A, a
d × n input matrix Win is constructed, which defines how strongly
each input dimension influences every single node. The elements of
Win are chosen to be uniformly distributed random numbers within
the interval [−1, 1].
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FIG. 1. Attractor (left) and coordinate trajectories (right) of the Lorenz (top) and Halvorsen (bottom) system. The left columns show the attractors of the two systems, where
the first Ttrain = 10 000 steps are used for training (red) and the subsequent Ttest = 10 000 steps are used for testing the prediction (black). The right columns illustrate the
coordinate trajectories of both systems for the first T = 2500 steps. The parameters of the systems and their simulations are described in Sec. II A.

The dynamics of the RC system are contained in its
d-dimensional reservoir states r(t). Being initially set to ri(0) = 0
for all nodes, the time evolution can be defined using a recurrent
formulation,

r(t + 1) = f (A · r(t) + Win · u(t)), (3)

where f is a limited, nonlinear function—as is common, we use the
hyperbolic tangent. Before the training process is started, the RC sys-
tem should be initialized during a washout phase of tw time steps
in order synchronize the reservoir states r(t) with the dynamics of
the input signal u(t). Furthermore, in order to break potential prob-
lems arising from the anti-symmetry of the hyperbolic tangent, we
use a quadratic readout as explained by Herteux and Räth.22 This
means that the squared elements of the reservoir states are appended
r 7→

{

r, r2
}

.
To obtain n-dimensional output from the (matrix of) reser-

voir states r(t), an output-mapping function Wout is needed. This
is accomplished by acquiring a sufficient number of reservoir states
r(tw, . . . , tw + tTtrain

) and then choosing an output-mapping matrix
Wout such that the output of the reservoir is as close as possible to the
known real data (matrix) u(tw, . . . , tw + tTtrain

). Then, the training
can be executed by using Ridge regression,28

Wout = (rT · r + β · I)
−1

rT · u, (4)

where β is the regularization constant that prevents overfitting and
I denotes a identity matrix. The predicted state v(t) can be obtained

by multiplying the output matrix with the reservoir state r(t),

v(t) = Wout · r(t). (5)

After training, the predicted state v(t) can be fed back in the
activation function as input instead of the actual data u(t) by com-
bining Eqs. (3) and (5). The resulting recursive form of the equation
for the reservoir states r(t) allows us to create predicted trajectories
of arbitrary length,

r(t + 1) = f (A · r(t) + Win · Wout · r(t)). (6)

2. Block-diagonal reservoir
The main focus of this work is to verify that a reservoir can

be divided into multiple smaller reservoirs without limiting its pre-
diction performance. Therefore, we choose our d × d dimensional
reservoir topology to be a block-diagonal matrix with blocks Ji of
size b × b, where i ∈

{

1, 2, . . . ,
⌊

d
b

⌋}

. Each of the blocks essentially
represents a separate smaller reservoir,

J =









J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 0 J⌊

d
b

⌋









. (7)

As usual, the reservoir topology is rescaled to a target spectral
radius ρ∗. Therefore, the spectral radius of the matrix J needs to
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be determined first, which is the largest absolute eigenvalue of the
matrix,

ρ (J) = max {|λ1| , . . . , |λd|}. (8)

The time complexity of obtaining the eigenvalues of a
d-dimensional matrix using bi-diagonalization is O

(

d3
)

.29 We can
speed up the calculation by a factor of

d3

b3 ·
⌊

d
b

⌋ ≈

(
d

b

)2

, (9)

since the eigenvalues of a bock-diagonal matrix is the list of the
eigenvalues of the blocks,

ρ (J) = max

{

ρ (J1) , . . . , ρ

(

J⌊
d
b

⌋

)}

. (10)

Then, the scaled reservoir A, which is finally used in the RC, is
given by

A =
ρ∗

ρ (J)
J. (11)

In Secs. II B 3 and II B 4, we describe the different types of
blocks Ji that we study in this work: first, where the blocks are
Erdös–Renyi networks, and second, where the blocks are matrices
of ones.

3. Blocks of Erdös–Rényi networks
First, we choose the individual blocks Ji to be Erdös–Rényi net-

works with a connection probability of p = 0.02.14 In our analyses,
we distinguish between two cases:

1. Individual blocks: Each block Ji is constructed separately with a
different random seed.

2. Equal blocks: All the blocks are equal to each other and thus, the
Erdös–Rényi network only needs to be constructed once,

J1 = J2 = · · · = J⌊
d
b

⌋.

Furthermore, this case delivers another increase in eigenvalue
decomposition speed by a factor of

⌊
d
b

⌋

.

4. Blocks of matrices of ones
In order to take out the randomness of the reservoir, we con-

struct it so that each block Ji is a matrix full of ones. This has several
special implications: first, we do not need to calculate the spec-
tral radius of the reservoir ρ (J) anymore, since it is equal to the
block-size b,

A =
ρ∗

b
J. (12)

Furthermore, this reservoir architecture implies that in every
iteration, each block Ji acts as an averaging operator on the reser-
voir states, as explained in the following. This is comparable to
average pooling layers of other machine learning techniques since
the averaging reduces the dimensionality of the reservoir states and

“extracts” primarily features that are more robust.31 We denote the
mean between the ith and jth row of reservoir state r(t) as

r̄i:j(t) ≡
1

j − i + 1

j
∑

i

ri(t). (13)

Then, each block yields a vector of size b × 1, which has equal
values. For example, the first row of the multiplication J · r(t) reads

[

b
︷ ︸︸ ︷

1, . . . , 1,

d−b
︷ ︸︸ ︷

0, . . . , 0] · r(t) =

b
∑

i=1

ri(t) = b · r̄1:b(t). (14)

This is repeated exactly for the first b rows. Consequently, the
reservoir multiplication A · r(t) from Eq. (3) yields

A · r(t) =
ρ∗

b
J · r(t) = ρ∗




















r̄1:b(t)
r̄1:b(t)

...
r̄(i−1)·b+1:i·b:k·b(t)
r̄(i−1)·b+1:i·b:k·b(t)

...
r̄d−b+1:d(t)
r̄d−b+1:d(t)

...




















. (15)

Therefore, the reservoir multiplication contribution is identical
for each block, which means that at each training step, the reser-
voir memory is the same for each block. This directly implies lower
computational costs.

5. Implications for hardware reservoir computers
By separating the reservoir into multiple smaller reservoirs and

by taking out the randomness we significantly reduce the com-
plexity of the architecture, especially with regards to hardware
implementations. Examples of the reservoir topologies and their
respective spring-layouts according to the Fruchterman–Reingold
force-directed algorithm30 are illustrated in Fig. 2. We observe that
the networks constructed fully or partly with Erdös–Rényi Networks
have more complex interconnected network structures, while the
networks with blocks of ones are ordered and have clear separate
unified reservoirs.

This leads us to make the following assumptions on potential
implications for hardware RCs:

• Improved generalization: Similar to ensemble methods32 from
other machine learning methods, the use of multiple smaller
reservoirs can lead to a more diverse representation of the
inputs. This potentially reduces the risk of overfitting and
improves generalization to unseen data.

• Enhanced robustness: The failure of one reservoir unit can be
potentially compensated by the other units, which can still
contribute to the processing of the inputs. This makes the sys-
tem more robust to noise and errors, especially in hardware
implementations.
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FIG. 2. Reservoir topologies (top) and corresponding spring-layouts30 (bottom). The number of nodes is d = 500 for all reservoir topologies. In the top row, the white entries
denote the presence of a network connection. In the bottom row, each node is represented by a white circle with black edges, while the connections are represented by
black lines. From left to right, the illustrated network topologies are: (1) ordinary topology using a Erdös–Rényi graph, (2) block-diagonal topology with different Erdös–Rényi
graphs of size b = 125 as blocks, (3) block-diagonal topology with equal Erdös–Rényi graphs of size b = 125 as blocks, (4) block-diagonal topology with matrices of ones
of size b = 2 as blocks, and (5) block-diagonal topology with matrices of ones of size b = 125 as blocks.

• Better scalability: The computational and memory requirements
can be reduced by parallelization, making the system more
scalable and suitable for deployment on high-dimensional data.

Each of these assumptions requires different experimental
setups—hence validating these potential implications is beyond the
scope of this paper and is the subject of further research.

C. Measuring prediction performance
When forecasting nonlinear dynamical systems such as chaotic

attractors, the goal of the predictions is not only to exactly replicate
the actual short-time trajectory but also to reproduce the long-term
statistical properties of the system called climate. This is important
because by definition chaotic systems exhibit sensitive dependence
on initial conditions and therefore small disturbances grow expo-
nentially fast. Consequently, even if at first the short-term prediction
is perfect, at some stage already numerical inaccuracies lead to the
separation of the predicted and actual trajectories. However, for
many applications, this is not a problem as long as the predicted
trajectory still leads to the same attractor. In order to quantify this
behavior, quantitative measures are needed that grasp the complex
dynamics of the system. Therefore, we use the measures applied in
the paper by Haluszczynski and Räth11 and Haluszczynski.26

1. Forecast horizon
To quantify the quality and duration of the short-term pre-

diction of the trajectory, we use a fairly simple measure, which we
call forecast horizon, as used by Haluszczynski and Räth.11 For that,
we track the number of time steps during which the predicted v(t)
and the actual trajectory vR(t) are matching. As soon as one of the

three coordinates exceeds certain deviation thresholds we consider
the trajectories as not matching anymore. Throughout our study, we
use

τ = |v(t) − vR(t)| > δ, (16)

where we define the thresholds as the standard deviation of the real
data vR(t),

δ = σ (vR(t)). (17)

The aim of this measure is that small fluctuations around the
actual trajectory, as well as minor deviations do not exceed the
threshold. A higher value means that the prediction is close to the
“true” trajectory over a longer period of time and has not deviated
yet, although the underlying system is chaotic.

2. Correlation dimension
To assess the structural complexity of an attractor, we calculate

its correlation dimension, which measures the dimensionality of the
space populated by the trajectory.33 It belongs to the measures for
fractal dimensionality, which have been proposed by Mandelbrot34

in 1967. The correlation dimension is based on the correlation
integral,

C(r) = lim
N→∞

1

N2

N
∑

i,j=1

θ
(

r − |xi − xj|
)

=

∫ r

0

d3r′c(r′), (18)

where θ denotes the Heaviside function and c(r′) is the standard cor-
relation function. The integral represents the mean probability that
two states in the phase space are close to each other at different time
steps. This is the case if the distance between the two states is smaller
than the threshold distance r.
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TABLE I. Benchmark measures calculated on the predictions using the traditional reservoir architecture and on the test data. Using the traditional architecture with reservoir

dimension d= 500 and target spectral radius ρ∗ = 0.1, we vary the random seeds and attractor starting points, make predictions, and evaluate the quality of the predictions.

This yields a total of n = 10 000 different realizations of forecast horizons, correlation dimensions, and largest Lyapunov exponents. The average and standard deviation over

these prediction measures for the respective systems are denoted in the columns “Lorenz traditional” and “Halvorsen traditional.” For each attractor starting point, we have a

different test dataset. We calculate the correlation dimension and largest Lyapunov exponent of all test datasets and denote the average and standard deviation in the columns

“Lorenz test” and “Halvorsen test.”

Measure/System Lorenz traditional Lorenz test Halvorsen traditional Halvorsen test

Forecast horizon τ 219 ± 10 ∞ 382 ± 12 ∞

Correlation dimension ν 2.01 ± 0.09 2.02 ± 0.02 1.98 ± 0.07 1.99 ± 0.02
Lyapunov exponent λmax 0.86 ± 0.05 0.87 ± 0.03 0.72 ± 0.06 0.74 ± 0.03

The correlation dimension ν is then defined by the power-law
relationship,

C(r) ∝ rν . (19)

For self-similar, strange attractors, this relationship holds for a
certain range of r, which needs to be properly calibrated. The cal-
culation of the correlation dimension is done using the Grassberger
Procaccia algorithm.35 It is purely data-based and does not require
any knowledge of the underlying governing equations of the system.
One advantage of the correlation dimension over other fractal mea-
sures is that it can be calculated having a comparably small number
of data points available. In the context of this work, mainly the rela-
tive comparison among various predictions and actual trajectories is
of interest and, therefore, the accuracy of the absolute values is not
the highest priority.

3. Lyapunov exponent
Besides the fractal dimensionality, the statistical climate of an

attractor is also characterized by its temporal complexity repre-
sented by the Lyapunov exponents.36 They describe the average rate
of divergence of nearby points in the phase space, and thus measure
sensitivity with respect to initial conditions. There is one exponent
for each dimension in the phase space. If the system has at least one
positive Lyapunov exponent, it is classified as chaotic. The magni-
tudes of λi quantify the time scale for which the system becomes
unpredictable.37 Since at least one positive exponent is the require-
ment for being classified as chaotic, it is sufficient for the purposes
in this work to calculate only the largest Lyapunov exponent λmax:

d(t) = Ceλmaxt, (20)

where d(t) denotes the distance of two initially nearby states in
phase space and the constant C is the normalization constant at the
initial separation. Thus, instead of determining the full Lyapunov
spectrum, we only need to find the largest one as it describes the
overall system behavior to a large extent. Here, we use the Rosenstein
algorithm.38 As mentioned for the correlation dimension, mainly a
relative comparison is of interest in order to characterize states of the
system rather than determine the exact absolute values. Again, for
this measure, no model or knowledge of the underlying governing
equations is required.

D. Benchmarks
In order to evaluate whether the predictions using the modified

RC architecture are on par with the traditional setup, we run mul-
tiple predictions for different reservoir dimensions, target spectral
radii, attractor starting points, and random seeds.

We do not observe significant changes for network dimensions
d ≥ 400 and find a target spectral radius of ρ∗ = 0.1 to have the
best overall prediction results. This is consistent to the findings by
Haluszczynski and Räth.11

Thus, using the traditional architecture with reservoir dimen-
sion d = 600 and target spectral radius ρ∗ = 0.1, we vary the ran-
dom seeds and attractor starting points, make predictions, and eval-
uate the quality of the predictions. This yields a total of n = 10 000
different realizations of forecast horizons, correlation dimensions,
and largest Lyapunov exponents. The average and standard devia-
tion over these prediction measures for the respective systems are
denoted in the columns “Lorenz traditional” and “Halvorsen tra-
ditional” in Table I. We use these values as benchmarks for our
analysis so that we can compare the prediction performance of our
modified architecture to the traditional RC setup.

Furthermore, for each attractor starting point, we have a differ-
ent test dataset. We calculate the correlation dimension and largest
Lyapunov exponent of all test datasets and denote the average and
standard deviation in the columns “Lorenz test” and “Halvorsen
test” in Table I. These values can be seen as the “true” correlation
dimension and largest Lyapunov exponent.

III. RESULTS
In the following, we present the results of our analyses for vari-

ations of different parameters to demonstrate the robustness of the
modified architecture. The varied parameters are:

• Network dimension d: We vary the network dimension between
d ∈ {400, 450, . . . , 600} as these are sensible values in RC
research. We specifically choose multiples of 50 in order to have
a decent number

⌊
d
b

⌋

of block-sizes b.
• Block-size b: We vary the block-size b and set it to all divisors

of the network dimension d. We exclude the divisor b = 1 as
it essentially takes out the reservoir. Also, we do not use b = d
since it represents again a single network as in the traditional
architecture.
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FIG. 3. Prediction measures for the Lorenz (left column) and Halvorsen systems (right column) for different random seeds of individual Erdös–Rényi blocks. The displayed
prediction measures from top to bottom are: forecast horizon τ , correlation dimension ν, and the largest Lyapunov exponent λmax . The differently colored lines represent
different network dimensions with the corresponding shadowed area denoting the standard deviation over the variations. The dashed and dotted black horizontal lines
represent the prediction measure benchmarks specified in Table I. The dashed line (lower) represents the average prediction performance of the traditional RC architecture,
while the dotted line (higher) represents the average correlation dimension and largest Lyapunov exponent of the test data.

• Target spectral radius ρ∗: We vary the spectral radius from ρ∗ ∈

{0.1, 0.2, . . . , 2.0} and find that, similarly to the traditional archi-
tecture, the target spectral radius of ρ∗ = 0.1 yields the most
robust prediction results. Henceforth, we set ρ∗ = 0.1 as default.

• Attractor starting points: We choose 500 different starting points
on the attractor as explained in Sec. II A 3.

• Random seeds: We choose 100 different random seeds across
all components of the RC architecture which have random-
ness: input weights Win and the reservoir A for block-diagonal
Erdös–Rényi networks.

In order to make the figures easier to visualize, we calculate the
fraction of connection and use the root of it as the x axis,

√

b

d
. (21)

Thus, the higher the fraction, the bigger the blocks and the
number of connections in the network. This is necessary because
the number of divisors for each network size d is different and the
divisors are not equally spaced.

A. Blocks of Erdös–Rényi networks
As mentioned before, we distinguish between two cases for

the Erdös–Rényi blocks. First, where all the blocks are individual
networks and second, where all blocks are equal.

• Individual blocks: We find that for both the Lorenz and the
Halvorsen systems, all prediction measures are close to the
respective benchmark values in Table I and even surpass them
for a network size of 600. Generally, we observe that small block-
sizes have a worse long-term prediction quality with regard to
the correlation dimension and the largest Lyapunov exponent.
However, they appear to have a better short-term forecast hori-
zon. The standard deviation over the variation of random seeds
is comparable to the benchmarks. The results are illustrated in
Fig. 3. Furthermore, we find the variation for different input
weights and starting points to be similarly robust.

• Equal blocks: Similar results can be observed for the equal blocks
(Fig. 4)—however, the standard deviation is slightly lower. This
can be explained by the reduced level in randomness since only
one block is randomly constructed.

Generally, we find that the prediction performances stabilize

for
√

b
d

> 0.3 for both individual and equal blocks. As explained in

Eq. (9), this speeds up the calculation of the reservoir spectral radius
by a factor of ≈123 for individual blocks and ≈412 for equal blocks.

Furthermore, we observe that the modified architecture out-
performs traditional RC with regard to long-term predictions while
it performs slightly worse for short-term predictions. This can be
inferred by looking at the correlation dimensions and largest Lya-
punov exponents, which are higher than the respective values of
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FIG. 4. Prediction measures for the Lorenz (left column) and Halvorsen systems (right column) for different random seeds of equal Erdös–Rényi blocks. The setup of this
figure is similar to Fig. 3.

FIG. 5. Prediction measures for the Lorenz (left column) and Halvorsen systems (right column) for different input weights. The setup of this figure is similar to Fig. 3.
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FIG. 6. Prediction measures for the Lorenz (left column) and Halvorsen systems (right column) for different attractor starting points. The setup of this figure is similar
to Fig. 3.

the traditional RC architecture and closer to the “true” values of the
test data. A comparable short-term prediction performance can be
achieved by increasing the network dimension to d = 600. There we
see that the forecast horizon is able to match the value of the tra-
ditional architecture and can even slightly outperform it for small

block-sizes of
√

b
d

≈ 0.05. In this specific case, the calculation speed

of the spectral radius is increased by a factor of 160 000 and 3 200 000
for individual and equal blocks, respectively.

This behavior holds true for both the Lorenz and Halvorsen
systems.

B. Blocks of matrices of ones
For the blocks of matrices of ones, the randomness of the reser-

voirs is taken out. Thus, we focus on the remaining randomness,
which is present in the input weights Win, and the variation of the
attractor starting point.

• Input weights Win: We find that for both the Lorenz and the
Halvorsen systems, all prediction measures are close to the
respective benchmark values and even surpass them for some
network sizes. Generally, we observe that the performance is
slightly worse than using blocks of Erdös–Rényi networks and
the benchmarks. As expected, the standard deviation over the
variation of input weights is comparable to the benchmarks and
lower than for randomly constructed reservoirs. The results are
illustrated in Fig. 5.

• Attractor starting points: A similar behavior can be observed for
the variation in attractor starting points. However, we observe
that network dimensions d = 600 even outperform the bench-
marks for some block-sizes. The results are illustrated in Fig. 6.

In general, we find that the prediction quality for using blocks
of ones as the reservoir is stable for a variation in input weights
and attractor starting points. For certain block-sizes, the modified
architecture is able to surpass the benchmarks for both short- and
long-term predictions. Finding the best performing instance of these
reservoirs can be done in a few iterations by varying the block-size
for a large enough network dimension. Since the computationally
expensive task of calculating the spectral radius of the reservoir is
not necessary in this setup, fine-tuning the RC architecture with a
parameter scan is fast and scalable.

IV. CONCLUSION AND OUTLOOK
In this paper, we introduce an alternative approach to con-

structing reservoir computers by replacing the reservoir, which is
traditionally a single random network, with a block-diagonal matrix.
This implies that the reservoir can be composed of multiple smaller
reservoirs, which breaks with the common understanding of the
reservoir as a single network.

Furthermore, we remove the randomness of the reservoir by
using matrices of ones for the individual blocks.

We evaluate the short- and long-term prediction performance
of block-diagonal reservoirs for two nonlinear chaotic systems: the
Lorenz and Halvorsen systems. For that, we use three measures:
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forecast horizon, correlation dimension, and the largest Lyapunov
exponent. We find that—overall—the quality of the predictions
is comparable to classical random networks. Although the block-
diagonal reservoirs tend to perform slightly worse than the tradi-
tional architecture on average, some block-diagonal reservoirs with
appropriate size of the blocks perform as well and sometimes even
better than the conventional network reservoirs.

We find the result to be robust over variations in network
dimensions, block-sizes, target spectral radii, attractor starting
points, input weights, and random seeds.

This modified reservoir architecture not only has immediate
large benefits regarding the computational effort but also the great
potential for simple and fast hardware implementations of reser-
voir computers becomes obvious. Following this line of research is
subject to further research.

We discover many interesting lines of future research. Further
directions we find promising to take a look at are: understanding
whether block-diagonal reservoirs improve generalization, enhance
robustness, or increase scalability.

Current and future work is dedicated to the investigation of
these questions—not the least because the answers to them will shed
new light on the complexity of the underlying dynamical system.
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A novel approach to minimal 
reservoir computing
Haochun Ma 1, Davide Prosperino 1 & Christoph Räth 2*

Reservoir computers are powerful machine learning algorithms for predicting nonlinear systems. 
Unlike traditional feedforward neural networks, they work on small training data sets, operate with 
linear optimization, and therefore require minimal computational resources. However, the traditional 
reservoir computer uses random matrices to define the underlying recurrent neural network and 
has a large number of hyperparameters that need to be optimized. Recent approaches show that 
randomness can be taken out by running regressions on a large library of linear and nonlinear 
combinations constructed from the input data and their time lags and polynomials thereof. However, 
for high-dimensional and nonlinear data, the number of these combinations explodes. Here, we 
show that a few simple changes to the traditional reservoir computer architecture further minimizing 
computational resources lead to significant and robust improvements in short- and long-term 
predictive performances compared to similar models while requiring minimal sizes of training data 
sets.

The prediction of complex dynamic systems is a key challenge across various disciplines in science, engineer-
ing, and  economics1. While machine learning approaches, like generative adversarial networks, can provide 
sensible  predictions2, difficulties with vast data requirements, the large number of hyperparameters, and lack of 
interpretability limit their usefulness in some scientific  applications3. However, it is required to fundamentally 
understand how, when, and why the models are working to prevent the risk of misinterpreting the results if 
deeper methodological knowledge is  missing4.

In the context of complex systems research, reservoir computers (RCs)5,6 have emerged for predicting the 
dynamics of chaotic systems. The core of the model is a fixed reservoir, which is usually constructed  randomly7–9. 
The input data is fed into the nodes of the reservoir and solely the weights of the readout layer, which transform 
the reservoir response to output variables, are subject to optimization via linear regression. This makes the learn-
ing extremely fast and comparatively transparent. However, this approach can be hit-or-miss, and it is hardly 
possible to know a priori how the topology of the reservoir will affect the  performance10–12.

Recent research has emerged on algorithms which do not require randomness. They are built around 
 regressions13 on large libraries of linear and nonlinear combinations constructed from the data observations 
and their time lags, such as next generation reservoir computers (NG-RCs)14 or sparse identification of non-
linear dynamics (SINDy)15. These algorithms are built around nonlinear vector autogression (NVAR)16 and 
the mathematical fact that a powerful universal approximator can be constructed by using an RC with a linear 
activation  function17,18.

The model we present in this paper is based on the same mathematical principles — but instead of getting 
rid of the traditional reservoir architecture altogether, we take an intermediate step and make only a few simple 
changes: we restructure the input weights so that all coordinate combinations are fed separately into the reser-
voir. Additionally, we remove the randomness of the reservoir by replacing it with a block-diagonal matrix of 
blocks of ones. Instead of introducing the nonlinearity in the activation function, we add higher orders of the 
reservoir states in the readout.

Using the example of synthetic, chaotic systems, and in particular the Lorenz system, we show that these alter-
ations lead to excellent short- and long-term predictions that significantly outperform traditional RC, NG-RC, 
and SINDy. While prediction performance is often evaluated visually, we use three quantitative measures: the 
largest Lyapunov exponent, the correlation dimension, and the forecast horizon. We also validate the robust-
ness of our results by using multiple attractor starting points, different training data sizes and discretizations.
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Results
In this work, we show how small changes to the traditional RC architecture can significantly improve its predic-
tion capability of chaotic systems especially for low data requirements. Therefore, similar to Gauthier et al.,14 we 
use the minimal data setup for the Lorenz system with a discretization of dt=0.025 and Ttrain=400 training data 
points.

The minimal possible architecture would be a spectral radius ρ∗=0 and block-size b=1 , for which our RC 
reduces to the case described by Gonon and Ortega.17 Here, we do not have a reservoir and directly feed the 
input data to the readout and perform a Ridge regression. While we find this parametrization to be capable of 
reasonable predictions, a few minor alterations increase the performance significantly.

The standard RC architecture used in this work has block-size b=3 , spectral radius ρ∗=0.1 , and a nonlinearity 
degree η=2 . This equals 36 variables per coordinate. The results of this setup are illustrated in Fig. 1.

In order to obtain robust results we repeat the analysis for 1000 different starting points on the attractor 
and compare the prediction performance to the other models. In Fig. 2 we see that the novel RC architecture 
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Figure 1.  Prediction on a minimal training data set of the Lorenz system. The first column shows the attractor 
(top) and the trajectories (bottom) of the 400 training data points (and the discarded transient). The second 
column shows the attractor and the trajectories of the test data. The third column shows the attractor (top) and 
the absolute prediction error (bottom) of the prediction. The dashed lines indicate the standard deviations of the 
three components of the test data.
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significantly outperforms them with regards to short-term predictions with an average forecast horizon of ∼7.0 
Lyapunov times — this is ∼2.5 times more than the averages of the other models. The long-term prediction is 
also slightly better as the average relative errors of the correlation dimension and the Lyapunov exponent are 
∼3.5 · 10−4 , respectively — this is ∼9.0 and ∼39.7 times smaller than the averages of other models. The traditional 
RC has generally more widely distributed errors due to its randomness.

We verify the robustness of our novel RC to variations in discretization and length of training data. In Fig. 3 
we observe that it is quite robust and as expected, performs significantly better than comparable models espe-
cially with regards to short-term prediction. Here, we only see a decline in prediction performance for coarse 
discretizations dt>0.045 . The robustness of the long-term prediction is similar to traditional RC and SINDy. 
Interestingly, we see a decline in performance of NG-RC for larger training lengths Ttrain>700 and finer discre-
tizations dt<0.02 . Furthermore, we find out model to be reasonably robust to changes in hyperparameters and 
noise up to a signal-to-noise ratio of ∼38dB.

Furthermore, we analyze the prediction performance of our model on different chaotic systems, which have 
different nonlinear behavior. We choose the models so that we can understand the inner workings of our RC 
better. For example, the Halvorsen system has only quadratic nonlinearities with no interacting coordinates 
and hence the input matrix only needs the first three blocks (which represent the distinct coordinates). Another 
example to point out is the Rabinovich-Fabrikant system, which has cubic nonlinearities. Here, we see that a 
nonlinearity degree of η≥3 is necessary for a reasonable prediction. The model parameters and the prediction 
measures for the different systems are illustrated in Table 1.

Discussion
In this work, we present a novel RC architecture that outperforms comparable methods in terms of short- 
and long-term predictions while requiring similarly minimal training datasets and computational power. The 
architecture is modified by restructuring the input weights and reservoir such that combinations of input data 
coordinates are fed separately into the reservoir. Therefore, we use a block-diagonal matrix of ones as the reser-
voir, which acts as an averaging operator for the reservoir states at each update step. Similar to average pooling 
layers in other machine learning methods, this can be interpreted as a way to primarily “extract” features that 
are more  robust19. It also takes out the randomness of traditional RC. Instead of using a nonlinear activation 
function to create the reservoir states, we capture the nonlinearity of the data in the readout layer by appending 
higher orders of the reservoir states before the Ridge regression. We find that these changes lead to a significant 
improvement in the short- and long-term predictions of chaotic systems in comparison to models such as the 
traditional RC, NG-RC, and SINDy. In order to evaluate the prediction performance, we compute the largest 
Lyapunov exponent, the correlation dimension, and the prediction horizon.

This work can be extended in many directions. For example, the generation of the reservoir states can be 
explored to understand what the RC actually learns. In our modified architecture, the states are constructed 
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by mixing the average of the past data with the new data with different “proportions”. Therefore, methods for 
constructing the reservoir states, such as the exponentially weighted moving average (EWMA) of the  data20, 
should be explored. Related to this, the design of the readout is also an interesting topic to look into. Similarly 
to NG-RC and SINDy, nonlinear functions could be applied and appended to the reservoir states in order to 
capture more complex structures in the data.

Another study can be conducted on how the elimination of randomness from RC-like models affects their 
capabilities, e.g., information processing  capacity21 or  multifunctionality22.

Furthermore, the applicability to high-dimensional and highly nonlinear data can be analyzed and compared 
with models relying on large feature libraries, such as NG-RC and SINDy. Since the number of variables scales 
less rapidly in our architecture, it would be relevant to see how much computational power can be saved, espe-
cially for hardware RCs.

Moreover, the model can be tested on real-world examples from different disciplines to produce reliable 
short- and long-term predictions, especially in cases where training data is scarce and expensive.

Methods
Reservoir computers. A reservoir computer (RC)5,23,24 is an artificial recurrent neural network (RNN) that 
relies on a static network called reservoir. The term static means that, unlike other RNN approaches, the reser-
voir remains fixed once the network is constructed. The same is true for the input weights. Therefore, the RC is 
computationally very efficient since the training process only involves optimizing the output layer. As a result, 
fast training and high model dimensionality are computationally feasible, making RC well suited for complex 
real-world applications.

In the following we describe the individual components of the architecture and the modifications that we 
propose. To make the following section more understandable we introduce them in a high-level summary: 

1. Input weights: the input weights Win are designed so that each combination of the coordinates of the data is 
fed into the reservoir separately.

2. Reservoir: the reservoir A is chosen as a block-diagonal matrix consisting of matrices of ones with size b.
3. Reservoir states: we do not use a nonlinear activation function in order to construct the reservoir states r(t) . 

Hence the iterative update equation reduces to: 

 where u(t) denotes the training data at time t.
4. Readout: instead of only inserting the squared reservoir  states25, our generalized states r̃ contain all orders 

up to a nonlinearity degree η : 

5. Training and Prediction: as in traditional RCs, we stack the training data u and the corresponding reservoir 
states r̃ to matrices U and R̃ respectively. We then solve the equation Wout · R̃ = U by using Ridge  regression26 
resulting in: 

(1)r(t + 1) = A · r(t)+Win · u(t) ,

(2)r̃ =
{
r, r2, . . . , rη−1, rη

}
.

(3)Wout = U · R̃T
(

R̃ · R̃T + β I
)−1

,

Table 1.  Minimal setup for different chaotic systems. We vary the parameters of the training data and the 
RC architecture to find the minimal setup for different chaotic systems. To do this, we compute the relative 
errors of the Lyapunov exponent and the correlation dimension for 100 different attractor starting points. The 
minimum setup is defined as the setup where the average relative errors of the Lyapunov exponent and the 
correlation dimension are both <10−2 . This ensures that the long-term climate of the chaotic system is reliably 
reproduced. In this table, we denote the parameters of the data setup (columns 1−2 ) and RC architecture 
(columns 3−5 ). The last 3 columns denote the mean and standard deviations of the forecast horizon for the 
different prediction models. The governing equations can be found in the respective references.

Training 
Data

Novel 
Architecture Forecast Horizon τ

System Ttrain dt b ρ∗ η Novel Trad. NG-RC SINDy

Halvorsen 300 0.01 3 0.1 2 498±34 231±47 249±27 335±37

Rabi.-Fabr. 300 0.01 3 0.1 3 261±23 168±36 89±12 107±11

Aizawa (43) 300 0.01 3 0.1 4 193±16 131±27 76±9 65±7

Dadras-Momeni (44) 300 0.01 3 0.1 2 423±25 228±41 259±19 248±21

Rössler (45) 300 0.01 3 0.1 2 781±51 301±72 332±40 401±55

Four wing (46) 300 0.01 3 0.1 2 1497±39 1135±68 659±28 712±31

Chen (47) 300 0.01 3 0.1 2 922±41 880±72 750±36 812±41
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 where β=10−5 is the regularization constant that prevents overfitting and I denotes the identity matrix. 
The prediction procedure of the reservoir states also stays the same (with the adjusted update equation): 

 Note that the reservoir A only acts on the “simple” reservoir state r , while the second summand acting on 
Wout is r̃ containing all the nonlinear powers. The predicted time series y(t) can then be obtained by the 
multiplication: 

Input weights. In order to feed the input data u(t) into the reservoir, an input weights matrix Win is defined, 
which determines how strongly each coordinate influences every single node of the reservoir network. In a 
traditional RC, the elements of Win are chosen to be uniformly distributed random numbers within the interval 
[−1, 1].

In our novel framework we do not choose the elements randomly, but follow a structured approach. Firstly, 
in order to remove the randomness, for a block-size of b we take b equally spaced values between [1, 0].

To avoid non-invertible matrices for ridge regression, we take the square root values of all weights 
w =

(√
w1, . . . ,

√
wb

)T . Then we specifically structure the input matrix so that the different combinations of 
input data coordinates, also called features, are fed separately into the reservoir. In the case of a 3-dimensional 
system with coordinates u(t) = (x, y, z)T (t) and a nonlinearity order η=2 , the input matrix (multiplication) 
looks like:

where ⊗ denotes the tensor product and hence each block represents one feature f. For n-dimensional data the 
feature space contains nf = 2n−2 elements. Thus, the dimension of the reservoir is d = nf · b.

Reservoir. The core of an RC, the reservoir A , is usually constructed as a sparse Erdős-Rényi random  network27 
with number of nodes d. As for the choice of input weights, we choose the reservoir in such a way that each 
feature remains separate. Therefore, we use a block diagonal matrix J consisting of ones J with block size b. Thus, 
each block Ji can be directly mapped to a particular feature:

Similar to a traditional RC, we scale the spectral radius ρ(J) of the reservoir to a target spectral radius ρ∗ . While 
the computation of the spectral radius is usually a computationally expensive  task28 that scales with O(d3) , the 
computation is no longer necessary for block diagonal matrices of ones J . This is because the eigenvalues of the 
matrix are equal to the block size b. Thus, the rescaled reservoir is given by:

Our default target spectral radius is ρ∗=0.1.

Reservoir states. As in traditional RC, we use a recurrent update equation to capture the dynamics of the system 
in the so-called reservoir states r(t) . This would normally require a bounded nonlinear activation function g(·) 
that captures the nonlinear properties of the data. The activation function (usually the hyperbolic tangent) is 
applied on an element-by-element basis.

However, as mentioned earlier, we shift the nonlinearity entirely to the readout. Therefore, the time evolution 
of the states is iteratively determined via:

Due to our choice of architecture, the reservoir states for each feature can be obtained separately:

(4)r(t + 1) = A · r(t)+Win ·Wout · r̃(t) .

(5)y(t) = Wout · r̃(t) .

(6)w = (w1,w2, . . . ,wb)
T =
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Hence, we can take all reservoir states belonging to one feature rf (t) — we call them feature states — and analyze 
them separately. This helps us to understand that the reservoir acts as an averaging operator on the feature states:

where Ib is a vector of ones of size b. Thus, in each iteration step, the feature states are “normalized” to the aver-
age of the past feature states r̄f (t) and a varying strength (determined by the input weight) is added to the new 
feature data f(t):

where f can be replaced by any other feature without loss of validity. The average, or “memory”, of each feature 
is tracked in the last row of the feature states since wb=0 . Furthermore, this implies that target spectral radius 
ρ∗ determines how strongly the memory of the data is kept in each iteration step.

Readout. While a quadratic readout, i.e., the squared reservoir states r2 , is often added to a traditional RC to 
break the symmetry of the activation  function25, we need the readout to capture the nonlinearity of the data. 
Therefore, we add even higher orders of nonlinearity to the so-called generalized states r̃ . For a given degree of 
nonlinearity η they look like the following:

Hence, for a degree of nonlinearity η and a block-size of b, the number of elements in the readout, which is also 
the number of variables to be optimized, is:

which we rewrite to binomial coefficients for better comparison. For high-dimensional data with high nonlin-
earity, the number of variables to be optimized is much smaller than for comparable predictive models such as 
NG-RC14 or  SINDy15. This is because NG-RC and SINDy require combinations with recurrences. Therefore, the 
size of their feature space for a nonlinearity degree is η (at least):

which grows much faster for larger n and η than the expression for nout in Eq. 16.

Prediction performance measures. When forecasting nonlinear dynamical systems, the goal is not only 
to exactly replicate the short-time trajectory, but also to reproduce the long-term statistical properties, or cli-
mate, of the system.

Correlation dimension. To assess the structural complexity of an attractor, we calculate its correlation dimen-
sion ν , which measures the fractal dimensionality of the space populated by its  trajectory29,30. The correlation 
dimension is implicitly defined by the power-law relationship based on the correlation integral:

where n is the dimension of the data and c(r′) is the standard correlation function. The integral represents the 
mean probability that two states in the phase space are close to each other at different time steps. This is the case 
if the distance between the two states is smaller than the threshold distance r. For self-similar, strange attractors, 
this power-law relationship holds for a certain range of r, which can be calibrated using the Grassberger-Procaccia 
 algorithm31. The benefits of this measure are that it is purely data-based, it only needs a small number of data 
points, and it does not require any knowledge of the underlying governing equations of the system.

Lyapunov exponents. Besides its fractal dimensionality, the statistical climate of an attractor is also character-
ized by its temporal complexity represented by the Lyapunov  exponents32. They describe the average rate of 
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divergence of nearby points in the phase space, and thus measure sensitivity with respect to initial  conditions33. 
There is one exponent for each dimension in the phase space. If the system has at least one positive Lyapunov 
exponent, it is classified as chaotic. Thus, it is sufficient for the purposes in this work to calculate only the largest 
Lyapunov exponent �max:

where d(t) denotes the distance of two initially nearby states in phase space and the constant C is the normaliza-
tion constant at the initial separation. Thus, instead of determining the full Lyapunov spectrum, we only need to 
find the largest one as it describes the overall system behavior to a large extent. Therefore we use the Rosenstein 
 algorithm34.

Forecast horizon. To quantify the quality and duration of the short-term prediction of the trajectory we use 
the forecast horizon τ12. It tracks the number of time steps for which the absolute error between each coordinate 
of the predicted ypred(t) and test ytest(t) data does not exceed the standard deviation of the test data σ

(

ytest(t)
)

:

We express the forecast horizon in units of the Lyapunov time by multiplying it with the discretization and maxi-
mum Lyapunov exponent of the test data τ · dt · �testmax . This measure is intended to evaluate how long a prediction 
can reproduce the actual trajectory before the chaotic nature of the system leads to an exponential divergence.

Dynamical systems. We apply our model to a number of synthetic chaotic systems. In our analyses, we 
focus on the following three due to their specific properties in terms of nonlinearity.

Lorenz. As it is common in RC  research35,36 we use the Lorenz system which was initially proposed for mod-
eling atmospheric  convection37:

where the standard parametrization for chaotic behavior is σ=10 , ρ=28 , and β=8/3.

Halvorsen. As in Hertreux and Räth25 we use the Halvorsen  system38 for our analyses, which has a cyclic sym-
metry and, unlike to the Lorenz system, only has nonlinearities without interaction of coordinates:

where a=1.3 and b=4 are the standard parameters.

Rabinovich–Fabrikant. In order to test whether our model works also for systems entailing cubic nonlineari-
ties, we analyze the Rabinovich-Fabrikant  system39:

where α=0.14 and γ=0.1 are the standard parameters.

Simulating and splitting data. Since we compare our model with NG-RC and SINDy, we use the same data 
setup as the original  works14,15. Hence, we solve the differential equations of the systems using the Runge-Kutta 
 method40 with a discretization of dt=0.025 in order to ensure a sufficient manifestation of the attractor.

We discard the initial transient of Ttransient=50000 , use the next Ttrain=400 steps for training, then skip 
Tskip=10000 steps, and use the remaining Ttest=10000 for testing the prediction. Hence in total we simulate 
T=70400 steps.

(19)d(t) = C · e�max ·t

(20)
∣

∣ypred(t)− ytest(t)
∣

∣ < σ

(

ytest(t)
)

.

(21)

dx

dt
= σ · (y − x)
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dt
= x · (ρ − z)− y

dz

dt
= x · y − β · z ,

(22)

dx

dt
= a · x − b · y − b · z − y2

dy
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= a · y − b · z − b · x − z2

dz

dt
= a · z − b · x − b · y − x2 ,

(23)

dx

dt
= y · (z − 1+ x2)+ γ · x
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= x · (3 · z + 1− x2)+ γ · y

dz

dt
= −2 · z · (α + x · y) ,
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To get robust results, we also vary the starting points on the attractor by using the rounded last point of 
one data sample as the starting point for the next. The initial starting points for the Lorenz, Halvorsen, and 
Rabinovich-Fabrikant systems are (−14,−20, 25) , (−6.4, 0, 0) , and (−0.4, 0.1, 0.7) , respectively.

Comparable prediction models. We compare our novel RC to other models designed for predicting 
dynamical systems. We briefly describe them in the following.

Traditional reservoir computer. For the traditional RC architecture we choose an Erdős-Rényi network of 
dimension d=600 with a target spectral radius ρ∗ and a quadratic readout. This equals 1200 variables per coor-
dinate to be optimized. In order to get robust results we repeat the prediction for 1000 realizations and take the 
average of the prediction measures.

Next generation reservoir computer. The next generation reservoir computer (NG-RC) developed by Gauthier 
et al.14 is a so-called nonlinear vector autoregression (NVAR) machine and thus, does not require a reservoir. It 
solely needs the feature vector, which consists of time-delay observations of the data and nonlinear functions of 
these observations. The resulting output weights can be used to construct the governing equations of the data. 
We use the standard setting with time delays k=2 and skips s=1.

Sparse identification of nonlinear dynamics. Sparse identification of nonlinear dynamics (SINDy)15 discovers 
the underlying dynamical system of data by learning its governing equations through sparse regression. It is 
similar to NG-RC, but uses an iterative approach to filter only relevant features. We use the standard parametri-
zation and the official Python package  PySINDy41,42.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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Identifying and quantifying co-dependence between financial instruments is a key challenge for researchers and practi-
tioners in the financial industry. Linear measures such as the Pearson correlation are still widely used today, although
their limited explanatory power is well known. In this paper we present a much more general framework for assessing
co-dependencies by identifying and interpreting linear and nonlinear causalities in the complex system of financial
markets. To do so, we use two different causal inference methods, transfer entropy and convergent cross-mapping, and
employ Fourier transform surrogates to separate their linear and nonlinear contributions. We find that stock indices in
Germany and the U.S. exhibit a significant degree of nonlinear causality and that correlation, while a very good proxy
for linear causality, disregards nonlinear effects and hence underestimates causality itself. The presented framework
enables the measurement of nonlinear causality, the correlation-causality fallacy, and motivates how causality can be
used for inferring market signals, pair trading, and risk management of portfolios. Our results suggest that linear and
nonlinear causality can be used as early warning indicators of abnormal market behavior, allowing for better trading
strategies and risk management.

Within the complex system of financial markets, under-
standing the intricate ties between assets is crucial. Al-
though the Pearson correlation has been a standard mea-
sure for these relationships, its linear approach might
not fully represent the entire spectrum of causality. This
study employs sophisticated causal inference algorithms
and methods to differentiate between linear and nonlin-
ear causal contributions. By examining major stock in-
dices from Germany and the U.S., we uncover profound
and possibly nonlinear linkages. More than presenting a
new approach, this research indicates a significant shift in
our perception and quantification of financial market be-
haviors. Such insights hold promise for refining market
predictions, optimizing trading strategies, and improving
portfolio risk management.

I. INTRODUCTION

The field of econophysics is garnering heightened attention
in the physics domain, offering a novel lens to conven-
tional financial methodologies1. This emerging perspective
draws from statistical physics tools, spanning signal pro-
cessing, agent-based market frameworks, and random matrix
theory2. Understanding the co-dependence of financial assets
is paramount across various finance sectors, especially when
quantifying portfolio-associated risks3. This development has
seen industry practitioners keenly monitor the evolution of co-
dependence metrics. Predominantly, mutual dependencies of
financial instruments are characterized via the Pearson corre-
lation of their return time series. However, there is increasing
research underscoring the nonlinear characteristics of these
series4. Notably, Mantegna and Stanley 5 showed the power
law scaling dynamics of financial indices’ probability distri-
butions, while Ghashghaie et al. 6 pinpointed turbulent cas-

cades in foreign exchange markets. Such insights challenge
the adequacy of linear dependency metrics. Addressing this,
Haluszczynski et al. 7 segregated linear from nonlinear mutual
information contributions using Fourier transform surrogates,
aiming to quantify nonlinear correlations among financial as-
sets. The authors demonstrated that the integration of nonlin-
ear correlations into portfolio construction led to an increase
in investment performance. A pressing query is the continued
reliance on the Pearson correlation8 as a causality proxy, given
the intricate nature of causality measurement within dynamic
systems. Granger’s initial study in the 1960s9 addressed the
difference between causality and correlation, leading to the
development of more advanced causal inference tools. This
ranged from information-theoretic tools10 to state-space re-
construction models11. While causal inference has mainly fo-
cused on determining causality12, the study of its linear versus
nonlinear characteristics has not been performed in detail. Be-
ginning work has been performed by Paluš and Vejmelka 13

and Hlinka et al. 14 , who focused on mutual information to
detect nonlinear dynamics in time series and evaluated non-
linearity contributions in climate connectivity.

In this paper, we analyze causality in financial markets by
separating linear and nonlinear contributions to causality us-
ing Fourier transform surrogates. To do so, we use two differ-
ent causal inference techniques and apply them to historical
stock data of the German DAX and the U.S. Dow-Jones in-
dex. We also identify causality-based statistical properties of
financial data and motivate how linear and nonlinear causality
can be separated and measured. We find that while correlation
is a good proxy for linear causality, nonlinear effects are dis-
regarded and thus, significant amount of nonlinear causality
is neglected. This is potentially dangerous when practitioners
evaluate the risk of a portfolio only using correlation. There-
fore, we propose a simple integration of causality measures
into market signal inference, pair trading, and portfolio con-
struction routines and show that they yield superior results.
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FIG. 1. Mirage correlations and causality. The top row shows different regimes of the coupled difference system defined in Equation 1. It
appears that the variables are correlated in the first regime, anti-correlated in the second, and lose all coherence in the third. The bottom row
shows the rolling correlation (left), causality (center), and linear causality (right). The causality is measured using Convergent Cross Mapping
(CCM). While the correlation alternates between periods of positive, negative, and zero correlation, the causality in both directions stays stable
over time. This also holds true for the linear causality. When comparing the measurements to the governing equations, we see that causality
offers a more stable and accurate representation of the co-dependence between the two variables than correlation does.

II. METHODS

We structure our methods section in three different parts: data,
causality measures, linear and nonlinear decomposition, and
financial frameworks.

A. Data

In this section, we describe the data used for this study. Before
we apply our framework to real-world data, we demonstrate it
on a synthetic example. Additionally, we use rolling windows
in order to evaluate our analysis dynamically.

1. Coupled Difference

A simple example of a system that displays chaotic behavior
is the coupled difference as introduced in15. This system was
also employed by Sugihara et al. 11 to illustrate Convergent
Cross Mapping (CCM), a causality inference method integral
to this study. It is defined by the following two equations:

x(t +1) = x(t) · [rx− rx · x(t)−βy→x · y(t)]
y(t +1) = y(t) · [ry− ry · x(t)−βx→y · x(t)] ,

(1)

where the standard parameters are: rx = 3.8, ry = 3.5, βy→x =
0.02, and βx→y = 0.1. We selected this system due to its ex-
hibition of so-called mirage correlations, which means that

variables may be positively coupled for long periods but can
spontaneously become uncorrelated or decoupled. This can
lead to problems when fitting models or inferring causality
from observational data11.

2. Financial Data

For our real-world analysis, we select a subset of stocks from
the DAX and Dow-Jones indices that represent the 30 highest
capitalized and thus most influential companies in Germany
and the U.S., respectively. Beginning on January 19, 1973,
our data consists of the daily closing prices of all stocks that
were in the index through April 20, 2022, to provide a con-
sistent universe of stocks over the entire period. This yields
a total of NDAX = 11 and NDJ = 17 time series with 12785
data points. We would like to note that the survival bias16 is
negligible for our analysis.

To ensure stationary time series, we convert the stock prices
pt to logarithmic returns:

xt = log pt − log pt−1 .

The time horizon of our data is long enough to examine a
number of important market events—starting with the global
recession of the early 1980s, it also includes Black Monday
(October 19, 1987), when stock markets around the world
collapsed for the first time since World War II. From 1997
to 2001, markets were characterized by excessive speculation
and the overvaluation of many technology companies, which
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FIG. 2. Historical Stock Returns and Correlation. The top row shows the logarithmic returns of the historical stock data of the German DAX
(left) and the U.S. Dow-Jones (right) index, respectively. Each line represents the logarithmic return of one stock over time. The bottom row
shows the pairwise correlations between the stocks. Each line represents the correlation between two stocks over time. The black line shows
the average correlation inside the index. The vertical lines represent important economic or political events.

led to the dot-com bubble17. The bubble burst in 2002 with
substantial price declines in July and September. Finally, our
data includes the 2007/2008 subprime mortgage crisis, when
the market declined from its all-time high in October 2007
and crashed after the collapse of Lehman Brothers on Septem-
ber 15, 2008. As a result of slowing growth of the GDP of
China and the Greek debt default, investors sold shares glob-
ally between 2015 and 2016. The data further includes the
so-called Volmageddon on February 5, 2018, where a large
sell-off in the U.S. stock market lead to a spike in implied
market volatility18. Finally, the data includes the impact of the
COVID-19 pandemic, which, among other events, triggered a
sudden global stock market crash on February 20, 2020. In
addition, our period under review also includes a number of
important global political events. These include the fall of the
Berlin Wall on November 9, 1989, which triggered the col-
lapse of the Soviet Union, the attacks of September 11, 2001,
and the Russian invasion of the Ukraine on February 24, 2022.

3. Rolling Windows

To obtain dynamically evolving results, we divide the data into
overlapping rolling windows19 and compute our measures for
each interval following the approach by Haluszczynski et al. 7 .
We use a sliding window of Tw = 1000 trading days, which
corresponds to roughly four years of data. The gap or stride
between successive intervals is set to δT = 20 trading days,
roughly amounting to a month. As such, the w-th interval is
represented as:

x(w) =
(
x1+(w−1)·δT , . . . ,xTw+(w−1)·δT

)
, (2)

which yields a total of w = 594 overlapping windows. A
(causality) measure ψ

(
x,y
)
7→R, which maps two time series

to a real number, is thus transformed into a vector Ψ ∈ Rw.

B. Causality Measures

We select two techniques that represent prominent categories
currently used in causal inference20—however, it is important
to note that our framework is applicable to any method capa-
ble of detecting nonlinear causality.

1. Pearson Correlation

Before describing the causal inference methods, we introduce
the Pearson correlation21. We use it as a benchmark since it is
still widely popular in the financial industry due to its simple
calculation and interpretability8. It quantifies the strength and
direction of the linear relationship between two variables. It
is computed as follows:

ρ (x,y)≡ ∑T
i=t(xt − x̄)(yt − ȳ)√

∑T
t=1(xt − x̄)2

√
∑T

t=1(yt − ȳ)2
, (3)
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FIG. 3. Transfer Entropy. The first row shows the historical TE of stocks within the German DAX (left) and the U.S. Dow-Jones (right)
indices, respectively. Each line represents one direction of the TE between two stocks over time. The bottom row illustrates the corresponding
surrogate TE. The vertical lines represent important economic or political events.

where xt denotes the stock returns at time t and x̄ = 1
T ∑T

t=1 xt
signifies their expected value. The correlation is normalized
and bounded to the interval [−1,1] and thus allows direct com-
parisons across pairwise correlations between different stocks.
As shown by Bonett and Wright 22 a sample size of T ≤ 56 is
sufficient to estimate the measure reliably.

2. Transfer Entropy

Transfer Entropy (TE) is a powerful information-theoretic
measure introduced by Schreiber 10 which has gained popular-
ity in the field of causal inference, particularly in the analysis
of time series data. TE provides a way to quantify the directed
flow of information between variables, which allows assess-
ing causal relationships in a probabilistic framework. The TE
from X to Y is defined as:

TEX→Y = H(Yt+1,Yt)+H(Yt ,Xt)−H(Yt+1,Yt ,Xt)−H(Yt) ,

where H(Yt+1,Yt), H(Yt ,Xt), H(Yt+1,Yt ,Xt), and H(Yt) are the
joint and marginal entropies of the respective variables. To
facilitate comparison between different estimations of TE, we
apply the subsequent normalization:

TEX→Y =
H(Yt+1,Yt)+H(Yt ,Xt)−H(Yt+1,Yt ,Xt)−H(Yt)√

H(Yt+1,Yt) ·H(Xt+1,Xt)
.

(4)
The normalization to [0,1] stems from our understanding of
TE as an asymmetric causal measure. This interpretation

aligns with the concept of covariance, which, when rescaled,
results in the normalized form, the aforementioned Pearson
correlation21.

We would like to point out that the calculation of empirical
probability densities p and hence information-theoretic mea-
sures raise unexpected difficulties exceeding the scope of this
work. While it is common to use histograms with equally
distributed bins to estimate densities, Mynter 23 showed that
this method potentially leads to biases since the estimation
is dependent on the partition details—hence, finding a ro-
bust estimator is non-trivial. However, for the purpose of our
research, we find that equally distributed bins perform rea-
sonably well. Furthermore, it is worth mentioning that TE
might capture false causalities depending on the dimension of
conditioning13.

3. Convergent Cross Mapping

Convergent Cross Mapping (CCM) is an influential technique
utilized for causal inference within the realm of complex dy-
namical systems11. It aims to reveal causal connections be-
tween variables by reconstructing the dynamics that underlie
them. CCM operates on the premise that variables with causal
links will exhibit similar dynamical behavior, leading to a no-
tion referred to as shadowing.

The underlying idea is based on Takens’ theorem, which
states that the entire state space can be reconstructed from
a single embedded coordinate of the system, also called a
shadow manifold24. Due to transitivity, two coordinates
within a system can then be mapped to each other by neigh-
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FIG. 4. Convergent Cross Mapping. The setup of this figure is analogous to Fig. 3.

boring states in their respective shadow manifolds—this al-
lows for cross prediction. The quality of the prediction, eval-
uated using the Pearson correlation, quantifies the strength of
the causal relationship. The algorithm of CCM can be out-
lined as follows:

1. Time Delay Embedding Embed the time series data
of X and Y into higher-dimensional spaces using the
embedding dimension κ and time delay τ .

2. Library Construction Create a library of vectors from
the reconstructed state space X, denoted as LX, and a
library of vectors from the reconstructed state space Y,
denoted as LY.

3. Nearest Neighbor Selection For each vector X(i) in the
shadow manifold MX, find its nearest neighbor in MY,
denoted as Y( j). Similarly, for each vector Y(k) in MY,
find its nearest neighbor in MX, denoted as X(l).

4. Cross Mapping Assess the predictability of X based on
Y by comparing the distances between the vector pairs
X(i) and Y( j), and the vector pairs Y(k) and X(l). A
statistical measure, such as the correlation coefficient ρ ,
can be used to quantify the predictability.

5. Convergence Analysis Repeat the cross mapping pro-
cedure for different library lengths. Evaluate the corre-
lation as a function of the number of points used and
assess the convergence of the results. The convergence
of the cross mapping indicates the presence of a causal
relationship between X and Y .

In the original application of CCM, convergence typically re-
quires visual inspection. However, we’ve implemented a more

systematic approach using expanding windows. For a given
vector of correlations ρ of size n, we calculate the standard de-
viation within each window. Convergence is determined if the
standard deviation consistently decreases, eventually falling
below a predefined threshold θ . If convergence is achieved,
the mean of the last s values is calculated to smooth any out-
liers. Conversely, if convergence is not reached, the causality
measure in CCM is set to zero. This process is mathematically
expressed as:

CCMX→Y ≡
{

1
n ∑s

i=1 ρn−s+i if ρ converges
0 otherwise

∈ [−1,1] . (5)

This process automates the evaluation of CCM causality for
various connections within a system at a reasonable speed. To
standardize the measure and render it comparable with other
non-directional causal inference methods, the correlation dis-
tance, denoted as d =

√
2(1−ρ), can be employed.

CCM’s effectiveness in identifying causal relationships within
time series data is affected by multiple aspects. The presence
of noise or missing values in the data can alter the outcomes25,
and the choice of appropriate embedding dimensions κ and
time delays τ is subject to the characteristics of the specific
dataset26. For example, the optimal value for τ can be deter-
mined by finding the first local minimum in the Mutual Infor-
mation (MI) respective to τ . Additionally, the False Nearest
Neighbor (FNN) algorithm can help finding the smallest em-
bedding dimension that maintains the attractor’s structure, en-
suring that neighboring points in the original time series stay
neighbors in the embedded version27.
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FIG. 5. Fallacy Transfer Entropy. The first row shows the historical fallacy TE of stocks within the German DAX (left) and the U.S. Dow-Jones
(right) indices, respectively. Each line represents one direction of the fallacy TE between two stocks over time. The bottom row illustrates the
corresponding surrogate TE. The setup of this figure is analogous to Fig. 3.

4. Limits of Causality Measures

We would like to emphasize our recognition of the limitations
associated with the causal inference techniques we are pre-
senting, as well as the broader challenges inherent in causal
inference. Nonetheless, the purpose of this paper is to utilize
these methods as a means to demonstrate a framework for dis-
secting causality into linear and nonlinear components within
the context of finance. It is important to note that this paper
does not delve into assessing the accuracy of these methods
in capturing genuine causal relationships, nor does it explore
the robustness of the methods themselves. Despite their draw-
backs, these two methodologies have shown successful appli-
cations across various real-world scenarios28. For in-depth
analyses on TE and CCM, we recommend referring to Over-
bey and Todd 29 and Krishna and Tangirala 30 , respectively.

Additionally, we acknowledge that TE and CCM operate
with reconstructed spaces and have theoretical vulnerabilities
when applied to variables within an attractor28. Nevertheless,
the analysis conducted in this paper relies on simulated data
rather than a purely theoretical foundation. For a comprehen-
sive discussion on the efficacy of state-space reconstruction
methods in establishing causality, we direct interested readers
to Cummins, Gedeon, and Spendlove 31 .

C. Linear and Nonlinear Decomposition

To decompose the causal relationships within time series sys-
tems into components originating from linear and nonlinear
drivers, we employ surrogate techniques based on the Fourier

Transform (FT). Employing these surrogates on (causality)
measures, we devise methodologies to systematically capture
the quantitative breakdown of linear and nonlinear influences.

1. Fourier Transform Surrogates

FT surrogates destroy the nonlinear characteristics of a time
series x while keeping the linear ones unaffected32. The algo-
rithm to generate FT surrogates is described as follows33:

1. Fourier Transform: Given a real-valued time series
x= {x1,x2, . . . ,xN}, compute its Fourier transform F(x)
using the Fast Fourier Transform (FFT) algorithm34.

F(x) = FFT(x)

2. Phase Randomization: Preserve the amplitudes but
randomize the phases of the Fourier coefficients. This
can be done by multiplying the complex Fourier coef-
ficients by a random phase factor eiφ , where φ is uni-
formly distributed over the interval [0,2π]. The phase-
randomized Fourier Transform F′(x) is given by:

F ′k = |Fk| · eiφk , φk ∈ [0,2π]

3. Inverse Fourier Transform: Compute the inverse FT
of the phase-randomized coefficients to obtain the sur-
rogate time series x̃:



Chaos 7

0.0

0.2

0.4

0.6

0.8

1.0

F
al

la
cy

C
C

M

1988
1992

1996
2000

2004
2008

2012
2016

2020

Date

0.0

0.2

0.4

0.6

0.8

1.0

S
u

rr
o

F
al

la
cy

C
C

M

1988
1992

1996
2000

2004
2008

2012
2016

2020

Date

FIG. 6. Fallacy Convergent Cross Mapping. The setup of this figure is analogous to Fig. 5.

x̃ = IFFT(F′(x))

By keeping the amplitudes of the original data and only
randomizing the phases, the resulting surrogates main-
tain the power spectral density of the original time se-
ries but break the higher-order statistical dependencies.

To enhance the reliability of our findings, we average metrics
derived from surrogate time series over various instances K
of random phases. The surrogate of time series x, when sub-
jected to the random phases of realization k, is denoted as x̃(k).

2. Linear and Nonlinear Measures

In order to evaluate how much of a (causal) measure is at-
tributed to linear or nonlinear effects, we adopt a specific ap-
proach that involves the calculation of measures on surrogate
time series. Within the context of this research, we focus on
a bivariate measure, denoted as ψ

(
x,y
)
, which is a function

mapping two time series to a real number. This function’s
purpose is to capture the relationship between the two time
series in numerical terms. The corresponding surrogate or lin-
ear measure is defined as the average over K surrogate real-
izations of both time series:

ψ̃(x,y)≡ 1
K

K

∑
k=1

ψ
(
x̃(k), ỹ(k)

)
. (6)

Here, the superscript k indicates that we add the same random
phases to both time series within a single realization. This

choice ensures that phase differences remain unaffected, pre-
serving specific properties such as the Pearson correlation35.
To ensure robustness we repeat the calculation for K = 50 sur-
rogate realizations.

3. Nested Measures

As aforementioned, employing rolling windows transforms
the measure ψ into a vector. This transition allows for the
investigation of interrelations between two measures through
a third expression:

ψir ≡ ρ(ψ1,ψ2) . (7)

Particularly, we can utilize the Pearson correlation ρ to study
the relationship between the original measure and its corre-
sponding surrogate, expressed as:

ρ(ψ, ψ̃) . (8)

This method also allows for expressing the coefficient of de-
termination using the Pearson correlation, as mentioned in36:

R2 = ρ2 ∈ [0,1] , (9)

This enables us to quantify the extent of the measure at-
tributable to linear influences, more precisely, the fraction of
the variability in the measure ψ that can be explained from
the surrogate measure ψ̃ . What remains then emanates from
nonlinear characteristics:
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FIG. 7. Nonlinear causality. The first row shows the historical nonlinear TE of stocks within the German DAX (left) and the U.S. Dow-
Jones (right) indices, respectively. Each line represents one direction of the TE between two stocks over time. The bottom row illustrates the
nonlinear CCM. The vertical lines represent important economic or political events.

ψnl ≡ 1−ρ2(ψ, ψ̃) . (10)

Furthermore, there’s an application to the exploration of the
correlation-causality fallacy37. This involves determining
how much of the causality is explained by correlation:

ψ f all ≡ ρ2(ψ,ρ) , (11)

serving as a gauge of the causal relationship that can be ex-
plained by correlation. Specifically, this measure for the fal-
lacy can be applied to the surrogate measure in order to evalu-
ate how much of the linear causality is captured by correlation:

ψ f all,lin ≡ ρ2(ψ̃,ρ) . (12)

D. Financial Frameworks

Here, we introduce two financial frameworks and demonstrate
how causality can be easily integrated, while simultaneously
enhancing performance.

1. Pair Trading

Pair trading is a popular and widely utilized strategy in quan-
titative finance that aims to capitalize on relative price move-
ments between two closely related assets38. This strategy is

grounded in the concept of mean reversion, which assumes
that over time, the prices of assets that are historically cor-
related tend to revert to their historical average relationship.
The basic premise is to find two stocks that are highly corre-
lated. When they deviate from this correlation (i.e., one stock
moves up while the other moves down or vice versa), we take
a long position in the underperforming stock and a short po-
sition in the outperforming stock, expecting them to revert to
their historical correlation39. Thus, a basic form of the strat-
egy involves the following steps:

1. Correlation Calculation: We calculate the rolling
historical and the short-term correlation between two
stocks

2. Signal Generation: When the current correlation ρt de-
viates from its historical mean by a certain threshold,
a trading signal is generated. A common approach is
to use the z-score z of the spread, which measures the
number of standard deviations by which the current cor-
relation deviates from its historical mean:

zt =
ρt − ρ̄hist

σρhist

, (13)

where ρ̄hist and σρhist denote the mean and standard de-
viation of the historical correlation, respectively.

3. Trade Execution: When the z-score crosses a prede-
fined threshold (e.g., above a positive threshold for a
long trade or below a negative threshold for a short
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FIG. 8. Pair Trading. The stock prices of two companies from the DAX (Bayer and BASF) are displayed in the top left figure. The top right
figure presents the co-dependence measures over time, with each color corresponding to a specific co-dependence measure that is included
in the legend on the right-hand side. The bottom left chart illustrates the strategy positions over time, with long position in Bayer and short
position in BASF indicated by 1, the opposite indicated by−1, and no investment indicated by 0. The graph in the lower right corner illustrates
the cumulative return achieved by the strategy over time. The dotted horizontal lines mark the strategy’s most recent cumulative return value.
The vertical lines indicate notable economic or political events.

trade), a trade is initiated. A long trade involves buying
the underperforming asset and simultaneously short-
ing the overperforming asset. We set the threshold at
zt ±1.5.

4. Profit Taking: The strategy aims to profit from the
mean reversion process. As the spread narrows and re-
turns to its historical mean, the positions are unwound,
resulting in a profit.

We would like to note that we are aware of the simplifications
of the strategy and that for practical use more fine-tuning is
necessary. However, we find the parametrization of the strat-
egy to be sufficient for illustrative purposes. For our purposes
we exchange the historical Pearson correlation with the TE
and CCM respectively.

2. Portfolio Optimization

In the world of finance, Markowitz Portfolio Theory (MPT),
developed by Harry Markowitz in 1952, is a cornerstone con-
cept for investors and financial analysts40. This theory revolu-
tionized the way investors think about constructing portfolios.
It is based on a fundamental premise: rational investors seek
to maximize their portfolio’s expected return while minimiz-
ing its risk. The key insight here is that an asset’s risk and
return should not be evaluated in isolation but rather in the
context of the entire portfolio.

The expected return of a portfolio is calculated as a
weighted sum of the expected returns of its individual assets:

E(Rp) =
n

∑
i=1

wi ·E(Ri) , (14)

where E(Rp) is the expected return of the portfolio, wi is the
weight of asset i in the portfolio, and E(Ri) is the expected
return of asset i. Even though historic returns do not indicate
future performance, it is common to use the historical mean
as a proxy for the expected returns39.

The portfolio’s variance is a measure of its risk. It considers
not only the individual asset variances but also the correlation
between assets. The formula for portfolio variance is:

σ2
p =

n

∑
i=1

n

∑
j=1

wi ·w j ·σi ·σ j ·ρi j , (15)

where σ2
p is the variance of the portfolio, wi and w j are the

weights of assets i and j in the portfolio, and σi j is the covari-
ance between assets i and j. We can replace the correlation
with a causality measure ψ or use the sign of the correlation
if the measure ψ is normalized to [0,1]:

σ2
p =

n

∑
i=1

n

∑
j=1

wi ·w j ·σi ·σ j ·ψi j · sgn(ρi j) , (16)
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correlation (on the left) and CCM (on the right) as co-dependence measures. Each colored area represents a stock from the Dow-Jones, which
is mapped in the legend to the right. The dotted vertical lines depict significant economic or political events. In the bottom row, the left figure
illustrates the distributions of the downside returns when using different co-dependence measures. The vertical lines depict the VaR at α = 1%
level. The plot to the right displays the portfolio’s value over time. The vertical lines denote significant economic or political occurrences.
The dotted horizontal lines denote the portfolio’s most recent value. Each color corresponds to a particular codependence measure, which is
mapped in the right-hand side legend.

where sgn(·) denotes the Sign function.

A popular measure of the riskiness of historical portfolio
performance is Value-at-Risk (VaR), which quantifies the po-
tential loss in value of an investment or portfolio over a spec-
ified time horizon at a α41 confidence level. A 1−α VaR = x
means that there is a α chance that the portfolio will lose more
than x. Unlike standard deviation, VaR measures tail risk and
does not assume a normal distribution, which is particularly
important for risk management purposes. We use the default
value of α = 1%.

Two portfolios of great importance within MPT are the
Minimum Risk Portfolio and theMaximum Sharpe Ratio Port-
folio. These portfolios play a crucial role in portfolio analysis
and optimization:

• Minimum Risk: The Minimum Risk Portfolio represents
the portfolio with the lowest possible risk for a given set
of assets. Mathematically, it can be formulated as an op-
timization problem. The solution to this problem pro-
vides the weights of assets in the Minimum Risk Port-
folio:

Minimize σ2
p

Subject to E(Rp) = target return
n

∑
i=1

wi = 1

wi ≥ 0 for all i

• Maximum Sharpe Ratio: The Maximum Sharpe Ratio
Portfolio represents the portfolio that offers the highest
risk-adjusted return. The Sharpe Ratio (S) measures this
risk-adjusted performance:

S =
E(Rp−R f )

σp
(17)

To find the Maximum Sharpe Ratio Portfolio, we max-
imize the Sharpe Ratio by adjusting the asset weights.
Mathematically:

Maximize S

Subject to
n

∑
i=1

wi = 1

wi ≥ 0 for all i
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We illustrate a simple way to incorporate causality measures
into portfolio construction through the utilization of these two
portfolios. As a result, we regularly adjust the portfolio by
optimizing its weightings with the mentioned algorithms to
align it with the prevailing market conditions. To achieve this,
we apply the rolling causality measures as previously demon-
strated in this paper. Consequently, we can assess the advan-
tages of using causality measures as the co-dependency met-
ric for the portfolio, examining both its performance and risk
management implications.

III. RESULTS

In the following we present the results of our analyses, which
we structure into three subsections. As motivated by Figure 1,
we observe that for complex and chaotic systems it is difficult
to measure the co-dependence of variables through correla-
tions as they can exhibit different regimes of positive, nega-
tive, and no correlation even though they are guided by ex-
actly the same governing equations. This is illustrated by the
rolling window analysis of the correlation, which is unrobust
and changes significantly over time. Hence in order to mea-
sure their co-dependence reliably, another measure is needed.
Causality measures, such as CCM, are a valuable technique to
measure the causality of two variables in both directions and
provide stable results over time. Furthermore, by using FT
surrogates, we can separate the causality in linear and nonlin-
ear contributions which helps to understand the intricate na-
ture of the co-dependence. The Figure shows that the sepa-
ration of causality is stable over different windows and also
plausible when compared to the governing Equations 1.

A. Historical Causality

To demonstrate the practical applicability of our framework,
we have employed it in an analysis of major German and U.S.
stock indices. The data and the dynamic correlation patterns
are visually depicted in Figure 2. Notably, these correlations
undergo significant shifts during and after pivotal economic
and political events. This phenomenon can be attributed to the
changing behavior of investors and other market participants
in response to these impactful occurrences. Furthermore, this
effect extends to our investigation of causality measures, as
demonstrated in Figures 3 and 5. These figures reveal that
linear and nonlinear causality measures, such as Transfer En-
tropy (TE) and Convergent Cross Mapping (CCM), exhibit
analogous responses to these events.

Specifically, when examining TE, it becomes apparent that
TE is highly responsive to these events, displaying sharp fluc-
tuations. In contrast, surrogate TE remains relatively stable
and does not react as drastically. Conversely, surrogate CCM
appears to respond more strongly than regular CCM, display-
ing significant jumps similar to the observed patterns in corre-
lation. One of the most striking examples of this behavior
is observed during Black Monday in 1987, where we wit-
ness substantial increases in correlation, TE, and surrogate

CCM, particularly in the context of U.S. stocks. Two other
significant events that exhibit similar patterns are the global
financial crisis in 2009 and the COVID-19 pandemic in 2020.
These observations suggest that these events triggered struc-
tural shifts in the market, which is reasonable given their pro-
found impacts on the global economy. An intriguing obser-
vation is that TE experiences more pronounced fluctuations
compared to surrogate TE during these events, while the op-
posite is observed for CCM. This suggests that the linear dy-
namics in the stock markets were more profoundly influenced,
possibly due to investors simultaneously adjusting their stock
positions in response to the market crashes.

B. Correlation-Causality Fallacy and Nonlinear Causality

Upon examination of Figure 5, it becomes evident that both
the original and surrogate Transfer Entropy (TE) exhibit a
moderate correlation. Notably, there is an intriguing excep-
tion during the period spanning from approximately 1990 to
2002 in the U.S. stock market, where a substantial portion, ap-
proximately 75%, of TE can be attributed to correlation. This
spike coincided with the rise and eventual burst of the dotcom
bubble, suggesting that it might have served as an indicator of
abnormal market behavior during this period.

One of the most significant findings from this analysis is the
observation that fallacy of surrogate Convergent Cross Map-
ping (CCM) is remarkably high, around 90%, in both the Ger-
man and U.S. stock indices, as depicted in Figure 6. This
suggests that correlation effectively acted as a suitable proxy
for linear causality for the majority of the past few decades.
However, in periods where this fallacy diminishes, such as the
aftermath of the dotcom bubble in 2002 and the onset of the
global financial crisis in 2008, relying solely on correlation
as a measure of co-dependence significantly underestimates
portfolio risk, as nonlinear effects cannot be disregarded. This
effect is even more pronounced when examining the fallacy of
the original CCM, where we also observe a substantial drop
during these phases.

To gauge the extent of nonlinear contributions to our causal-
ity measures, we delve into the analysis of how much of the
causality can be accounted for by its surrogate. In Figure 7, we
observe the evolution of nonlinear causality over time, noting
that nonlinear TE and CCM exhibit similar but not identical
behaviors. Both measures reveal heightened levels of nonlin-
earity during the period between the dotcom bubble burst and
the commencement of the global financial crisis. In contrast,
before and after this period, we observe phases with less non-
linearity. This indicates that these two major economic events
should be assessed differently, as the dotcom bubble led to
increased nonlinearity in its aftermath, while the global finan-
cial crisis, precipitated by the U.S. housing market crisis, ush-
ered in a phase of more linear market behavior. Particularly
for CCM, this behavior is quite drastic, with jumps exceed-
ing 20%. In conclusion, our analysis suggests that nonlinear
causality can be a valuable tool for anticipating and evaluat-
ing financial impacts, provided it is continually monitored and
assessed in the context of evolving market dynamics.
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FIG. 10. Maximum Sharpe Ratio Portfolio Optimization. The setup of this figure is analogous to Fig. 9. The top row displays the optimized
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C. Pair Trading and Portfolio Optimization

To effectively apply causality measures in practical finan-
cial scenarios, we present two common financial frameworks
where the interdependence between assets plays a pivotal role.
The first concept we explore is pair trading, a logical choice
given its reliance on the idea that two assets tend to revert to
a default correlation, and deviations from this norm can be
profitably exploited. In Figure 8, we use two German stocks
from the chemical industry, Bayer and BASF, to illustrate how
causality measures can be seamlessly integrated. It’s notewor-
thy that even though the differences in the evolution of co-
dependence measures are relatively similar, over time, these
subtle distinctions significantly impact trading performance.
Of particular interest is the fact that the trading strategy em-
ploying surrogate Convergent Cross Mapping (CCM) outper-
forms the one utilizing correlation by a substantial margin, ap-
proximately six times, despite the measures’ apparent similar-
ity. Additionally, we observe that Transfer Entropy (TE) and
CCM perform better than correlation, while surrogate TE lags
behind and even delivers negative returns. This straightfor-
ward example underscores the potential of a causality-based
pair trading strategy.

As previously highlighted, relying solely on correlation can
potentially lead to an underestimation of risk, a perilous sce-
nario when managing a portfolio. In Figure 9, we employ
stocks from the U.S. Dow-Jones index and minimize risk by

dynamically optimizing the portfolio weights on a monthly
basis. It becomes evident that the allocations of a portfolio us-
ing correlation and CCM exhibit visible disparities over time.
This divergence is reflected in the portfolio’s downside returns
and overall performance. Notably, we observe that a portfolio
employing surrogate Transfer Entropy (TE), CCM, and surro-
gate CCM achieves a superior 1% Value at Risk (VaR) while
slightly enhancing portfolio performance.

Similarly, in the context of optimizing the Sharpe Ratio, as
depicted in Figure 10, the inclusion of causality measures re-
sults in a more favorable risk-return profile. When optimizing
the stocks of the German DAX index, we note a reduction in
portfolio standard deviation and an increase in portfolio value
over time, particularly when employing original and surrogate
CCM.

IV. CONCLUSION AND OUTLOOK

The present study has addressed the issue of identifying
and quantifying co-dependence among financial instruments,
which continues to be a paramount challenge for both re-
searchers and practitioners in the financial industry. While
traditional linear measures like the Pearson correlation have
maintained their prominence, this paper has introduced a
novel framework aimed at analyzing both linear and nonlin-
ear causal relationships within financial markets. To achieve
this, we have employed two distinct causal inference method-
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ologies, namely Transfer Entropy and Convergent Cross-
Mapping, and have utilized Fourier transform surrogates to
disentangle their respective linear and nonlinear contributions.

Our findings have unveiled that stock indices in Germany
and the U.S. exhibit a substantial degree of nonlinear causal-
ity, a phenomenon that has largely eluded previous investiga-
tions. It is important to recognize that while correlation, ex-
emplified by the Pearson correlation coefficient, serves as an
excellent proxy for linear causality, it falls short in capturing
the intricate nonlinear dynamics that underlie financial mar-
kets. Consequently, relying solely on correlation can lead to
an underestimation of causality itself.

The framework introduced in this study not only facilitates
the quantification of nonlinear causality but also sheds light
on the perilous "correlation-causality fallacy." By delving into
the nuances of causality, we have motivated how these insights
can be harnessed for practical applications, including infer-
ring market signals, implementing pair trading strategies, and
enhancing the management of portfolio risk.

One of the insights derived from our findings underscores
the role that both linear and nonlinear causality can play as
early warning indicators for unusual market dynamics. Fur-
thermore, our results suggest that a straightforward incorpo-
ration of these causality measures into strategies, such as pair
trading and portfolio optimization, can yield better outcomes
compared to a reliance solely on Pearson correlation. This un-
derstanding can significantly empower traders and risk man-
agers, enabling them to craft more effective trading strategies
and to adopt a more proactive approach to risk mitigation.

Looking ahead, the implications of our findings extend to
various facets of financial research and practice. Further ex-
ploration of nonlinear causality may uncover new dimensions
of financial market interactions, potentially leading to the de-
velopment of innovative trading algorithms and risk manage-
ment tools. Additionally, the integration of causality mea-
sures into existing financial models and frameworks holds the
promise of enhancing their predictive accuracy and robust-
ness.

In conclusion, this paper has introduced a comprehensive
framework for disentangling linear and nonlinear causality
within financial markets. The revelation of substantial non-
linear causality and the recognition of the limitations of tradi-
tional correlation measures underline the importance of taking
a more nuanced approach to co-dependency analysis. The in-
sights gained from this study have the potential to enhance the
way we perceive and navigate the intricacies of financial mar-
kets, contributing to more informed decision-making, better
risk management practices, and more financial stability.
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