
TUM SCHOOL OF COMPUTATION, INFORMATION, AND TECHNOLOGY
TECHNISCHE UNIVERSITÄT MÜNCHEN

Cooperative SLAM for Multi-Robot Systems
using Visual Odometry and Range

Measurements

Young-Hee Lee

Vollständiger Abdruck der von der TUM School of Computation, Information, and Technology
der Technischen Universität München zur Erlangung des akademischen Grades einer Doktorin

der Ingenieurwissenschaften genehmigten Dissertation.

Vorsitz:
Prof. Dr.-Ing. Sandra Hirche

Prüfer*innen der Dissertation:
1. Prof. Dr. sc. nat. Christoph Günther
2. Prof. Michael Kaess, Ph.D.
3. Prof. Dr.-Ing. Eckehard Steinbach

Die Dissertation wurde am 13.04.2022 bei der Technischen Universität München eingereicht
und durch die TUM School of Computation, Information, and Technology am 18.04.2023

angenommen.

Abstract

A swarm of robots can carry out missions much faster and with increased robustness to

isolated failures than a single robot. Thus, they can be useful for various tasks, such as

exploring extraterrestrial areas and monitoring construction sites. To successfully carry out

those missions, the robots need to accurately estimate their positions. Camera-based Visual

Simultaneous Localization and Mapping (VSLAM) is a useful tool to achieve this goal in

environments where the Global Navigation Satellite System (GNSS) is unreliable or entirely

unavailable.

In VSLAM, each robot simultaneously estimates its egomotion and maps the environment

using the onboard camera. To merge individual maps and estimate relative poses (positions

and orientation) between the robots, the inter-agent loop closing technique is widely applied.

This method can significantly reduce the relative positioning error as well as create a global

map, using feature points commonly observed by different agents (inter-agent loops). However,

a large amount of data needs to be exchanged to detect an inter-agent loop. In addition,

substantial computing power is required to fuse multiple local maps. Moreover, loop measure-

ments are only available when different robots observe the same scenes, which significantly

constrains the robots’ movement and mission planning.

This dissertation proposes collaborative SLAM using visual odometry and range mea-

surements (VOR-SLAM). It employs agent-to-agent and agent-to-anchor ranges to mitigate

positioning and mapping errors. By excluding inter-agent loop measurements from the frame-

work, VOR-SLAM requires much less processing power and fewer communication capabilities

than inter-agent loop closures. Moreover, the robots can move without significant constraints

since ranges can still be obtained when the robots are distributed widely and observe different

scenes.

In this dissertation, VOR-SLAM is first introduced using a single-agent setup. It is compared

with the state-of-the-art VSLAM using loop closures in terms of positioning accuracy and

computational requirement. Moreover, VOR-SLAM is tested with experimental data obtained

iii

using a rover equipped with an onboard camera and an Ultra-WideBand (UWB) ranging

sensor. Collaborative VOR-SLAM (CoVOR-SLAM) is also evaluated using a multi-agent setup

in indoor and outdoor scenarios. The evaluation results show that the robots can efficiently

localize themselves even when the computing power and communication network are limited,

e.g. deep sea and extraterrestrial mission.

Keywords: Visual SLAM, Visual odometry, Cooperative SLAM, Collaborative SLAM, Multi-robot

system, Swarm robotics, Sensor fusion, Camera, Ranging, Ultra-wideband (UWB)

iv

Acronyms and Notation

Acronyms

BA Bundle Adjustment

BoW Bag of Words

BRIEF Binary Robust Independent Elementary Features

BRISK Binary Robust Invariant Scalable Keypoints

CDF Cumulative Distribution Function

DLT Direct Linear Transformation

DoF Degrees of Freedom

EKF Extended Kalman Filter

ENU East North Up

FAST Features from Accelerated Segment Test

GBA Global Bundle Adjustment

GNSS Global Navigation Satellite System

GPS Global Positioning System

IMU Inertial Measurement Unit

INS Inertial Navigation System

LB Lower Bound

LoS Line of Sight

LSE Least Squares Estimation

MAP Maximum A Posteriori

NLoS Non-Line of Sight

ORB Oriented FAST and Rotated BRIEF

PDF Probability Density Function

PTAM Parallel Tracking and Mapping

RANSAC RANdom SAmple Consensus

RMSE Root Mean Square Error

RTK Real-Time Kinematic

SAM Smoothing and Mapping

SIFT Scale-Invariant Feature Transform

SLAM Simultaneous Localization and Mapping

SNR Signal-to-Noise Ratio

SoO Signals of Opportunity

SSD Sum of Squared Difference

SURF Speeded Up Robust Features

SVD Singular Value Decomposition

SVO Semi-dense Visual Odometry

ToF Time of Flight

UAV Unmanned Aerial Vehicle

UB Upper Bound

UWB Ultra-Wide Band

VINS Visual-INertial System

VO Visual Odometry

VOR-SLAM SLAM with visual odometry and range measurements

VSLAM Visual Simultaneous Localization and Mapping

Notation

Rt
AB 3× 3 rotation matrix from B to A in SO(3)

Ctt
AB 3× 1 translation vector from A to B defined in the C frame

tt
AB 3× 1 translation vector from A to B defined in the A frame

Cpt
AB 3× 1 position vector from A to B defined in the C frame

pt
AB 3× 1 position vector from A to B defined in the A frame

Tt
AB 4× 4 6DoF pose matrix in SE(3)

St
AB 4× 4 7DoF similarity matrix in Sim(3)

Xi
L 3× 1 Euclidean coordinates of the i-th map point defined in the frame L

X̃i
L 4× 1 homogeneous coordinates of the i-th map point defined in the frame L

ω Twist coordinate of so(3)

ν Twist coordinate of the translation vector

vi

ξ Twist coordinate of a Lie algebra

Gi Lie group generators

M+ Pseudo-inverse of the matrix M

[v]X Skew matrix of the vector v

Θ A set of unknowns

Θ̂ Optimal estimates of the unknowns

vii

Contents

Acronyms and Notation v

1. Introduction 1

1.1. Research Motivation, Objectives, and Main Contributions 1

1.2. Thesis Structure . 4

2. VSLAM: Visual Simultaneous Localization and Mapping - A Review 7

2.1. Feature Extraction and Data Association . 9

2.2. Map Initialization . 15

2.3. Tracking, Local Mapping, and Loop Closing . 19

2.4. Scale Ambiguity Problem of Monocular VSLAM 23

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements 27

3.1. System Overview and Measurement Prediction Models 28

3.2. Visual-Range Data Fusion and Map Points Update 32

3.3. System Analysis with a Public Image Dataset . 36

3.4. System Demonstration with Real-World Experiments 46

4. Collaborative VSLAM - A Review 55

4.1. Inter-Agent Place Recognition . 58

4.2. Local Frame Alignment and Multi-Agent Map Fusion 60

4.3. Analysis of the Communication Requirement . 62

5. CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems 65

5.1. System Setup and Measurement Models . 67

5.2. Multi-Agent Data Fusion and Data Feedback . 70

5.3. System Evaluation in Two Application Scenarios 78

ix

6. Summary and Conclusions 93

6.1. Summary . 93

6.2. Conclusions; Applications and Future Work . 95

Appendix A. 3D Motion Description with Lie Groups and Algebras 97

A.1. General Properties . 97

A.2. Rotations: SO(3) . 101

A.3. Rigid Transformations: SE(3) . 103

A.4. Similarity Transformations: Sim(3) . 106

A.5. Iterative Estimation of the States Defined in the Lie Groups 109

Appendix B. Statistical Modeling of Ranging Error 113

List of Figures 119

List of Tables 125

Bibliography 127

x

1. Introduction

1.1. Research Motivation, Objectives, and Main Contributions

A camera-based Visual Simultaneous Localization and Mapping (VSLAM) is widely used to

estimate the robots’ poses (positions and orientation) when they carry out given tasks in an

area without prior mapping or reliable connections to the Global Navigation Satellite System

(GNSS). The Mars Exploration Rover (MER) missions with the Curiosity rover of NASA’s Mars

Science Laboratory could be one of the most well-known applications of VSLAM. VSLAM can

be used for swarm robotic systems to conduct a mission faster and with greater resistance

to system failures. The project VaMEx-CoSMiC [Sand et al., 2013] of the German Aerospace

Center (DLR) proposes an autonomous swarm robotic system with VSLAM to explore the

Valles Marineris canyon on Mars as shown in Fig. 1.1.

To avoid collisions between robots and to merge local maps into a global map, robots need

to accurately estimate the relative poses. Loop closures [Zou et al., 2019] can be used to

achieve this goal employing the map points commonly observed by multiple robots (inter-agent

loop). Since this requires sizable processing power, a centralized system architecture has

been proposed. In those studies, all the data required for computationally demanding tasks,

such as inter-agent loop detection and global map fusion, is transmitted to a central server

computer [Schmuck and Chli, 2017, Karrer et al., 2018, Schmuck and Chli, 2019] or to a cloud

server [Riazuelo et al., 2014, Mohanarajah et al., 2015], and then the server processes the tasks,

not robots’ onboard computers. With this approach, each robot only needs to estimate its

egomotion and local map, but the robots’ movement is restricted as they need to stay around

the server to receive up-to-date information.

Decentralized collaborative VSLAM is proposed in [Cunningham et al., 2010, Cunningham

et al., 2013, Cieslewski et al., 2018] to have a more flexible swarm architecture, independent on

the server connections. In a decentralized system, each robot’s onboard computer runs some

parts of the inter-agent loop closures, and sends smaller data to the main robot. Then, the main

1

1. Introduction

Figure 1.1.: Mars exploration mission using a swarm rover system (image: [Zhang et al., 2020])

robot of the group conducts the map fusion using the databases transmitted from the robots in

its group. However, decentralized VSLAM might be still not feasible in environments where

computation and communication capabilities are highly limited, e.g. when robots explore an

extraterrestrial area without reliable computing power and communication channels. Moreover,

robots’ movement is still constrained because they need to stay close to each other to obtain

inter-agent loops.

This dissertation proposes a SLAM approach using visual odometry and range measurements

(VOR-SLAM). With this method, the estimation error can be substantially reduced, without

requiring large computing power and adequate communication capabilities. In addition, VOR-

SLAM does not require additional complex infrastructure because range measurements can be

acquired employing available signals in various environments [Nikookar and Oonincx, 2016].

For example, ranges between robots can be obtained using time of flight measurements with

inter-agent communication channels. Agent-to-anchor ranges can be obtained from cellular

networks in urban areas as shown in Fig. 1.2. Additionally, low-cost ranging sensors, such as

Ultra-WideBand (UWB) ranging modules, are already available.

The followings are the main contributions of this research:

2

1. Introduction

Figure 1.2.: Urban application of cooperative VOR-SLAM using a cellular network and inter-
agent communication channels

1. Collaborative localization and mapping with fewer constraints on the mission planning

than other approaches:

Range measurements can be obtained using time of flight measurements even when robots

are widely distributed in different areas and cannot observe the same map points. Hence,

VOR-SLAM has fewer constraints on the mission planning, compared to collaborative VSLAM

using inter-agent loop closures. VOR-SLAM can be particularly useful when different types

of platforms need to conduct a mission cooperatively. For example, when a rover and a

drone carry out a task together as a swarm robotic system, a loop between two local maps

might not easily be detected because the two robots observe the scenes from different angles,

whereas range measurements can still be easily obtained between two robots using inter-agent

communication signals.

2. Few computational and communication requirements:

Collaborative VOR-SLAM requires few computational and communication capabilities because

visual information is not involved in the data fusion and optimization processes. Therefore,

VOR-SLAM is useful when robots carry out a mission with limited processing power and a

weak communication network, e.g. extraterrestrial areas as shown in Fig. 1.1. In addition, the

system architecture can be chosen flexibly for each mission (centralized or decentralized) since

no powerful server is required to process VOR-SLAM. Moreover, many more robots can be

involved in a swarm system compared to VSLAM using loop closures, which enables faster

and more efficient mission operations.

3. Accurate cooperative localization and mapping without complex additional infrastructure:

3

1. Introduction

Range measurements can be obtained without complex infrastructure. For example, inter-agent

communication channels can be used to obtain range measurements between robots, and the

signals of cellular networks can be used to acquire ranges between robots and a base station

(anchor point) in urban areas, as shown in Fig. 1.2.

4. General applications in the 3D world and intensive system evaluations using real

experimental data

In [Zhu, 2019], a SLAM method similar to VOR-SLAM was proposed for 2D scenarios. For more

general applications in the 3D world, this dissertation proposes VOR-SLAM, by improving

the 2D approach. Moreover, 2D SLAM in [Zhu, 2019] was evaluated only using synthetic data,

while VOR-SLAM is more intensively tested using both synthetic data and real experimental

data obtained in two different outdoor environments, using an onboard camera and UWB

ranging sensors.

1.2. Thesis Structure

In Chapter 2, the state-of-the-art monocular visual SLAM is reviewed. This chapter introduces

the methods to extract feature points in images, as well as map point association and map

initialization strategies. Then, the graph-based pose tracking and the local map correction

methods (visual odometry process) are explained. In addition, this chapter introduces the loop

closing technique which is the most effective method to mitigate the positioning and mapping

errors without adding a new sensor to the system. At the end of this chapter, the inherent

problems of monocular visual SLAM are discussed along with current solutions.

Chapter 3 introduces VOR-SLAM using the most simple system setup, i.e. a single agent and

an anchor point. First, the system overview and setup are explained, followed by the details of

the graph-based data fusion method. Then, VOR-SLAM is analyzed using real images of public

datasets and range measurements synthetically generated. Moreover, VOR-SLAM is tested

using real experimental data (both images and ranges) acquired in two outdoor environments,

using a camera and UWB ranging module mounted on a rover.

In Chapter 4, the state-of-the-art collaborative VSLAM are introduced, focused on the

approaches using inter-agent loop closures. First, this chapter explains the methods to efficiently

search the common map points observed by different robots (inter-agent place recognition), as

well as the multi-agent map fusion and optimization methods. In addition, the algorithms are

4

1. Introduction

analyzed in terms of computational and communication requirements.

Chapter 5 proposes a novel cooperative VOR-SLAM for swarm robotic systems. First, the

system setup and measurement models are explained. Then, the data fusion of multiple robots’

visual odometry and range measurements is detailed. Cooperative VOR-SLAM is evaluated

employing a four-agent setup in indoor and outdoor application scenarios. Finally, conclusions

are drawn in Chapter 6.

5

2. VSLAM: Visual Simultaneous Localization

and Mapping - A Review

Robots can use Visual Simultaneous Localization and Mapping (VSLAM) to estimate their

positions and orientation when exploring areas where the Global Navigation Satellite System

(GNSS) is unreliable or unavailable. The basic principle of VSLAM is shown in Fig. 2.1. The

same map point is projected at different locations in images because a camera moves to a

different location or changes its orientation. VSLAM simultaneously estimates the pose between

two cameras and the map point coordinates, using this difference of the feature point locations

in consecutive images.

The overview of VSLAM is visualized in Fig. 2.2. As reviewed in [Cadena et al., 2016],

the processes of VSLAM can be sorted into two groups: front-end and back-end. In the

front-end, useful measurements are extracted from raw images, and then converted to the

format that can be directly exploited to estimate the camera poses and reconstruct the 3D

scenes in the back-end. Direct VSLAM approaches, such as DTAM [Newcombe et al., 2011]

and LSD-SLAM [Engel et al., 2014], extracts the photometric intensity from images, which

is a multi-dimensional matrix that provides the channel information of images. Using direct

VSLAM, the 3D scenes are represented with the depth of each pixel. Instead of using all

the pixels’ intensity, feature-based VSLAM methods exploit only differentiable feature points

(e.g. corner points) as the visual information. Mono-SLAM [Davison et al., 2007], Parallel

Tracking and Mapping (PTAM) [Klein and Murray, 2007], and ORB-SLAM [Mur-Artal et al.,

2015, Mur-Artal and Tardós, 2017a] are well known feature-based SLAM methods. Using

feature-based VSLAM methods, environments are sparsely reconstructed as 3D coordinates

associated with each feature point. In addition, semi-direct methods [Forster et al., 2014, Engel

et al., 2017] use the intensity of only sparse pixel points to execute VSLAM in real-time without

requiring GPU level computing power.

After extracting visual information from raw images, the measurements are examined to

identify pixels in consecutive 2D images that are projected from the same 3D object. This is

7

2. VSLAM: Visual Simultaneous Localization and Mapping - A Review

Camera movement

Feature point difference
(u, v)→ (u′, v′)

(u, v) (u′, v′)

Figure 2.1.: The difference of feature point locations resulting from the camera motion

called place recognition or data association. In direct methods, the intensity matrices of all

pixels are compared, whereas only the descriptors of sparse feature points are compared in

feature-based methods.

The associated visual measurements are then used in the back-end to estimate camera poses

and the structure of environments. Filter-based methods, such as Mono-SLAM [Davison et al.,

2007], estimates the current camera pose and the map points observed in the current frame

as probability distributions with means and covariance matrices. All the previous camera

frames are marginalized in filter-based methods. Additionally, keyframe-based approaches

using Bundle Adjustment (BA) [Triggs et al., 1999] can be used to estimate camera poses and

map points. This method only marginalizes some parts of the image frames using sliding

windowing [Mouragnon et al., 2006, Nistér et al., 2004] or a factor graph. The image frames

remaining in the sliding window or graph are called keyframes. For example, ORB-SLAM

[Mur-Artal et al., 2015, Mur-Artal and Tardós, 2017a] and iSAM [Kaess et al., 2012, Dellaert

et al., 2017] are the state-of-the-art keyframe-based back-end of VSLAM.

VOR-SLAM employs a sparse feature-based method in the front-end since it is a SLAM

algorithm for robots with limited computing power. In addition, a keyframe- and graph-

based bundle adjustment method is used in the back-end to estimate camera poses and 3D

structures, as this method can achieve better accuracy than filtering-based methods [Strasdat

et al., 2012]. Thus, the following sections focus on the basic steps of monocular sparse feature-

and graph-based SLAM using keyframes.

8

2. VSLAM: Visual Simultaneous Localization and Mapping - A Review

Images

Visual information
extraction

Data association

Camera poses & Environment
estimation

Front-end

Back-end

Filter-based
methods

Keyframe-based
methods

Map database

Figure 2.2.: An overview of visual SLAM

2.1. Feature Extraction and Data Association

In the front-end, feature points are first extracted from raw images. Feature points are the

pixels at which the gradient of intensity is high in (almost) all directions, i.e. the intensity

differs significantly in the region surrounding the feature point. For example, the corners of

objects can be extracted as feature points as shown in Fig. 2.3.

The weighted Sum of Squared Difference (SSD) is used to examine pixels:

E(∆x) = ∑
i

w(xi)(I(xi + ∆x)− I(xi))
2, (2.1)

where I(xi) is the intensity at the pixel point xi and ∆x is a shift (change) to a neighboring

pixel. The window function w(xi) limits the search area. It returns 1 when the pixel xi is within

the area of interest, but 0 for the rest of the pixels.

Applying the Taylor expansion, Eq. (2.1) can be expanded to

E(∆x) ≈ ∆xT

{
∑

i
w(xi)∇I(xi)

T∇I(xi)

}
∆x

= ∆xTM∆x. (2.2)

9

2. VSLAM: Visual Simultaneous Localization and Mapping - A Review

Figure 2.3.: Features points extracted using the Harris-Stephenson corner detector, in the image
of the Galileo building on the Garching Campus of the Technical University of
Munich

In this equation, M is called the Harris matrix, which can be diagonalized as

M =
[

u1 u2

] λ1 0

0 λ2

u1
T

u2
T

 , (2.3)

where λ1 and λ2 are eigenvalues of the Harris matrix and u1 and u2 are eigenvectors corre-

sponding to the eigenvalues. As shown in Eq. (2.2), the weighted SSD is quadratic to the pixel

change ∆x with the Harris matrix M as the structure tensor (second-moment matrix). Thus, the

following ellipse defined with the eigenvalues (λ1, λ2) and eigenvectors (u1, u2) of the Harris

matrix M can be used to gain an intuitive view of the gradient’s shape:

(u1
T∆x)2(
1

λ1

)2 +
(u2

T∆x)2(
1

λ2

)2 = constant (2.4)

The eigenvectors are the axes of this ellipse, and they show the direction of the gradient changes.

10

2. VSLAM: Visual Simultaneous Localization and Mapping - A Review

The eigenvalues represent the level of intensity changes in the corresponding directions. By

examining the eigenvalues, the pixels can be sorted into three groups: flat, edge, and corner.

When a pixel is located on a flat surface (e.g. white wall), both eigenvalues of the Harris matrix

are small. The pixels located on edges have one large and one small eigenvalues, so the ellipse

is eccentric. When pixels are located on corner points, both eigenvalues of the Harris matrix

are large, so the ellipse is small and circle-like.

Feature detectors Harris-Stephenson corner detector [Harris et al., 1988] uses the following

value r(M) computed with the eigenvalues of the Harris matrix M to detect corners as feature

points:

r(M) = λ1λ2 − α(λ1 + λ2)
2

= det(M)− α(tr(M)2),

where α is an empirical design factor (0.04 < α < 0.06). If r(M) is larger than the threshold,

the pixel is recognized as a feature point. Fig. 2.3 shows the feature points extracted using

the Harris-Stephenson corner detector in the image of the Galileo building on the Garching

Campus of the Technical University of Munich.

Instead of using both eigenvalues of the Harris matrix, Shi-Tomasi detector [Shi et al., 1994]

only examines the smaller eigenvalue. In this method, the pixels are accepted as feature points

when the minimum eigenvalue is greater than the criteria. Both the Harris-Stephenson corner

detector and Shi-Tomasi detector can extract the same feature points after the images have

been rotated (rotation invariant) because the magnitude of the Harris matrix’s eigenvalues are

not changed after the images are rotated. However, these methods cannot extract the same

features in the original images when the image is scaled (scale variant).

To resolve this scale variant problem, the Scale-Invariant Feature Transform (SIFT) [Lowe,

2004] proposes to search feature points in multiple scales by filtering the intensity I(xi, σ) in

the scale space using the Gaussian kernel G(xi, σ)):

D(xi, σ) = (G(xi, kσ)− G(xi, σ)) ∗ I(xi, σ).

D(xi, σ) is called the Difference of Gaussian (DoG), and the image scale is adjusted with σ.

When images are blurred by setting σ to a large value, big corners in wider views can be

detected. Each pixel’s DoG is compared with the surrounding 8 pixels on the same scale and

11

2. VSLAM: Visual Simultaneous Localization and Mapping - A Review

Table 2.1.: Summary of feature detectors introduced in this section
Algorithm Rotation Scale Remarks

Harris [Harris et al., 1988] Inv. Var. -
Shi-Tomasi [Shi et al., 1994] Inv. Var. -

SIFT [Lowe, 2004] Inv. Inv. -
SURF [Bay et al., 2008] Inv. Inv. Faster SIFT

FAST [Rosten and Drummond, 2006] Inv. Var. -
BRISK [Leutenegger et al., 2011] Inv. Inv. Scale invariant FAST

the 9 pixels of the upper and lower scales, and then a pixel is recognized as a feature point

when its DoG is a local extrema. SIFT can extract feature points accurately, but it requires

significant computing power, as it compares pixels across multiple scales.

Speeded Up Robust Features (SURF) [Bay et al., 2008] is a faster feature detector that requires

less computing power than SIFT. Instead of comparing pixels to pixels, the SURF detector uses

the integral of the image intensity to speed up the computational process. In addition, this

method is more robust to image transformation compared to the SIFT detector.

Features from Accelerated Segment Test (FAST), proposed in [Rosten and Drummond, 2006],

can detect feature points faster than SURF. This method examines the image intensity of the

16 pixels surrounding each pixel, evaluating whether the intensities of at least 12 contiguous

pixels are greater than the intensity at the center pixel.

Although features can be extracted much quicker with FAST, it is scale variant. To address

this, Binary Robust Invariant Scalable Keypoints (BRISK) [Leutenegger et al., 2011] examines

images still in multiple scales (as SIFT), while retaining the binary searching method of FAST.

All the feature detectors introduced in this section are summarized in Table 2.1.

Feature descriptors Each feature point is stored with its descriptor, which contains a function

of the pixel intensity values in a region surrounding the feature point. The SIFT descriptor

stores the non-binary information of 16× 16 neighboring pixels. These pixels are sorted into

4× 4 sized subgroups, and each group is represented by an orientation histogram with 8 bins.

Consequently, 4× 4× 8 numbers represent one feature point. The SURF descriptor [Bay et al.,

2008] speeds up this process by comparing the integral of image gradients. In addition, the

FAST descriptors converts the intensity values of 16 surrounding pixels to ± tags, and uses

these tags as the descriptors.

Although features can be accurately matched with these non-binary descriptors, extensive

computing power and large memory are required to create and match them. Binary descriptors

12

2. VSLAM: Visual Simultaneous Localization and Mapping - A Review

Figure 2.4.: Feature points matched using ORB, in the image of the Hochschule für Musik und
Theater München, Munich

can be used to increase computation and memory efficiency. First, all non-binary information

of the pixels is converted into 1s and 0s. Then, the similarity of two feature points can be

simply computed as the hamming distance between two binary descriptors, which requires

much less computing power than non-binary descriptors. For instance, the BRISK descriptor

consists of the binary strings that result from the intensity comparison between the central

feature point and a large number of pixels located on a series of concentric circles, centered

at the feature location. Binary Robust Independent Elementary Features (BRIEF) descriptor

describes each feature point using a set of feature vectors that represent the pixel intensity of

the image patch including the feature point. The size of the BRIEF descriptor can be set as 16

or 32 or 64 bytes. Oriented FAST and Rotated BRIEF (ORB) is a combination of the FAST and

Harris feature detectors with the BRIEF descriptor. The feature points are searched using FAST

and Harris detectors at multiple image scales (scale invariant), and the features are described

with the rBRIEF descriptor (32 bytes) which is the BRIEF descriptor with greater robustness to

image rotation. Fig. 2.4 shows the feature points detected and associated using ORB, in the

image of the Hochschule für Musik und Theater München, Munich.

Fast image classification and place recognition Before carrying out feature-to-feature compar-

ison employing descriptors, similar images are classified into subgroups by place recognition

(fast classification). Then, brute-force searches using feature descriptors need to be conducted

only in the subgroups, which requires much less computing power. For the image classification,

a hierarchical Bag of Words (BoW) model [Nister and Stewenius, 2006] can be applied. In this

model, descriptors in each image are converted into a sparse numerical vector using visual

vocabularies. As shown in Fig. 2.5, a visual vocabulary tree is created by the hierarchical

13

2. VSLAM: Visual Simultaneous Localization and Mapping - A Review

Image

Descriptors

Visual vector/
Histogram

kL dimension
for k groups, L levels tree

kL × 1 vector or kL bins histogram
representing the image

Comparison with
vocabulary tree

Feature extraction
Descriptors

Offline process Online process

Training images

Feature extraction

Clustering

Vocabulary
tree

Figure 2.5.: An overview of the Bag of Words (BoW) method

recursive quantization of descriptors in the offline process. The descriptors of training images

are sorted into k clusters, and each cluster is partitioned again into k subgroups. After repeating

this clustering process L times, an L-level vocabulary tree is created. The size of the vocabulary

tree generated with this process is DkL bytes for the D-dimensional descriptor, e.g. D = 128 if

the SIFT descriptor is used to extract feature points in images.

After the vocabulary tree is created, the real time online process can be started to sort the

incoming images into subgroups. The descriptors of the feature points detected in incoming

images are compared to the vocabulary tree’s root and the leaf nodes. At the end of the process,

each image is represented as a visual vector v in the kL dimension or as a histogram with

kL bins. The i-th element of the visual vector vi (or the value of the i-th bin) is described as

vi = niωi, where ni is the number of descriptors that select the i-th node as the closest node,

and ωi is the weight of the node. Bags of Binary Words (DBoW) [Gálvez-López and Tardos,

2012] is an example of the BoW model created using binary descriptors. The visual vector

represents each image’s characteristics, so the hamming distance between two sparse vectors

v1 and v2 can represent the similarity of two images:

s(v1, v2) =

∥∥∥∥ v1

||v1||
− v2

||v2||

∥∥∥∥ . (2.5)

14

2. VSLAM: Visual Simultaneous Localization and Mapping - A Review

2.2. Map Initialization

When enough sets of feature point matches have been found between two different images,

the relative pose between the camera frames can be estimated employing RANdom SAmple

Consensus (RANSAC). Additionally, the 3D coordinates of map points can be estimated by

back-projecting the feature matches from the 2D image frame to 3D space.

Fundamental matrix estimation with RANSAC As shown in Fig. 2.6, a 3× 3 fundamental

matrix F is first estimated using the feature matches. The fundamental matrix has a following

relationship with the feature matches:

x̃iT
′ Fx̃i = 0, (2.6)

where x̃i and x̃i
′ are homogeneous coordinates of the feature in the first image and the feature

match in the second image, respectively, i.e. x̃i = [xi, yi, 1]T when xi and yi are the X and Y

coordinates of the feature in the first image.

Eq. (2.6) can be re-written as

[
x′1x1 x′1y1 x′1 y′1x1 y′1y1 y′1 x1 y1 1

]
f = 0, (2.7)

where f is a 9 × 1 vector consisting of the fundamental matrix’s elements fij, i.e. f =[
f11 f12 f13 f21 f22 f23 f31 f32 f33

]T

. This vector is 7DoF (not 9DoF) because the fun-

damental matrix is homogeneous and rank deficient. When M feature matches are found

between two images, Eq. (2.7) can be expanded to


x′1x1 x′1y1 x′1 y′1x1 y′1y1 y′1 x1 y1 1

...
...

...
...

...
...

...
...

...

x′MxM x′MyM x′M y′MxM y′MyM y′M xM yM 1


︸ ︷︷ ︸

M×9

f = 0

⇔ Af = 0. (2.8)

An intermediate solution of Eq. (2.8) can be estimated employing the 8-point algorithm, as

proposed in [Hartley, 1997]. Although f is 7DoF, more than seven sets of feature matches are

used to estimate the vector because errors exist in feature matching and feature point locations.

15

2. VSLAM: Visual Simultaneous Localization and Mapping - A Review

Map points Xi

Feature points xi Feature points x′i

Fundanmental matrix F

Essential matrix E

Relative pose P

Feature matches
(

xi, x
′
i

)

Back-projection

Figure 2.6.: Relative pose estimation between two image frames using the feature point matches
and back-projection of map points

First, a least-square problem is defined using A in Eq. (2.8):

f∗ = argmin
f
||Af||2. (2.9)

This problem can be deterministically solved using the Singular Value Decomposition (SVD).

When A is decomposed as A = UW(V)T, the solution of Eq. (2.9) is the eigenvector vi of A

corresponding to the smallest eigenvalue. Using this intermediate solution f∗, a 3× 3 matrix

F∗ is built as

F∗ =


f ∗11 f ∗12 f ∗13

f ∗21 f ∗22 f ∗23

f ∗31 f ∗32 f ∗33

 . (2.10)

Then, another least-square problem is defined, considering the fundamental matrix’s constraint,

det F = 0:

F̂ = argmin
det F=0

||F − F∗||2. (2.11)

16

2. VSLAM: Visual Simultaneous Localization and Mapping - A Review

After estimating the solution of this least-square problem, F̂ is decomposed as

F̂ = U


σ1 0 0

0 σ2 0

0 0 σ3

 (V)T, (2.12)

and then σ3 is replaced to 0 to ensure the rank deficiency of the fundamental matrix:

F̂ = U


σ1 0 0

0 σ2 0

0 0 0

 (V)T. (2.13)

The following cost is computed using each feature match (x̃i, x̃i
′) and the fundamental matrix

F̂ estimated as Eq. (2.13) to sort only the inliers out of the M feature matches:

F (x̃i, x̃i
′, F̂) = d2(x̃i, x̃i

∗, F̂) + d2(x̃i
′, x̃i

′∗, F̂). (2.14)

In this equation, the feature location x̃i
∗ is obtained by projecting the feature point in the second

image x̃i
′ to the first image using F̂. Similarly, x̃i

′∗ is computed using the feature point in the first

image x̃i and F̂. The squared distance between x̃i and x̃i
∗ is denoted with d2(x̃i, x̃i

∗, F̂). Feature

match (x̃i, x̃i
′) is sorted as an outlier when the cost F (x̃i, x̃i

′, F̂) is greater than the threshold. F̂ is

accepted as a solution only when the total number of the inliers is sufficient. When sufficient

inliers are found, the fundamental matrix is re-estimated with LSE using only the inliers:

F̂ = argmin
F

d2(x̃i, x̃i
∗, F) + d2(x̃i

′, x̃i
′∗, F). (2.15)

Essential matrix and relative pose estimation After the fundamental matrix has been suc-

cessfully estimated, the first camera frame is defined as the reference frame of VSLAM, i.e. the

first frame’s camera pose matrix is defined as

P1 =

I3 0

0 1

 .

17

2. VSLAM: Visual Simultaneous Localization and Mapping - A Review

Then, the relative pose from the first camera frame to the second one P21 can be defined as the

pose matrix of the second camera frame:

P2 = P21 =

R21 t21

0 1

 .

The essential matrix E needs to be estimated to determine the rotation matrix R21 and the

translation vector t21. The essential matrix has the following relationship with the fundamental

matrix F:

E = (K′)TFK, (2.16)

where K is the camera calibration matrix. When the essential matrix is decomposed by SVD as

E = U


σ 0 0

0 σ 0

0 0 0

 (V)T,

four sets of rotation and translation can be obtained as the candidates:

(a) R21 = UWVT, t21 = u3

(b) R21 = UWTVT, t21 = u3

(c) R21 = UWVT, t21 = −u3

(d) R21 = UWTVT, t21 = −u3

The DLT algorithm [Abdel-Aziz et al., 2015] can be used to select one of the rotation matrix

and translation vector sets. First, feature point matches are back-projected to 3D space using

each candidate. Then, one of the candidates is selected when the most points back-projected to

3D space are located in front of both image frames. The points back-projected to 3D space are

stored as map points.

In addition, Global Bundle Adjustment (GBA) [Mur-Artal et al., 2015, Mur-Artal and Tardós,

2017a] can be run to obtain more accurate camera poses and map points coordinates. A factor

graph is created including two camera frames’ poses and the initial set of map points as state

variables. Then, the LSE is executed to find the optimal poses and map point coordinates that

minimize the sum of the squared re-projection error.

18

2. VSLAM: Visual Simultaneous Localization and Mapping - A Review

2.3. Tracking, Local Mapping, and Loop Closing

Once the map is successfully initialized, the VSLAM’s back-end starts to sequentially estimate

the camera poses using the previous pose estimates as well as the map points observed in

the previous images (tracking). In addition, new map points are created by back-projecting

the feature matches newly found between the current image and the previous images. The

camera pose and map point estimation errors are accumulated over time because tracking is

a dead-reckoning process. The errors are reduced using feature points observations. Only

the latest camera poses and map points observed in those camera frames are involved in the

process to avoid computational overload (local mapping). Loop closures can be additionally

run to obtain more accurate estimates. Tracking, local mapping, and loop closures are run

separately (not sequentially) using different processing units (multi-threading), as proposed in

Parallel Tracking and Mapping (PTAM) [Klein and Murray, 2007].

Tracking For the tracking process, the features observed in the current image are compared

to the features observed in the previous image. A search window can be set when the robot’s

motion model is available [Mur-Artal and Tardós, 2017a]. First, the current camera pose is

predicted using the camera motion model. Then, each map point observed in the previous

image is projected to the current frame using the predicted pose, as can be seen in Fig. 2.7.

A search window is set in the current image as a circle centered on the projected point, and

then only the feature points inside of the search window are examined. This is a much

efficient method than examining the entire feature points observed in the current image. When

sufficient feature matches are not found using this approach, the camera has to localize itself

by examining all the map points stored in the database, which requires substantial computing

power.

As shown in Fig. 2.8a, a factor graph is created including the current camera pose Ti and

map point observations Xj when sufficient feature matches are detected. Only the current

camera pose is set as the state variable in this graph. The feature point observations of map

points are depicted as the lines between the camera pose and map points. The least-square

problem is defined using this graph to find the optimal current camera pose T̂i that minimizes

the sum of the squared re-projection errors:

T̂i = argmin
Ti

∑
j
∥xj − π(Ti, Xj)∥2

Σj
, (2.17)

19

2. VSLAM: Visual Simultaneous Localization and Mapping - A Review

Search window

Predicted
feature location

Map point projection
using the predicted pose
of the current image frame

Previous image frame Current image frame

True feature location

Figure 2.7.: Search window setting to detect the feature match in the current image frame

where xj denotes the 2D feature point location in the current frame associated with the j-th

map point Xj. The function π(Ti, Xj) computes the pixel location projected from the map point

Xj to the current image using the current pose Ti as

π(Ti, Xj) =

 fu
xj
zj
+ cu

fv
yj
zj
+ cv

 ,

where (fu, fv) and (cu, cv) are the focal length and the principle point of the camera, respectively,

and [xj, yj, zj]
T = RiXj + ti.

Keyframes selection and new map points estimation To manage the data size, only the

camera frames observing distinctive feature points are stored in the database, as proposed in

[Mur-Artal et al., 2015, Mur-Artal and Tardós, 2017a]. These frames are called keyframes, and

each keyframe is saved with its covisibility graph which includes the keyframes observing the

common map points. The connections between the keyframes in the covisibility graph are

weighted by the similarity score. The more common map points two keyframes observe, the

higher weight is set between them. When the current image frame is selected as a keyframe,

new map points are created by back-projecting the feature point matches that are newly found

between the current keyframe and the previous keyframes.

Local mapping The tracking process consecutively estimates the camera poses subject to

the previous pose estimates, so the error is accumulated over time. Moreover, map points

are only exploited as measurements, but not updated (not set as the state variables) in the

20

2. VSLAM: Visual Simultaneous Localization and Mapping - A Review

Map points

Camera poses

. . .

. . .
T0 T1

X0 X1 X2

Ti−2 Ti−1

Xj−4 Xj−3 Xj−2 Xj−1 Xj

Ti

(a) A factor graph created for tracking. Only the current camera pose is set as the state variable

Map points

Camera poses

. . .

. . .
T0 T1

X0 X1 X2

Ti−2 Ti−1

Xj−4 Xj−3 Xj−2 Xj−1 Xj

Ti

Sliding window

(b) A factor graph created for local mapping. The keyframe poses in the sliding window and the map
points observed in those keyframes are set as the state variables

Figure 2.8.: Factor graphs created for tracking and local mapping. Blue circular nodes are the
state variables, and black circular nodes and lines are measurements. All the others
in gray are not involved in the processes

tracking process. Thus, an additional process is required to mitigate the estimation errors of the

keyframe poses and map point coordinates. It is computationally challenging to continuously

process all the keyframes and map points stored in the database, so the factor graph is

marginalized using a sliding window as can be seen in Fig. 2.8b. The keyframes’ poses Ti in

the sliding window are set as the state variables, as well as the map points Xj observed in those

keyframes. Then, the following least-square problem is defined employing this factor graph:

T̂i, X̂j = argmin
Ti,X

j
∑

i
∑

j
∥xj − π(Ti, Xj)∥2

Σj
. (2.18)

Loop Closing Local mapping copes with only the most recent keyframes and the map

points observed in them, so the estimation errors are indefinitely accumulated over time. As

21

2. VSLAM: Visual Simultaneous Localization and Mapping - A Review

proposed in [Mur-Artal and Tardós, 2014, Mur-Artal et al., 2015], the loop closing technique

can substantially mitigate the estimation errors using the map points observed at the initial

phase of the mission. The map point coordinates are more accurate at the initial phase than

the ones recently estimated since the estimation errors are not significantly accumulated at the

beginning of the mission.

First, the database is examined using fast association to find loop candidate keyframes that

observe a similar scene as the current keyframe. Then, a one-to-one map point comparison

is carried out only between the loop candidates and the current keyframe. When sufficient

matches are found between the current keyframe and each loop candidate, the 7DoF relative

pose matrix from the current keyframe to each loop candidate ŜClCi
is estimated using the

Horn’s method [Horn, 1987].

The outliers of the map point matches are sorted using RANSAC. The projection error of

each map point is computed using the following function:

ek
i = xk

i − π(ŜClCi
, Xk

l) (2.19)

ek
l = xk

l − π(ŜClCi
, Xk

i). (2.20)

The k-th map point’s coordinates with respect to the loop candidate keyframe is denoted as

Xk
l in Eq. (2.19). As can be seen in Fig. 2.9, xk

i is the 2D feature measurement’s location in

the current keyframe associated to the k-th map point, while π(SClCi
, Xk

l) is the 2D location

projected from Xk
l to the current keyframe using ŜClCi

. The difference between the two locations

is ek
c. Similarly, Eq. (2.20) computes the projection error in the loop candidate keyframe. The

k-th map point is accepted as an inlier when both projection errors Eq. (2.19) and Eq. (2.20) are

smaller than the criteria. The loop candidate that ensures the most inliers is selected as the

final loop keyframe.

The relative pose matrix from the current keyframe to the final loop keyframe is re-estimated

only using the inliers. Then, the current keyframe pose Ti is converted to the 7DoF similarity

matrix Si using the relative pose estimate ŜClCi
and the loop keyframe’s pose with respect to

the VSLAM’s local reference frame TClL
, i.e. Si = ŜCiCl

TClL
. The other keyframes’ poses are also

converted to the 7DoF matrices using the relative poses from the current keyframe to the other

SCjCi
and the 7DoF current keyframe pose Si, i.e. Sj = SCjCi

Si.

A factor graph is created including only the 7DoF keyframe poses Si as the state variables

(blue circular nodes), as shown in Fig. 2.10a. Odometry measurements between the keyframes

22

2. VSLAM: Visual Simultaneous Localization and Mapping - A Review

Projection using
the relative pose estimate

Loop candidate

Current keyframe

Xk
l

kth map point

Projection error

Measured
feature location xk

i

Projected
feature location π

(
ŜClCi , Xk

l

)

Figure 2.9.: Projection error: the difference between the feature location measured in the
current keyframe xk

i and the location projected from the map point into the current
keyframe π(ŜClCi

, Xk
l)

are added as the black lines, and the relative pose from the current keyframe to the loop

keyframe is also added as the loop measurement between two keyframes. LSE is applied to

find the optimal keyframe poses that minimize the sum of the odometry and loop measurement

errors.

Furthermore, Global Bundle Adjustment (GBA) is run to obtain more accurate keyframe

poses and map point coordinates. Fig. 2.10b shows the factor graph created for GBA in which

all the keyframes and map points in the map database are set as the state variables (blue

nodes). The feature point observations of the map points are added as the measurement factors

between the keyframe and map point nodes (black lines). Global Bundle Adjustment (GBA) is

used to find the optimal keyframe poses and map point coordinates that minimize the sum of

the squared re-projection errors of the feature point measurements depicted in the graph.

2.4. Scale Ambiguity Problem of Monocular VSLAM

The absolute scale of camera positions and map point coordinates cannot be estimated only

using a monocular camera. Fig. 2.11 shows this inherent scale ambiguity problem of monocular

VSLAM. The distance b between the previous camera frame and current camera frame cannot

be measured using a monocular camera, so the camera position and map point coordinates can

be estimated only up-to-scale, i.e. the current camera frame could be located at any position on

23

2. VSLAM: Visual Simultaneous Localization and Mapping - A Review

Map points

Camera poses

. . .

. . .
S1 S2

X0 X1 X2

Si−2 Si−1

Xk−4 Xk−3 Xk−2 Xk−1 Xk

Si

Loop keyframe

Common map point observations

(a) A factor graph created to optimize only the keyframe poses before running GBA. The keyframe
poses are set as the state variables, and odometry measurements are added between them. The
relative pose between the current keyframe and loop keyframe is also added as a measurement factor

Map points

Camera poses

. . .

. . .
T1 T2

X0 X1 X2

Ti−2 Ti−1

Xk−4 Xk−3 Xk−2 Xk−1 Xk

Ti

(b) A factor graph created for GBA. All the keyframe poses map points are set as the state variables

Figure 2.10.: Factor graphs created for loop closing. Blue circular nodes are the state variables,
and black circular nodes and lines are measurements. The gray nodes and lines
are not involved in the processes

the blue line, and the map point could be located at any point on the red line.

A stereo camera can be used to resolve this problem since the distance between the left and

right cameras of a rig is fixed and known, unlike a monocular camera. The absolute scale

(depth) of the camera position map point coordinates can be estimated using the baseline

length b of a stereo rig. However, the absolute scale can be inaccurately estimated, as the scale

estimation accuracy is proportional to the squared distance from the camera to the map point

and disproportional to the baseline length [Olson and Abi-Rached, 2010]. The stereo camera’s

baseline length cannot be extended significantly due to the hardware limitation, so the scale

estimate can be very inaccurate when map points are located far from the camera.

Additionally, other types of sensors providing absolute measurements (e.g. Inertial Measure-

24

2. VSLAM: Visual Simultaneous Localization and Mapping - A Review

Previous
camera frame

True map point

b

m′

m′′

c′

c′′

Current
camera frame

Figure 2.11.: Scale ambiguity problem of monocular VSLAM: the distance b between the
previous and current cameras is unknown, so the current camera frame could be
located at any position on the blue line, and the map point could be located at
any point on the red line

ment Unit (IMU) and GNSS) can be also used to resolve the inherent problem of monocular

VSLAM. The following chapter proposes the fusion of visual odometry and range measure-

ments to accurately estimate the camera poses and map point coordinates without the inherent

scale ambiguity.

25

3. VOR-SLAM: SLAM using Visual Odometry

and Range Measurements

Robots can employ VSLAM for their self-localization and mapping when GNSS is unavailable

or unreliable. When a monocular camera is exploited for VSLAM, the robot’s poses and map

points can be estimated only up-to-scale since no absolute measurements are available. A stereo

camera with a fixed and known baseline length can be used to resolve this scale ambiguity

problem, but due to its short baseline length, stereo VSLAM cannot accurately estimate the

absolute scale when the robot observes distant objects. Alternatively, Visual-INertial System

(VINS) can be used to solve the scale ambiguity problem as proposed in [Qin et al., 2018, Mur-

Artal and Tardós, 2017b]. However, the estimation errors of camera poses and map points are

accumulated over time without a bound, as SLAM using VINS is a dead-reckoning process.

The loop closing technique can be applied to mitigate the estimation errors, but it requires the

robot to travel back to the previous locations to detect a loop. Moreover, a big storage unit and

large computing power are needed to fuse the map.

Data fusion of ranges and visual measurements is proposed to accurately estimate robot’s

poses and create a map with much fewer computational requirements. For instance, an

EKF-based data fusion of visual, inertial, and UWB ranges measurements is proposed in

[Benini et al., 2013], showing the cm-level positioning accuracy for indoor applications with

quadcopters. In addition, tightly-coupled and graph-based data fusion methods are proposed

in [Shi et al., 2018, Wang et al., 2017], and these algorithms are demonstrated with public image

datasets and UWB ranges.

This chapter proposes a graph-based SLAM using visual odometry and range measurements

(VOR-SLAM), which is the improved work from my previous research in [Lee et al., 2018a, Lee

et al., 2018b]. Instead of using visual measurements, such as feature points, VOR-SLAM only

exploits monocular visual odometry (6DoF) and range measurements (1DoF, scalar values) to

estimate the robot’s poses and map points, so it needs much less computing power compared to

VSLAM using the loop closing technique. Moreover, range measurements can be obtained using

27

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements

available signals in many environments, without requiring complex additional infrastructure.

For example, cellular networks, such as 5G links, can be used to acquire range measurements

in urban areas, as reviewed in [Nikookar and Oonincx, 2016].

In the following section, the system architecture is first introduced, as well as the prediction

models of visual odometry and range measurements, and then the data fusion and map point

update methods are detailed. The system’s estimation accuracy and computational requirement

are analyzed with both public image datasets, and demonstrated with experimental data which

is obtained in two different outdoor environments (football field and gravel pit).

3.1. System Overview and Measurement Prediction Models

As shown in Fig. 3.1, first, feature points are detected from raw images, and then associated

(matched) in the front-end. In addition, ranges are obtained with the Time of Flight (ToF)

measurements of the signals transmitted and received between the tag and the anchor point

(two way ranging). Using the feature matches provided from the front-end, visual odometry

(pose tracking and local mapping) estimates the camera poses, creates new map points, and

optimizes the latest camera poses and map points by local bundle adjustments. To maintain

the database size, only the keyframes’ poses are stored, as well as the map points observed

in the keyframes. Visual-range data fusion is executed only using the keyframes data and

ranges (without map points) to mitigate the estimation error and resolve the scale ambiguity of

monocular VSLAM. The map points coordinates are updated after the data fusion using the

differences between the keyframe poses before and after the fusion. In this research project,

the open source code of ORB-SLAM [Mur-Artal et al., 2015, Mur-Artal and Tardós, 2017a] is

employed (without loop closing), but any other VSLAM methods can be used to obtain the

odometry measurements.

Fig. 3.2 illustrates the system setup with the mathematical notations. A camera Ci and an

onboard ranging-tag sensor Ti are mounted on the robot. The local frame is set as the VSLAM’s

reference frame, which coincides with the initial pose of the camera frame. The local frame’s

front direction is the Z-axis, and the direction from the left camera to the right camera is the

X-axis. The global frame is defined as the local frame rotated 90◦ with respect to its X-direction

because the local frame’s XZ-plane is the horizontal plane (not conventional). The relative pose

28

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements

Camera Tag Anchor

Feature detection

Map points
update

Data association

Pose
tracking

Local
mapping

Visual-range
fusion

Front-end

Back-end

Range
computation

ToF

Database

Map points RangesKeyframes

Figure 3.1.: The system overview of VOR-SLAM

from the local frame to the global frame SGL is

SGL =

RGL tLG

01×3 (sGL)
−1


=

RX(−90◦) 03×1

0 (sGL)
−1

 . (3.21)

RGL and tLG are the rotation matrix and the translation vector from the local frame to the global

frame, respectively. The scale difference from the local frame to the global frame is denoted as

sGL.

The 7DoF camera pose with respect to the global frame Sti
GC is defined by multiplying the

6DoF camera local pose Tti
LC and the 7DoF relative similarity matrix from the local to the global

29

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements

time t0

Local frame (L)
XL

ZL

Global frame (G) XG

YG

Anchor(A)

time ti

Camera (Ci)

Tag (Ti)

XC

ZC

time tj

Camera (Cj)Tag (Tj)

XC

ZC

pGA

pCT

pCT

Sti
GC

zij
odo

zi
r

zj
r

Figure 3.2.: A single rover with an onboard camera and ranging tag. The camera pose with
respect to the global frame is denoted with St

GC (orange). The visual odometry
measurement between ti and tj is denoted with zij

odo (green), and the range measure-
ments at ti is denoted as zi

r (blue).

frame SGL:

Sti
GC = SGLTti

LC =

RGL tLG

01×3 (sGL)
−1

Rti
LC tti

CL

01×3 1


=

RGLRti
LC RGLtti

CL + tLG

01×3 (sti
GL)

−1


=

Rti
GC tti

CG

01×3 (sti
GC)

−1

 . (3.22)

The state variables of VOR-SLAM are the 7DoF keyframe poses at all timestamps:

Θ =
[
St1

GC, St2
GC, . . . , StN

GC

]
. (3.23)

The measurements of VOR-SLAM are modeled with a function h(Θ) with zero mean

Gaussian noise η ∼ N (0, Σ):

z = h(Θ) + η.

30

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements

First, range measurements between the onboard ranging-tag module and the anchor at ti (blue

in Fig. 3.2) is model as

hi
r(S

ti
GC) = ||Cpti

TA|| = || − pCT + pti
CG + CpGA||, (3.24)

where CpGA is the position vector from the global frame to the anchor with respect to the camera

frame. In addition, Cpti
TA is the first three elements of the homogeneous vector Cp̃ti

TA with respect

to the camera frame with the scale factor sti
CG:

Cp̃ti
TA =

 Cpti
TA(

sti
CG

)−1

 =

Rti
CG tti

GC

0
(

sti
CG

)−1

pGA

1

−
 pCT(

sti
CG

)−1


=
(

Sti
GC

)−1

p̃GA − p̃CT

= p̃t
CA − p̃CT. (3.25)

The anchor position in the global frame pGA is assumed to be known to users, as well as the

position vector from the camera to the ranging-tag pCT. The ranging errors can be simply

defined as the difference between the measurement zi
r and the value computed with the model:

ei
r(S

ti
GC, zi

rr) = hi
r(S

ti
GC)− zi

r. (3.26)

The odometry measurement between ti and tj (green in Fig. 3.2) is modeled as the 4× 4

matrix that is the multiplication of the 6DoF camera poses with respect to the local frame at ti

and tj:

hij
odo(S

ti
GC, S

tj
GC) =

(
Sti

GC

)−1

S
tj
GC

=
(

SGLTti
LC

)−1 (
SGLT

tj
LC

)
=
(

Tti
LC

)−1

T
tj
LC. (3.27)

The error between the the odometry measurement zij
odo and the predicted one hij

odo(S
ti
GC, S

tj
GC) is

described with the 4× 4 error matrix:

Eij
odo(S

ti
GC, S

tj
GC, zij

vo) = (zij
vo)
−1 hij

vo(S
ti
GC, S

tj
GC). (3.28)

This error matrix can be to be converted to the 7× 1 twist coordinates (vector) using the

31

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements

logarithmic relationship between the twist coordinates and Lie group matrices as described in

Eq. (A.90):

eij
odo(S

ti
GC, S

tj
GC, zij

vo) = ln
(
(zij

vo)
−1 hij

vo(S
ti
GC, S

tj
GC)
)

. (3.29)

A prior knowledge can be described with the state variable of the first pose Ŝt1
GC, i.e.

hpri(S
t1
GC) = Ŝt1

GC, and the error matrix of the prior knowledge can be defined in Sim(3) as

Epri(S
t1
GC) =

(
zpri

)−1 hpri(S
t1
GC). (3.30)

Similar to the odometry measurements, this error matrix can be converted to the 7× 1 twist

coordinates using logarithmic mapping, so the errors between the predicted values and the

measurements can be described as 7× 1 vectors:

epri(S
t1
GC) = ln

((
zpri

)−1 hpri(S
t1
GC)
)

. (3.31)

3.2. Visual-Range Data Fusion and Map Points Update

Fig. 3.3 shows the factor graph created for the visual-range data fusion. The state variables

Sti
GC are illustrated as the circular nodes, and the conditional probability density of the states

given the measurements (measurement factors) are depicted as the black dots between or at

the nodes. For instance, the odometry factors ϕij
odo are the likelihood of the state variables, Sti

GC

and S
tj
GC, given the odometry measurements zij

odo, so these factors are depicted as the binary

factors between the nodes. Assuming the zero-mean Gaussian noise with the covariance Σvo,

the odometry factors can be defined as

ϕij
odo = l(Sti

GC, S
tj
GC|zij

vo) ∝ exp{−1
2
||eij

odo(S
ti
GC, S

tj
GC, zij

odo)||2Σodo
}. (3.32)

The prior factor ϕpri is the conditional probability density of the initial camera pose St1
GC, given

the current best estimate of the initial pose, so it is depicted as the unary factor at the initial

camera pose. With the zero-mean Gaussian noise assumption, the prior factor is defined as

ϕpri = P(St1
GC|zpri) ∝ exp{−1

2
||epri(S

t1
GC, zpri)||2Σpri

}. (3.33)

32

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements

St1
GC St2

GC St3
GC St4

GCϕpri ϕ12
odo ϕ23

odo ϕ34
odo

ϕ1
r ϕ2

r ϕ4
r

Figure 3.3.: The factor graph including the state variables Sti
GC (circular nodes). The prior

factor ϕpri is depicted at the first keyframe, the odometry factors ϕij
odo are illustrated

between two circular nodes. Range factors ϕi
r are depicted at three keyframes which

obtain range measurements

In addition, range factors ϕi
r are added at each node whenever the range measurement is

available. This factor is defined as the likelihood of the state Sti
GC, given the range measurement

zi
r. Similar to the other measurement factors, the range factor is described as

ϕi
r = l(Sti

GC|zi
r) ∝ exp{−1

2
||ei

r(S
ti
GC, zi

r)||2Σr}, (3.34)

with the zero-mean Gaussian noise assumption.

The state variables are estimated using the Maximum A Posteriori (MAP) approach with all

the factors in the graph shown in Fig. 3.3:

Θ̂ = argmax
Θ

ϕpri ∏
i,j

ϕij
odo ∏

l
ϕl

r. (3.35)

Assuming constant a priori and zero-mean Gaussian noise in the measurements, this MAP

is equivalent to the weighted Least Squares Estimation (LSE) that minimizes the sum of the

squared measurement errors:

Θ̂ = argmin
Θ

(
epri(S

t1
GC, zpri)

)T

Σ−1
priepri(S

t1
GC, zpri)︸ ︷︷ ︸

a prior error

+ ∑
i,j

(
eij

odo(S
ti
GC, S

tj
GC, zij

odo)
)T

Σ−1
odoe

ij
odo(S

ti
GC, S

tj
GC, zij

odo)︸ ︷︷ ︸
visual odometry measurement errors

+ ∑
l

(
el

r(S
tl
GC, zl

r)
)T

Σ−1
r er(S

tl
GC, zl

r)︸ ︷︷ ︸
range measurement errors

≜ argmin
Θ

F (Θ, Z) (3.36)

This nonlinear LSE is solved using the Levenberg-Marquardt algorithm [Levenberg, 1944,

Marquardt, 1963]. The algorithm iteratively estimates the camera poses in the vector format,

33

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements

i.e. the 7× 1 twist coordinates

∆θ̂ =
[
∆ξ̂

t1
GC, . . . , ∆ξ̂

tN
GC

]
, (3.37)

by solving the following equation

(H + dI)∆θ̂ = −b. (3.38)

When N is the total number of the keyframes, H is the 7× 7N Hessian matrix as

H =
(

Jepri

)T

ΣpriJepri︸ ︷︷ ︸
a prior

+∑
i,j

(
Jij

eodo

)T

ΣodoJij
eodo︸ ︷︷ ︸

visual odometry

+∑
l

(
Jl

r

)T

ΣrJl
er︸ ︷︷ ︸

ranges

. (3.39)

In addition, b on the right hand side of Eq. (3.38) is the 7× 1 vector as

b =
(

Jepri

)T

Σpriepri︸ ︷︷ ︸
a prior

+∑
i,j

(
Jij

eodo

)T

Σodoe
ij
odo︸ ︷︷ ︸

visual odometry

+∑
l

(
Jl

r

)T

Σrel
r︸ ︷︷ ︸

ranges

. (3.40)

The Jacobian of the odometry error function in Eq. (3.39) and Eq. (3.40) is the 7× 7N matrix

Jij
eodo

(θ) =

[
0 . . .

∂eij
vo(S

ti
GC, S

tj
GC, zij

vo)

∂ξ
ti
GC

,
∂eij

vo(S
ti
GC, S

tj
GC, zij

vo)

∂ξ
tj
GC

. . . 0

]
, (3.41)

where the partial derivatives of the odometry error function of the pose at ti and tj are

∂eij
odo(S

ti
GC, S

tj
GC, zij

odo)

∂ξ
ti
GC

= −Adj
((

S
tj
GC

)−1
Sti

GC

)
(3.42)

∂eij
odo(S

ti
GC, S

tj
GC, zij

odo)

∂ξ
tj
GC

= I7. (3.43)

The adjoint Adj
((

S
tj
GC

)−1
Sti

GC

)
can be computed using (A.114).

The partial derivative of the prior error function is the 7× 7N matrix:

Jepri
(θ) =

[
∂epri(S

t1
GC)

∂ξ
t1
GC

, . . . , 0

]
, (3.44)

34

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements

where the partial derivative is

∂epri(S
t1
GC)

∂ξ
t1
GC)

= I7. (3.45)

The Jacobian of the ranging error function in Eq. (3.39) and Eq. (3.40) is the 1× 7N matrix

Jl
er
(θ) =

[
0 . . .

∂ei
r(S

ti
GC, zi

r)

∂ξ
ti
GC

. . . 0

]
. (3.46)

The partial derivative of the error function is

∂ei
r(S

ti
GC, hi

r)

∂ξ
ti
GC

=
∂hi

r(S
ti
GC)

∂ξ
ti
GC

=
∂||Cpti

TA||
∂ξ

ti
GC

=
∂||Cpti

TA||
∂Cpti

TA

∂Cpti
TA

∂Cp̃ti
TA

∂Cp̃ti
TA

∂ξ
ti
GC

, (3.47)

where

∂||Cpti
TA||

∂Cpti
TA

=
1

||Cpti
TA||

(
Cpti

TA

)T (3.48)

∂Cpti
TA

∂Cp̃ti
TA

=
[
I3 03×1

]
(3.49)

∂Cp̃ti
TA

∂ξ
ti
GC

=
∂

∂ξ
ti
GC

(
p̃ti

CA − p̃CT

)
= H[p̃ti

CA]−

03×3 03×3 03×1

01×3 01×3 1


=

[pti
CA]x −sti

GCI3 03×1

01×3 01×3 sti
GC

−
03×3 03×3 03×1

01×3 01×3 1


=

[pti
CA]x −sti

GCI3 03×1

01×3 01×3 sti
GC − 1

 . (3.50)

By substituting Eq. (3.48), Eq. (3.49), and Eq. (3.50) to Eq. (3.47), the partial derivative can be

re-written as

∂ei
r(S

ti
GC, zi

r)

∂ξ
ti
GC

=

[
∂hi

r(S
ti
GC)

∂ω
∂hi

r(S
ti
GC)

∂ν
∂hi

r(S
ti
GC)

∂λ

]
=

1
||Cpti

TA||

[
(Cpti

TA)
T[pti

CA]X −sti
GC(Cpti

TA)
T 0

]
. (3.51)

The optimal twist coordinates ∆θ̂ estimated using Eq. (3.38) are converted to the matrices in

the Lie algebra domain sim(3),
[
∆Ξ̂

t1
GC, . . . , ∆Ξ̂

tN
GC

]
, and then each matrix Ŝti

GC is updated using

35

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements

(A.123):

Ŝti
GC ← Sti

GC ⊕ ∆Ŝti
GC = Sti

GC exp ∆Ξ̂
ti
GC. (3.52)

After the LSE, the map points coordinates are updated using the differences between

keyframe poses before and after the LSE. First, the keyframe poses with respect to the global

frame Ŝti
GC are converted to the local frame Ŝti

LC as

Ŝti
LC = (SGL)

−1 Ŝti
GC (3.53)

=

(RGL)
T −sGL(RGL)

TtLG

01×3 sGL

R̂ti
GC t̂ti

CG

01×3

(
ŝt

GC

)−1


=

(RGL)
TR̂ti

GC −(RGL)
T t̂ti

CG −
(

ŝti
GC

)−1

sGL(RGL)
TtLG

01×3

(
ŝti

GC

)−1

sGL


=

R̂ti
LC t̂ti

CL

01×3

(
ŝti

LC

)−1

 .

Then, 6DoF matrices Tti
LC in SE(3) are defined with the translation vector t̂ti

LC scaled with sti
GC:

T̂ti
LC =

R̂ti
LC ŝti

LC t̂ti
CL

01×3 1

 .

Using the keyframe pose after the data fusion T̂ti
LC and before the fusion Tti

LC, the map points

coordinates in the local reference frame Xi
L are updated as

ˆ̃Xi
L = T̂ti

LC

(
Tti

LC

)−1

Xi
L

1

 =

 X̂i
L(

ŝti
LC

)−1

 (3.54)

Lastly, the scale ŝti
LC is multiplied with the 3× 1 vector X̂i

L to convert the homogeneous vector to

3D coordinates, so the updated 3× 1 map point coordinates are ŝti
LCX̂i

L.

3.3. System Analysis with a Public Image Dataset

In this section, the sensitivity of the proposed VOR-SLAM is evaluated with the Karlsruhe

Institute of Technology and Toyota Technological Institute (KITTI) odometry benchmark [Geiger

et al., 2012]. This dataset’s images were obtained using a front-facing stereo camera on a car in a

36

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements

Figure 3.4.: A sample image of the sequence 07 of the KITTI dataset (KITTI-07)

Figure 3.5.: The ground truth trajectory and the virtual anchor (KITTI-07)

Table 3.1.: The summary of the KITTI-07
Dataset Total time [s] Total length [m] Dimension (X[m]× Y[m]× Z[m])

KITTI-07 114.33 694.70 191.45× 209.35× 4.86

residential area of Karlsruhe, Germany, and the ground truth poses (positions and orientation)

of each image frame were obtained using GPS/INS. Sequence 07 (KITTI-07) was used to

evaluate VOR-SLAM. A sample image of this sequence is shown in Fig. 3.4, and the total

traveling time, distance, and dimension are summarized in Table 3.1. Since the KITTI dataset

does not include ranges to a reference point, range measurements were synthetically generated

using the ground truth trajectory and an anchor virtually set at [−120, 5, 2]Tm, as illustrated in

Fig. 3.5.

Additionally, the radial, tangential, and normal directions are defined as depicted in Fig. 3.6.

37

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements

Global frame(G)
X

Y
Anchor(A)

time ti

Camera(Ci)
Tag(Ti)

time tj

Camera(Cj)Tag(Tj)

−pGA

Radial

Tangential
Normal

Radial

Tangential

Normal

Figure 3.6.: The radial, tangential, and normal directions at ti and tj.

As can be seen in this figure, the radial direction is defined as the unit vector from the anchor

to the tag at each timestamp:

ut
rad = Gpt

TA

||Gpt
TA||

.

The normal direction vector is defined as the normal vector of the plane which is determined

with the radial unit vector and the anchor position vector in the global frame:

ut
nor =

ut
rad × pGA

||pGA||
.

Lastly, the tangential direction is defined with the right-hand rule, i.e. ut
tan = ut

nor × ut
rad.

System sensitivity to ranging errors First, VOR-SLAM is analyzed in terms of the system

sensitivity to ranging noise. For this analysis, 100× 5 range sequences were generated with zero-

mean Gaussian noise, using five different standard deviations, [0.1m, 0.5m, 1.0m, 1.5m, 2.0m],

(i.e. 100 range sequences were generated with each standard deviation). Fig. 3.7a shows

the horizontal trajectory estimated with VOR-SLAM using monocular visual odometry (VO)

measurements and one of the range sequences including Gaussian noise with the standard

deviation of 2m (MonoVO+Anchor(wNoise,std=2m), orange). In addition, this figure shows

38

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements

(a) The horizontal trajectory estimated with monocular VO and scaled with the first keyframe’s
ground truth scale (blue), and the trajectory estimated with VOR-SLAM (orange)

(b) The ground truth trajectory (gray), and the map points in the horizontal plane estimated
with VOR-SLAM (orange)

Figure 3.7.: The horizontal trajectories estimated using monocular VO and VOR-SLAM, and
the map points in the horizontal plane estimated with VOR-SLAM (KITTI-07)

the ground truth trajectory (GroundTruth, gray) and the trajectory estimated using monocular

VO and scaled with the first keyframe’s ground truth value (MonoVO(gtScale0), blue). This is

necessary because the absolute scale is ambiguous when only a monocular camera is used to

estimate camera poses. As shown in Fig. 3.7a, the positions estimated using MonoVO(gtScale0)

drift over traveling time, although the trajectory estimate is scaled with the ground truth value.

This drift is efficiently corrected using range measurements between the car and only one

anchor even when the standard deviation of the range measurement noise is 2m. In addition,

Fig. 3.8 shows the positioning errors in the radial, tangential, and normal directions (which are

39

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements

Figure 3.8.: The positioning errors in the radial, tangential, and normal directions of the
positions estimated using monocular VO and scaled with the first keyframe’s
ground truth scale (MonoVO(gtScale0), blue), and using VOR-SLAM with ranges
including Gaussian noise of 2m (MonoVO+Anchor(wNoise,std=2m), orange)

defined in Fig. 3.6) of the positions estimated using monocular VO and VOR-SLAM, as well as

the magnitude of the positioning error. As can be seen in this figure, VOR-SLAM significantly

reduces the positioning error in all directions. Particularly, it is most effective in reducing

the radial direction error, showing 99.30% error mitigation compared to MonoVO(gtScale0).

Fig. 3.7b illustrates the map points estimated with VOR-SLAM. The ground truth of the map

40

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements

(a) The PDF of the position RMSE values

(b) The CDF of the position RMSE values

Figure 3.9.: The PDF and CDF of the position RMSE values obtained using VOR-SLAM with
visual odometry measurements and range measurements including Gaussian ran-
dom noise with the standard deviation of [0.1m, 0.5m, 1.0m, 1.5m, 2.0m]

points are unavailable, so the estimates cannot be compared to the ground truth directly.

However, KITTI-07 images were obtained using a front-facing camera mounted on a car in a

residential area, so map points should be created along the ground truth trajectory without

scale ambiguity. As as result, the map points depicted in Fig. 3.7b can be considered accurately

estimated.

The position estimation results obtained using VOR-SLAM with all 100× 5 range sequences

are illustrated in Fig. 3.9 as the empirical Probability Density Function (PDF) and Cumulative

Distribution Function (CDF). For example, the blue line in Fig. 3.9a shows the PDF of 100 RMSE

values obtained using VOR-SLAM with ranges including Gaussian noise with a standard devia-

tion of 0.1m, while the blue line in Fig. 3.9b is the CDF of these RMSE values. When the iterative

41

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements

(a) The range differences between the measure-
ments and ground truth over time

(b) The histogram of the differences between the
range measurements and ground truth

Figure 3.10.: The range differences between the ground truth and measurements including
both bias and Gaussian noise

Figure 3.11.: The errors of positions estimated using monocular VO (blue), VOR-SLAM with
ranges including only Gaussian noise (orange), and VOR-SLAM with ranges that
are biased and include Gaussian noise (green)

LSE was executed with the cost function defined in Eq. (3.36), the covariance matrix of range

measurements was set as the square of each standard deviation, [0.1m, 0.5m, 1.0m, 1.5m, 2.0m].

Both PDF and CDF show that the positioning is most accurate when the standard deviation of

ranging noise is lowest (0.1m).

The system sensitivity to ranging bias is evaluated using range measurements including

both bias and Gaussian noise. For this system evaluation, the bias was modeled as the com-

bination of the systemic bias (deterministic values) and multipath (random values), using

real UWB-based range measurements. The details of this ranging error model is described in

42

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements

(a) The PDF of the position RMSE values

(b) The CDF of the position RMSE values

Figure 3.12.: The PDF and CDF of the 100 position RMSE values obtained with VOR-SLAM
using ranges with Gaussian random noise (orange) and with both bias and ranges
(green)

Appendix B. 100 range measurement sequences were generated including bias and Gaussian

noise with the standard deviation of 0.1m. The differences between one of these measure-

ment sequences and the ground truth ranges are depicted in Fig. 3.10. Fig. 3.11 shows

the errors of the positions estimated using VOR-SLAM with one of the range sequences in-

cluding only the Gaussian noise (MonoVO+Anchor(wNoise), orange), and with both bias

and noise (MonoVO+Anchor(wBiasAndNoise), green). In addition, the positioning errors

of monocular VO without the data fusion of range measurements are indicated in blue. As

shown in this figure, the positions estimated using VOR-SLAM are more inaccurate than

MonoVO+Anchor(wNoise) when range measurements are biased, but VOR-SLAM can still

43

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements

significantly reduce the positioning error of monocular VO even when range measurements

are biased. The RMSE values of positions estimated using VOR-SLAM with all the 100 range

measurements are illustrated in Fig. 3.12 as empirical PDF and CDF. This figure shows that

consistent results can be obtained from all the ranging sequences.

System sensitivity to ranging availability In practice, the onboard ranging module

cannot always communicate with the anchor point due to e.g. Non-Line of Sight

(NLoS). To analyze the effect of the range measurement availability on the position-

ing accuracy and computational loads, the ranges were generated with maximum dis-

tance limitations, [50m, 80m, 90m, 100m, 120m, 150m]. If the true distance between the

onboard ranging sensor and anchor is longer than the maximum distance, ranging

is unavailable between the car and anchor point. After removing the ranges greater

than the maximum values, [50m, 80m, 90m, 100m, 120m, 150m], the remaining ranges are

[13.77%, 31.16%, 43.12%, 60.14%, 82.61%, 100%] of the entire traveling time, e.g. when the max-

imum range is set to 100m, ranges are available 60.14% of the traveling time. With each

maximum distance setting, 30 range sequences including bias and noise were generated using

the ranging error model described in Appendix B. Fig. 3.13 illustrates the average of the position

RMSE in blue, and the average of the processing time required to compute the visual-range

fusion in gray. As shown in this figure, the processing time required for the sensor fusion

remains less 0.8ms for all cases, and does not increase substantially when more ranges are

Figure 3.13.: The RMSE of the positions estimated using VOR-SLAM with the different range
measurement availability (blue), and the processing time of VOR-SLAM (gray)

44

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements

included in the fusion. In addition, VOR-SLAM can still significantly reduce the positioning

error in the visual odometry (the RMSE of MonoVO(gtScale0)= 99.77m) even when the ranges

are only available 10.72% of the frames. In addition, this figure shows that the positioning error

increases significantly when the ranges are available less than 50% of the mission duration.

Thus, it is crucial to acquire the ranges more than 50% of the traveling time to obtain accurate

positioning with VOR-SLAM.

Comparison of VOR-SLAM and loop closures Fig. 3.14 illustrated the trajectory estimated

using VOR-SLAM with ranges that include both bias and noise and available 60.14% of

the traveling time (MonoVO+Anchor(wBiasAndNoise, maxRange=100m), and the trajectory

estimated with the visual odometry and the loop closures (MonoVO+LC(gtScale0)). As

shown in this figure, the positioning errors of the monocular visual odometry are accu-

rately corrected with loop closures, but note that this trajectory is artificially scaled with

the first keyframe’s ground truth scale, but in the real world, this trajectory is still up-

to-scale. Moreover, MonoVO+LC(gtScale0) shows less accurate positioning compared to

MonoVO+Anchor(wBiasAndNoise, maxRange=100m) even after correcting the scale, and

VOR-SLAM is conducted with the ranges only available 60.14% of the entire mission.

The scale estimation accuracy of each system is more clearly shown in Fig. 3.15. The scale

Figure 3.14.: The horizontal trajectory estimated using loop closures and scaled with the first
keyframe’s ground truth scale (green), and the trajectory estimated using VOR-
SLAM with ranges including both bias and noise and available at 60.14% of the
keyframes (blue)

45

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements

Figure 3.15.: The scale factors of the positions estimated using loop closures (green) and VOR-
SLAM with ranges including both bias and noise and available at 60.14% of the
keyframes (blue)

factor of the Y-axis of this figure is defined as

Scale factor at tk =
∑i=k

i=0

(
pti

est − pti−1
est

)
∑i=k

i=0

(
pti

gt − pti−1
gt

) , (3.55)

where pti
est and pti

gt denotes the position estimates and the ground truth positions, respectively.

If a system estimates the absolute scale perfectly, the scale factor should be 1. Loop closures

can only correct the scale and positioning errors of the keyframes that observe the common

map points as the loop keyframe. Thus, the absolute scale of MonoVO+LC(gtScale0) cannot be

perfectly corrected over time, whereas the ambiguous scale of MonoVO is accurately estimated

over time, using VOR-SLAM.

3.4. System Demonstration with Real-World Experiments

To test the proposed VOR-SLAM, outdoor experiments were collaboratively carried out with

the Institute of Communications and Navigation, Germany Aerospace Center (DLR-KN). For

this experiments, the rover system is developed by DLR-KN with the sensor package of the

Institute for Communications and Navigation, Technical University of Munich (TUM-NAV), as

shown in Fig. 3.17. As shown in Fig. 3.17a, a front-looking camera (Bumblebee2, pointgrey,

20fps) and a UWB ranging onboard module (TREK1000, Decawave/Qorvo) are mounted on

the dynamic rover. To obtain the ground truth poses, GNSS Real-Time Kinematic (RTK) and

Inertial Navigation Systems (INS) are used. An UWB ranging sensor on another rover staying

46

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements

at a fixed location is used as the reference point for ranging, as can be seen in Fig. 3.17b.

With these ranging sensors, ranges between two modules can be measured every ∼ 0.3s. For

the data communication, a ground station is built with a Wi-Fi router and GNSS antenna as

shown in Fig. 3.17c. The ground truth poses are estimated from RTK/INS with respect to the

East-North-Up (ENU) frame whose origin is at the ground station’s GNSS antenna.

Using this platform, real images and range measurements are obtained in two different

outdoor environments: a football field of DLR, Oberpfaffenhofen, Germany, and a gravel pit in

Planegg, Germany. All the images, ranges, and the ground truth poses are recorded using the

Robot Operating System (ROS) as ".bag" formatted files. Fig. 3.16 shows the sample images of

the datasets with the features detected in the images, and Table 3.2 presents the two datasets’

total traveling time, length, and the dimension of the trajectories.

(a) Sample image of the DLR football field dataset (b) Sample image of the gravel pit dataset

Figure 3.16.: Sample images of the DLR football field and gravel pit datasets with the features
detected in the images

Table 3.2.: Summary of the DLR football field and gravel pit datasets
Dataset Total time [s] Total length [m] Dimension (X[m]× Y[m]× Z[m])

football field 494.01 105.61 25.54× 26.25× 0.18
Gravel pit 457.17 38.98 8.05× 9.29× 0.17

47

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements

(a) A dynamic rover with a camera, onboard UWB
ranging sensor (tag), and multi-sensor mod-
ules for RTK/INS

(b) A static rover with a static UWB ranging sen-
sor (anchor) and multi-sensor modules for
RTK/INS

(c) A ground station for the communication sys-
tem

Figure 3.17.: The rover system developed by DLR-KN with the sensor package of TUM-NAV

48

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements

(a) The range differences over time (football field) (b) The histogram of the range differences (foot-
ball field)

(c) The range differences over time (gravel pit) (d) The histogram of the range differences (gravel
pit)

Figure 3.18.: The differences between real range measurements obtained using the UWB sensors
and the ground truth ranges computed with the ground truth trajectories

The difference of the real UWB range measurements and ground truth values computed

with the ground truth trajectories are shown in Fig. 3.18. Unlike the assumption of modeling in

Section 3.2, real ranges are biased and not Gaussian distributed. This bias could be induced by

a systematic error due to the changes of the Signal-to-Noise Ratio (SNR) and multipath [Ltd,

2014]. In Appendix B, the systematic bias is statistically modeled as a function of the angles

between the LoS vector between two ranging sensors and the tag/anchor directions, and the

true distances between two ranging modules. Additionally, the multipath bias is modeled as a

Gaussian random walk. In Section 3.3 and Section 5.3, the synthetic range measurements of

KITTI-07 are generated using this ranging error.

Accuracy of the position and absolute scale estimations Fig. 3.19 shows the trajectories esti-

mated using monocular VO and scaled with the first keyframe’s true scale (MonoVO(gtScale0),

orange), using stereo visual odometry (StereoVO, sky blue), and using VOR-SLAM with visual

odometry and range measurements (MonoVO+Anchor, dark blue). As shown in this figure, the

rover’s positions are most accurately estimated using VOR-SLAM without scale ambiguity. For

the both cases, StereoVO shows the worst positioning and scale estimation accuracy because

the depth of the map points could not be accurately estimated using the stereo camera with the

49

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements

(a) The horizontal trajectories estimated with the DLR football field dataset

(b) The horizontal trajectories estimated with the gravel pit dataset

Figure 3.19.: The horizontal trajectories estimated using monocular VO and scaled with the first
keyframe’s ground truth scale (MonoVO(gtScale0), orange), stereo VO (StereoVO,
sky blue), and VOR-SLAM (MonoVO+Anchor, dark blue)

short baseline length (12cm). Additionally, the trajectories estimated with MonoVO(gtScale0)

have the similar shapes of the ground truth trajectories for both datasets, but the trajectories

are still less accurate than MonoVO+Anchor, even after scaling the positions with the first

keyframe’s ground truth scale. Moreover, note that the absolute scale of the positions estimated

using MonoVO is ambiguous in the real world.

The map points estimated using VOR-SLAM are shown in Fig. 3.20. Although no ground

truth is available for the map points, considering that the images are obtained with a rover

with a front-looking camera, the map points are expected to be estimated along the ground

50

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements

(a) The map point estimated with the DLR football field dataset

(b) The map point estimated with the gravel pit dataset

Figure 3.20.: The map points in the horizontal plane estimated using VOR-SLAM

truth trajectory. In this sense, Fig. 3.20a and Fig. 3.20b shows that the map point coordinates

are also accurately estimated with the two datasets.

The scale estimation accuracy is evaluated with the scale factors defined in Eq. (3.55)). As

can be seen in Fig. 3.21, StereoVO provides the most inaccurate scale estimation because of the

stereo camera’s short baseline length. In addition, the absolute scale drifts over time, when

the trajectories are estimated using MonoVO and scaled with the ground truth scale of the

first keyframe (MonoVO(gtScale0)). The scale drifts are relatively smaller for the gravel pit

dataset, compared to the DLR football field dataset. However, with MonoVO(gtScale0), the

scale estimation is still more inaccurate than MonoVO+Anchor.

51

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements

(a) The scale factors of the DLR football field dataset

(b) The scale factors of the gravel pit dataset

Figure 3.21.: The scale factors over time, obtained with monocular VO (orange), with stereo
VO (sky blue), and with VOR-SLAM (dark blue)

Comparison of VOR-SLAM and loop closures Fig. 3.22 shows the horizontal trajectory

estimated with the DLR football field dataset, using monocular VO and scaled with the first

keyframe’s ground truth scale (MonoVO(gtScale0), orange), using monocular VO with loop

closures and scaled with the first keyframe’s ground truth scale (MonoVO+LC(gtScale0), green),

and using VOR-SLAM (MonoVO+Anchor, dark blue). The rover travels back to the place

previously visited in the DLR football field dataset, so the loop closing technique can be applied

to mitigate the positioning error. Thus, the trajectory estimated using MonoVO+LC(gtScale0)

seems to be the most accurate in Fig. 3.22 and Fig. 3.23. However, note that the absolute scale

is still ambiguous for the MonoVO+LC(gtScale0) setup.

This scale ambiguity problem is effectively solved by VOR-SLAM with much less computing

power than loop closures. The processing time per keyframe of loop closing and VOR-SLAM is

measured using a laptop with Intel® Core™ i7-7700HQ CPU @ 2.80GHz × 8, Ubuntu 20.04.2

52

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements

Figure 3.22.: The horizontal trajectories estimated with the DLR football field dataset, using
monocular VO and scaled with the first keyframe’s ground truth scale (orange),
using monocular SLAM with loop closing and scaled with the first keyframe’s
ground truth scale (green), and using VOR-SLAM (dark blue)

Figure 3.23.: The magnitude of the positioning errors with the DLR football field dataset, using
monocular VO and scaled with the first keyframe’s ground truth scale (orange),
using monocular SLAM with loop closing and scaled with the first keyframe’s
ground truth scale (green), and using VOR-SLAM (dark blue)

LTS, and presented in Table 3.3. This table shows that the VOR-SLAM’s optimization process

(GraphOpt) takes ∼ 96% less time than the loop closing’s optimization process (CorrectLoop).

Furthermore, the loop closing can successfully mitigate the errors only when a loop is

detected. If no loop is detected during the mission as the gravel pit dataset, the onboard

computer only consumes battery power without mitigating the positioning errors. Thus,

VOR-SLAM is more useful than visual SLAM with loop closures when a robot has to operate

with a non-powerful processing unit and limited battery power (e.g. micro or small drones),

and it cannot go back to the previous places to detect a loop.

Lastly, the trajectories are estimated using monocular SLAM with loop closing and ranging

fusion. The trajectory estimated with this combined system (MonoVO+LC+Anchor) is shown

53

3. VOR-SLAM: SLAM using Visual Odometry and Range Measurements

Table 3.3.: Processing time per keyframe [ms]
Loop closing VOR-SLAM

Dataset DetectLoop CorrectLoop CheckFusion GraphOpt
football field 0.088 14.730 - 0.565

Figure 3.24.: The horizontal trajectories estimated with the DLR football field dataset, using
monocular SLAM with loop closing and scaled with the first keyframe’s ground
truth scale (green), using VOR-SLAM (dark blue), and using monocular SLAM
with loop closing and range measurements (red)

Figure 3.25.: The magnitude of the positioning errors with the DLR football field dataset, using
monocular SLAM with loop closing and scaled with the first keyframe’s ground
truth scale (green), using VOR-SLAM (dark blue), and using monocular SLAM
with loop closing and range measurements (red)

in Fig. 3.24 with the trajectories estimated using MonoVO+LC(gtScale0) and MonoVO+Anchor.

Fig. 3.25 illustrates the magnitude of positioning error obtained with MonoVO+LC(gtScale0),

MonoVO+Anchor, and MonoVO+LC+Anchor. As can be seen in these figures, the position

RMSE is reduced to 0.5m using MonoVO+LC+Anchor, without scaling with the first keyframe’s

ground truth scale. This result shows that the positioning error is accurately corrected with the

loop closing and the ambiguous absolute scale is properly estimated with range measurements.

54

4. Collaborative VSLAM - A Review

VSLAM is widely applied to estimate robots’ egomotion and to map unknown environments

when GNSS is unavailable or unreliable. When multiple robots cooperatively carry out given

tasks, the relative poses between the robots need to be accurately estimated. To accurately

estimate the relative poses, the loop closing technique can be applied using visual features

commonly observed by different robots (inter-agent loop), as in [Alam and Dempster, 2013,

Saeedi et al., 2016, Zou et al., 2019, Rizk et al., 2019, Chung et al., 2018]. Fig. 4.1 shows the

system overview of loop closures using inter-agent map point matches. First, each robot

transmits its keyframes and local map points to the processing unit. For example, Centralized

Collaborative Monocular SLAM (CCM-SLAM) [Schmuck and Chli, 2019] collects the 2D feature

positions in the images and their feature descriptors in keyframe messages, which are then

transmitted from each agent to the processing unit. In addition, map point messages are

created with the 3D coordinates of map points and the information of the keyframes, in which

the map points are observed. In the map databases of different agents, the processing unit

searches for inter-agent loops between different local map points (inter-agent place recognition).

When enough number inter-agent loops are detected, the relative poses between the local

reference frames of different agents can be estimated. Using the relative poses estimates, the

local keyframes and map points are merged into one global map data (frame alignment). After

aligning different reference frames, the estimation errors of all agents’ keyframe poses and map

point coordinates can be mitigated by pose graph optimization and Global Bundle Adjustments

(GBAs) using inter-agent loop measurements (multi-agent map optimization). The keyframe

poses and map point coordinates updated by the multi-agent map optimization need to be

transmitted back to each agent, so the agents can exploit the up-to-date estimates for their local

visual odometry processes.

As illustrated in Fig. 4.1 and Fig. 4.2a, an additional processing unit can execute all the

computationally demanding processes, such as inter-agent place recognition and multi-map

data optimization. A server computer [Schmuck and Chli, 2019] or a cloud server [Riazuelo

55

4. Collaborative VSLAM - A Review

Inter-agent
place recognition

Frame Alignment

Multi-agent
map optimization

Keyframe msg & Map point msg

Map points

Keyframes

VO

Map points

Keyframes

VO

Map points

Keyframes

VO

Map points

Keyframes

VO

Map points

Keyframes

Figure 4.1.: The system overview of cooperative VSLAM with inter-agent loop closures using
map points matches that are commonly observed by different agents

et al., 2014, Mohanarajah et al., 2015] can be used as the processing unit. When the central

unit processes all the demanding tasks, each agent needs to execute only visual odometry. In

addition, robots can discard the keyframes and map points that are unnecessary to locally

execute visual odometry since the entire history of the keyframes and map points are stored on

the server. Thus, onboard computers can be prevented from experiencing memory overloads.

Furthermore, the global map database can be easily managed since all the data is processed at

one place (server).

However, data communication networks can be easily overloaded since all the agents transmit

their local data to the server. The data size of local maps can be extremely large within a

short period as the agents can observe lots of map points at each timestamp. This becomes

particularly problematic when many agents need to simultaneously operate in a swarm robotic

system. Furthermore, agents’ movement is significantly constrained because they must remain

within a range that still enables communication to the central server.

As proposed in Decentralized Data Fusion-Smoothing and Mapping (DDF-SAM) [Cunning-

56

4. Collaborative VSLAM - A Review

(a) Centralized system architecture (b) Decentralized system architecture

Figure 4.2.: Centralized and decentralized system architectures of cooperative VSLAM

ham et al., 2010, Cunningham et al., 2013] and Decentralized SLAM (dSLAM) [Cieslewski et al.,

2018], the computationally demanding tasks of inter-agent loop closing can be carried out in a

decentralized manner, instead of using a central server. In this decentralized system architec-

ture, one of the robots conducts inter-agent loop closures using the local map data transmitted

from neighboring robots, as seen in Fig. 4.2b. Since only the neighboring robots’ map data

is processed, inter-agent loop closing and global map fusion require much less computing

power than centralized systems. In addition, robots can explore with much fewer constraints

because they do not always need to be connected to the central server. However, the global map

database’s consistency cannot be easily maintained if it is processed in a decentralized manner.

Data synchronizations and global map fusion between different neighborhoods become more

complicated and challenging than a centralized system since map data is processed on multiple

local servers.

Instead of inter-agent loops, swarm robots can use other measurements to accurately estimate

the relative poses and create a global map. For example, robots can mitigate the estimation

errors when they observe a checkerboard (or other patterns known to users) on the other robots

[Richardson et al., 2013, Kim et al., 2010] or when they observe the other robots directly [Zhou

and Roumeliotis, 2006]. However, this chapter focuses on reviewing collaborative VSLAM

with inter-agent loop closing since it is the most widely studied and tested method at the

system level. In the following sections, each system process (shown in Fig. 4.1) is detailed.

First, the inter-agent image classification and place recognition method are explained, followed

by the inter-agent map point matching and frame alignment methods. Then, multi-agent map

fusion and optimization strategies are reviewed. Finally, the communication requirements of

57

4. Collaborative VSLAM - A Review

the methods reviewed are evaluated. The evaluation results show that collaborative VSLAM

using inter-agent loop closures is impractical when swarm robots explore areas where the

communication capabilities are significantly limited, e.g. in an extraterrestrial area or deep sea.

4.1. Inter-Agent Place Recognition

For collaborative VSLAM with inter-agent loop closures, map points matches need to be

searched between different robots’ map databases. Fig. 4.3 shows the overview of an efficient

inter-agent loop searching method with the Bag of Words (BoW) approach (introduced in

Fig. 2.5). First, each image’s visual vector is computed using the feature descriptors of the

image and visual vocabularies. By examining the distances of different visual vectors, images

can be classified into the subgroups, i.e. if the distance between two images’ visual vectors

is smaller than the criteria, they are classified in the same class. Feature points are compared

only between the images that are in the same class, using their descriptors. This process

requires much less computing power compared to brute-force loop searches using all the

images without a prior image classification.

To minimize the onboard computers’ computational loads, each robot only extracts ORB

features and descriptors [Rublee et al., 2011], and transmits them with keyframe messages

to the central server, in CCM-SLAM [Schmuck and Chli, 2017, Schmuck and Chli, 2019]. In

addition, the robots transmit map point messages (including e.g. the 3D coordinates of the

local map points) to the server. The server converts all the images to visual vectors using the

BoW approach with the feature descriptors, as proposed in [Gálvez-López and Tardos, 2012].

Since CCM-SLAM transmits full feature descriptors from multiple agents to the server, the

communication network system can be easily overloaded. To avoid this problem, the keyframe

and map point messages are divided into two types: new and update messages. The constant

information of the messages (e.g. feature descriptors) is only sent once in the new keyframe or

map point messages from the agents to the server. When a keyframe or map point only needs

to be updated (i.e. when the keyframe or map point was sent before), the constant information

is discarded from the update messages.

For cooperative VSLAM in a decentralized manner, dSLAM [Cieslewski et al., 2018] proposes

to compute the visual vectors on each robot’s onboard computer, and transmits them to the

main robot in the robot’s neighborhood group. To convert the images to the visual vectors, the

neutral Network Vector of Locally Aggregated Descriptors (NetVLAD) [Arandjelovic et al.,

58

4. Collaborative VSLAM - A Review

Features + Descriptors Visual vectors

Inter-agent fast classification Map points comparion
using feature descriptors

(brute-force searches)

Agent-1

...

...

Agent-1

...

Agent-2

...

Class-1 Class-2 Class-KClass-1 Class-2 Class-K

...
...

...
...

.
...

Visual
vocabularies

Agent-2

...

Figure 4.3.: The overview of an efficient inter-agent loop detection method using inter-agent
image fast classification

2016] is used. Using NetVLAD with K clusters, an image with the D-dimensional feature

descriptors (e.g. D = 32 for an ORB descriptor) is converted to a (D×K)× 1 visual vector. Note

that the dimension of the visual vectors is dependent on the feature descriptors’ dimension and

the number of the clusters, and is not increased with the number of the features in the image.

After classifying the images, the map point matches are searched between the images that

belongs to the same class. To reduce the computing power for this search, features’ visual

identifiers [Tardioli et al., 2015] can be exploited, instead of using the feature descriptors. Visual

identifier is a 2× 1 pointer of visual vocabularies, and it contains the identification numbers

of the visual words associated to descriptors. Since similar descriptors are associated with

the same visual word, the same visual identifier is allocated to these descriptors. Thus, visual

identifiers can be used for feature matching. Using visual identifiers, feature points can be

compared with much less computing power than the feature comparison using descriptors.

However, feature matching can be more inaccurate than the feature matching with descriptors.

59

4. Collaborative VSLAM - A Review

4.2. Local Frame Alignment and Multi-Agent Map Fusion

Each robot uses its own initial camera pose as the local reference frame, when it estimates

the keyframe poses and map points using VSLAM. Thus, the relative poses between the local

reference frames need to be estimated before merging the local map databases transmitted from

different robots. The relative pose between two robots can be estimated as a 7DoF similarity

matrix by the closed form solution, Horn’s method [Horn, 1987], using map point matches

commonly observed by two robots. Alternatively, dSLAM [Cieslewski et al., 2018] estimates the

relative pose between two local reference frames, L1 and L2, by searching the relative rotation

matrix R̂L1L2
, translation vector t̂L1L2

, and scale ŝL1L2
that minimize the sum of the squared errors

of map point coordinates with respect to L1 (i.e. Xi
L1

) and the coordinates converted from the

matching map point with respect to L2 to L1 using the relative pose (i.e. sL1L2
(RL1L2

Xi
L2
+ tL2L1

)),

as shown in Fig. 4.4:

R̂L1L2
, t̂L2L1

, ŝL1L2
= argmin

RL1L2
,tL2L1

,sL1L2

∑
i
||Xi

L1
− sL1L2

(RL1L2
Xi

L2
+ tL2L1

)||2. (4.56)

After successfully estimating the relative pose between the local reference frames, a pose

graph is created including the keyframe poses as the state variables. The keyframe poses are

defined as 7DoF similarity matrices to consider the scale difference between different agents:

Θ = {Sti
LkCk
|∀ agent ID k, and ∀ timestamp ti}.

These keyframe poses are depicted as the circular nodes in Fig. 4.5a. As illustrated with the

black dashed lines, visual odometry measurements connect the circular nodes. Additionally,

the relative pose estimate between two reference frames is added as a measurement between

the keyframes of different agents (blue line). The optimal keyframe poses can be estimated,

by searching the poses that minimize the sum of the squared error of the visual odometry

measurements and loop measurements (all the measurements errors shown in the pose graph),

as proposed in CCM-SLAM [Schmuck and Chli, 2017, Schmuck and Chli, 2019].

After the pose graph optimization, the 3D coordinates of map points X̃i
Lk

are updated

using the differences between the keyframe poses before the optimization Tti
LkCk

and after the

optimization Ŝti
LkCk

:

ˆ̃Xj
Lk
=

(
Ŝti

LkCk

(
Tti

LkCk

)−1
)

X̃j
Lk

60

4. Collaborative VSLAM - A Review

L1

L2

Xi
L2

Xi
L1

sL1L2

(
RL1L2 Xi

L2
+ tL2L1

)

Convert Xi
L2

using SL1L2 =

[
RL1L2 tL2L1

0 sL1L2

]

Conversion
error

Figure 4.4.: The error between the map point coordinates with respect to L1 (Xi
L1

) and the
coordinates converted from the matching map point with respect to the L2 using
the relative similarity pose (sL1L2

(RL1L2
Xi

L2
+ tL2L1

))

(a) Pose graph with two agents’ local poses
(black circles) with the odometry measure-
ments (black dashed lines) and loop mea-
surement (blue solid line)

(b) Graph with two agents’ local poses (black
circles) and map points (black crosses)

Figure 4.5.: Graphs for the multi-agent map fusion and optimization

Since ˆ̃Xj
L are 4× 1 homogeneous vectors including the scale factor ŝti

LkCk
in the fourth element,

they are converted to 3× 1 vectors X̂j
L, by multiplying the first three elements with the scale

factor ŝti
LkCk

.

To achieve better accuracy of the keyframe poses and map points, GBAs can be executed

using a factor graph-based method after updating the local poses and map points separately. As

illustrated in Fig. 4.5b, the factor graph includes both the 7DoF keyframe poses (black circular

nodes) and the map points (black crosses nodes) as the state variables. The feature observations

61

4. Collaborative VSLAM - A Review

of the map points in the keyframe images connect the keyframes and map points nodes (black

dashed lines). Between the keyframes and map points nodes of different agents, inter-agent

loops (the map points commonly observed by the both agents) are added as illustrated with

the blue dashed lines in Fig. 4.5b. Using this factor graph, the keyframe poses and map point

coordinates can be optimized, by searching them minimizing the summation of the squared

re-projection errors of all the feature observations added into the graph.

After executing GBAs, the processing unit needs to transmit the updated data back to each

agent regularly. Each agent can estimate its egomition using VSLAM, but local estimation errors

are accumulated over time, if it does not regularly receive the feedback from the processing unit.

Moreover, the local data saved on the robots and global map data stored at the processing unit

becomes inconsistent when the data is transmitted only from the robots to the processing unit.

This data inconsistency could induce a significant problem for the further map fusion, so the

processing unit should transmit the up-to-date data back to the robots regularly. Moreover, the

Optimistic Concurrency Control (OCC) approach can be applied to main the data consistency,

as proposed in [Cieslewski et al., 2015, Gadd and Newman, 2016].

4.3. Analysis of the Communication Requirement

In this section, two representative VSLAM methods with inter-agent loop closures are analyzed

in terms of their communication and computational requirements. First, CCM-SLAM [Schmuck

and Chli, 2019] with a centralized system architecture transmits both the keyframe and map

point messages to the server with a fixed data rate. To avoid network overload, a fixed number

of the keyframes are included in the keyframe messages, and the map point messages include

only the map points observed in these keyframes. To further reduce the data size, the messages

are sorted into two groups: new" and update messages. The data that is not changed in the

map fusion (e.g. feature points’ 2D locations and their descriptors) is only included in the new

messages once, then discarded when the keyframes or map points only need to be updated

later.

To implement inter-agent loop closing as a decentralized manner, dSLAM [Cieslewski

et al., 2018] was devised to further reduce the communication loads. For example, instead

of transmitting the full descriptors of the feature points, each robot computes the images’

visual vectors locally, and then only transmits the visual vectors and visual identifiers to the

neighboring robots.

62

4. Collaborative VSLAM - A Review

Figure 4.6.: The size of data transmitted with various numbers of keyframes (on a log scale)

To compared the communication loads of CCM-SLAM and dSLAM, Fig. 4.6 is illustrated.

This figure shows the size of the data transmitted with the various numbers of keyframes, on a

log scale. To compute the data size, the followings are assumed:

• 1000 map points are observed in each keyframe

• The total number of the map points is 1000× (The total number of the keyframes)× 0.3;

Only 30% are identical map points

The second one is assumed because in practice, the same map points are observed in consecutive

keyframes, so not all the 1000 × (The total number of the keyframes) can be identical map

points. As shown in Fig. 4.6, CCM-SLAM requires the largest communication loads when

robots transmit new keyframe and map point messages (CCM-SLAM(New), dark blue). By

discarding the data that does not change, CCM-SLAM (CCM-SLAM(Update), sky blue) requires

to transmit much reduced data compared to the CCM-SLAM(New). As illustrated with

the green line, dSLAM requires to send the smallest data to execute multi-map fusion and

optimization (44% reduced data from CCM-SLAM(Update)).

However, dSLAM could be non-applicable for swarm robotic systems operating in areas

where the communication and computation capabilities are highly limited, such as deep sea

and extraterrestrial environments. In addition, both CCM-SLAM and dSLAM cannot be used

when different robots cannot observe common map points (inter-agent loops). Improving the

63

4. Collaborative VSLAM - A Review

previous works of The Institute for Communications and Navigation, Technical University of

Munich (TUM-NAV) [Zhu, 2019, Lee et al., 2020a], collaborative VOR-SLAM is proposed in

the next chapter. Using this method, swarm robots’ poses and map points can be accurately

estimated without searching for a inter-agent loop. Furthermore, it requires much smaller

communication and computational capabilities compared to cooperative VSLAM using inter-

agent loop closures.

64

5. CoVOR-SLAM: Cooperative VOR-SLAM for

Multi-Robot Systems

Collaborative VSLAM using the map points commonly observed by multiple robots (inter-

agent loop) is a useful tool to localize swarm robots and create a global map of an unknown

environment. However, robots need to exchange sizeable visual data (e.g. feature descriptors)

to detect inter-agent loops. Moreover, substantial computing power is required to fuse multiple

agents’ map databases. Thus, it is challenging to run inter-agent loop closures when the

computational and communication capabilities are highly limited.

Inter-agent ranges can be used to run collaborative SLAM in such environments. Instead

of searching loops between the agents, inter-agent range measurements are used to mitigate

the errors of the keyframe poses and map point coordinates. Thus, this approach requires

much fewer communication loads compared to inter-agent loop closures. In addition, range

measurements can be obtained using the communication links between the robots, without

installing additional onboard hardware. Alternatively, low-cost ranging sensors, such as UWB

sensors, can be also used to obtain range measurements between robots. In [Paull et al., 2015],

a data fusion of odometry and inter-agent ranges was proposed for submarines exploring

underwater where adequate computational and communication capabilities are unavailable. A

similar algorithm was tested in [Strader et al., 2016] with UAVs formation-flying in 2D. In [Xu

et al., 2020], visual, inertial, and inter-agent range measurements were fused to cooperatively

estimate multiple UAVs’ 3D poses, and this algorithm was experimentally evaluated with

five UAVs and UWB ranging sensors. Ziegler et al. [Ziegler et al., 2021] proposed a similar

algorithm, and tested it in a simulation with 49 drones.

This chapter proposes cooperative VSLAM using visual odometry and range measurements

for swarm robotic systems (CoVOR-SLAM). Fig. 5.1 shows the system overview of CoVOR-

SLAM using the two-agent setup. Each robot estimates the local poses and map points using

VO or VSLAM with respect to its local reference frame coinciding with the initial camera pose.

The local poses and map points are stored in the keyframes and map points, respectively. In

65

5. CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems

Visual-range
data fusion

Anchor
ranges

Inter-agent
ranges

Camera Tag

Anchor

VO/VSLAM

Map points
update

Map points Keyframes

Anchor
ranges

Keyframes

Camera Tag

VO/VSLAM

Map points
update

Map points Keyframes

Anchor
ranges

Figure 5.1.: The system overview of CoVOR-SLAM with the two-agent setup

addition to inter-agent ranges between the onboard ranging sensors (tag), all available ranges

between robots and a reference point (anchor) are obtained, whenever robots can communicate

with the anchor point. Since each robot uses its own reference frame to estimate the local poses

and map points, the local reference frames need to be aligned before merging multiple robots’

map databases. Inter-agent map points matches can be exploited to estimate the relative pose

between two different reference frames, as described in Section 4.2. Thus, map points messages

need to be transmitted to the processing unit until the reference frames are successfully aligned.

Note that map point messages are transmitted only at the beginning of a mission to align

the different local reference frames. Afterward, robots only need to transmit available range

measurements (scalar values) and the keyframe messages that include the local pose estimates,

while robots running collaborative VSLAM with inter-agent loop closures need to exchange

map point messages during the entire mission. After aligning the local reference frames, the

server can fuse multiple agents’ visual odometry and range measurements to reduce their

poses estimation error. The server sends the updated keyframe poses back to each robot (data

66

5. CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems

feedback), and then map points are locally updated, using the differences of the keyframe

poses before and after the data fusion. In Fig. 5.1, CoVOR-SLAM is shown with a centralized

system architecture for convenience, but it can be structured in a decentralized manner, i.e. the

blue part can be run using one of the onboard computers.

In the following sections, the system setup is first introduced, as well as the measurement

prediction models. Then, the multi-agent data fusion approach is explained, followed by the

data feedback and local map data update methods. The proposed system is evaluated using

two different application scenarios with public image datasets and range measurements that

are synthetically generated using the statistical error model. Lastly, the communication load

of CoVOR-SLAM is compared to two state-of-the-art collaborative VSLAM methods using

inter-agent loop closures.

5.1. System Setup and Measurement Models

Fig. 5.2 shows the system setup with three agents. Note that the three-agent setup is used only

for convenience, and this setup can be extend to N-agent cases (N > 3). The local reference

frame of the k-th robot is denoted with Lk, and the global frame G is chosen to be a rotated

version of L1 (agent-1’s local reference frame). Since the L1’s XZ-plane is the horizontal plane

(not conventional), L1 is rotated 90deg with respect to the X-axis to make the XY-plane as the

horizontal plane. The relative pose from the local frame L1 to the global frame G is

SGL1
=

RX(−90◦) 03×1

01×3 (sGL1
)−1

 , (5.57)

including the scale parameter sGL1
.

Assuming that the relative poses between the local reference frames are successfully es-

timated, the camera local poses Tt
LkCk

estimated using VSLAM are converted to the 7DoF

similarity matrices with respect to the global frame St
GCk

. For example, the agent-2’s lo-

cal poses Tt
L2C1

are converted to the similarity matrices with respect to the global frame as

St
GC2

= SGL1
SL1L2

Tt
L2C2

. All the camera poses converted to the global frame are defined as the

system’s state variables:

Θ = {{St0
GCk

, . . . , S
tNk
GCk
}, ∀k ∈ {1, 2, . . . , K}}, (5.58)

67

5. CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems

Agent-1

Local frame(L1)

X

Z
Global frame(G)

XG

YG
Camera(Ci

1)Tag(Ti
1)

Z

X

Camera(Cj
1)

Tag(Tj
1)

Z

X

Local frame(L2)

X

Z
Camera(Ci

2)

Tag(Ti
2) Z

X

Agent-2

Camera(Cj
2)

Tag(Tj
2) Z

X

Local frame(L3)

X

Z

Agent-3

Camera(Ci
3)

Tag(Ti
3)

Z

X

Camera(Cj
3)

Tag(Tj
3)

Z

X

Anchor(A)

pGA

pC1T1

pC2T2

pC3T3

SL1L2

SL2L3

Sti
L1C1

Sti
L1C2

Tti
L2C2

Sti
L1C3

Tti
L3C3

zi
r,1

zj
r,1

zi
r,12

zj
r,12

zi
r,23

zj
r,23

zij
odo,1

zij
odo,2

zij
odo,3

Figure 5.2.: The system setup of CoVOR-SLAM with three agents. The state variables are all
agents’ camera poses with respect to the global frame (orange). Visual odometry
are green and range measurements (both agent-to-agent and agent-to-anchor) are
blue

where K is the total number of the agents (e.g. K = 3 for the three-agent setup). These state

variables are the orange lines in Fig. 5.2.

For CoVOR-SLAM, a prior knowledge, visual odometry measurements, and agent-to-anchor

range measurements are exploited as the single-agent cases, and the same prediction models

derived in Section 3.1 are used for these measurements. In addition, range measurements

between the agent-k and agent-k′ are used for CoVOR-SLAM, and they are modeled as the

magnitude of the position vector from the agent-k to the agent-k′ (or from the agent-k′ to the

68

5. CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems

agent-k):

hi
r,kk′(S

ti
GCk

, Sti
GCk′

) = ||Ck
pti

TkTk′
|| (5.59)

= ||Ck′
pti

Tk′Tk
||. (5.60)

The position vector from the agent-k to the agent-k′ defined in the camera frame of the agent-k

(Ck
pti

TkTk′
) can be expanded as

Ck
pti

TkTk′
= Ck

pti
GTk′
− Ck

pti
GTk

(5.61)

=
(

Ck
pti

GCk′
+ Ck

pCk′Tk′

)
−
(

Ck
pti

GCk
+ pCkTk

)
= Rti

CkGpti
GCk′

+ Rti
CkG

(
Rti

GCk′
pCk′Tk′

)
− Rti

CkGpti
GCk
− pCkTk

= Rti
CkG

(
pti

GCk′
+ Rti

GCk′
pCk′Tk′

)
+ tti

GCk
− pCkTk

,

where tti
GCk

= −Rti
CkGpti

GCk
. This vector can be described as a homogeneous vector including the

scale parameters as

Ck
p̃ti

TkTk′
=

 Ck
pti

TkTk′

(sti
CkG)

−1

 =

Rti
CkG tti

GCk

01×3 (sti
CkG)

−1

pti
GCk′

+ Rti
GCk′

pCk′Tk′

1

−
 pCkTk

(sti
CkG)

−1

 (5.62)

=
(

Sti
GCk

)−1

p̃ti
GTk′
− p̃CkTk

=

 pti
CkTk′

(sti
CkG)

−1

−
 pCkTk

(sti
CkG)

−1

 ,

where
(

Sti
GCk

)−1

=

Rti
CkG tti

GCk

01×3 (sti
CkG)

−1

 .

The position vector from the agent-k′ to the agent-k defined in the camera frame of the

agent-k′ (Ck′
pti

Tk′Tk
) can be expanded in a similar manner:

Ck′
pti

Tk′Tk
= Ck′

pti
GTk
− Ck′

ptk
GTk′

(5.63)

= Rti
CkG

(
pti

GCk
+ Rti

GCk
pCkTk

)
+ tti

GCk′
+ pCk′Tk′

,

69

5. CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems

and expressed as a homogeneous vector as

Ck′
p̃ti

Tk′Tk
=

 Ck′
pti

Tk′Tk

(sti
Ck′G

)−1

 =

 pti
Ck′Tk

(sti
Ck′G

)−1

−
 pCk′Tk′

(sti
Ck′G

)−1

 . (5.64)

Since inter-agent range measurements are scalar values, the measurement errors are simply

the differences of the values computed with the prediction model hi
r,kk′(S

ti
GCk

, Sti
GCk′

) and the

measurements zi
r,kk′ :

ei
r,kk′(S

ti
GCk

, Sti
GCk′

, zi
r,kk′) = hi

r,kk′(S
ti
GCk

, Sti
GCk′

)− zi
r,kk′ . (5.65)

5.2. Multi-Agent Data Fusion and Data Feedback

A factor graph is created to fuse visual odometry and range measurements transmitted from

multiple robots, as shown in Fig. 5.3. In this graph, the camera poses with respect to the global

frame (state variables) are depicted as circular nodes. Anchor range factors ϕi
r,k are added

when agents can obtain range measurements to them and an anchor. With a Gaussian noise

assumption, a range factor can be described as the likelihood of the camera pose Sti
GCk

given the

range measurement zi
r,k:

ϕi
r,k = l(Sti

GCk
; zi

r,k) ∝ exp
(
−1

2
||ei

r,k(S
ti
GCk

, zi
r,k)||2Σr,k

)
, (5.66)

where the error function ei
r,k(S

ti
GCk

, zi
r,k) is defined as Eq. (3.26).

In addition, inter-agent range factors ϕi
r,kk′ are added between the agents. This factor is

equivalent to the likelihood of the two camera poses Sti
GCk

and Sti
GCk′

given the inter-agent range

measurement zi
r,kk′ . With a Gaussian noise assumption,

ϕi
r,kk′ = l(Sti

GCk
, Sti

GCk′
; zi

r,kk′) ∝ exp{−1
2
||ei

r,kk′(S
ti
GCk

, Sti
GCk′

, zi
r,kk′)||2Σr,kk′

}, (5.67)

where the error function ei
r,kk′(S

ti
GCk

, Sti
GCk′

, zi
r,kk′) is defined in Eq. (5.65).

Between the two consecutive poses of each agent, the likelihood of the states given the

odometry measurements is added as an odometry factor ϕij
odo,k

ϕij
odo,k = l(Sti

GCk
, S

tj
GCk

; zij
odo,k) ∝ exp

(
−1

2
||eij

odo,k(S
ti
GCk

, S
tj
GCk

, zij
odo,k)||2Σodo,k

)
, (5.68)

70

5. CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems

St1
GC1

St2
GC1

St3
GC1

St4
GC1

St1
GC2

St2
GC2

St3
GC2

St4
GC2

St1
GC3

St2
GC3

St3
GC3

St4
GC3

ϕ1
pri,1 ϕ12

odo,1 ϕ23
odo,1 ϕ34

odo,1

ϕ1
pri,2

ϕ12
odo,2 ϕ23

odo,2 ϕ34
odo,2

ϕ1
pri,3 ϕ12

odo,3 ϕ23
odo,3 ϕ34

odo,3

ϕ1
r,12 ϕ3

r,12 ϕ4
r,12

ϕ2
r,23 ϕ3

r,23

ϕ1
r,1 ϕ2

r,1 ϕ4
r,1

Figure 5.3.: Factor graph created for fusing visual odometry and range measurements of
multiple agents (created with the three-agent setup)

.

where the error function eij
odo,k(S

ti
GCk

, S
tj
GCk

, zij
odo,k) is defined as Eq. (3.29).

Lastly, the conditional probability of the first pose given its prior knowledge is added as a

prior factor ϕpri,k at each agent’s first pose:

ϕpri,k = P(St1
GCk
|zpri,k) ∝ exp

(
−1

2
||epri,k(S

t1
GCk

, zpri,k)||2Σpri,k

)
. (5.69)

The error function epri,k(S
t1
GCk

, zpri,k) is defined in Eq. (3.31).

A Maximum A Posteriori (MAP) problem is formulated using the factor graph as

Θ̂ = argmax
Θ

∏
k

ϕpri,k ∏
k

∏
i,j

ϕij
odo,k ∏

k
∏

i
ϕi

r,k ∏
k,k′

∏
i

ϕi
r,kk′ . (5.70)

When all the measurements have Gaussian noise, this MAP problem is equivalent to the LSE

71

5. CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems

problem that minimizes the sum of the squared measurement errors:

Θ̂ = argmin
Θ

∑
k

(
epri,k(S

t0
GCk

, zpri,k)
)T

Σ−1
pri,kepri,k(S

t0
GCk

, zpri,k)︸ ︷︷ ︸
a prior error

+ ∑
k

∑
i,j

(
eodo,k(S

ti
GCk

, S
tj
GCk

, zij
odo,k)

)T

Σ−1
odo,keodo,k(S

ti
GCk

, S
tj
GCk

, zij
odo,k)︸ ︷︷ ︸

visual odometry measurement errors

+ ∑
k

∑
i

(
ei

r,k(S
ti
GCk

, zi
r,k)
)T

Σ−1
r,k er,k(S

ti
GCk

, zi
r,k)︸ ︷︷ ︸

agent-to-anchor range measurement errors

+ ∑
k,k′

∑
i

(
ei

r,kk′(S
ti
GCk

, Sti
GCk′

, zi
r,kk′)
)T

Σ−1
r,kk′e

i
r,kk′(S

ti
GCk

, Sti
GCk′

, zi
r,kk′)︸ ︷︷ ︸

inter-agent range measurement errors

≜ argmin
Θ

F (Θ, Z). (5.71)

The Levenberg-Marquardt algorithm [Levenberg, 1944, Marquardt, 1963] is used to solve

this LSE problem. This algorithm iteratively estimates the optimal camera poses as the twist

coordinates (vector format)

∆θ̂ = {{ξ̂ t0
GCk

, . . . , ξ̂
t f
GCk
}, ∀k ∈ {1, 2, . . . , K}} (5.72)

by solving the equation

(H + dI)∆θ̂ = −b, (5.73)

In this equation, H denotes the 7×∑k 7Nk Hessian matrix:

H = ∑
k

Hpri,k + ∑
k

∑
i,j

Hij
odo,k + ∑

k
∑

i
Hi

r,k + ∑
k,k′

∑
i

Hi
r,kk′ (5.74)

= ∑
k

(
Jepri,k

)T

Σpri,kJepri,k︸ ︷︷ ︸
a prior

+∑
k

∑
i,j

(
J

eij
odo,k

)T

Σodo,kJeij
odo,k︸ ︷︷ ︸

visual odometry

+ ∑
k

∑
i

(
Jei

r,k

)T

Σr,kJei
r,k︸ ︷︷ ︸

agent-to-anchor ranges

+∑
k,k′

∑
i

(
Jei

r,kk′

)T

Σr,kk′Jei
r,kk′︸ ︷︷ ︸

inter-agent ranges

,

where Nk is the total number of the agent-k’s keyframe poses. b on the right hand side is a

72

5. CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems

∑k 7Nk × 1 vector:

b = ∑
k

bpri,k + ∑
k

∑
i,j

bij
odo,k + ∑

k
∑

i
bi

r,k + ∑
k,k′

∑
i

bi
r,kk′ (5.75)

= ∑
k

∑
i

(
Jepri,k

)T

Σpri,kepri,k︸ ︷︷ ︸
a prior

+∑
k

∑
i,j

(
J

eij
odo,k

)T

Σodo,ke
ij
odo,k︸ ︷︷ ︸

visual odometry

+ ∑
k

∑
i

(
Jei

r,k

)T

Σr,kei
r,k︸ ︷︷ ︸

agent-to-anchor ranges

+∑
k,k′

∑
i

(
Jei

r,kk′

)T

Σr,kk′ei
r,kk′︸ ︷︷ ︸

inter-agent ranges

.

The Jacobian of the prior error function in Eq. (5.74) and Eq. (5.75) is a 7×
K

∑
k=1

7Nk matrix:

Jepri,k
(θ) =

 07×N1︸ ︷︷ ︸
agent-1

. . .
∂epri,k(S

t1
GCk

, zpri,k)

∂ξ
t1
GCk

, . . . , 0︸ ︷︷ ︸
agent-k

. . . 07×NK︸ ︷︷ ︸
agent-K

 , (5.76)

where the partial derivative
∂epri,k(S

t0
GCk

,zpri,k)

∂ξ
t0
GCk

is computed with Eq. (3.45). As shown in this

equation, only the first component of the agent-k’s part is non-zero, and all the elements of the

Jacobian are zeros.

The Jacobian of the odometry error is a 7×
K

∑
k=1

7Nk matrix as

Jij
eodo,k

(θ)

=

 07×N1︸ ︷︷ ︸
agent-1

. . . 0, . . . ,
∂eij

odo,k(S
ti
GCk

, S
tj
GCk

, zij
odo,k)

∂ξ
ti
GCk

,
∂eij

odo,k(S
ti
GCk

, S
tj
GCk

, zij
odo,k)

∂ξ
tj
GCk

, . . . , 0︸ ︷︷ ︸
agent-k

. . . 07×NK︸ ︷︷ ︸
agent-K

 ,

(5.77)

whose elements are all zeros, except for the i-th and (i + 1)-th components of the agent-k’s part.

The two partial derivatives
∂eij

odo,k(S
ti
GCk

,S
tj
GCk

,zij
odo,k)

∂ξ
ti
GCk

and
∂eij

odo,k(S
ti
GCk

,S
tj
GCk

,zij
odo,k)

∂ξ
tj
GCk

are derived in Eq. (3.42)

and Eq. (3.43), respectively.

When the agent-k obtains a range measurement at ti, the Jacobian of the ranging error

73

5. CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems

function needs to be computed as

Ji
er,k
(θ) =

 01×N1︸ ︷︷ ︸
agent-1

. . . 0, . . . ,
∂ei

r,k(S
ti
GCk

, zi
r,k)

∂ξ
ti
GCk

, . . . , 0︸ ︷︷ ︸
agent-k

. . . 01×NK︸ ︷︷ ︸
agent-K

 , (5.78)

which is a 1×
K

∑
k=1

7Nk matrix. The partial derivative
∂ei

r,k(S
ti
GCk

,zi
r,k)

∂ξ
ti
GCk

is derived in Eq. (3.51). As

shown in the equation, all the elements of the Jacobian are zeros, except for the i-th component

of the agent-k’s part.

Additionally, when a range measurement is available between the agent-k and agent-k′ at ti,

the 1×
K

∑
k=1

7Nk Jacobian matrix of the inter-agent ranging error function needs to be computed

as

Ji
e

r,kk′
(Θ)

=

 0 0, . . . ,
∂ei

r,kk′(S
ti
GCk

, Sti
GCk′

, zi
r,kk′)

∂ξ
ti
GCk

, . . . , 0︸ ︷︷ ︸
agent-k

. . . 0, . . . ,
∂ei

r,kk′(S
ti
GC1

, Sti
GC2

, zi
r,kk′)

∂ξ
ti
GCk′

, . . . , 0︸ ︷︷ ︸
agent-k′

0

 .

(5.79)

In this Jacobian matrix, only the i-th components of the agent-k and agent-k′ are non-zeros.

The partial derivative
∂ei

r,kk′ (S
ti
GCk

,Sti
GCk′

,zi
r,kk′)

∂ξ
ti
GCk

of the agent-k is computed as

∂ei
r,kk′(S

ti
GCk

, Sti
GCk′

, zi
r,kk′)

∂ξ
ti
GCk

=
∂hi

r,kk′(S
ti
GCk

, Sti
GCk′

)

∂ξ
ti
GCk

(5.80)

=
∂||Ck

pti
TkTk′
||

∂ξ
ti
GCk

=
∂||Ck

pti
TkTk′
||

∂Ck
pti

TkTk′

∂Ck
pti

TkTk′

∂Ck
p̃ti

TkTk′

∂Ck
p̃ti

TkTk′

∂ξ
ti
GCk

,

where each part of the right hand side can be expanded as

∂||Ck
pti

TkTk′
||

∂Ck
pti

TkTk′

=
1

||Ck
pti

TkTk′
||

(
Ck

pti
TkTk′

)T

(5.81)

∂Ck
pti

TkTk′

∂Ck
p̃ti

TkTk′

=
[
I3 03×1

]
(5.82)

∂Ck
p̃ti

TkTk′

∂ξ
ti
GCk

=
∂

∂ξ
ti
GTk

((
Sti

GCk

)−1

p̃ti
GCk′
− p̃CkTk

)

74

5. CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems

= H[p̃ti
CkTk′

]−

03×3 03×3 03×1

01×3 01×3 1


=

[pti
CkTk′

]x −sti
GCk

I3 03×1

01×3 01×3 sti
GCk

−
03×3 03×3 03×1

01×3 01×3 1


=

[pti
CkTk′

]x −sti
GCk

I3 03×1

01×3 01×3 sti
GCk
− 1

 . (5.83)

By substituting these results into Eq. (5.80), the partial derivative can be finally computed as

∂ei
r,kk′(S

ti
GCk

, Sti
GCk′

, zi
r,kk′)

∂ξ
ti
GCk

=

[
∂hi

r,kk′ (S
ti
GCk

,Sti
GCk′

)

∂ω1

∂hi
r,kk′ (S

ti
GCk

,Sti
GCk′

)

∂νk

∂hi
r,kk′ (S

ti
GCk

,Sti
GCk′

)

∂λk

]
=

1
||Ck

pti
TkTk′
||

[
(Ck

pti
TkTk′

)T[pti
CkTk′

]X −sti
GCk

(Ck
pti

TkTk′
)T 0

]
(5.84)

Similarly, the partial derivatives
∂ei

r,12(S
ti
GC1

,Sti
GC2

,zi
r,12)

∂ξ
ti
GC2

of the agent-k′ can be calculated as

∂ei
r,12(S

ti
GC1

, Sti
GC2

, zi
r,12)

∂ξ
ti
GC2

=

[
∂hi

r,12(S
ti
GC1

,Sti
GC2

)

∂ω2

∂hi
r,12(S

ti
GC1

,Sti
GC2

)

∂ν2

∂hi
r,12(S

ti
GC1

,Sti
GC2

)

∂λ2

]
(5.85)

=
1

||C2
pti

T2T1
||

[
(C2

pti
T2T1

)T[pti
C2T1

]X −sti
GC2

(C2
pti

T2T1
)T 0

]
.

Fig. 5.4 shows the structure of the Hessian matrix computed using the three-agent setup

depicted in Fig. 5.3. A small box in the figure represents the 7DoF pose at each timestamp. The

non-zeros elements of the matrix are marked in gray. As shown in Fig. 5.4a, all the elements

of the prior error’s Hessian matrix ∑k Hpri,k are zeros except for the first row and column of

each agent’s entry. In addition, visual odometry error’s Hessian ∑k ∑i,j Hi,j
odo,k has no correlation

between the different agents, as depicted in Fig. 5.4b. The Hessian of the agent-to-anchor

ranges ∑k ∑i Hi
r,k also does not have a inter-agent correlation, as illustrated in Fig. 5.4c, and its

elements are all zeros except for three keyframes of the agent-1 at which the anchor connections

are available. As can be seen in Fig. 5.4d, the Hessian of the inter-agent range error ∑k,k′ ∑i Hi
r,kk′

has non-zeros components between different agents when inter-agent ranges are available.

Fig. 5.4e shows the sparse H matrix that is computed by combining all the sub-matrices, i.e.

H = ∑k Hpri,k + ∑k ∑i,j Hij
odo,k + ∑k ∑i Hi

r,k + ∑k,k′ ∑i Hi
r,kk′ . As shown in this figure, both agent-

to-anchor and inter-agent range measurements do not induce a big complexity to the system

(Hessian matrix), so accurate collaborative SLAM is possible without requiring substantial

75

5. CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems

A
ge

nt
-1

A
ge

nt
-2

A
ge

nt
-3

Agent-3Agent-2Agent-1

(a) Hessian matrix of the prior error
(∑k Hpri,k)

A
ge

nt
-1

A
ge

nt
-2

A
ge

nt
-3

Agent-3Agent-2Agent-1

(b) Hessian matrix of the visual
odometry error (∑k ∑i,j Hi,j

odo,k)

A
ge

nt
-1

A
ge

nt
-2

A
ge

nt
-3

Agent-3Agent-2Agent-1

(c) Hessian matrix of the agent-to-
anchor range error (∑k ∑i Hi

r,k)

A
ge

nt
-1

A
ge

nt
-2

A
ge

nt
-3

Agent-3Agent-2Agent-1

(d) Hessian matrix of the inter-agent
range error (∑k,k′ ∑i Hi

r,kk′)

A
ge

nt
-1

A
ge

nt
-2

A
ge

nt
-3

Agent-3Agent-2Agent-1

(e) The combination of all the Hessian matrices (H =

∑k Hpri,k + ∑k ∑i,j Hij
odo,k + ∑k ∑i Hi

r,k + ∑k,k′ ∑i Hi
r,kk′)

Figure 5.4.: An example of the Hessian matrix structure computed with the three-agent setup

computational power.

After the multi-agent data fusion, the processing unit transmits the updated keyframe poses

back to the robots. Then, map points are locally updated on each robot’s onboard computer

using the differences of the keyframe poses before and after the data fusion. For example, the

agent-1 in Fig. 5.2 computes the 7DoF camera poses with respect to its own local reference

76

5. CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems

frame as

Ŝti
L1C1

=
(

SGL1

)−1

Ŝti
GC1

(5.86)

=

R̂ti
GC1

t̂ti
C1G

0
(

ŝti
GC1

)−1

sGL1


=

R̂ti
L1C1

t̂ti
C1L1

0
(

ŝti
L1C1

)−1

 .

To keep the local poses as 6DoF matrices, ŝti
L1C1

is multiplied to the translation vector as

T̂ti
L1C1

=

R̂ti
L1C1

ŝti
L1C1

t̂ti
C1L1

0 1

 .

Using the difference of the keyframe pose before the data fusion Tti
L1C1

and the updated pose

after the fusion T̂ti
L1C1

, the homogeneous coordinates of the map points ˆ̃Xi
L1

can be updated as

ˆ̃Xi
L1
= T̂ti

L1C1

(
Tti

L1C1

)−1

Xi
L1

1

 =

 X̂i
L1

(ŝti
L1C1

)−1

 (5.87)

Then, these homogeneous coordinates are converted to the 3D Euclidean coordinates by

multiplying the scale to the first three elements, i.e. X̂i
L1
← ŝti

L1C1
X̂i

L1
.

For the other robots as the agent-2, the relative similarity matrix from the agent-2’s reference

frame to the agent-1’s reference frame
(

SL2L1

)−1

needs to be additionally multiplied with the

optimal poses:

Ŝti
L2C2

=
(

SL2L1

)−1 (
SGL1

)−1

Ŝti
GC2

=

(RL1L2
)TR̂ti

GC2
(Rti

L1L2
)T t̂ti

C2G −
(

ŝti
GC2

)−1

sGL1
sL1L2

(RL1L2
)TtL2L1

0
(

ŝti
GC2

)−1

sGL1
sL1L2


=

R̂ti
L2C2

t̂ti
C2L2

0
(

ŝti
L2C2

)−1

 .

Then, the local poses T̂ti
L2C2

and the map points Xi
L2

are updated as the agent-1’s case.

77

5. CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems

5.3. System Evaluation in Two Application Scenarios

CoVOR-SLAM was evaluated in both indoor and outdoor application scenarios. First, four

Machine Hall (MH) sequences of the EuRoC dataset [Burri et al., 2016] were used to test the

system in an indoor environment. The original images were sequentially obtained using a

single drone in a machine hall, and Fig. 5.5a shows a sample image. It was assumed that

four MH sequences were obtained simultaneously using four drones to test CoVOR-SLAM

using multiple robots, and the ground truth trajectory of each drone is depicted in Fig. 5.6a.

To evaluate the system in an outdoor environment, sequence 00 of the KITTI dataset [Geiger

et al., 2012] was used. The original images were obtained using a car in a residential area, and

a sample image is shown in Fig. 5.5b. The entire trajectory was equally divided into four as

depicted in Fig. 5.6b, and the assumption was that four cars traveled each part of the trajectory

at the same time. Table 5.1 summarizes the total traveling time, distance, and the dimension of

the datasets.

(a) A sample image of the EuRoC dataset Machine Hall (MH) sequences

(b) A sample image of the KITTI dataset sequence 00

Figure 5.5.: Sample images of the EuRoC and KITTI datasets

78

5. CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems

(a) Four agents’ ground truth trajectories from EuRoC-MH

(b) Four agents’ ground truth trajectories from KITTI-00

Figure 5.6.: Ground truth trajectories of the swarm robotic system with four agents

Table 5.1.: Summary of the EuRoC-MH and KITTI-00 datasets

Dataset Agent ID Total time [s] Total distance [m]
Dimension

(X[m]× Y[m]× Z[m])

EuRoC-MH

1 181.85 80.55 7.80× 11.20× 2.45
2 149.95 73.39 7.35× 11.90× 2.36
3 131.50 130.85 13.04× 9.59× 1.99
4 98.75 91.71 19.51× 17.37× 3.31

KITTI-00

1 117.56 827.65 259.16× 375.15× 10.81
2 117.56 870.42 466.36× 235.70× 15.00
3 117.56 941.25 187.96× 277.08× 12.37
4 117.56 1081.98 340.79× 394.28× 13.67

79

5. CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems

(a) The mean and std of the inter-agent ranging
error samples (EuRoC-MH)

(b) The mean and std of the agent-to-anchor rang-
ing error samples (EuRoC-MH)

(c) The mean and std of the inter-agent ranging
error samples (KITTI-00)

(d) The mean and std of the agent-to-anchor rang-
ing error samples (KITTI-00)

Figure 5.7.: The mean and standard deviation (std) values of the inter-agent and agent-to-
anchor ranging error samples

Range measurements were synthetically generated including the ranging errors computed

using the statistical error model derived in Appendix B because neither EuRoC-MH nor KITTI-

00 datasets include range measurements. To generate agent-to-anchor range measurements, an

anchor was set at [−3, 5, 0]mT for EuRoC-MH and at [−50, 150, 10]mT for KITTI-00. Since the

ranging error model includes random variables, 100 sets of inter-agent and agent-to-anchor

range samples were generated. Fig. 5.7 shows the mean and standard deviation values of the

inter-agent and agent-to-anchor ranging error samples. The average of the mean and standard

deviation values are summarized in Table 5.2. For example, the first row of this table shows

that the averages of the mean and standard deviation values of the ranging error samples

between agent-1 and agent-2 are 0.33m and 0.25m for EuRoC-MH, and −1.44m and 2.94m for

KITTI-00.

In addition, the maximum distance was set to ensure more realistic range measurements,

i.e. when robots are located beyond the maximum value, no range measurement was obtained

80

5. CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems

Table 5.2.: The average of the mean and standard derivation (std) values of the ranging error
samples (EuRoC-MH and KITTI-00)

EuRoC-MH KITTI-00

Agent-ID
Avg. of mean

[m]
Avg. of std

[m]
Avg. of mean

[m]
Avg. of std

[m]

Inter-agent
ranges

1-2 0.33 0.25 -1.44 2.94
1-3 -0.38 0.79 -5.24 5.24
1-4 -0.48 0.98 -2.69 3.91
2-3 0.1 1.34 -2.88 3.72
2-4 0.36 1.15 -1.89 4.61
3-4 -1.02 2.81 -4.96 3.99

Avg. -0.18 1.22 -3.18 4.07

Agent-to-anchor
ranges

1 0.29 0.07 -0.96 0.31
2 0.28 0.07 -0.75 0.37
3 0.27 0.04 -1.23 0.22
4 0.27 0.07 -1.22 0.39

Avg. 0.28 0.063 -1.04 0.32

Table 5.3.: The range measurement availability of the EuRoC-MH and KITTI-00 datasets

Dataset Agent ID Anchor ranges [%]
Inter-agent ranges [%]
≥ 1 = 2 = 3

EuRoC-MH

1 59.83 37.61 8.55 0.85
2 50.47 51.40 5.61 0.93
3 4.95 28.71 5.94 0.99
4 15.38 20.19 6.73 0.00

Avg. 32.66 34.48 6.71 0.69

KITTI-00

1 71.63 25.61 4.15 4.50
2 53.99 28.12 5.43 5.11
3 21.45 30.28 8.52 2.84
4 57.10 23.96 5.62 1.78

Avg. 51.04 26.99 5.93 3-56

at that location. Table 5.3 shows the range measurement availability of each agent compared

to the total traveling time. For instance, agent-1 of KITTI-00 obtained range measurements to

the anchor for 71.63% of its total traveling time, and it was connected to at least one robot for

25.61% of the mission. For 4.15% and 4.50% of the traveling time, agent-1 was connected to

two and three other robots, respectively.

Analysis of relative positioning accuracy CoVOR-SLAM was conducted using monocular

visual odometry and inter-agent ranges (without anchor-to-agent ranges) to analyze the impact

of inter-agent ranges on the relative positioning accuracy. The relative position between agent-A

81

5. CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems

G

A

B

pt
GA

pt
GB

Gpt
AB = pt

GB − pt
GA

Figure 5.8.: The relative position between agent-A and agent-B at t

1 2

34

(a) Test case 1

1 2

34

(b) Test case 2

1 2

34

(c) Test case 3

Figure 5.9.: Three test cases of inter-agent connectivity options

and agent-B at t is defined as

Gpt
AB = pt

GB − pt
GA, (5.88)

as can be seen in Fig. 5.8.

In addition, three test cases were defined as shown in Fig. 5.9. All six possible connections

between the four agents were enabled in test case 1. In test case 2, it was assumed that the

communication links between agent-1 and agent-3 were lost, as well as the connections between

agent-1 and agent-4. Agent-2 and agent-4 were further disconnected in test case 3.

Fig. 5.10 shows the relative trajectories estimated using monocular visual odometry produced

with the KITTI-00 images and all available inter-agent range measurements between the four

agents (MonoVO+Inter(Case1), blue). The ground truth relative trajectories are gray, and the

relative trajectories estimated using only monocular VO are yellow (MonoVO(gtScale0)). Since

82

5. CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems

the positions estimated using monocular VO are up-to-scale, they are scaled with the first

keyframe’s ground truth values (st1
A and st1

B), before the relative positions are computed:

Gpt
AB = st1

B pt
GB − st1

A pt
GA. (5.89)

This figure shows that the relative positioning errors are substantially reduced by fusing

inter-agent range measurements with monocular visual odometry measurements, even when

the agents are connected less than 50% of the entire traveling time, as summarized in Table 5.3.

Fig. 5.11 shows the simulation results obtained using all the 100 inter-agent ranging sequences

as the empirical CDF. Four agents’ monocular VO measurements were generated using EuRoC-

MH for Fig. 5.11a, and 100 range measurements were generated employing each setting defined

in Fig. 5.9. Using these monocular VO and inter-agent ranges, CoVOR-SLAM was run 100× 3

test cases, and 100 RMSE values of each simulation case are depicted as an empirical CDF in

Fig. 5.11a. The same procedure was carried out using KITTI-00 to generate Fig. 5.11b.

As can be seen in Fig. 5.11b, CoVOR-SLAM obtains much smaller relative positioning

errors compared to MonoVO(gtScale0), without scaling the position estimates with the first

keyframe’s ground truth scale. This result shows that CoVOR-SLAM can solve not only the

scale ambiguity problem of monocular VO, but it can also effectively mitigate the positioning

errors accumulated over time, although the agents are connected to each other less than 50%

of the traveling time (see Table 5.3). CoVOR-SLAM reduces the relative positioning errors

most effectively when all the possible communication links are available between the agents

(MonoVO+Inter(Case1), blue). Although the inter-agent connections are partially lost as test

case 2 and 3 in Fig. 5.9, CoVOR-SLAM can still provide much less relative positioning errors

compared to MonoVO(gtScale0), as shown with the orange line (MonoVO+Inter(Case2)) and

the green line (MonoVO+Inter(Case3)) in Fig. 5.11b. Moreover, the RMSE values are not

increased significantly from MonoVO+Inter(Case1).

Fig. 5.11a shows the empirical CDF obtained with EuRoC-MH. As KITTI-00, CoVOR-SLAM

can provide more accurate relative position estimates when more agents can obtain the inter-

agent communication links. Unlike KITTI-00, monocular VO can accurately estimate the shape

of each agent’s trajectory using EuRoC-MH because many differentiable features are available

in the machine hall as shown in Fig. 5.5a. However, note that the positions estimated using

monocular VO are still up-to-scale, and are scaled with the ground truth values, as Eq. (5.89),

while CoVOR-SLAM can accurately estimate the ambiguous scale of monocular VO, although

83

5. CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems

(a) The relative trajectories from agent-1 to agent-2 (b) The relative trajectories from agent-1 to agent-3

(c) The relative trajectories from agent-1 to agent-4 (d) The relative trajectories from agent-2 to agent-3

(e) The relative trajectories from agent-2 to agent-4 (f) The relative trajectories from agent-3 to agent-4

Figure 5.10.: The relative trajectories between the agents of KITTI-00. The ground truth is
depicted in gray. The trajectories estimated by monocular VO are yellow, and the
trajectories estimated by fusing monocular VO and inter-agent range measure-
ments are blue

84

5. CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems

(a) The CDF of the relative position RMSE obtained using CoVOR-
SLAM run with monocular VO produced with EuRoC-MH and
inter-agent ranges (The relative position RMSE obtained using
MonoVO(gtScale)= 0.77m)

(b) The CDF of the relative position RMSE obtained using CoVOR-
SLAM run with monocular VO produced with KITTI-00 and
inter-agent ranges (The relative position RMSE obtained using
MonoVO(gtScale)= 111.75m)

Figure 5.11.: The empirical CDF of the average relative position RMSE obtained using CoVOR-
SLAM run with the four agents’ monocular visual odometry measurements and
inter-agent range measurements generated in line with the three test case settings

inter-agent range measurements are biased and include noise (see Table 5.2) and most of the

inter-agent connections are available less than 50% of the traveling time (see Table 5.3).

Analysis of absolute positioning accuracy CoVOR-SLAM was executed with monocular

visual odometry, inter-agent as well as agent-to-anchor range measurements to evaluate

85

5. CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems

34

21

(a) To1234: all the agents obtain
agent-to-anchor-range mea-
surements

4 3

21

(b) To12: agent-1 and agent-
2 obtain agent-to-anchor
range measurements

4 3

21

(c) To1: only agent-1 obtains
agent-to-anchor range mea-
surements

Figure 5.12.: Three setups of agent-to-anchor ranging

the system in terms of absolute positioning accuracy. For the simulation, inter-agent range

measurements were generated employing test case 3 in Fig. 5.9c. Ranges between an anchor and

four agents were generated using the test cases shown in Fig. 5.12. In the first setting (To1234),

all fours agents are connected to the anchor, and agent-1 and agent-2 are connected to the

anchor in the second setup (To12). In the last setting (To1), only agent-1 obtains agent-to-anchor

range measurements.

Fig. 5.13 shows the four agents’ absolute positions in the horizontal plane estimated using

CoVOR-SLAM. For this simulation, the four agents’ visual odometry measurements were

produced with the KITTI-00 images. Ranges between the agents were generated employing test

case 3 in Fig. 5.9c, and agent-to-anchor ranges were generated between the anchor and all four

agents as in Fig. 5.12a. The positions estimated using monocular VO, inter-agent ranges, and

agent-to-anchor ranges are red (MonoVO+Inter(Case3)+Anchor(To1234)), and the positions

estimated using monocular VO and inter-agent ranges are green (MonoVO+Inter(Case3)). The

yellow lines show the trajectories estimated using only monocular VO and scaled with the first

keyframe’s ground truth values, while the ground truth trajectories are gray.

As shown in Fig. 5.13, all four trajectories estimated using MonoVO+Inter(Case3) are

much closer to the ground truth, compared to the trajectories estimated MonoVO(gtScale0).

This result shows that the absolute positioning error of monocular VO can be substan-

tially reduced by fusing inter-agent ranges with monocular VO. By exploiting agent-to-

anchor range measurements in addition to the inter-agent ranges, CoVOR-SLAM can es-

timate the agents’ absolute trajectories most accurately, i.e. the trajectories estimated using

MonoVO+Inter(Case3)+Anchor(To1234) are closest to the ground truth trajectories for all four

86

5. CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems

(a) Agent-1’s horizontal trajectory estimates (b) Agent-2’s horizontal trajectory estimates

(c) Agent-3’s horizontal trajectory estimates (d) Agent-4’s horizontal trajectory estimates

Figure 5.13.: Four agents’ horizontal trajectories estimated using only monocular VO with the
KITTI-00 images (yellow); estimated using monocular VO and inter-agent ranges
(green); and estimated using monocular VO, inter-agent ranges, and agent-to-
anchor ranges (red). The ground truth trajectories are depicted in gray

agents. In addition, map points are accurately estimated using CoVOR-SLAM as seen in

Fig. 5.14. Map points should be generated along the ground truth trajectory with the KITTI-00

images since the images were obtained using a front-facing camera on a car in a residential

area. As a result, the map points shown in this figure can be considered as accurate estimates,

although the ground truth map points are unavailable.

Fig. 5.15 shows the absolute position RMSE values as the empirical CDF, which are obtained

using both the EuRoC-MH and KITTI-00 datasets and all the 100× 3 agent-to-anchor ranges.

For Fig. 5.15a, monocular VO measurements were generated using EuRoC-MH. Inter-agent

ranges were generated employing test case 3 in Fig. 5.9c, and 100× 3 samples of agent-to-anchor

ranges were generated using the three settings shown in Fig. 5.12. Using these measurements,

CoVOR-SLAM was run 100× 3 times, and the average RMSE values of the four agents’ absolute

87

5. CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems

Figure 5.14.: Map points estimated employing four agents using CoVOR-SLAM run with
monocular VO produced with the KITTI-00 images, inter-agent ranges generated
employing test case 3’s setup, and ranges between the anchor and all the four
agents (MonoVO+Inter(Case3)+Anchor(To1234))

position estimates are plotted as the empirical CDF in Fig. 5.15a. Additionally, the RMSE

values obtained using CoVOR-SLAM run with monocular VO and only inter-agent ranges

are depicted in green (MonoVO+Inter(Case3)). Fig. 5.15b shows the average RMSE values of

the four agents’ absolute positions estimated using the same procedure but with the KITTI-00

dataset, instead of the EuRoC-MH dataset.

As shown in Fig. 5.15b, all the RMSE values obtained with CoVOR-SLAM are smaller

than MonoVO(gtScale0) (66.15m), even though all the agents are connected to the an-

chor less than 60% of their traveling time, as shown in Table 5.3. CoVOR-SLAM can

obtain the smallest RMSE values when all four agents are connected to the anchor

(MonoVO+Inter(Case3)+Anchor(To1234), red), but it can still achieve more accurate abso-

lute position estimates than MonoVO(gtScale0) as well as MonoVO+Inter(Case3) when only

agent-1 is connected to the anchor (MonoVO+Inter(Case3)+Anchor(To1), blue). This is because

the other agents can benefit from the anchor connections using inter-agent connections.

88

5. CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems

(a) The CDF of the average absolute position RMSE values obtained
using CoVOR-SLAM with EuRoC-MH (The absolute position
RMSE obtained with MonoVO(gtScale)= 0.26m)

(b) The CDF of the average absolute position RMSE values ob-
tained using CoVOR-SLAM with KITTI-00 (The absolute posi-
tion RMSE obtained with MonoVO(gtScale)= 66.15m)

Figure 5.15.: The empirical CDF of the average RMSE values of the four agents’ absolute posi-
tions estimated using CoVOR-SLAM operated with monocular visual odometry,
inter-agent ranges generated employing the setting of test case 3, and agent-to-
anchor ranges generated employing the three connectivity setup

As aforementioned, monocular visual odometry can accurately estimate the shape of each

agent’s trajectories with EuRoC-MH using of the many differentiable features in the machine

hall. However, note again that the absolute scale of the positions cannot be estimated only with

monocular visual odometry in the real world, so the positions estimated using monocular visual

odometry are manually scaled with the first keyframe’s ground truth value for comparison,

89

5. CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems

whereas CoVOR-SLAM can estimate the absolute scale using the range measurements without

manually scaling the position estimates.

Analysis of the communication requirements Fig. 5.16 shows the data size transmitted with

different numbers of keyframe messages to run CoVOR-SLAM (CoVOR-SLAM, red). It was

assumed that both inter-agent and agent-to-anchor range measurements were included in the

keyframe messages. This figure also illustrates the data size transmitted for two state-of-the-art

collaborative VSLAM with inter-agent loop closures: centralized CCM-SLAM (Upper Bound

(UB) in dark blue, and Lower Bound (LB) in sky blue) and decentralized dSLAM (green).

As can be seen in this figure, CCM-SLAM requires the greatest communication capability

because all agents transmit their local map data to the server and only the server carries out

the computationally demanding tasks of inter-agent loop closures, such as loop detection, map

fusion, and global map optimization. dSLAM successfully reduced about 44% of the data

compared to the CCM-SLAM’s lower bound to run collaborative VSLAM in a decentralized

manner. CoVOR-SLAM requires much less communication capability compared to dSLAM,

reducing the data size by about 95%. This is because visual information can be completely

discarded from the keyframe messages. Consequently, CoVOR-SLAM can be useful in those

environments where no adequate communication network is available, e.g. in deep sea and

extraterrestrial areas. Moreover, a powerful server is not necessary to run the data fusion of

monocular VO and range measurements. Therefore, the system architecture can be chosen

flexibly (whether centralized or decentralized), depending on the mission and environments.

90

5. CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems

Figure 5.16.: The data size transmitted for collaborative VSLAM with inter-agent loop closures:
centralized CCM-SLAM (UB in dark blue and LB in sky blue) and decentralized
dSLAM (green). The data size transmitted for CoVOR-SLAM is red

91

6. Summary and Conclusions

6.1. Summary

This dissertation developed a cooperative SLAM method using visual and ranging sensors

for swarm robotic systems to explore areas where GNSS is unreliable or unavailable. VSLAM

was selected to estimate each agent’s poses and to map environments because cameras are

cost-effective onboard sensors that provide abundant information about environments observed

without complex infrastructures. VSLAM can be divided into two parts, as introduced in

Chapter 2 - the front-end and back-end. In the front-end, images (pixels) are converted into

visual measurements, which are used to estimate the camera poses and map point coordinates

by tracking and local mapping in the back-end.

However, tracking and local mapping are dead-reckoning processes, so the estimation

errors of the camera poses and map point coordinates accumulate over time without limit.

The loop closing technique can effectively mitigate the errors, using the map point matches

between the current keyframe and the keyframes stored in the map database (loop information).

Nevertheless, substantial computing power is required to continuously compare the map points

between the current keyframe and the database as well as to process the global map with the

loop information once a loop is detected. Furthermore, robots have to travel back to areas

previously observed to search for a loop, which significantly constrains their movements and

the whole mission planning. In addition, the loop closing method cannot solve the scale

ambiguity problem of monocular VSLAM.

In Chapter 3, a SLAM method using visual odometry and range measurements (VOR-SLAM)

was proposed to accurately estimate the camera poses and map points without requiring

significant computing power. The simplest setup (a single robot and a reference point) was

used to introduce the concept. Each agent’s poses and map points were estimated using

monocular VO or SLAM. Instead of applying the loop closing method, the graph-based data

fusion of visual odometry and range measurements was used to mitigate estimation errors and

93

6. Summary and Conclusions

to resolve scale ambiguity, which is inherent to monocular VSLAM. VOR-SLAM was analyzed

in terms of sensitivity to the ranging error and availability, using public image datasets and

range measurements synthetically generated using a statistical ranging error model. The

simulation results showed that VOR-SLAM can estimate the camera poses and map points

more accurately than monocular VO, even when range measurements are noisy and biased

and only available less than 50% of the mission time. Moreover, VOR-SLAM requires much

less processing power compared to loop closures, yet can still achieve comparable positioning

accuracy without scale ambiguity. VOR-SLAM was also tested using real experimental data

obtained using a camera and UWB modules mounted on the rover system developed by

DLR-KN in two outdoor environments (a football field and a gravel pit). The experimental

results showed that VOR-SLAM accurately estimates the rover’s poses and map points using

real range measurements obtained with low-cost UWB sensors.

After conducting intensive analyses using a single robot, Chapter 4 reviewed the state-of-

the-art collaborative VSLAM research for swarm robotic systems. This chapter focused on the

approaches using the inter-agent loop closing, the most widely studied and tested methods.

The inter-agent loop closing can substantially reduce the estimation errors of the relative

poses between robots, using the map point matches observed by different robots (inter-agent

loops). Computationally demanding tasks of inter-agent loop closures, such as inter-agent loop

detection and multi-map fusion, can be processed using a central server. In this centralized

system architecture, each robot’s onboard computer only needs to estimate its local poses and

map points, which does not require large computational capability. However, robots need to

remain in the areas where they can communicate with the server, which is impractical in many

cases. Thus, one of the onboard computers can be used to process inter-agent loop closures in

a distributed manner, using only neighboring robots’ map data.

Cooperative SLAM for swarm robotic systems using visual odometry and range measure-

ments (CoVOR-SLAM) was proposed in Chapter 5 to reduce even further the computational

requirement. In CoVOR-SLAM, monocular VO or VSLAM was used to estimate each robot’s

local poses and map points, and then all available range measurements (both agent-to-anchor

and inter-agent ranges) were used to mitigate both relative and absolute positioning errors.

CoVOR-SLAM was evaluated in indoor and outdoor application scenarios using real images

and ranges synthetically generated using a statistical ranging error model. The simulation

results showed that CoVOR-SLAM substantially reduces the robots’ positioning and mapping

errors without scale ambiguity in both indoor and outdoor environments. Moreover, CoVOR-

94

6. Summary and Conclusions

SLAM requires much less computing power than the state-of-the-art inter-agent loop closures

because visual information is completely excluded from the map fusion process. The system

architecture of swarm robotic systems can be flexibly chosen (centralized or decentralized),

depending on the mission and environment, since a powerful server is not required to execute

CoVOR-SLAM. Furthermore, CoVOR-SLAM requires much fewer communication network

capabilities compared to inter-agent loop closures. Thus, CoVOR-SLAM is useful in environ-

ments, such as deep sea and extraterrestrial areas, where a sufficient communication network

is unavailable. In addition, a large number of robots can participate in a mission since each

robot transmits only small amounts of data to the processing unit when using CoVOR-SLAM.

6.2. Conclusions; Applications and Future Work

CoVOR-SLAM can be applied in various environments where GNSS is unreliable or unavailable,

without complex infrastructures to obtain range measurements. For instance, the communi-

cation channels between the robots can be used to obtain inter-agent range measurements,

and signals transmitted from a base station (that are already available in mission areas) can

be employed to obtain agent-to-anchor range measurements. The following are application

scenarios of CoVOR-SLAM using various ranging sources:

• Urban applications: In deep urban areas, GNSS is unreliable, but agent-to-anchor ranges

can be obtained by employing the signals from cellular networks (e.g. 5G). CoVOR-SLAM

can be used to estimate the robots’ poses and map points with onboard cameras and

range measurements.

• Indoor applications: GNSS is unreliable or unavailable in indoor areas, but CoVOR-SLAM

can be applied using ranges obtained using e.g. Wi-Fi signals and bluetooth.

• Extraterrestrial applications: Robots can use onboard cameras for self-localization in

extraterrestrial areas where GNSS is unavailable (e.g. the Curiosity Mars rover from

NASA). In such environments, radio-based ranging sensors, such as UWB modules, can

be employed to obtain agent-to-anchor range measurements for CoVOR-SLAM. Inter-

agent ranges can be also obtained without additional hardware, using communication

channels between the robots.

• Deep sea applications: Submarines cannot obtain GNSS signals when conducting a

mission. Instead of traveling back to the surface to obtain GNSS signals, which consumes

95

6. Summary and Conclusions

significant time and energy, CoVOR-SLAM can be applied to accurately estimate the their

positions and map the environments.

In this dissertation, CoVOR-SLAM was tested using only a single type of platform. Further

system tests could be carried out using different types of platforms. For example, when drones

and rovers cooperatively conduct a mission in a swarm robotic system, ranges between the

robots can be easily obtained using the inter-agent communication channels, though it is hard

to detect inter-agent loops (since two robots observe the scenes from different angles). In such

cases, CoVOR-SLAM can estimate the robots’ poses and map points much more accurately

than collaborative VSLAM using inter-agent loop closing. Furthermore, additional sensors

can be integrated into the onboard system. CoVOR-SLAM has a simple framework, so other

sensors can be easily integrated without significant system modification. For example, IMU

can be used with cameras (Visual-INertial System (VINS)) to obtain more accurate odometry

measurements without scale ambiguity, before fusing the odometry with range measurements.

96

A. 3D Motion Description with Lie Groups and

Algebras

The Lie groups and algebra [Eade, 2013] are used to describe the rigid camera motions for

VSLAM, which are combinations of translation and rotation motion. The matrices in Lie

groups can be inverted, differentiated, and interpolated, so they satisfy the requirements to

describe the motions. In this section, the general properties of Lie groups and algebras are

explained, and then the three subgroups, SO(3), SE(3), and Sim(3) are detailed, including the

differentiation and Jacobian computations of each group’s action.

A.1. General Properties

Fig. A.1 illustrates the robot’s translational motion from point A to B with a rotation around the

Z-axis. A 4× 4 pose matrix in Lie groups can be used to describe the combined rigid motion:

TAB =


cos θ − sin θ 0 x

sin θ cos θ 0 y

0 0 1 0

0 0 0 1

 =

RAB tBA

01×3 1

 ,

where RAB is the rotation matrix from B to A around the Z-axis, and tBA is the translation vector

from B to A.

A n× n matrix in a Lie group T and the n× n matrix in the corresponding Lie algebra Ξ

have the following exponential relationship:

T = exp Ξ = lim
n→∞

(
I +

Ξ

n

)n

=
∞

∑
k=0

Ξk

k!
. (A.90)

The matrix Ξ in the Lie algebra is a linear combination (vector space) of a tangent vector ξ ∈ Rn

97

A. 3D Motion Description with Lie Groups and Algebras

X

Y

time ti

A

time tj

B

XA

YA

YA
YB XB

XA

θ

pAB = [x, y, z]T

Figure A.1.: An example of a rover’s simultaneous rotational and translational motion. The
rotation angle from A to B with respect to the Z-axis is θ, and the position vector
from A to B is pAB.

generated using the Lie group generators Gi:

Ξ =
n

∑
i

ξiGi. (A.91)

The adjoint map Imagine that a vector x defined in the global frame is converted to the local

frame using the matrix transformation T, i.e. x′ = Tx. The adjoint mapping,

Adj (T)A = TA (T)−1 ,

transforms the vector x′ back to the global frame, and then convert the vector (T)−1 x′ using

the matrix transformation A. Finally, the vector A (T)−1 x′ is transformed to the global frame

using T. When A can be represented with a matrix Ξ in the Lie algebra as A = exp Ξ,

Adj (T)A = Adj (T) exp Ξ

= T exp Ξ (T)−1

= exp (Adj (T)Ξ) . (A.92)

If the matrix T is also in the Lie group,

Adj (T)Ξ ≜ TΞ (T)−1 . (A.93)

98

A. 3D Motion Description with Lie Groups and Algebras

The following relationship can be derived, when Eq. (A.93) is substituted to Eq. (A.92):

T exp Ξ (T)−1 = exp(Adj (T)Ξ) = exp
(
TΞ (T)−1) . (A.94)

Derivative of the group actions The measurement function of VSLAM is often modeled with

a camera matrix T defined in the Lie group and a m-dimensional vector p ∈ Rm as

h(T) = Tp.

which is called a group action employing the matrix T. When the camera matrix is changed

with a small difference ∆Ξ, the measurement function can be written as

h(T exp ∆Ξ) = T exp ∆Ξp (A.95)

≈ T(I + ∆Ξ)p

= Tp + T∆Ξp

= Tp + T ∑
j

∑
i

Gi(:, j)p(j)∆ξ

= Tp + TF(p)∆ξ, (A.96)

where Gi(:, j) is the j-th column of the matrix Gi, and F(p) ≜ ∑j ∑i Gi(:, j)p(j). To linearize

Eq. (A.95), the following relationship is used:

exp A =
∞

∑
n=0

An

n!
= I + A +

A2

2!
+

A3

3!
+ · · ·

≈ I + A.

Eq. (A.96) can be differentiated with respect to the twist coordinates ξ as

∂h(T)

∂∆ξ
= TF(p). (A.97)

Derivative of the inverse group actions When the measurement function is inverse group

action as

h(T) = (T)−1 p,

99

A. 3D Motion Description with Lie Groups and Algebras

it can be expanded as

h((T exp ∆Ξ)−1) = (T exp ∆Ξ)−1 p

= exp(−∆Ξ) (T)−1 p

≈ (I − ∆Ξ) (T)−1 p

= (T)−1 p − ∆Ξ (T)−1 p

= (T)−1 p + F(− (T)−1 p)∆ξ,

where exp ∆Ξ is the small change of the matrix T. In this case, the partial derivative of the

measurement function with respect to the twist coordinates ξ is

Je(ξ) =
∂e(T, z)

∂∆ξ
=

∂h(T)

∂∆ξ
= F(− (T)−1 p). (A.98)

Derivative of the matrix differences The error function of the odometry measurements

between t1 and t2 can be modeled as

φ(T1, T2, Z) = Z−1(T−1
1 T2) (A.99)

where Z is the measurement, and T1 and T2 are the pose estimates at t1 and t2, respectively.

When a small difference exp Ξ1 in T1 induces a change in the error function exp Ξφ, Eq. (A.99)

can be re-written as

φ(T1, T2, Z) exp Ξφ = φ((T1 exp Ξ1), T2, Z),

⇔ Z−1(T−1
1 T2) exp Ξφ = Z−1((T1 exp Ξ1)

−1 T2). (A.100)

By multiplying the inverse of Z−1(T−1
1 T2) on the both sides of Eq. (A.100),

exp Ξφ =
(

T−1
2 T1

)−1

(exp Ξ1)
−1
(

T−1
2 T1

)
=

((
T−1

2 T1

)
exp Ξ1

(
T−1

2 T1

)−1
)−1

. (A.101)

100

A. 3D Motion Description with Lie Groups and Algebras

Using the relation Eq. (A.94),

((
T−1

2 T1

)
exp Ξ1

(
T−1

2 T1

)−1
)−1

= exp
(((

T−1
2 T1

)
exp Ξ1

(
T−1

2 T1

)−1
)−1)

= − exp
((

T−1
2 T1

)
exp Ξ1

(
T−1

2 T1

)−1
)

= − exp (Adj (T−1
2 T1)Ξ1) . (A.102)

By substituting Eq. (A.102) to Eq. (A.101), the following equation can be derived:

Ξφ = −Adj (T−1
2 T1)Ξ1.

Thus, the derivative of Ξφ with respect to the difference of the first matrix Ξ1 is

∂Ξφ

∂Ξ1
= −Adj (T−1

2 T1) . (A.103)

the derivative of Eq. (A.99) with respect to the second pose is In for the n-dimensional Lie

group matrix T2.

Similarly, the error function can be written as

φ(T1, T2, Z) exp Ξφ = φ(T1, T2 exp Ξ2, Z)

⇔ Z−1(T−1
1 T2) exp Ξφ = Z−1(T−1

1 T2 exp Ξ2),

when the difference of the second matrix exp Ξ2 induces the error exp Ξφ, and exp Ξ2 and

exp Ξφ have the following relationship:

Ξφ = Ξ2.

Thus, when T2 is a n-dimensional matrix,

∂Ξφ

∂Ξ2
= In. (A.104)

A.2. Rotations: SO(3)

The 3× 3 rotation matrix R is the representative example in the Lie group SO(3). The rotation

matrix is orthogonal and can be inverted by transposing as (R)−1 = (R)T. A 3× 3 skew matrix

101

A. 3D Motion Description with Lie Groups and Algebras

[ω]X of the tangent vector ω = [ω1, ω2, ω3]T in the corresponding Lie algebra so(3) can be

expanded as

[ω]X = ω1G1 + ω2G2 + ω3G3 =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ∈ so(3),

where the generators Gi are defined as

G1 =


0 0 0

0 0 −1

0 1 0

 , G2 =


0 0 1

0 0 0

−1 0 0

 , G3 =


0 −1 0

1 0 0

0 0 0

 .

The tangent vector ω can be mapped to the rotation matrix in the group SO(3) by the exponential

mapping:

R = exp[ω]X

= I3 +

(
1− θ2

3!
+

θ4

5!
+ · · ·

)
[ω]X +

(
1
2!
− θ2

4!
+

θ4

6!
+ · · ·

)
[ω]2X

= I3 +
sin θ

θ
[ω]X +

1− cos θ

θ2 [ω]2X (A.105)

= (cos θ)I3 +
sin θ

θ
[ω]X +

1− cos θ

θ2 ω (ω)T ,

where θ =
√
(ω)T ω. Eq. (A.105) is equivalent to the Rodrigues’ formula [Murray, 2017]

described using the axis-angle rotation representation with the rotation angle θ and the rotation

axis ω/θ.

The logarithmic transformation can be applied to convert matrices in the group SO(3) to

so(3),

[ω]X =
θ

2 sin θ
(R − (R)T) (A.106)

θ = arccos
tr(R)− 1

2
. (A.107)

The adjoint map The adjoint of a rotation matrix R is equivalent to the axis rotation from ω

to Rω:

Adj (R) [ω]X = R[ω]X(R)T = [Rω]X,

102

A. 3D Motion Description with Lie Groups and Algebras

Differentiation of the group actions A matrix R in the Lie group SO(3) can rotate a vector x

in R3 or convert the reference frame of the vector as

y(R, x) = Rx.

This can be written as following when there is a small increment in ω;

y(ω) = R exp[ω]Xx.

Assuming exp[ω]X ≈ I3 + [ω]X, the derivative of y(ω) with respect to the rotation parameters

ω can be derived as

∂y(ω)

∂ω
= R

∂ exp[ω]Xx
∂ω

≈ R
∂[ω]Xx

∂ω

= R[−x]X ≜ RH[x], (A.108)

where H[x] = [−x]X is a 3× 3 matrix. In this equation, ∂[ω]X x
∂ω = [−x]X because

[ω]Xx = ω× x = −x ×ω = [−x]Xω.

Similarly, the inverse group actions y = (R)T x can be differentiated as

∂y(ω)

∂ω
= H[− (R)T x] = [y]X. (A.109)

A.3. Rigid Transformations: SE(3)

The Lie group SE(3) is a subgroup of the general linear group GL(4). It includes the 4× 4

matrices that describe the 3D rigid motions:

T =

 R t

01×3 1

 ∈ SE(3),

where R ∈ SO(3) is a rotation matrix, and t ∈ R3 is a 3× 1 translation vector.

103

A. 3D Motion Description with Lie Groups and Algebras

The matrices in SE(3) can be inverted as

(T)−1 =

(R)T − (R)T t

01×3 1

 ∈ SE(3), (A.110)

and two matrices T1 and T2 in SE(3) can be multiplied as

T1T2 =

R1R2 R1t2 + t1

01×3 1

 ∈ SE(3). (A.111)

The corresponding Lie algebra se(3) includes 4× 4 matrices Ξ ∈ se(3) which are vector

spaces of the twist coordinates ξ = [ω, ν]T ∈ R6:

Ξ = ω1G1 + ω2G2 + ω3G3 + ν1G4 + ν2G5 + ν3G6 =

[ω]X ν

0 0

 ∈ se(3),

where the generators Gi are

G1 =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 ,G2 =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 , G3 =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0



G4 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 ,G5 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 , G6 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 .

A matrix in the Lie algebra se(3) can be mapped to the corresponding matrix in the Lie group

SE(3) by the closed-form exponential mapping as

T = exp Ξ

= I4 + Ξ +
1
2!

[ω]2X [ω]Xν

01×3 1

+
1
3!

[ω]3X [ω]2Xν

01×3 1

+ · · ·

=

exp[ω]X Vν

01×3 1

 =

 R Vν

01×3 1

 ,

104

A. 3D Motion Description with Lie Groups and Algebras

where

θ =
√
(ω)T ω

A = sin θ/θ

B = (1− cos θ)/θ2

C = (1− A)/θ2

R = I3 + A[ω]X + B[ω]2X

V = I3 + B[ω]X + C[ω]2X.

A matrix in the Lie group SE(3) can be mapped back to the algebra se(3) using Eq. (A.106) and

Eq. (A.107) for the rotation part, and the translation part can be mapped employing ν = (V)−1 t,

where the inverse of V is

(V)−1 = I3 −
1
2
[ω]X +

1
θ2

(
1− A

2B

)
[ω]2X.

The adjoint map The adjoint map of the matrix T in the Lie group SE(3) is

Adj (T)Ξ = TΞ (T)−1 =

[Rω]X t × Rω + Rν

01×3 0

 .

With the twist coordinates ξ = [ω, ν]T, the adjoint map Adj (T) can be computed as

ω′

ν′

 = Adj (T)

ω

ν

 =

 R 03×3

[t]XR R

ω

ν

 ,

as explained in [Murray, 2017].

Differentiation of the group actions A matrix T in SE(3) can transform a 4× 1 homogeneous

vector x̃ = [x, 1]T as

ỹ(T, x̃) =

y

1

 =

 R t

01×3 1

x

1

 = Tx̃.

105

A. 3D Motion Description with Lie Groups and Algebras

A small increment of the pose ξ induces the change of the vector ỹ as

ỹ(ξ) = T exp ξ x̃.

Assuming exp ξ ≈ I3 + Ξ, the derivative of ỹ of the variable ξ can be computed as

∂ỹ(ξ)
∂ξ

= T
∂Ξx̃
∂ξ

,

where

Ξx̃ =

ω× x + ν

0

 .

Since the first row of Ξx̃ is

ω× x + ν =
[
−[x]X I3

] ω

ν

 =
[
−[x]X I3

]
ξ,

the differentiation of ỹ of the twist coordinates ξ can be calculated as

∂ỹ(ξ)
∂ξ

= T
∂Ξx̃
∂ξ

= T

−[x]X I3

01×3 0

 ≜ TH[x]. (A.112)

Similarly, the inverse transformation y = (T)−1 x can be differentiated as

∂ỹ(ξ)
∂ξ

= H[(−T)−1 x] =

[y]X −I3

01×3 0

 . (A.113)

A.4. Similarity Transformations: Sim(3)

The Lie group Sim(3) consists of 4× 4 similarity matrices S which are defined with the rotation

matrices R ∈ SO(3), translation vectors t ∈ R3, and scale factors s ∈ R1:

S =

 R t

01×3 (s)−1

 ∈ Sim(3).

106

A. 3D Motion Description with Lie Groups and Algebras

The inversion of a matrix in the Sim(3) group is

(S)−1 =

(R)T −s(R)Tt

01×3 s

 ∈ Sim(3),

and the matrix multiplication of S1 and S2 in Sim(3) is

S1S2 =

R1R2 R1t2 + (s2)
−1t1

01×3 (s1s2)
−1

 ∈ Sim(3).

The corresponding Lie algebra sim(3) includes 4× 4 matrices generated with the parameters

ξ = [ω, ν, λ]T ∈ R7 as

Ξ = ω1G1 + ω2G2 + ω3G3 + ν1G4 + ν2G5 + ν3G6 + λG7 =

[ω]X ν

01×3 −λ

 ∈ sim(3),

with the generators Gi are

G1 =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 , G2 =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 , G3 =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0



G4 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 , G5 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 , G6 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 , G7 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1

 .

A matrix Ξ in the algebra sim(3) with the tangent vector (twist coordinates) ξ = [ω, ν, λ]T

can be convert to the equivalent matrix S in the Sim(3) group using the close-form exponential

107

A. 3D Motion Description with Lie Groups and Algebras

mapping as

S = exp Ξ

= I4 + Ξ +
1
2!

[ω]2X [ω]Xν− λν

01×3 λ2

+
1
3!

[ω]3X [ω]2Xν− λ[ω]Xν + λ2ν

01×3 −λ3

+ · · ·

=

 R Vν

01×3 exp(−λ)

 ,

where the matrices R and V are

R = I3 + a[ω]X + b[ω]2X

V = AI3 + B[ω]X + C[ω]2X,

with the coefficients a, b, A, B, and C.

The adjoint map The adjoint map of the matrix S in the Lie group Sim(3) is

Adj (S)Ξ = SΞ (S)−1 =

[Rω]X s(t × Rω + Rν− λt)

01×3 −λ

 .

The adjoint map Adj (S) can be also multiplied with twist coordinates ξ = [ω, ν, λ]T as


ω′

ν′

λ′

 = Adj (S)


ω

ν

λ

 =


R 03×3 03×1

s[t]XR sR −st

01×3 01×3 1




ω

ν

λ

 , (A.114)

as introduced in [Murray, 2017].

Differentiation of the group actions A matrix in the Lie group Sim(3) can conduct a similarity

transformation of a homogeneous vector x̃ = [x, 1]T:

ỹ =

 y

(s)−1

 =

 R t

01×3 (s)−1

x

1

 = Sx̃.

108

A. 3D Motion Description with Lie Groups and Algebras

The vector ỹ(ξ) can be differentiated with respect to the twist coordinates ξ as

∂ỹ(ξ)
∂ξ

= S
∂(exp Ξ)x̃

∂ξ
≈ S

∂Ξx̃
∂ξ

.

Ξx̃ in this equation can be expanded as

Ξx̃ =

[ω]X ν

01×3 −λ

x

1

 =

−[x]X I3 0

01×3 01×3 −1




ω

ν

λ

 ,

so the differentiation of this group action can be derived as

∂ỹ(ξ)
∂ξ

= S
∂

∂ξ

−[x]X I3 0

01×3 01×3 −1

 ξ = S

−[x]X I3 0

01×3 01×3 −1

 ≜ SH[x]. (A.115)

In case of an inverse transformation, such as

ỹ =

y

s

 =

(R)T −s(R)Tt

01×3 s

x

1

 = (S)−1 x̃,

the differentiation can be derived similarly as

∂ỹ(ξ)
∂ξ

=
∂

∂ξ

[y]X −sI3 0

01×3 01×3 s

 ξ =

[y]X −sI3 0

01×3 01×3 s

 ≜ H[ỹ]. (A.116)

A.5. Iterative Estimation of the States Defined in the Lie Groups

VSLAM estimates the camera pose matrices Θ = {Ti ∀i ∈ {1, 2, . . . , N}} using the visual

measurements Z = {zi ∀i ∈ {1, 2, . . . , M}} observed by the camera. For VSLAM, the maximum

a posteriori (MAP) approach can be applied to search the optimal state variables Θ̂ that

maximize a posteriori, P(Θ|Z).

With the Bayes theorem, a posteriori can be described with a prior of the unknowns P(Θ)

and the likelihood of the measurements P(Z|Θ) = l(Θ; Z) as

Θ̂ = argmax
Θ

P(Θ|Z) = argmax
Θ

P(Z|Θ)

P(Z)
P(Θ).

Assuming P(Θ) and P(Z) are constant, a posteriori is proportional to the likelihood of the

109

A. 3D Motion Description with Lie Groups and Algebras

state variable Θ given the measurements Z:

P(Θ|Z) ∝ P(Z|Θ) = l(Θ; Z). (A.117)

If the likelihood function l(Θ; Z) is a Gaussian distribution with the mean value computed

using the measurement function h(Θ) and the covariance matrix Σ, it can be described as

l(Θ; Z) = P(Z|Θ) ∼ N (h(Θ), Σ)

=
1√

(2π)kdetΣ
exp

(
−1

2 ∑
i
∥zi − h(Ti)∥

2
Σi

)
,

=
1√

(2π)kdetΣ
exp

(
−1

2 ∑
i
∥e(Ti, z)i∥2

Σi

)
, (A.118)

where Ti is the camera poses that observe the visual measurement zi, and e(Ti, zi) is the

measurement error function. The MAP estimation is equivalent to the least-squares estimation

when the likelihood function l(Θ; Z) is Gaussian distributed:

Θ̂ = argmax
Θ

P(Θ|Z) = argmin
Θ

∑
i
∥e(Ti, zi)∥2

Σi
. (A.119)

The nonliear error function e(Ti, zi) in Eq. (A.119) can be linearized using the twist coordi-

nates difference ∆ξ as

e(T∗ ⊕ ∆T, z) = e(T∗ exp ∆Ξ, z)

≈ e(T∗, z) +
∂e(T, z)

∂∆ξ

∣∣∣∣
T=T∗

∆ξ. (A.120)

By substituting Eq. (A.120) into Eq. (A.119), the twist coordinates ∆θ̂ = {∆ξi ∀i ∈ {1, 2, . . . , N}}

can be the state variables of the least-squares estimation (instead of the matrices ∆Θ):

∆θ̂ = argmin
∆θ

∑
i

∥∥∥∥∥e(T̃i, zi) +
∂e(Ti, zi)

∂∆ξi

∣∣∣∣
T=T̃

∆ξi

∥∥∥∥∥
2

Σ

. (A.121)

The deterministic solution of this equation can be obtained using the normal equation,

H∆θ̂ = −b, (A.122)

which is derived by differentiating the cost function of Eq. (A.121). In Eq. (A.122), H =

110

A. 3D Motion Description with Lie Groups and Algebras

(Je)
T

Σ−1Je and b = (Je)
T

Σ−1e. Alternatively, Eq. (A.121) can be iteratively solved using the

Gaussian-Newton method or Levenberg-Marquardt method. The optimal increments of the

twist coordinates ∆ξ̂ estimated with Eq. (A.121) are then used to update the pose matrices Ti

employing the exponential mapping explained in Eq. (A.90):

T∗ ← T∗ ⊕ ∆T∗ = T∗ exp ∆Ξ∗. (A.123)

∆Ξ̂ is a vector space of ∆ξ̂ as defined in Eq. (A.91).

111

B. Statistical Modeling of Ranging Error

This section explains the statistical ranging error model that was employed to generate range

measurements for the system evaluation in Section 3.3 and Section 5.3. For the error modeling,

range measurements were obtained in two different outdoor environments (a football field and

gravel pit) using IEEE 802.15.4-2011 Ultra-Wide Band (UWB) standard sensors with DW1000

IC chips from Decawave (Qorvo) mounted on the rover system developed by DLR-KN (see

Fig. 3.17). As shown in Fig. 3.18, the ranging errors (the differences between the ranges

computed with the ground truth poses and the ranges measured with the UWB sensors)

are corrupted with both noise and bias. The errors are modeled as the combination of the

systematic errors bsys, multipath errors bm, and zero-mean Gaussian noise n as

ε = bsys + bm + n. (B.124)

The systematic bias of the UWB sensors is induced by the signal power changes, as explained

in the application note provided from Decawave (Qorvo) [Ltd, 2014]. Fig. B.1 shows that

range measurements obtained with the UWB modules differ due to the changes of the signals

received at the sensors (blue line). The systematic bias is modeled as a function of the angles

between the LoS vector and two onboard antennas (θ1 and θ2 in Fig. B.2) and the distance

between two ranging modules (d in Fig. B.2):

bsys(θ1, θ0, d) = gθ(θ1, θ2)gd(d)

= (c1,θ sin(θ1 + θ0) sin(θ2 + θ0) + c0,θ) (c1,dd + c0,d) , (B.125)

assuming that the signal power are mainly dependent on those three parameters. The angles

between the robot and anchor are defined as θ′1 and θ′2 in Fig. B.2, and the distance between

them is defined as d′ in the same figure.

The coefficients of Eq. (B.125), {c1,θ , c0,θ , θ0, c1,d, c0,d}, are estimated by the data fitting pro-

cess using the real range measurements obtained with the UWB modules. The coefficients

113

B. Statistical Modeling of Ranging Error

Figure B.1.: Ranging bias induced by the signal level received at the UWB modules (figure
credit: [Ltd, 2014])

Figure B.2.: The definition of the angles between the LoS vector and two onboard antennas θ1,
θ2, and the distance between them d

Table B.1.: The coefficients of the systematic bias model
c1,θ c0,θ θ0 c1,d c0,d

-0.049 0.185 -0.395 -0.0589 1.921

{c1,θ , c0,θ , θ0} of gθ(θ1, θ2) are estimated first using the ranging errors ε, assuming that θ1 and θ2

are the most dominant factors in the systematic bias. Then, the coefficients {c1,d, c0,d} of gd(d)

are estimated using ε/gθ(θ1, θ2). Table B.1 shows the coefficients estimated using this process.

The multipath bias is modeled using the ranging errors left after removing the systematic

bias, i.e. ε′ ≜ ε− bsys. Fig. B.3 shows the histograms of the differences between the adjacent

values of the ranging errors left after eliminating the systematic bias, i.e. ε′i − ε′i−1. The orange

lines are the Gaussian curves fitted using the differences. As can be seen in this figure, the

114

B. Statistical Modeling of Ranging Error

(a) The histogram of the differences of the multipath bias obtained in
the football field. The Gaussian function fitted using the difference
values is orange (mean=−0.0013m, std=0.006m)

(b) The histogram of the differences of the multipath bias obtained in the
gravel pit. The Gaussian function fitted using the difference values is
orange (mean=−0.00057m, std=0.003m)

Figure B.3.: The histogram of the differences between the adjacent values of the multipath bias,
i.e. diff(bm) = ε′i − ε′i−1. The orange lines are the Gaussian functions fitted using
the difference values

(a) The histogram of the ranging noise obtained in the football field.
The Gaussian function fitted using the noise values is orange
(mean=−0.0048m, std=0.025m)

(b) The histogram of the ranging noise obtained in the gravel field.
The Gaussian function fitted using the noise values is orange
(mean=−0.0061m, std=0.027m)

Figure B.4.: The histogram of the ranging noise, i.e. n = ε− bsys − bm. The orange lines are the
Gaussian functions fitted using the noise values

115

B. Statistical Modeling of Ranging Error

differences are well-fitted to the Gaussian curves, so the multipath bias can be modeled as the

Gaussian random walk whose differences are Gaussian distributed.

Lastly, ranging noise is modeled as a zero-mean Gaussian distribution. Fig. B.4 shows the

histogram of the ranging errors after eliminating both systematic and multipath bias, i.e. noise

n = ε− bsys − bm. The orange curves are the Gaussian functions fitted using the noise values.

Ranging noise is well-fitted to the fitting functions as shown in this figure, so it can be modeled

as a zero-mean Gaussian distribution.

Verification of the systematic bias model In Fig. B.5, the blue dots are the ranging errors

remaining after eliminating the multipath bias (ε − bm). The values computed with the

systematic bias model bsys = gθ(θ1, θ2)gd(d) in Eq. (B.125) are plotted in this figure as the

orange lines. If the systematic bias is properly modeled, the blue dots should follow the orange

fitting curves because ε− bm ≃ bsys + n. Fig. B.5 shows the expected results for both datasets,

so the systematic bias model derived in Eq. (B.125) is acceptable.

Fig. B.6 shows gθ(θ1, θ2) over the angles θ1 and θ2 in orange as well as the values ε− bm in

blue. Since θ1 and θ2 are assumed to be the most dominant parameters of the systematic bias,

the blue dots should follow the curve gθ(θ1, θ2) (∵ ε− bm ≃ bsys + n). This figure shows the

expected trend, so the function gθ(θ1, θ2) derived in Eq. (B.125) can be considered an acceptable

model.

In addition, Fig. B.7 illustrates (ε− bm)/gθ(θ1, θ2) versus the true ranges computed with

the ground truth poses in blue, while the curves obtained with the gd(d) model derived in

Eq. (B.125) are orange. If gd(d) is properly modeled, the blue dots should follow the orange

fitting curves because (ε− bm)/gθ(θ1, θ2) ≃ gd(d) + n. As this figure shows the expected results,

the gd(d) model derived in Eq. (B.125) can be verified as a proper fit.

116

B. Statistical Modeling of Ranging Error

(a) ε− bm obtained in the football field (blue) and
the systematic bias model bsys (orange) over
time

(b) ε− bm obtained in the gravel pit (blue) and the
systematic bias model bsys (orange) over time

Figure B.5.: The ranging errors after eliminating the multipath bias ε− bm ≃ bsys + n (blue) and
the values computed with the systematic bias model bsys = gθ(θ1, θ2)gd(d) (orange)
over time

(a) ε− bm obtained in the football field (blue) and
gθ(θ1, θ2) (orange) versus θ1 and θ2

(b) ε − bm obtained in the gravel pit (blue) and
gθ(θ1, θ2) (orange) versus θ1 and θ2

Figure B.6.: The ranging errors after eliminating the multipath ε− bm (blue) and the values
computed with the model gθ(θ1, θ2) (orange) versus the angles θ1 and θ2

(a) (ε − bm)/gθ(θ1, θ2) obtained in the football
field (blue) and gd(d) (orange) versus the true
ranges

(b) (ε− bm)/gθ(θ1, θ2) obtained in the gravel pit
(blue) and gd(d) (orange) versus the true
ranges

Figure B.7.: (ε− bm)/gθ(θ1, θ2) (blue) and the values computed with the model gd(d) (orange)
versus the true ranges

117

List of Figures

1.1. Mars exploration mission using a swarm rover system (image: [Zhang et al., 2020]) 2

1.2. Urban application of cooperative VOR-SLAM using a cellular network and

inter-agent communication channels . 3

2.1. The difference of feature point locations resulting from the camera motion . . . 8

2.2. An overview of visual SLAM . 9

2.3. Features points extracted using the Harris-Stephenson corner detector, in the im-

age of the Galileo building on the Garching Campus of the Technical University

of Munich . 10

2.4. Feature points matched using ORB, in the image of the Hochschule für Musik

und Theater München, Munich . 13

2.5. An overview of the Bag of Words (BoW) method 14

2.6. Relative pose estimation between two image frames using the feature point

matches and back-projection of map points . 16

2.7. Search window setting to detect the feature match in the current image frame . 20

2.8. Factor graphs created for tracking and local mapping. Blue circular nodes are

the state variables, and black circular nodes and lines are measurements. All the

others in gray are not involved in the processes 21

2.9. Projection error: the difference between the feature location measured in the

current keyframe xk
i and the location projected from the map point into the

current keyframe π(ŜClCi
, Xk

l) . 23

2.10. Factor graphs created for loop closing. Blue circular nodes are the state variables,

and black circular nodes and lines are measurements. The gray nodes and lines

are not involved in the processes . 24

119

List of Figures

2.11. Scale ambiguity problem of monocular VSLAM: the distance b between the

previous and current cameras is unknown, so the current camera frame could

be located at any position on the blue line, and the map point could be located

at any point on the red line . 25

3.1. The system overview of VOR-SLAM . 29

3.2. A single rover with an onboard camera and ranging tag. The camera pose with

respect to the global frame is denoted with St
GC (orange). The visual odometry

measurement between ti and tj is denoted with zij
odo (green), and the range

measurements at ti is denoted as zi
r (blue). 30

3.3. The factor graph including the state variables Sti
GC (circular nodes). The prior fac-

tor ϕpri is depicted at the first keyframe, the odometry factors ϕij
odo are illustrated

between two circular nodes. Range factors ϕi
r are depicted at three keyframes

which obtain range measurements . 33

3.4. A sample image of the sequence 07 of the KITTI dataset (KITTI-07) 37

3.5. The ground truth trajectory and the virtual anchor (KITTI-07) 37

3.6. The radial, tangential, and normal directions at ti and tj. 38

3.7. The horizontal trajectories estimated using monocular VO and VOR-SLAM, and

the map points in the horizontal plane estimated with VOR-SLAM (KITTI-07) . 39

3.8. The positioning errors in the radial, tangential, and normal directions of the

positions estimated using monocular VO and scaled with the first keyframe’s

ground truth scale (MonoVO(gtScale0), blue), and using VOR-SLAM with ranges

including Gaussian noise of 2m (MonoVO+Anchor(wNoise,std=2m), orange) . . 40

3.9. The PDF and CDF of the position RMSE values obtained using VOR-SLAM with

visual odometry measurements and range measurements including Gaussian

random noise with the standard deviation of [0.1m, 0.5m, 1.0m, 1.5m, 2.0m] . . . 41

3.10. The range differences between the ground truth and measurements including

both bias and Gaussian noise . 42

3.11. The errors of positions estimated using monocular VO (blue), VOR-SLAM with

ranges including only Gaussian noise (orange), and VOR-SLAM with ranges

that are biased and include Gaussian noise (green) 42

3.12. The PDF and CDF of the 100 position RMSE values obtained with VOR-SLAM

using ranges with Gaussian random noise (orange) and with both bias and

ranges (green) . 43

120

List of Figures

3.13. The RMSE of the positions estimated using VOR-SLAM with the different range

measurement availability (blue), and the processing time of VOR-SLAM (gray) . 44

3.14. The horizontal trajectory estimated using loop closures and scaled with the

first keyframe’s ground truth scale (green), and the trajectory estimated using

VOR-SLAM with ranges including both bias and noise and available at 60.14%

of the keyframes (blue) . 45

3.15. The scale factors of the positions estimated using loop closures (green) and

VOR-SLAM with ranges including both bias and noise and available at 60.14%

of the keyframes (blue) . 46

3.16. Sample images of the DLR football field and gravel pit datasets with the features

detected in the images . 47

3.17. The rover system developed by DLR-KN with the sensor package of TUM-NAV 48

3.18. The differences between real range measurements obtained using the UWB

sensors and the ground truth ranges computed with the ground truth trajectories 49

3.19. The horizontal trajectories estimated using monocular VO and scaled with the

first keyframe’s ground truth scale (MonoVO(gtScale0), orange), stereo VO

(StereoVO, sky blue), and VOR-SLAM (MonoVO+Anchor, dark blue) 50

3.20. The map points in the horizontal plane estimated using VOR-SLAM 51

3.21. The scale factors over time, obtained with monocular VO (orange), with stereo

VO (sky blue), and with VOR-SLAM (dark blue) 52

3.22. The horizontal trajectories estimated with the DLR football field dataset, using

monocular VO and scaled with the first keyframe’s ground truth scale (orange),

using monocular SLAM with loop closing and scaled with the first keyframe’s

ground truth scale (green), and using VOR-SLAM (dark blue) 53

3.23. The magnitude of the positioning errors with the DLR football field dataset,

using monocular VO and scaled with the first keyframe’s ground truth scale

(orange), using monocular SLAM with loop closing and scaled with the first

keyframe’s ground truth scale (green), and using VOR-SLAM (dark blue) 53

3.24. The horizontal trajectories estimated with the DLR football field dataset, using

monocular SLAM with loop closing and scaled with the first keyframe’s ground

truth scale (green), using VOR-SLAM (dark blue), and using monocular SLAM

with loop closing and range measurements (red) 54

121

List of Figures

3.25. The magnitude of the positioning errors with the DLR football field dataset,

using monocular SLAM with loop closing and scaled with the first keyframe’s

ground truth scale (green), using VOR-SLAM (dark blue), and using monocular

SLAM with loop closing and range measurements (red) 54

4.1. The system overview of cooperative VSLAM with inter-agent loop closures using

map points matches that are commonly observed by different agents 56

4.2. Centralized and decentralized system architectures of cooperative VSLAM . . . 57

4.3. The overview of an efficient inter-agent loop detection method using inter-agent

image fast classification . 59

4.4. The error between the map point coordinates with respect to L1 (Xi
L1

) and the

coordinates converted from the matching map point with respect to the L2 using

the relative similarity pose (sL1L2
(RL1L2

Xi
L2
+ tL2L1

)) 61

4.5. Graphs for the multi-agent map fusion and optimization 61

4.6. The size of data transmitted with various numbers of keyframes (on a log scale) 63

5.1. The system overview of CoVOR-SLAM with the two-agent setup 66

5.2. The system setup of CoVOR-SLAM with three agents. The state variables are all

agents’ camera poses with respect to the global frame (orange). Visual odometry

are green and range measurements (both agent-to-agent and agent-to-anchor)

are blue . 68

5.3. Factor graph created for fusing visual odometry and range measurements of

multiple agents (created with the three-agent setup) 71

5.4. An example of the Hessian matrix structure computed with the three-agent setup 76

5.5. Sample images of the EuRoC and KITTI datasets 78

5.6. Ground truth trajectories of the swarm robotic system with four agents 79

5.7. The mean and standard deviation (std) values of the inter-agent and agent-to-

anchor ranging error samples . 80

5.8. The relative position between agent-A and agent-B at t 82

5.9. Three test cases of inter-agent connectivity options 82

5.10. The relative trajectories between the agents of KITTI-00. The ground truth

is depicted in gray. The trajectories estimated by monocular VO are yellow,

and the trajectories estimated by fusing monocular VO and inter-agent range

measurements are blue . 84

122

List of Figures

5.11. The empirical CDF of the average relative position RMSE obtained using CoVOR-

SLAM run with the four agents’ monocular visual odometry measurements and

inter-agent range measurements generated in line with the three test case settings 85

5.12. Three setups of agent-to-anchor ranging . 86

5.13. Four agents’ horizontal trajectories estimated using only monocular VO with

the KITTI-00 images (yellow); estimated using monocular VO and inter-agent

ranges (green); and estimated using monocular VO, inter-agent ranges, and

agent-to-anchor ranges (red). The ground truth trajectories are depicted in gray 87

5.14. Map points estimated employing four agents using CoVOR-SLAM run with

monocular VO produced with the KITTI-00 images, inter-agent ranges generated

employing test case 3’s setup, and ranges between the anchor and all the four

agents (MonoVO+Inter(Case3)+Anchor(To1234)) 88

5.15. The empirical CDF of the average RMSE values of the four agents’ absolute

positions estimated using CoVOR-SLAM operated with monocular visual odom-

etry, inter-agent ranges generated employing the setting of test case 3, and

agent-to-anchor ranges generated employing the three connectivity setup 89

5.16. The data size transmitted for collaborative VSLAM with inter-agent loop closures:

centralized CCM-SLAM (UB in dark blue and LB in sky blue) and decentralized

dSLAM (green). The data size transmitted for CoVOR-SLAM is red 91

A.1. An example of a rover’s simultaneous rotational and translational motion. The

rotation angle from A to B with respect to the Z-axis is θ, and the position vector

from A to B is pAB. 98

B.1. Ranging bias induced by the signal level received at the UWB modules (figure

credit: [Ltd, 2014]) . 114

B.2. The definition of the angles between the LoS vector and two onboard antennas

θ1, θ2, and the distance between them d . 114

B.3. The histogram of the differences between the adjacent values of the multipath

bias, i.e. diff(bm) = ε′i − ε′i−1. The orange lines are the Gaussian functions fitted

using the difference values . 115

B.4. The histogram of the ranging noise, i.e. n = ε− bsys − bm. The orange lines are

the Gaussian functions fitted using the noise values 115

123

List of Figures

B.5. The ranging errors after eliminating the multipath bias ε− bm ≃ bsys + n (blue)

and the values computed with the systematic bias model bsys = gθ(θ1, θ2)gd(d)

(orange) over time . 117

B.6. The ranging errors after eliminating the multipath ε− bm (blue) and the values

computed with the model gθ(θ1, θ2) (orange) versus the angles θ1 and θ2 117

B.7. (ε− bm)/gθ(θ1, θ2) (blue) and the values computed with the model gd(d) (orange)

versus the true ranges . 117

124

List of Tables

2.1. Summary of feature detectors introduced in this section 12

3.1. The summary of the KITTI-07 . 37

3.2. Summary of the DLR football field and gravel pit datasets 47

3.3. Processing time per keyframe [ms] . 54

5.1. Summary of the EuRoC-MH and KITTI-00 datasets 79

5.2. The average of the mean and standard derivation (std) values of the ranging

error samples (EuRoC-MH and KITTI-00) . 81

5.3. The range measurement availability of the EuRoC-MH and KITTI-00 datasets . 81

B.1. The coefficients of the systematic bias model . 114

125

Bibliography

[Abdel-Aziz et al., 2015] Abdel-Aziz, Y., Karara, H., and Hauck, M. (2015). Direct linear

transformation from comparator coordinates into object space coordinates in close-range

photogrammetry. Photogrammetric Engineering & Remote Sensing, 81(2):103–107.

[Alam and Dempster, 2013] Alam, N. and Dempster, A. G. (2013). Cooperative positioning for

vehicular networks: Facts and future. IEEE transactions on intelligent transportation systems,

14(4):1708–1717.

[Arandjelovic et al., 2016] Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., and Sivic, J. (2016).

Netvlad: Cnn architecture for weakly supervised place recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 5297–5307.

[Bay et al., 2008] Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. (2008). Speeded-up robust

features (surf). Computer vision and image understanding, 110(3):346–359.

[Benini et al., 2013] Benini, A., Mancini, A., and Longhi, S. (2013). An imu/uwb/vision-based

extended kalman filter for mini-uav localization in indoor environment using 802.15. 4a

wireless sensor network. Journal of Intelligent & Robotic Systems, 70(1-4):461–476.

[Burri et al., 2016] Burri, M., Nikolic, J., Gohl, P., Schneider, T., Rehder, J., Omari, S., Achtelik,

M. W., and Siegwart, R. (2016). The euroc micro aerial vehicle datasets. The International

Journal of Robotics Research, 35(10):1157–1163.

[Cadena et al., 2016] Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J.,

Reid, I., and Leonard, J. J. (2016). Past, present, and future of simultaneous localization and

mapping: Toward the robust-perception age. IEEE Transactions on robotics, 32(6):1309–1332.

[Chung et al., 2018] Chung, S.-J., Paranjape, A. A., Dames, P., Shen, S., and Kumar, V. (2018).

A survey on aerial swarm robotics. IEEE Transactions on Robotics, 34(4):837–855.

127

Bibliography

[Cieslewski et al., 2018] Cieslewski, T., Choudhary, S., and Scaramuzza, D. (2018). Data-

efficient decentralized visual slam. In 2018 IEEE International Conference on Robotics and

Automation (ICRA), pages 2466–2473. IEEE.

[Cieslewski et al., 2015] Cieslewski, T., Lynen, S., Dymczyk, M., Magnenat, S., and Siegwart, R.

(2015). Map api-scalable decentralized map building for robots. In 2015 IEEE International

Conference on Robotics and Automation (ICRA), pages 6241–6247. IEEE.

[Cunningham et al., 2013] Cunningham, A., Indelman, V., and Dellaert, F. (2013). Ddf-sam

2.0: Consistent distributed smoothing and mapping. In 2013 IEEE international conference on

robotics and automation, pages 5220–5227. IEEE.

[Cunningham et al., 2010] Cunningham, A., Paluri, M., and Dellaert, F. (2010). Ddf-sam: Fully

distributed slam using constrained factor graphs. In 2010 IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 3025–3030. IEEE.

[Davison et al., 2007] Davison, A. J., Reid, I. D., Molton, N. D., and Stasse, O. (2007). Monoslam:

Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence,

29(6):1052–1067.

[Dellaert et al., 2017] Dellaert, F., Kaess, M., et al. (2017). Factor graphs for robot perception.

Foundations and Trends® in Robotics, 6(1-2):1–139.

[Eade, 2013] Eade, E. (2013). Lie groups for 2d and 3d transformations. URL http://ethaneade.

com/lie. pdf, revised Dec.

[Engel et al., 2017] Engel, J., Koltun, V., and Cremers, D. (2017). Direct sparse odometry. IEEE

transactions on pattern analysis and machine intelligence, 40(3):611–625.

[Engel et al., 2014] Engel, J., Schöps, T., and Cremers, D. (2014). Lsd-slam: Large-scale direct

monocular slam. In European conference on computer vision, pages 834–849. Springer.

[Forster et al., 2014] Forster, C., Pizzoli, M., and Scaramuzza, D. (2014). Svo: Fast semi-direct

monocular visual odometry. In 2014 IEEE international conference on robotics and automation

(ICRA), pages 15–22. IEEE.

[Gadd and Newman, 2016] Gadd, M. and Newman, P. (2016). Checkout my map: Version

control for fleetwide visual localisation. In 2016 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 5729–5736. IEEE.

128

Bibliography

[Gálvez-López and Tardos, 2012] Gálvez-López, D. and Tardos, J. D. (2012). Bags of binary

words for fast place recognition in image sequences. IEEE Transactions on Robotics, 28(5):1188–

1197.

[Geiger et al., 2012] Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready for autonomous

driving? the kitti vision benchmark suite. In 2012 IEEE Conference on Computer Vision and

Pattern Recognition, pages 3354–3361. IEEE.

[Harris et al., 1988] Harris, C. G., Stephens, M., et al. (1988). A combined corner and edge

detector. In Alvey vision conference, volume 15, pages 10–5244. Citeseer.

[Hartley and Zisserman, 2003] Hartley, R. and Zisserman, A. (2003). Multiple view geometry in

computer vision. Cambridge university press.

[Hartley, 1997] Hartley, R. I. (1997). In defense of the eight-point algorithm. IEEE Transactions

on pattern analysis and machine intelligence, 19(6):580–593.

[Horn, 1987] Horn, B. K. (1987). Closed-form solution of absolute orientation using unit

quaternions. Josa a, 4(4):629–642.

[Kaess et al., 2012] Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., and Dellaert, F.

(2012). isam2: Incremental smoothing and mapping using the bayes tree. The International

Journal of Robotics Research, 31(2):216–235.

[Karrer et al., 2018] Karrer, M., Agarwal, M., Kamel, M., Siegwart, R., and Chli, M. (2018).

Collaborative 6dof relative pose estimation for two uavs with overlapping fields of view. In

2018 IEEE International Conference on Robotics and Automation (ICRA), pages 6688–6693. IEEE.

[Kim et al., 2010] Kim, B., Kaess, M., Fletcher, L., Leonard, J., Bachrach, A., Roy, N., and Teller,

S. (2010). Multiple relative pose graphs for robust cooperative mapping. In 2010 IEEE

International Conference on Robotics and Automation, pages 3185–3192. IEEE.

[Klein and Murray, 2007] Klein, G. and Murray, D. (2007). Parallel tracking and mapping

for small ar workspaces. In 2007 6th IEEE and ACM international symposium on mixed and

augmented reality, pages 225–234. IEEE.

[Lee et al., 2018a] Lee, Y.-H., Zhu, C., Giorgi, G., and Guenther, C. (2018a). Stereo vision-based

simultaneous localization and mapping with ranging aid. In 2018 IEEE/ION Position, Location

and Navigation Symposium (PLANS), pages 404–409. IEEE.

129

Bibliography

[Lee et al., 2018b] Lee, Y.-H., Zhu, C., Giorgi, G., and Günther, C. (2018b). Fusion of monocular

vision and radio-based ranging for global scale estimation and drift mitigation. arXiv preprint

arXiv:1810.01346.

[Lee et al., 2020a] Lee, Y.-H., Zhu, C., Giorgi, G., and Günther, C. (2020a). Cooperative swarm

localization and mapping with inter-agent ranging. In 2020 IEEE/ION Position, Location and

Navigation Symposium (PLANS), pages 353–359. IEEE.

[Lee et al., 2020b] Lee, Y.-H., Zhu, C., Giorgi, G., and Günther, C. (2020b). Mitigation of

odometry drift with a single ranging link in gnss-limited environments. pages 1117–1126.

[Leutenegger et al., 2011] Leutenegger, S., Chli, M., and Siegwart, R. Y. (2011). Brisk: Binary

robust invariant scalable keypoints. In 2011 International conference on computer vision, pages

2548–2555. Ieee.

[Levenberg, 1944] Levenberg, K. (1944). A method for the solution of certain non-linear

problems in least squares. Quarterly of applied mathematics, 2(2):164–168.

[Lowe, 2004] Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints.

International journal of computer vision, 60(2):91–110.

[Ltd, 2014] Ltd, D. (2014). Aps011 (application note) - sources of error in dw1000 based

two-way ranging (twr) schemes, version 1.0.

[Marquardt, 1963] Marquardt, D. W. (1963). An algorithm for least-squares estimation of

nonlinear parameters. Journal of the society for Industrial and Applied Mathematics, 11(2):431–

441.

[Mohanarajah et al., 2015] Mohanarajah, G., Usenko, V., Singh, M., D’Andrea, R., and Waibel,

M. (2015). Cloud-based collaborative 3d mapping in real-time with low-cost robots. IEEE

Transactions on Automation Science and Engineering, 12(2):423–431.

[Mouragnon et al., 2006] Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., and Sayd, P.

(2006). Real time localization and 3d reconstruction. In 2006 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR’06), volume 1, pages 363–370. IEEE.

[Mur-Artal et al., 2015] Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015). Orb-slam: a

versatile and accurate monocular slam system. IEEE transactions on robotics, 31(5):1147–1163.

130

Bibliography

[Mur-Artal and Tardós, 2014] Mur-Artal, R. and Tardós, J. D. (2014). Fast relocalisation and

loop closing in keyframe-based slam. In 2014 IEEE International Conference on Robotics and

Automation (ICRA), pages 846–853. IEEE.

[Mur-Artal and Tardós, 2017a] Mur-Artal, R. and Tardós, J. D. (2017a). Orb-slam2: An open-

source slam system for monocular, stereo, and rgb-d cameras. IEEE Transactions on Robotics,

33(5):1255–1262.

[Mur-Artal and Tardós, 2017b] Mur-Artal, R. and Tardós, J. D. (2017b). Visual-inertial monoc-

ular slam with map reuse. IEEE Robotics and Automation Letters, 2(2):796–803.

[Murray, 2017] Murray, R. M. (2017). A mathematical introduction to robotic manipulation. CRC

press.

[Newcombe et al., 2011] Newcombe, R. A., Lovegrove, S. J., and Davison, A. J. (2011). Dtam:

Dense tracking and mapping in real-time. In 2011 international conference on computer vision,

pages 2320–2327. IEEE.

[Nikookar and Oonincx, 2016] Nikookar, H. and Oonincx, P. (2016). An introduction to radio

locationing with signals of opportunity. Journal of Communication, Navigation, Sensing and

Services (CONASENSE), 2016(1):1–10.

[Nistér et al., 2004] Nistér, D., Naroditsky, O., and Bergen, J. (2004). Visual odometry. In

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, 2004. CVPR 2004., volume 1, pages I–I. Ieee.

[Nister and Stewenius, 2006] Nister, D. and Stewenius, H. (2006). Scalable recognition with

a vocabulary tree. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR’06), volume 2, pages 2161–2168. Ieee.

[Olson and Abi-Rached, 2010] Olson, C. F. and Abi-Rached, H. (2010). Wide-baseline stereo

vision for terrain mapping. Machine Vision and Applications, 21(5):713–725.

[Paull et al., 2015] Paull, L., Huang, G., Seto, M., and Leonard, J. J. (2015). Communication-

constrained multi-auv cooperative slam. In 2015 IEEE international conference on robotics and

automation (ICRA), pages 509–516. IEEE.

[Qin et al., 2018] Qin, T., Li, P., and Shen, S. (2018). Vins-mono: A robust and versatile

monocular visual-inertial state estimator. IEEE Transactions on Robotics, 34(4):1004–1020.

131

Bibliography

[Riazuelo et al., 2014] Riazuelo, L., Civera, J., and Montiel, J. M. (2014). C2tam: A cloud

framework for cooperative tracking and mapping. Robotics and Autonomous Systems, 62(4):401–

413.

[Richardson et al., 2013] Richardson, T. S., Jones, C. G., Likhoded, A., Sparks, E., Jordan, A.,

Cowling, I., and Willcox, S. (2013). Automated vision-based recovery of a rotary wing

unmanned aerial vehicle onto a moving platform. Journal of Field Robotics, 30(5):667–684.

[Rizk et al., 2019] Rizk, Y., Awad, M., and Tunstel, E. W. (2019). Cooperative heterogeneous

multi-robot systems: a survey. ACM Computing Surveys (CSUR), 52(2):1–31.

[Rosten and Drummond, 2006] Rosten, E. and Drummond, T. (2006). Machine learning for

high-speed corner detection. In European conference on computer vision, pages 430–443.

Springer.

[Rublee et al., 2011] Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). Orb: An

efficient alternative to sift or surf. In 2011 International conference on computer vision, pages

2564–2571. Ieee.

[Saeedi et al., 2016] Saeedi, S., Trentini, M., Seto, M., and Li, H. (2016). Multiple-robot simulta-

neous localization and mapping: A review. Journal of Field Robotics, 33(1):3–46.

[Sand et al., 2013] Sand, S., Zhang, S., Mühlegg, M., Falconi, G., Zhu, C., Krüger, T., and Nowak,

S. (2013). Swarm exploration and navigation on mars. In 2013 International Conference on

Localization and GNSS (ICL-GNSS), pages 1–6. IEEE.

[Schmuck and Chli, 2017] Schmuck, P. and Chli, M. (2017). Multi-uav collaborative monocular

slam. In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages 3863–3870.

IEEE.

[Schmuck and Chli, 2019] Schmuck, P. and Chli, M. (2019). Ccm-slam: Robust and efficient

centralized collaborative monocular simultaneous localization and mapping for robotic

teams. Journal of Field Robotics, 36(4):763–781.

[Shi et al., 1994] Shi, J. et al. (1994). Good features to track. In 1994 Proceedings of IEEE conference

on computer vision and pattern recognition, pages 593–600. IEEE.

[Shi et al., 2018] Shi, Q., Cui, X., Li, W., Xia, Y., and Lu, M. (2018). Visual-uwb navigation

system for unknown environments. pages 3111–3121.

132

Bibliography

[Siegwart et al., 2011] Siegwart, R., Nourbakhsh, I. R., and Scaramuzza, D. (2011). Introduction

to autonomous mobile robots. MIT press.

[Strader et al., 2016] Strader, J., Gu, Y., Gross, J. N., De Petrillo, M., and Hardy, J. (2016).

Cooperative relative localization for moving uavs with single link range measurements. In

2016 IEEE/ION Position, Location and Navigation Symposium (PLANS), pages 336–343. IEEE.

[Strasdat et al., 2012] Strasdat, H., Montiel, J. M., and Davison, A. J. (2012). Visual slam: why

filter? Image and Vision Computing, 30(2):65–77.

[Tardioli et al., 2015] Tardioli, D., Montijano, E., and Mosteo, A. R. (2015). Visual data associa-

tion in narrow-bandwidth networks. In 2015 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 2572–2577. IEEE.

[Thrun, 2002] Thrun, S. (2002). Probabilistic robotics. Communications of the ACM, 45(3):52–57.

[Triggs et al., 1999] Triggs, B., McLauchlan, P. F., Hartley, R. I., and Fitzgibbon, A. W. (1999).

Bundle adjustment—a modern synthesis. In International workshop on vision algorithms, pages

298–372. Springer.

[Wang et al., 2017] Wang, C., Zhang, H., Nguyen, T.-M., and Xie, L. (2017). Ultra-wideband

aided fast localization and mapping system. In 2017 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 1602–1609. IEEE.

[Xu et al., 2020] Xu, H., Wang, L., Zhang, Y., Qiu, K., and Shen, S. (2020). Decentralized visual-

inertial-uwb fusion for relative state estimation of aerial swarm. In 2020 IEEE International

Conference on Robotics and Automation (ICRA), pages 8776–8782. IEEE.

[Zhang et al., 2020] Zhang, S., Pöhlmann, R., Wiedemann, T., Dammann, A., Wymeersch, H.,

and Hoeher, P. A. (2020). Self-aware swarm navigation in autonomous exploration missions.

Proceedings of the IEEE, 108(7):1168–1195.

[Zhou and Roumeliotis, 2006] Zhou, X. S. and Roumeliotis, S. I. (2006). Multi-robot slam with

unknown initial correspondence: The robot rendezvous case. In 2006 IEEE/RSJ international

conference on intelligent robots and systems, pages 1785–1792. IEEE.

[Zhu, 2019] Zhu, C. (2019). Cooperative Vision for Swarm Navigation. PhD thesis, Technische

Universität München.

133

Bibliography

[Ziegler et al., 2021] Ziegler, T., Karrer, M., Schmuck, P., and Chli, M. (2021). Distributed

formation estimation via pairwise distance measurements. IEEE Robotics and Automation

Letters, 6(2):3017–3024.

[Zou et al., 2019] Zou, D., Tan, P., and Yu, W. (2019). Collaborative visual slam for multiple

agents: A brief survey. Virtual Reality & Intelligent Hardware, 1(5):461–482.

134

	Acronyms and Notation
	Contents
	Introduction
	Research Motivation, Objectives, and Main Contributions
	Thesis Structure

	VSLAM: Visual Simultaneous Localization and Mapping - A Review
	Feature Extraction and Data Association
	Map Initialization
	Tracking, Local Mapping, and Loop Closing
	Scale Ambiguity Problem of Monocular VSLAM

	VOR-SLAM: SLAM using Visual Odometry and Range Measurements
	System Overview and Measurement Prediction Models
	Visual-Range Data Fusion and Map Points Update
	System Analysis with a Public Image Dataset
	System Demonstration with Real-World Experiments

	Collaborative VSLAM - A Review
	Inter-Agent Place Recognition
	Local Frame Alignment and Multi-Agent Map Fusion
	Analysis of the Communication Requirement

	CoVOR-SLAM: Cooperative VOR-SLAM for Multi-Robot Systems
	System Setup and Measurement Models
	Multi-Agent Data Fusion and Data Feedback
	System Evaluation in Two Application Scenarios

	Summary and Conclusions
	Summary
	Conclusions; Applications and Future Work

	Appendix 3D Motion Description with Lie Groups and Algebras
	General Properties
	Rotations: SO(3)
	Rigid Transformations: SE(3)
	Similarity Transformations: Sim(3)
	Iterative Estimation of the States Defined in the Lie Groups

	Appendix Statistical Modeling of Ranging Error
	List of Figures
	List of Tables
	Bibliography

