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Abstract

In recent years, indoor positioning using Bluetooth Low Energy (BLE) technology has
gained significant attention as a consequence of its low power consumption, wide avail-
ability, and compatibility with a variety of devices. In this thesis, a BLE-based posi-
tioning system introducing a server-based BLE positioning method utilizing received
signal strength (RSS) measurements is developed. Here, mobile devices, for instance
smartphones, act as broadcasting BLE beacons. The BLE signal is received by static
BLE sniffers installed in the environment. The sniffers obtain the RSS of the signal and
send the measurements to a server. The position of the mobile device is calculated at
the server using a particle filter (PF). As a countermeasure to fading effects caused by
multipath propagation and to enhance the distance and position estimation accuracy,
each sniffer is equipped with multiple closely spaced BLE receivers. To further increase
the positioning accuracy, the RSS measurements are smoothed by a two-staged smooth-
ing filter and a fusion of inertial data from the mobile device. The developed system is
evaluated by indoor measurements, where a positioning error with a root mean square
error (RMSE) of 0.75 m for a mobile device carried by a robot and a RMSE of 1.1 m for
a walking pedestrian is obtained.
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Kurzfassung

In den letzten Jahren hat die Positionierung in Innenräumen mittels der Bluetooth Low
Energy (BLE)-Technologie aufgrund des geringen Stromverbrauchs, der breiten Verfüg-
barkeit und der Kompatibilität mit einer Vielzahl von Geräten große Aufmerksamkeit
erlangt. In dieser Arbeit wird ein auf BLE beruhendes Positionierungssystem entwickelt,
das eine serverbasierte BLE-Positionierungsmethode unter Verwendung von Messungen
der Signalstärke realisiert. Dabei fungieren die mobilen Geräte, zum Beispiel Smartpho-
nes, als sendende BLE-Beacons. Das BLE-Signal wird von statischen, in der Umgebung
installierten BLE-Sniffern empfangen. Die Sniffer erfassen die Empfangsstärke des Si-
gnals und senden die Messungen an einen Server. Die Position des mobilen Geräts wird
auf dem Server mit Hilfe eines Particle Filters (PF) berechnet. Als Gegenmaßnahme zu
den durch Mehrwegeausbreitung verursachten Fading-Effekten und zur Verbesserung
der Genauigkeit der Entfernungs- und Positionsbestimmung ist jeder Empfänger mit
mehreren eng nebeneinander platzierten BLE-Empfängern ausgestattet. Um die Posi-
tionierungsgenauigkeit weiter zu erhöhen, werden die Messungen der Signalstärke durch
einen zweistufigen Glättungsfilter und eine Fusion von Inertialdaten des mobilen Geräts
geglättet. Das entwickelte System wird durch Messungen in Innenräumen evaluiert, wo-
bei ein mittlerer quadratischer Positionierungsfehler von 0,75 m für ein von einem Robo-
ter getragenes mobiles Gerät und ein mittlerer quadratischer Positionierungsfehler von
1,1 m für einen Fußgänger erzielt wird.

ix



Chapter 1

Introduction

1.1 Aim of this Thesis
Location-awareness is an essential part of modern life. In outdoor environments with
clear sky view, this is done by using the global navigation satellite system (GNSS)
technology. The GNSS technology is employed in many different applications, with
in-car navigation systems, high-precision asset monitoring, and context-based services
being just a few of the more popular ones. New use cases and application areas are also
rapidly emerging.

The popularity of GNSS technology has created a long-standing demand for in-
door positioning systems that are as accurate as those that serve outdoors. The GNSS
provides localization precision in the cm range when used in combination with tech-
niques like real-time kinematics (RTK). However, GNSS is ineffective for indoor po-
sitioning because of obstructions and multipath caused by walls, building structures,
and objects; hence, alternate techniques are needed. The development of numerous
standards and proprietary technologies such as radio frequency identification (RFID),
ultra-wideband (UWB), Wi-Fi, Bluetooth, Bluetooth Low Energy (BLE), and camera-
based positioning – each enabling a specific subset of use cases and applications – has
been prompted by the need for equally ubiquitous, accurate, and dependable indoor
positioning solutions for tracking and navigation [7].

Possible application scenarios for an indoor positioning system (IPS) include naviga-
tion in airports, health centers, museums, or department stores, but home automation
applications are also conceivable. In addition to facilitating day-to-day indoor naviga-
tion, such a system could also help evacuate a building in the event of a emergency
when visual aids become unusable.

The worldwide pandemic has pushed global development toward Industry 4.0 princi-
ples, including ubiquitous sensing, wireless communication, and cloud-based applications
in all parts of the industrial sector and beyond. The rising need for precise control and
monitoring of products was matched by rising demand for personal navigation solutions
and proximity sensing to aid with social distance.

These advancements have highlighted the benefits of worldwide, standardized so-
lutions for meeting indoor positioning needs and standards. Simplicity of deployment,
operation, and maintenance have emerged as major design requirements for the adoption
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1. Introduction 2

of indoor positioning devices, where interoperability of functionality and components is
also required for the components to work together as a system solution.

In the recent years, BLE has emerged as an important technology enabling indoor
positioning and is chosen over other wireless technologies because of its low power con-
sumption. Using wireless technologies like BLE, different approaches exist to determine
an indoor location, each facing different benefits and problems. The goal of this thesis
is the development of an IPS that relies on the signal strength of BLE signals. It is
investigated, whether BLE is a suitable technology to enable precise indoor positioning
and what further additional measures to enhance the positioning accuracy are neces-
sary. The developed IPS is conceptualized, implemented, validated, and evaluated by
performing indoor measurement campaigns, where the system is required to be highly
stable and accurate, resource-efficient, and platform-independent.

1.2 Structure of this Thesis
This thesis is structured in six chapters, with the first introducing the motivation to
start the work.

Chapter 2 covers the basic part of the work and deals with fundamentals regarding
radio-based positioning. The first part focuses on the BLE standard, and the second
part on the Bayesian estimation for non-linear systems.

In Chapter 3, the concept development and the planned methodological approach
are introduced. The system architecture and the equipment in use are introduced. Fur-
thermore, the data pre-processing and positioning algorithms are explained.

The practical implementation is focused on in Chapter 4, where details about the
firmware and software implementation for the developed embedded IPS and an Android
application are presented.

Chapter 5 describes the evaluation of the developed IPS using multiple indoor mea-
surement campaigns with different setups. The algorithms are tested and evaluated.

Chapter 6 concludes the work with a summary and an outlook on potential further
developments.



Chapter 2

Fundamentals of Radio-Based Positioning

In this chapter, the foundation for this thesis is built. The first section presents the
trilateration positioning method and the BLE standard. The second section introduces
the estimation theory for non-linear systems.

2.1 Radio-Based Positioning
As mentioned in Chapter 1, the field of indoor positioning has a wide range of appli-
cations and is therefore an important research topic. Smartphone-based indoor local-
ization can be performed using a variety of approaches, including sensor-based relative
navigation (i.e. dead reckoning), image-based navigation, and wireless localization [7].
Wireless technologies available on mobile devices include Wi-Fi, Bluetooth, BLE, UWB,
and RFID. Because of its interoperability, low battery consumption, ease of deployment,
and high range availability, BLE has been identified as the most appropriate wireless
technology for use in the developed IPS for the objectives of this research.

2.1.1 Trilateration
Radio-based positioning schemes are most commonly used to estimate the unknown re-
ceiver’s position by utilizing geometric relationships between transmitters and receivers
relative to a known coordinate system. The coordinate system is established using 𝑁c
external static reference points, also referred to as anchors c𝑖, where the ground truth
position of the anchors is known and the position of the target to be located B𝑏 is un-
known. The methods can be distinguished by the measurements used for estimating the
position. In practice established methods are mostly range-based or angular-based sys-
tems. Range-based IPSs utilize the distances between the target B𝑏 and the anchors c𝑖

to estimate the position, collectively referred to as trilateration when three non-collinear
reference points are used and referred to as multilateration, when more than three non-
collinear anchors are part of the setup [2]. The principle of the trilateration is depicted
in Figure 2.1.

3



2. Fundamentals of Radio-Based Positioning 4

Figure 2.1: Principle of the trilateration method to estimate the position relative to a
known coordinate system established by static anchors, adopted from [7].

In a two-dimensional (2D) scenario the position can be determined without ambigu-
ities by establishing a linear equation system based on the distances between the target
B𝑏 and the anchors c𝑖, denoted as(︀

𝑥B𝑏
− 𝑥c𝑖

)︀2 +
(︀
𝑦B𝑏
− 𝑦c𝑖

)︀2 = 𝑑𝑖
2 , (2.1)

where 𝑑𝑖 denotes the distance between the target B𝑏 and the anchor c𝑖. The quadratic
terms of the equation system can be eliminated by subtracting one equation from the
equation system. The resulting linear equation system can be solved using the linear
algebra method called ordinary least squares (OLS). The determination of the dis-
tance can be realized using a variety of approaches, for instance utilizing received signal
strength (RSS) data or timing information such as Time of Arrival (ToA) or Time Dif-
ference of Arrival (TDoA). Location fingerprinting refers to other methodologies that
use location-dependent properties of these measures rather than geometric relations
[2]. In this thesis, the distance estimation is performed by measurements of the signal
strength of the BLE wireless technology, which is described in the following section.

2.1.2 Bluetooth Low Energy (BLE)
The Bluetooth protocol [19] describes an international industry standard for wireless
communication that was originally intended to replace serial data cables for connect-
ing various devices. The development goals therefore included worldwide operation, low
cost, robustness, short range, and low power consumption. To achieve these goals, Blue-
tooth operates in the 2.4 GHz industrial, scientific and medical (ISM) frequency band,
which is license-free and can be used worldwide without requiring approval. For this
reason, this frequency band is also used by other widely used standards (e.g. IEEE
802.11, IEEE 802.15.4, etc.) and is also susceptible to interference from other devices
such as microwave ovens. To still provide stable connections, Bluetooth implements a
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pseudo-random mechanism called adaptive frequency hopping (AFH). The Bluetooth
specification was published in 1999 by the Bluetooth Special Interest Group, is continu-
ously developed further, and is currently available in version 5.3. BLE was published in
2009 as part of the 4.0 specification but is to be regarded as independent of Bluetooth.
The main focus of BLE is on connectivity and communication of devices in the ultra-low
power segment. According to the physical layer of the BLE protocol stack, messages are
sent via 40 channels, each 2 MHz wide, in the 2.4 GHz radio range. To conserve battery
power, the BLE radio mostly operates in sleep mode and is only active while ongoing
transmissions [19]. The spectrum of BLE is depicted in Figure 2.2.

Figure 2.2: Physical layer of BLE spectrum dividing the 2.4 GHz ISM band into 40
channels each covering 2 MHz with overlapped Wi-Fi channels 1, 6 and 11, adopted from
[8].

The link layer of the BLE protocol stack supports two different communication
modes, namely connection-based and connection-less [19]. Connection-based mode refers
to the packet-oriented, bidirectional, and encrypted transmission of large amounts of sen-
sitive data between two already connected devices. Employing the connection-less mode,
a packet-oriented, unidirectional, and unencrypted communication of non-sensitive data
between non-connected devices is possible. This mode is therefore used to initiate a con-
nection. The communication runs via three so-called advertisement channels 37, 38, and
39 provided for this purpose. The use of several advertisement channels increases the
robustness against radio interference from other wireless communication technologies
[19].

A BLE device that informs other BLE devices of its presence is referred to as an
advertiser or beacon and periodically broadcasts so-called advertising events. An adver-
tising event consists of a total of three advertising packets, each packet being broadcast
on one of the three advertising channels. After each broadcast period, the advertiser
waits for a potential response from another BLE device on the same channel before
switching to the next advertising channel. The time between two consecutive advertis-
ing events is composed of the static advertising interval 𝑇𝑎 and a pseudo-random delay
𝛾. The static part 𝑇𝑎 is a multiple of 0.625 ms between 20 ms and 10.485 s. The de-
lay 𝛾 is between 0 ms and 10 ms and is intended to reduce the probability of collisions.
BLE devices that detect advertisers are referred to as scanners. The three advertisement
channels are scanned cyclically where parallel scanning is not possible. The scan window
𝑑𝑠 denotes the pure detection time with active radio. The scan interval 𝑇𝑠 determines
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the time between two successive scan phases and the associated switch to the next ad-
vertising channel. An advertiser is detected by the scanner if it registers an advertising
packet of the currently scanned advertising channel [19]. Figure 2.3 shows the timing of
an advertiser and a scanner.

Figure 2.3: Principle of a BLE advertiser and scanner, where the advertiser is detected
by the scanner when the channel that is currently being advertised overlaps with the
currently scanned channel, adopted from [19].

During each advertising event, one advertising packet is sent per advertising chan-
nel. Figure 2.4 shows the predefined structure of an advertising packet, consisting of
a preamble, a 4 byte access address, a protocol data unit (PDU), and a 3 byte cyclic
redundancy check (CRC). The preamble is used for frequency synchronization in the re-
ceiver and consists of a 1 or 2 byte alternating sequence of bits, where the first bit of the
preamble and the subsequent access address should match. The 4 byte access address is
recommended to have the value 0x8E89BED6 according to the BLE protocol. The PDU
of an advertising packet depends on the advertising type. As explained above, the adver-
tising and scanning process only requires the scanner to receive the advertising packets
and does not require a connection between the two devices to exchange further data.
Therefore, it is sufficient to use undirected, unconnectable, and unscannable events. The
suitable PDU type for this use case is referred to as ADV_NONCONN_IND [19].

The PDU consists of a 2 byte header and the advertising payload. The header pro-
vides information about the subsequent PDU type and the length of the subsequent
payload. The advertising payload consists of the 6 byte advertising address and further
partially customizable advertising data. The advertising address is used to identify the
advertiser. The CRC is used to validate received packets. Some fields are reserved for
future use (RFU) [19].

Furthermore, many BLE devices that scan the advertising channels for advertising
packets are not only capable of receiving the packets, but their BLE radios also offer
a measurement of the RSS which is often available as so-called received signal strength
indicator (RSSI) in the unit dBm. The RSS depends among other aspects on the distance
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Figure 2.4: Structure of a BLE advertising packet split up into individual parts, adopted
from [19].

between a transmitter and a receiver [9]. This relation is used for distance determination
described in Section 2.1.1 and thus forms the base for the indoor localization approach
in this thesis.

2.1.3 Path Loss and Multipath Propagation
In this thesis, the position is estimated using RSSI data, which is a dBm measurement
of the received power in the observed frequency channel and is given by

RSSI = 10 · log10

(︂
𝑃𝑟

1 mW

)︂
. (2.2)

The RSSI represents the received power 𝑃𝑟 referenced to 1 mW [12].
According to [9], a wireless signal traveling the distance 𝑑 between a transmitter and

a receiver in non-open space will be received with a power of

𝑃𝑟 = 𝑃𝑡𝐺𝑡𝐺𝑟

(︂
𝜆

4𝜋𝑑

)︂𝛾

. (2.3)

In Equation (2.3), 𝜆 = 𝑐0/𝑓 denotes the wavelength of the signal, 𝑐0 is the speed of light,
𝑓 is the frequency of the signal, 𝛾 is an environment-dependent path loss exponent, 𝑑
denotes the distance between the transmitter and the receiver and 𝐺𝑡 and 𝐺𝑟 are the
transmitter and receiver gains, which are known or can be calibrated, respectively. With
𝛾 = 2, Equation (2.3) is referred to as Friis Free-Space-Model. In the logarithmic domain,
Equation (2.3) can be expressed as

RSSI(𝑑)
dBm

= 𝑃𝑡

dBm

+ 𝐺𝑡

dBi

+ 𝐺𝑟

dBi

+ 𝐾
dBm
−𝛾 · 10 · log10(𝑑) , (2.4)

where constant factors of Equation (2.3) are represented by the variable 𝐾. With
𝛽0 = 𝑃𝑡 + 𝐺𝑡 + 𝐺𝑟 + 𝐾 and 𝛽1 = −𝛾 · 10, Equation (2.4) can be rewritten in a compact
form as

RSSI(𝑑) = 𝛽0 + 𝛽1 · log10(𝑑) , (2.5)
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which is collectively referred to as the log-distance path loss model [12].
The propagation of a radio signal emitted by a transmitter is strongly influenced by

the environment. Radio waves traversing a medium are influenced by phenomena such as
diffraction, reflection, and scattering before reaching the receiver, as depicted in Figure
2.5. Reflections occur when a signal strikes a smooth object bigger than the signal’s
wavelength, such as large smooth walls. Scattering happens when a signal collides with
an item with irregular surface properties smaller than the wavelength of the signal,
resulting in a split of the signal into multiple partial signals. Diffraction occurs when
a signal strikes an object with sharp edges, such as the edges of obstacles and walls,
resulting in a shift in signal direction. In addition to the power loss, these occurrences
force the signal to travel over several pathways besides the line of sight (LOS) to the
receiver, resulting in so-called multipath fading. Due to different path lengths, these
pathways have variable delays and attenuations, causing the transmitted signal to smear,
resulting in severe issues with RSS-based positioning, particularly indoors [12].

Figure 2.5: Multipath phenomena in an indoor environment showing reflection, attenu-
ation, diffraction, and scattering, adopted from [12].

Compared to other methodologies, RSS-based positioning systems are relatively
cheap and easy to implement, rely on low-complexity algorithms and do not require
time synchronization. It has to be kept in mind, that determination of relevant param-
eters for the path loss model is necessary and the propagation is heavily influenced by
the surroundings.

2.2 State Estimation of Non-Linear Systems
The purpose of this thesis is the development of an IPS for mobile devices, where
positioning describes the process of finding a platform’s spatial location with respect to
a known coordinate system. The fundamentals of position estimation are discussed in
the following sections.
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2.2.1 Introduction to Recursive Bayesian Filtering
Positioning aims to estimate the kinematic state, i.e. the position, velocity, and ori-
entation, of the target under investigation based on a so-called state-space approach.
Often the state of a system is not directly observable but has to be estimated based
on measurements, also called observations. A widely used and in practice established
estimation technique is the Bayesian Filter, which tries to perform an optimal state esti-
mation by recursively (sequentially) calculating the probability density function (PDF)
of the state [1]. The relevant information for describing the system is summarized in a
state vector x(𝑡𝑘) at time instant 𝑡𝑘. A general dynamic system can be mathematically
modeled by a discrete-time state-space description consisting of two equations.

The transition model,

x(𝑡𝑘) = f
(︀
x(𝑡𝑘−1), u(𝑡𝑘), n𝑡(𝑡𝑘)

)︀
, (2.6)

describes the evolution of the previous state x(𝑡𝑘−1) at time unit 𝑡𝑘−1 to the current
state x(𝑡𝑘) at time 𝑡𝑘 using the possible non-linear function f(·, ·, ·). Control data, such
as additional sensor data, is represented by u(𝑡𝑘) while the process noise is denoted by
n𝑡(𝑡𝑘). From a probabilistic perspective, the transition model in Equation (2.6) can be
represented compactly by the conditional PDF p

(︀
x(𝑡𝑘)

⃒⃒
x(𝑡𝑘−1)

)︀
, also referred to as

transition prior.
The measurement model,

z(𝑡𝑘) = h
(︀
x(𝑡𝑘), nℎ(𝑡𝑘)

)︀
, (2.7)

describes the relation between the measurements z(𝑡𝑘) and the current state x(𝑡𝑘) using
the possible non-linear function h(·, ·) with the measurement noise nℎ(𝑡𝑘). Similarly,
the measurement model can also be expressed as likelihood using a conditional PDF as
p
(︀
z(𝑡𝑘)

⃒⃒
x(𝑡𝑘)

)︀
[5].

Many modern dynamic systems have high requirements for real-time capability, due
to their architecture as multi-sensor networks. The evolution of the target state x(𝑡𝑘) is
calculated sequentially when a new measurement is available based only on the previous
state so it is not mandatory to keep the entire history and calculate it repeatedly at
each time step, noted as

p
(︀
x(𝑡𝑘)

⃒⃒
x(𝑡1:𝑘−1)

)︀
= p

(︀
x(𝑡𝑘)

⃒⃒
x(𝑡𝑘−1)

)︀
. (2.8)

Prior observations z(𝑡1:𝑘−1) have no impact on the evolution of the state x(𝑡𝑘), since
they were already considered in the previous state x(𝑡𝑘−1), which is noted as

p
(︀
x(𝑡𝑘)

⃒⃒
x(𝑡𝑘−1), z(𝑡𝑘−1)

)︀
= p

(︀
x(𝑡𝑘)

⃒⃒
x(𝑡𝑘−1)

)︀
. (2.9)

This process is referred to as recursive estimation and is the basic idea of the so-called
first order hidden Markov model (HMM). The states are hidden and can only be ob-
served by measurements [4]. The principle of a first order HMM in combination with
the transition and measurement model is depicted in Figure 2.6.
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Figure 2.6: Principle of a first order HMM where the current state x(𝑡𝑘) is observed
using a measurement z(𝑡𝑘) and only depends on the previous state x(𝑡𝑘−1), adopted from
[4].

In the Bayesian framework, the construction of the PDF p
(︀
x(𝑡𝑘)

⃒⃒
z(𝑡1:𝑘)

)︀
of the

state given all prior observations z(𝑡1:𝑘−1) is performed in two stages: the prediction
and the update [16].

The prediction stage predicts an a priori distribution p
(︀
x(𝑡𝑘)

⃒⃒
z(𝑡1:𝑘−1)

)︀
based on

the old estimate p
(︀
x(𝑡𝑘−1)

⃒⃒
z(𝑡1:𝑘−1)

)︀
by

p
(︀
x(𝑡𝑘)

⃒⃒
z(𝑡1:𝑘−1)

)︀
=

∫︁
p
(︀
x(𝑡𝑘)

⃒⃒
x(𝑡𝑘−1)

)︀
· p

(︀
x(𝑡𝑘−1)

⃒⃒
z(𝑡1:𝑘−1)

)︀
dx(𝑡𝑘−1) . (2.10)

The update stage updates the state distribution to form an a posteriori estimate
p
(︀
x(𝑡𝑘)

⃒⃒
z(𝑡1:𝑘)

)︀
by considering the newly available measurement z(𝑡𝑘) using Bayes’

rule by

p
(︀
x(𝑡𝑘)

⃒⃒
z(𝑡1:𝑘)

)︀
= p

(︀
x(𝑡𝑘)

⃒⃒
z(𝑡𝑘), z(𝑡1:𝑘−1)

)︀
=

p
(︀
z(𝑡𝑘)

⃒⃒
x(𝑡𝑘), z(𝑡1:𝑘−1)

)︀
· p

(︀
x(𝑡𝑘)

⃒⃒
z(𝑡1:𝑘−1)

)︀
p
(︀
z(𝑡𝑘)

⃒⃒
z(𝑡1:𝑘−1)

)︀
=

p
(︀
z(𝑡𝑘)

⃒⃒
x(𝑡𝑘)

)︀
· p

(︀
x(𝑡𝑘)

⃒⃒
z(𝑡1:𝑘−1)

)︀
p
(︀
z(𝑡𝑘)

⃒⃒
z(𝑡1:𝑘−1)

)︀ , (2.11)

with the normalization constant

p
(︀
z(𝑡𝑘)

⃒⃒
z(𝑡1:𝑘−1)

)︀
=

∫︁
p
(︀
z(𝑡𝑘)

⃒⃒
x(𝑡𝑘)

)︀
· p

(︀
x(𝑡𝑘)

⃒⃒
z(𝑡1:𝑘−1)

)︀
dx(𝑡𝑘) . (2.12)

Equation (2.10) describes the prediction of the state, whereas Equation (2.11) ex-
presses the impact of observations on the state. With both Equations (2.10) and (2.11),
the general discrete-time filter problem in the sense of Bayes is formally described. Due
to the limited possibility of representing a continuous probability distribution, Bayesian
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filters represent only a conceptual solution, which in general cannot be determined
analytically [1]. However, there are methods to approach filtering of non-linear, non-
Gaussian, dynamic systems, for instance numerical approaches, such as the so-called
particle filter (PF), which is focused on in the following section.

2.2.2 Particle Filter Basics
Assuming linear systems and observations with Gaussian noise, the Kalman filter (KF) is
the optimal algorithm for the recursive problem. However, many practical problems are
more complex and are subject to strongly non-linear characteristics and non-Gaussian
noise, making the assumptions of a KF invalid. The need for accurate recursive state
estimation methods of non-linear problems led to the development of the Extended
Kalman filter (EKF) and the Unscented Kalman Filter (UKF). The EKF performs
the estimation based on the linearization of the system model by a first-order Taylor
series at the point of the mean value of the distribution. For small sampling intervals,
the required linearity of the system is therefore no longer necessary. In contrast to
the analytical approximation of the EKF, the UKF estimates the nonlinearity by a
statistical approximation. However, for strongly non-linear systems, the EKF and UKF
show bad performance. The development of computing power in recent years has made
computationally intensive statistical procedures practical. The estimation problem is
directly resolved using Monte Carlo techniques as opposed to estimating the system via
linearization. One possible implementation of a recursive Bayesian filter using Monte
Carlo methods is the PF [16].

The fundamental concept is to directly approximate the a posteriori distribution
p
(︀
x(𝑡𝑘)

⃒⃒
z(𝑡1:𝑘)

)︀
by using a finite set 𝑆 containing 𝑁𝑝 state samples x(𝑗)(𝑡𝑘), collectively

referred to as particles, with associated relative weights 𝑤(𝑗)(𝑡𝑘), denoted as

𝑆 =
{︁

x(𝑗)(𝑡𝑘), 𝑤(𝑗)(𝑡𝑘)
}︁𝑁𝑝

𝑗=1
. (2.13)

The state of a particle x(𝑗)(𝑡𝑘) can be updated at each time step by the transition
model with Equation (2.6). The a posteriori distribution p

(︀
x(𝑡𝑘)

⃒⃒
z(𝑡1:𝑘)

)︀
can then be

approximated with

p
(︀
x(𝑡𝑘)

⃒⃒
z(𝑡1:𝑘)

)︀
≈ 1

𝑁𝑝

𝑁𝑝∑︁
𝑗=1

𝑤(𝑗)(𝑡𝑘) · 𝛿
(︀
x(𝑡𝑘)− x(𝑗)(𝑡𝑘)

)︀
, (2.14)

where 𝛿(·) represents the Dirac-Impulse. For 𝑁𝑝 →∞, the approximation error vanishes
and the particle representation corresponds to the continuous density function. Equation
(2.14) is then no longer only an approximation but an equivalent description [16].

Monte-Carlo-Integration

According to Equation (2.11), the a posteriori distribution can be estimated by recur-
sively solving a multidimensional integral. Using Monte-Carlo-Integration [16], a multi-
dimensional integral of a function f(x) and a PDF p(x), the expectation of f(x) can be
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approximated by

𝐹 =
∫︁

f(x) p(x) dx ≈ 1
𝑁𝑝

𝑁𝑝∑︁
𝑗=1

f
(︁

x(𝑗)
)︁

, (2.15)

using a sufficient number of samples 𝑁𝑝.
Since the PDF might be a complex, high-dimensional distribution, drawing samples

from it is not always practical. By drawing the particles in accordance with the idea of
importance sampling, this issue can be resolved. This idea draws the particles not in
accordance with the PDF p(x), but rather in accordance with a so-called significance
function q(x), from which samples might be taken. Equation (2.15) can then be denoted
as

𝐹 =
∫︁

f(x) q(x) p(x)
q(x)
𝑤

*(x)

dx =
∫︁

f(x) q(x) 𝑤*(x) dx ≈ 1
𝑁𝑝

𝑁𝑝∑︁
𝑗=1

f
(︁

x(𝑗)
)︁
· 𝑤*

(︁
x(𝑗)

)︁
(2.16)

with

𝑤*
(︁

x(𝑗)
)︁

=
p
(︁

x(𝑗)
)︁

q
(︁

x(𝑗)
)︁ . (2.17)

With Equation (2.16), the PDF p(x) can be approximated by drawing 𝑁𝑝 random
samples x(𝑗) of the PDF q(x), where each sample has a weight 𝑤*

(︁
x(𝑗)

)︁
[16]. The

weights 𝑤*
(︁

x(𝑗)
)︁

are normalized to guarantee a sum of unity by

𝑤
(︁

x(𝑗)
)︁

=
𝑤*

(︁
x(𝑗)

)︁
∑︀𝑁𝑝

𝑗=1 𝑤*
(︁

x(𝑗)
)︁ . (2.18)

To sample the particles and to determine the weights, an importance function
q
(︀
x(𝑡𝑘)

⃒⃒
z(𝑡1:𝑘)

)︀
is necessary. If the importance function is chosen that

q
(︀
x(𝑡𝑘)

⃒⃒
z(𝑡1:𝑘)

)︀
= q

(︀
x(𝑡𝑘)

⃒⃒
x(𝑡𝑘−1), z(𝑡𝑘)

)︀
· q

(︀
x(𝑡𝑘−1)

⃒⃒
z(𝑡1:𝑘−1)

)︀
, (2.19)

the weighting can be updated recursively. The derivation of the weight update is done
by reformulating the recursive update step in Equation (2.19) to

p
(︀
x(𝑗)(𝑡𝑘)

⃒⃒
z(𝑡1:𝑘)

)︀
=

p
(︀
z(𝑡𝑘)

⃒⃒
x(𝑗)(𝑡𝑘)

)︀
· p

(︀
x(𝑗)(𝑡𝑘)

⃒⃒
z(𝑡1:𝑘−1)

)︀
p
(︀
z(𝑡𝑘)

⃒⃒
z(𝑡1:𝑘−1)

)︀
=

p
(︀
z(𝑡𝑘)

⃒⃒
x(𝑗)(𝑡𝑘)

)︀
· p

(︀
x(𝑗)(𝑡𝑘)

⃒⃒
z(𝑡𝑘−1)

)︀
p
(︀
z(𝑡𝑘)

⃒⃒
z(𝑡1:𝑘−1)

)︀ · p
(︀
x(𝑗)(𝑡𝑘−1)

⃒⃒
z(𝑡1:𝑘−1)

)︀
≈ p

(︀
z(𝑡𝑘)

⃒⃒
x(𝑗)(𝑡𝑘)

)︀
· p

(︀
x(𝑗)(𝑡𝑘)

⃒⃒
x(𝑗)(𝑡𝑘−1)

)︀
· p

(︀
x(𝑗)(𝑡𝑘−1)

⃒⃒
z(𝑡1:𝑘−1)

)︀
. (2.20)
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The recursive weight update is calculated by inserting the Equations 2.19 and 2.20 in
Equation 2.17 resulting in

𝑤*(𝑗)(𝑡𝑘) ≈
p
(︀
z(𝑡𝑘)

⃒⃒
x(𝑗)(𝑡𝑘)

)︀
· p

(︀
x(𝑗)(𝑡𝑘)

⃒⃒
x(𝑗)(𝑡𝑘−1)

)︀
q
(︀
x(𝑗)(𝑡𝑘)

⃒⃒
x(𝑗)(𝑡1:𝑘−1), z(𝑡1:𝑘)

)︀ ·
p
(︀
x(𝑗)(𝑡𝑘−1)

⃒⃒
z(𝑡1:𝑘−1)

)︀
q
(︀
x(𝑗)(𝑡𝑘−1)

⃒⃒
z(𝑡1:𝑘−1)

)︀
= 𝑤(𝑗)(𝑡𝑘−1)

p
(︀
z(𝑡𝑘)

⃒⃒
x(𝑗)(𝑡𝑘)

)︀
· p

(︀
x(𝑗)(𝑡𝑘)

⃒⃒
x(𝑗)(𝑡𝑘−1)

)︀
q
(︀
x(𝑗)(𝑡𝑘)

⃒⃒
x(𝑗)(𝑡1:𝑘−1), z(𝑡1:𝑘)

)︀ (2.21)

with

𝑤(𝑗)(𝑡𝑘) = 𝑤*(𝑗)(𝑡𝑘)∑︀𝑁𝑝

𝑗=1 𝑤*(𝑗)(𝑡𝑘)
. (2.22)

Sequential Importance Sampling Particle Filter

Equation (2.21) forms the basis for the so-called sequential importance sampling particle
filter (SISPF), on which further types of PFs are based [16]. A SISPF is subject to a
problem referred to as degeneracy which leads to divergence over time, meaning after a
few iterations, all but one particle will have negligible weight and thus do not contribute
to the posterior distribution. The phenomenon of degeneracy can be approximately
quantified by calculating the effective sample size 𝑁eff, defined as

𝑁eff ≈
1∑︀𝑁𝑝

𝑗=1

(︁
𝑤(𝑗)(𝑡𝑘)

)︁2 . (2.23)

The phenomenon of degeneracy is an undesirable effect in PFs but can be counteracted
by either increasing the number of particles 𝑁𝑝 or choosing the importance density

q
(︀
x(𝑗)(𝑡𝑘)

⃒⃒
x(𝑗)(𝑡𝑘−1), z(𝑡𝑘)

)︀
= p

(︀
x(𝑗)(𝑡𝑘)

⃒⃒
x(𝑗)(𝑡𝑘−1)

)︀
(2.24)

simplifying the recursive weight update in Equation 2.21 to

𝑤*(𝑗)(𝑡𝑘) = 𝑤(𝑗)(𝑡𝑘−1) · p
(︀
z(𝑡𝑘)

⃒⃒
x(𝑗)(𝑡𝑘)

)︀
. (2.25)

Furthermore, the concept of resampling can be deployed, which is the basic idea of
the so-called sequential importance resampling particle filter (SIRPF) [16].

2.2.3 Resampling
Resampling is one possible countermeasure to degeneracy [16]. With a resampling algo-
rithm, particles with a high weight survive and will be duplicated while particles with
low weights are eliminated, so the number of particles stays constant. The resampling
is done by transforming the particle set 𝑆 to 𝑆* by

𝑆 =
{︁

x(𝑗)(𝑡𝑘), 𝑤(𝑗)(𝑡𝑘)
}︁𝑁𝑝

𝑗=1

Resampling−−−−−−−→ 𝑆* =
{︁

x(𝑗)*(𝑡𝑘), 𝑤(𝑗)*(𝑡𝑘)
}︁𝑁𝑝

𝑗=1
. (2.26)
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The resampling can be done in various ways, for instance by systematic resampling [6].
The resampled set 𝑆* is constructed by sampling 𝑁𝑝 times from a discrete version of
the posterior density p

(︀
x(𝑡𝑘)

⃒⃒
z(𝑡1:𝑘)

)︀
everytime the resampling is performed.

The first step of the systematic resampling involves the construction of the cumulative
distribution function (CDF) c by summing up the normalized weights 𝑤(𝑗)(𝑡𝑘). Af-
ter that, a random discrete starting point 𝑢1 is drawn from the uniform distribution
𝒰
[︁
0, 𝑁𝑝

−1
]︁
. The remaining discrete subpartitions 𝑢𝑖 are constructed by

𝑢𝑗 = 𝑢1 + 𝑁𝑝
−1 · (𝑗 − 1) with 𝑗 ∈ 1, . . . , 𝑁𝑝. Systematic resampling works by com-

paring the CDF c to the discrete subpartitions 𝑢𝑗 . The number of times the discrete
subpartition 𝑢𝑗 is within the range of (𝑐𝑖−1, 𝑐𝑖] determines how often the 𝑗-th particle
x(𝑗)(𝑡𝑘) is resampled (replicated). The new weights 𝑤(𝑗)*(𝑡𝑘) are all set to uniform weight
𝑤(𝑗)*(𝑡𝑘) = 𝑁𝑝

−1 after the resampling procedure. In the example of Figure 2.7 the CDF
c is represented by the blue solid line. The particle x(3)(𝑡𝑘) is reproduced twice, since 𝑢3
and 𝑢4 fall into the weight 𝑤(3)(𝑡𝑘). If two or more 𝑢𝑗 fall into the same step height, the
particle of this step height is reproduced accordingly. In Algorithm 2.1 a pseudo-code
of the systematic resampling algorithm is shown. The CDF is presented by a vector c.

Figure 2.7: Systematic resampling used as a measure against degeneracy in PFs, adopted
from [6].
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Algorithm 2.1: Systematic Resampling

Input:
[︂{︁

x(𝑗)(𝑡𝑘), 𝑤(𝑗)(𝑡𝑘)
}︁𝑁𝑝

𝑗=1

]︂
Output:

[︂{︁
x*(𝑗)(𝑡𝑘), 𝑤*(𝑗)(𝑡𝑘)

}︁𝑁𝑝

𝑗=1

]︂
1: Initialize CDF: 𝑐1 ← 𝑤(1)(𝑡𝑘)
2: for 𝑗 ← 2 to 𝑁𝑝 do
3: Construct CDF: 𝑐𝑗 ← 𝑐𝑗−1 + 𝑤(𝑗)(𝑡𝑘)
4: Start at bottom of CDF: 𝑖← 1
5: Draw starting point: 𝑢1 ∼ 𝒰

[︁
0, 𝑁𝑝

−1
]︁

6: for 𝑗 ← 1 to 𝑁𝑝 do
7: Move along CDF: 𝑢𝑗 ← 𝑢1 + 𝑁𝑝

−1(𝑗 − 1)
8: while 𝑢𝑗 > 𝑐𝑖 do
9: 𝑖← 𝑖 + 1

10: Assign particle: x*(𝑗)(𝑡𝑘)← x(𝑖)(𝑡𝑘)
11: Assign weight: 𝑤*(𝑗)(𝑡𝑘)← 𝑁𝑝

−1

2.2.4 Sampling Importance Resampling Particle Filter
The extension of a SISPF to include the concept of resampling is referred to as SIRPF
[16], described in Algorithm 2.2. The SIRPF selects the significance function to be
equal to the previous distribution p

(︀
x(𝑗)(𝑡𝑘)

⃒⃒
x(𝑗)(𝑡𝑘−1)

)︀
to create particles. The weight

update in Equation (2.25) is simplified as a result of the resampling carried out after
each iteration to

𝑤*(𝑗) (𝑡𝑘) = p
(︀
z(𝑡𝑘)

⃒⃒
x(𝑗)(𝑡𝑘)

)︀
. (2.27)

Algorithm 2.2: Sequential Importance Resampling Particle Filter

Input:
[︂{︁

x(𝑗)(𝑡𝑘−1), 𝑤(𝑗)(𝑡𝑘−1)
}︁𝑁𝑝

𝑗=1
, z(𝑡𝑘)

]︂
Output:

[︂{︁
x(𝑗)(𝑡𝑘), 𝑤(𝑗)(𝑡𝑘−1)

}︁𝑁𝑝

𝑗=1

]︂
1: x(𝑗)(𝑡𝑘)← f

(︁
x(𝑗)(𝑡𝑘−1), u(𝑡𝑘−1)

)︁
2: for 𝑗 ← 1 to 𝑁𝑝 do
3: Draw x(𝑗)(𝑡𝑘) ∼ p

(︀
x(𝑗)(𝑡𝑘)

⃒⃒
x(𝑗)(𝑡𝑘−1)

)︀
4: Calculate 𝑤*(𝑗)(𝑡𝑘)← p

(︀
z(𝑡𝑘)

⃒⃒
x(𝑗)(𝑡𝑘)

)︀
5: Calculate total weight: 𝑊 ←

∑︀𝑁𝑝

𝑗=1 𝑤(𝑗)(𝑡𝑘)
6: for 𝑗 ← 1 to 𝑁𝑝 do
7: Normalize: 𝑤(𝑗)(𝑡𝑘)←𝑊 −1𝑤*(𝑗)(𝑡𝑘)

8:
{︁

x(𝑗)(𝑡𝑘), 𝑤(𝑗)(𝑡𝑘)
}︁𝑁𝑝

𝑗=1
← Resampling

(︂{︁
x(𝑗)(𝑡𝑘), 𝑤(𝑗)(𝑡𝑘)

}︁𝑁𝑝

𝑗=1

)︂
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The procedure of one iteration of a SIRPF including all steps is illustrated in Fig-
ure 2.8. The weights 𝑤(𝑗)(𝑡𝑘) are calculated based on the measurements z(𝑡𝑘) and the
conditional probability p

(︀
z(𝑡𝑘)

⃒⃒
x(𝑡𝑘)

)︀
indicated by the black solid line. Then the par-

ticles are resampled, where high-weighted ones are reproduced and low-weighted ones
are eliminated, so the number of particles remains constant. After the resampling, all
particles have a uniform weight 𝑁𝑝

−1. Based on the transition model and the previous
state x(𝑗)(𝑡𝑘−1) of the particles, the next state x(𝑗)(𝑡𝑘) is finally predicted.

Figure 2.8: One iteration of SIRPF including the steps: Drawing, weighting, and resam-
pling, adopted from [16].

However, resampling solves the problem of degeneracy but introduces other prob-
lems. The opportunity for parallelization is limited. Furthermore, the high-weighted
particles are multiplied often, which leads to a loss of diversity and the particles con-
centrate in a single point [1].

Target State Estimation

In many practical applications like the estimation of a distinct position, a point esti-
mate is more useful than a distribution. To determine a point estimate based on the
posterior filtered distribution, different strategies exist. The point estimate can either
be calculated with the minimum mean square error (MMSE) following the formula

xMMSE(𝑡𝑘) =
∫︁

x(𝑡𝑘) · p
(︀
x(𝑡𝑘)

⃒⃒
z(𝑡1:𝑘)

)︀
dx(𝑡𝑘) ≈

𝑁𝑝∑︁
𝑗=1

𝑤(𝑗)(𝑡𝑘) x(𝑗)(𝑡𝑘) , (2.28)

which also represents the expected value of the posterior PDF. Alternatively, the
maximum a posteriori (MAP) estimate could be determined by using the highest weighted
particle [5].



Chapter 3

Concept of a BLE-Based Indoor
Positioning System

In the following sections, the IPS is fully conceptualized. The problem is considered from
a hardware and user perspective, and a justified system architecture is proposed based
on this. A detailed description of the measurement setup and resulting considerations
regarding a pre-processing of the data is given.

3.1 System Architecture of an Indoor Positioning System
On key feature of modern smartphones is the availability of BLE, which can for in-
stance be used for home automation purposes or communication with personal fitness
monitoring sensors to name a few options. As stated in Section 2.1.3, BLE can also be
used for positioning purposes utilizing distance estimations similar to the fundamental
principle GNSS positioning is based on.

An IPS for mobile devices can be realized using two different approaches. The po-
sition can be determined by the mobile device itself, also referred to as device-based
approach. In that case, the mobile device acts as a receiver and static anchors act as
transmitters. The distance estimation to the anchors and the resulting positioning esti-
mation is performed by the mobile device itself. Another possible implementation is a
server-based approach, where the mobile device acts as a transmitter, also referred to as
beacon. The static anchors act as receivers and forward the received signal emitted by
the smartphone to a server. The server performs the distance and position estimation.

Using a customary smartphone with an Android operating system, the access to BLE
advertising and scanning is limited. The parameter values 𝑇𝑎, 𝑇𝑠, and 𝑑𝑠 of advertising
and scanning procedure cannot be directly chosen. Instead, only predefined values are
available for selection. Effects like multipath propagation must be taken into account
when estimating the distance to get the highest level of accuracy. Modern BLE distance
estimate algorithms therefore average the RSSIs over all channels before estimating the
distance. The accuracy of distance calculation can be greatly increased by calculating
the mean across all channels. The averaging is necessary due to channel dependent RSSI,
which is investigated in [10]. As mentioned in Section 2.1.2, BLE uses three different
channels for advertising. The center frequencies of the advertising channels are located at

17
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2.402 GHz, 2.426 GHz and 2.480 GHz and thus entirely spread across the used frequency
band. Reasoning for the necessity of an averaging are frequency dependent antenna gains
𝐺𝑟 and 𝐺𝑡, frequency dependent path loss as can be seen in Equation (2.3) and different
multipath effects, described in Section 2.1.3. However, in many practical scenarios, the
mean over all channels cannot be computed. The aforementioned scan window on various
Android smartphones lasts for 4.096 s. The smartphone and its surroundings would have
to remain still for three times 4.096 s to determine the mean across all BLE channels,
which is impractical for dynamic scenarios [10]. Moreover, the BLE channel information
is not available on Android smartphones without additional measures. However, the BLE
channel can be determined, as shown in [10], which is particularly useful when frequency
dependent error mitigation is considered. Considering the large scanning intervals of
4.096 s on Android smartphones, the limited access to radio settings and the limited
computation power on mobile devices, a device-based approach is not expected to lead
to the desired functionality of a practically usable IPS. The IPS focused on in this thesis
is therefore planned to be implemented using a server-based approach, consisting of a
mobile device acting as a BLE beacon and multiple static BLE receivers, as illustrated
in Figure 3.1.

(a) (b)

Figure 3.1: Comparison of two possible system architectures implemented as device-
based and server-based IPS.
(a) Device-based approach, consisting of multiple static broadcasting BLE beacons and
a receiving mobile device, that determines its position on its own.
(b) Server-based approach, consisting of multiple static BLE receivers connected to a
server and a broadcasting mobile device acting as a BLE beacon, where the position is
determined on the server.

This server-based method is not limited by smartphone manufacturer’s Application
Programming Interface (API) constraints. Furthermore, the BLE receivers can provide
extra information besides the RSSI, for instance channel information.
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3.2 Hardware and Software Platforms
The hardware components used in the experiments are selected based on their techni-
cal specifications. As BLE receiver, the widely used and low-cost 2.4 GHz transceiver
nRF54840 Dongle from Nordic Semiconductor [18] is chosen. The nRF52840 Dongle fea-
tures a printed circuit board (PCB) antenna, a powerful ARM Cortex M4 with floating
point support and fully supports BLE v5. The nRF54840 Dongle supports serial port
communication over Universal Serial Bus (USB) allowing further processing on a host
machine providing a serial port interface. The nRF52840 Dongle is depicted in Figure
3.2.

Figure 3.2: nRF54840 Dongle [18] used as a BLE receiver to record BLE packets adver-
tised from a mobile device acting as BLE beacon.

Based on the hardware platform, the integrated development environments Segger
Embedded Studio and nRF Connect for Desktop are selected for programming and
debugging the used hardware based on embedded C programming. Additionally the
BLE software stack S140-SoftDevice-v5.0.1 provided by Nordic is used. For prototyping,
curve fitting, data plotting and algorithm developement Matlab is utilized. As mobile
device, the Android smartphone Google Pixel 5 is used. The Android application for
the mobile device is developed using Android Studio.

3.3 Determination of the Path Loss Model
To acquire a better understanding of the BLE signal behavior under indoor condi-
tions, a first indoor measurement campaign is conducted. The indoor measurements
are performed in a 14 m× 8 m radio measurements laboratory of the Institute of Com-
munications and Navigation at the German Aerospace Center (DLR). The ceiling of
the laboratory is equipped with a Vicon1 high-precision optical motion capture system
consisting of 20 infrared cameras and 20 infrared strobes. This setup can locate objects
in the observation area with a localization error of less than 1 cm and provides a ground
truth reference for all conducted measurements.

In the first step, the determination of the path loss model involves a static BLE
receiver and a moving smartphone acting as a BLE beacon. The smartphone is mounted
on a robot which is programmed to move along a defined path 𝑆1 with intermediate
standing phases while the BLE receiver is statically mounted on a tripod. Figure 3.3a
shows the indoor environment with the robot and the BLE receiver c4,1. Figure 3.3b
shows the ground truth view of Figure 3.3a from the point of view of the optical motion

1https://www.vicon.com

https://www.vicon.com
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capture system where the path 𝑆1 of the robot is shown with the black arrow and the
BLE receiver c4,1 is shown in red (−).

(a)
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Figure 3.3: Indoor environment for measurement campaign 1 to acquire the path loss
model.
(a) Indoor measurement setup with the robot and a BLE receiver c4,1 mounted on a
tripod for measurement campaign 1 to acquire the path loss model.
(b) Ground truth view of the setup with the path 𝑆1 and the BLE receiver c4,1.

The receiver c4,1 receives the advertisement packets from the mobile device acting as
BLE beacon, determines the RSSI and forwards the data over the serial port interface to
a host machine. The ground truth position of the moving beacon and the static receiver
is obtained by the optical motion capture system, which is used to determine the ground
truth distance between the beacon and the receiver.

The path loss is determined by moving the robot with the mounted smartphone on
it over a distance of 8 m in 10 cm steps. The RSSI of the three advertising channels
is recorded in the standing phases of the robot. The recorded RSSI of the all three
advertising channels 37, 38, and 39 plotted over the distance for the receiver c4,1 are
shown in Figure 3.4a. The RSSI of channel 37 are shown in green (−), channel 38 in
purple (−) and channel 39 in orange (−). As depicted in Figure 3.4a, the advertising
channels are subject to different path losses, showing fluctuations with varying degree
in amplitude. For instance at a distance of 2 m, a fluctuation of 20 dBm is observed at
channel 37, whereas fluctuations of only 5 dBm and 8 dBm are measured on the channels
38 and 39. Based on the first measurement campaign it is decided to average over all
advertising channels as a countermeasure against multipath errors. The mean RSSI of
all channels is depicted in light blue (−) in Figure 3.4a.

After the averaging over all advertisement channels shows a significant improvement
in reducing the fluctuations in the RSSI, it is investigated, whether the extension of
a second closely spaced BLE receiver can further reduce fluctuations, similar to the
approach in [20]. The experiment is carried out again using two BLE receivers c4,1 and
c4,2 spaced with a small distance from each other mounted in a USB hub, referred
to as sniffer c4. The serial port data of the two dongles of the sniffer c4 is recorded
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simultaneously. Figure 3.4b shows the result of the experiment using two dongles as
sniffer c4. The mean RSSI of the channels 37, 38, and 39 for receiver c4,1 is shown in
light blue (−) and for the second receiver c4,2 in dark blue (−). The mean of both
dongles is depicted in red (−).
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Figure 3.4: Indoor environment for measurement campaign 1 to acquire the path loss
model.
(a) RSSI of the channels 37, 38, and 39 and mean mean received signal strength indicator
(MRSSI) plotted over distance for BLE receiver c4,1.
(b) RSSI of two closely spaced BLE receivers and combined RSSI of the sniffer c4 and
path loss model plotted over distance.

As can be seen in Figure 3.4b, both dongles obtain different multipath propagation
and act as redundancy for each other. By using two dongles on sniffer c4, small scale
fading might be reduced, the fluctuations caused by multipath propagation are more
Gaussian and thus less biased and can be better utilized for distance and position
estimation. With averaging over multiple channels and over multiple receivers a standard
deviation of 6.1 dBm can be obtained, compared to a standard deviation of 8.2 dBm
when only using channel 37.

With the recorded mean RSSI of sniffer c4 and the known ground truth distance,
the path loss model described in Section 2.1.3 can be determined with the OLS method.
Therefore, the recorded RSSI is represented by the column vector
y = [RSSI1, . . . , RSSI𝑛]𝑇 and the matrix X is set to

X =

⎛⎜⎝1 log10 (𝑑1)
...

...
𝑛 log10 (𝑑𝑛)

⎞⎟⎠ . (3.1)

The coefficients 𝛽 = [𝛽0, 𝛽1]𝑇 representing the parameters of the path loss model in
Equation (2.5) can be calculated with OLS by

𝛽 =
(︁

X𝑇 X
)︁−1

X𝑇 y . (3.2)
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The result of the OLS is depicted in Figure 3.4b where the mean RSSI of the two dongles
is shown in red (−) and the OLS result giving the path loss model is shown in black.

3.4 Server-Based Distance Estimation
In this thesis, a server-based approach for a BLE-based IPS is considered, where mobile
devices act as BLE beacons and static BLE devices act as BLE sniffers, that obtain
RSSI measurements [11]. The design as a server-based IPS is not limited by the API
restrictions of the smartphone manufacturers and is thus expected to be more flexible
regarding the provided information necessary for the positioning task. The BLE sniffers
are installed statically in the indoor environment and are connected, e.g. by wireless local
area network (WLAN), to a server. The server is hosting a persistency layer and the
positioning functionality. As described in Section 2.1.3 and showed with measurements
in Section 3.3, the raw RSSI is subject to fluctuations caused by multipath propagation.
To increase the distance estimation accuracy, averaging over multiple channels and
multiple BLE receivers is identified as a suitable measure against fluctuations.

Therefore, each BLE sniffer c𝑖 provides 𝑁c𝑖
BLE receivers c𝑖,𝑗 , closely distanced from

one another. By computing the average RSSI over multiple BLE receivers, small scale
fading is expected be minimized and a better position estimation is possible, which is
also shown in [17]. The term BLE receiver is used for each individual BLE receiver c𝑖,𝑗

and BLE sniffer c𝑖 for the device equipped with multiple BLE receivers. The mobile
device 𝐵𝑏 with 𝑏 ∈ {1, . . . , 𝑁𝑏} at position r𝑏(𝑡) acting as a beacon regularly broadcasts
BLE advertising packages. When a BLE package broadcasted from a mobile device 𝐵𝑏

on channel 𝑚 ∈ {37, 38, 39} is received at the BLE receiver c𝑖,𝑗 with 𝑗 ∈ 1, . . . , 𝑁c𝑖
of

BLE sniffer c𝑖, 𝑖 ∈ 1, . . . , 𝑁c at time 𝑡, the measured RSSI 𝑧𝐵𝑏,𝑖,𝑗,𝑚(𝑡) is persisted on the
server [11].

The distance and position estimation algorithms hosted by the server are scheduled
on a fixed sampled time grid 𝑡𝑘, with 𝑇𝑔 = 𝑡𝑘 − 𝑡𝑘−1 denoting the time between two
adjacent time stamps. The distance between a BLE sniffer c𝑖 and the mobile device 𝐵𝑏 at
position r𝑏(𝑡𝑘) is estimated based on multiple RSSI measurements received at the BLE
sniffer c𝑖. With this approach the distance estimation is not performed with every new
arriving BLE measurement but with averaged measurements of all three advertisement
channels of the two BLE receivers of the observed period 𝑇𝑔. This measure is supposed
to massively reduce the required computational power and to also smoothen the RSSI
data. To allow the time-grid-based averaging, the BLE sniffers and the server are time
synchronized, e.g. using Network Time Protocol (NTP) [15]. To perform a RSSI-based
distance estimation, the RSSIs are filtered by an averaging filter to obtain the MRSSI
𝑧𝐵𝑏,𝑖(𝑡𝑘). All RSSIs 𝑧𝐵𝑏,𝑖,𝑗,𝑚(𝑡) from the BLE sniffer c𝑖 that are inside the time period
𝑡𝑘 − 𝑇𝑔 < 𝑡 are taken into account by the averaging filter. The length of the averaging
period is represented by 𝑁𝑙,𝑖(𝑡𝑘). As a result,

V𝐵𝑏,𝑖 =
[︁
𝑉𝐵𝑏,𝑖,1, 𝑉𝐵𝑏,𝑖,2, . . . , 𝑉𝐵𝑏,𝑖,𝑁𝑙,𝑖(𝑡𝑘)

]︁𝑇
(3.3)

is a vector of length 𝑁𝑙,𝑖(𝑡𝑘) that contains all RSSIs 𝑧𝐵𝑏,𝑖,𝑗,𝑚(𝑡) of BLE device 𝐵𝑏 and
BLE sniffer c𝑖, that are received during the time interval 𝑡𝑘 − 𝑇𝑔 < 𝑡. The MRSSI
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𝑧𝐵𝑏,𝑖(𝑡𝑘) is calculated as

𝑧𝐵𝑏,𝑖(𝑡𝑘) = 1
𝑁𝑙,𝑖(𝑡𝑘)

𝑁𝑙,𝑖(𝑡𝑘)∑︁
𝑙=1

𝑉𝐵𝑏,𝑖,𝑙 . (3.4)

Building upon the first filter stage, a second stage acting as a moving average filter is
proposed. For the moving average filter each MRSSI 𝑧𝐵𝑏,𝑖(𝑡𝑘) is stored in a vector W𝐵𝑏,𝑖

of length 𝑀𝑞,𝑖(𝑡𝑘). The vector W𝐵𝑏,𝑖 then contains all MRSSI 𝑧𝐵𝑏,𝑖(𝑡𝑘) of the moving
average window 𝑡𝑘 −𝑀𝑞,𝑖(𝑡𝑘) · 𝑇𝑔 < 𝑡. The moving average filtered MRSSI 𝑧𝐵𝑏,𝑖(𝑡𝑘) is
calculated as

𝑧𝐵𝑏,𝑖(𝑡𝑘) = 1
𝑀𝑞,𝑖(𝑡𝑘)

𝑀𝑞,𝑖(𝑡𝑘)∑︁
𝑞=1

𝑊𝐵𝑏,𝑖,𝑞 . (3.5)

This two staged filtering process is schematically depicted in Figure 3.5. The upper
part shows the first stage establishing the fixed time grid 𝑡𝑘. The lower part shows the
second stage implementing the moving average filter. The latest moving average value
depicted with a bold frame is referred to as MRSSI measurement 𝑧𝐵𝑏,𝑖(𝑡𝑘) of the sniffer
c𝑖 at time instant 𝑡𝑘 which is further used estimate the distance to the mobile device
𝐵𝑏.

Figure 3.5: Two staged RSSI filtering of the raw RSSI to obtain less fluctuations for the
distance estimation.

The distance 𝑑𝐵𝑏,𝑖(𝑡𝑘) between mobile device 𝐵𝑏 and BLE sniffer c𝑖 can finally be
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estimated by solving Equation (2.3) for 𝑑,

𝑑𝐵𝑏,𝑖(𝑡𝑘) =
√︃

1
𝑃𝐵𝑏,𝑖(𝑡𝑘)

√︁
𝑃𝐵𝑏

𝐺𝐵𝑏
𝐺𝑟 ·

(︂
𝜆

4𝜋

)︂
, (3.6)

where 𝑑𝐵𝑏,𝑖(𝑡𝑘) denotes the estimated distance and 𝑃𝐵𝑏,𝑖(𝑡𝑘) = 1 mW · 10
𝑧𝐵𝑏,𝑖(𝑡𝑘)

10 is the
MRSSI in linear domain. As mentioned before, the transmit power 𝑃𝐵𝑏

of the mobile
device 𝐵𝑏 and antenna gains 𝐺𝐵𝑏

and 𝐺𝑟 are known or can be calibrated with the path
loss model [11].

3.5 Transition Models
As described in Section 2.2.1, the tracking of the kinematic state of an object is often
done my modeling the movement with a so-called transition model in combination with
a Bayesian approach, in this case with a PF. Transition models exist for various number
of different applications and thus have to be chosen according to the concrete scenario.
This thesis aims to indoor locate a mobile device like a smartphone, which is often
equipped with an inertial measurement unit (IMU). The following paragraphs thus
focus on two different transition models, considering the cases without and with IMU
data available.

3.5.1 Gaussian-Transition-Model
In the first scenario, the mobile device is assumed to not provide information about
the orientation using an IMU. In this case, the state transition can be described using
a Gaussian-Transition-Model [3], resulting in the following state representation of a
particle x(𝑗)(𝑡𝑘) as

x(𝑗)(𝑡𝑘) =

⎛⎜⎜⎜⎝
𝑝𝑥

(𝑗)(𝑡𝑘)
𝑝𝑦

(𝑗)(𝑡𝑘)
𝑣𝑥

(𝑗)(𝑡𝑘)
𝑣𝑦

(𝑗)(𝑡𝑘)

⎞⎟⎟⎟⎠ , (3.7)

with 𝑝𝑥
(𝑗)(𝑡𝑘) and 𝑝𝑦

(𝑗)(𝑡𝑘) describing the 2D position in x- and y-direction, 𝑣𝑥
(𝑗)(𝑡𝑘)

and 𝑣𝑦
(𝑗)(𝑡𝑘) representing the 2D velocity vector in x- and y-direction in a 2D Cartesian

coordinate system.
The particle state is then propagated from the previous step 𝑡𝑘−1 to the current one

𝑡𝑘 by using

x(𝑗)(𝑡𝑘) =

⎛⎜⎜⎝
1 0 𝑇𝑔 0
0 1 0 𝑇𝑔

0 0 1 0
0 0 0 1

⎞⎟⎟⎠ · x(𝑗)(𝑡𝑘−1) +

⎛⎜⎜⎝
0
0

𝜎2
𝑞𝑢

𝜎2
𝑞𝑢

⎞⎟⎟⎠ . (3.8)

The elapsed time between the time instant 𝑡𝑘 and 𝑡𝑘−1 is expressed by 𝑇𝑔. Since a
measurement of the velocity is not provided by mobile devices, the values 𝑣𝑥

(𝑗)(𝑡𝑘)
and 𝑣𝑦

(𝑗)(𝑡𝑘) are sampled from a zero mean Gaussian process with standard deviation
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𝜎𝑞𝑢
to simulate the acceleration of the movement by a random process. The Gaussian-

Transition-Model is schematically depicted in Figure 3.6.

Figure 3.6: Illustration of the Gaussian-Transition-Model.

This model is for instance as well applicable for a robot equipped with omnidirec-
tional wheels, meaning the robot can change its direction of movement without changing
its orientation.

3.5.2 Inertial Measurement Unit (IMU)-Transition-Model
In the second considered scenario, the mobile device is equipped with an IMU. The
IMU provides additional information about the three-dimensional (3D) acceleration and
rotation velocity, which can be used in the state representation. The state of a particle
x(𝑗)(𝑡𝑘) is in that case represented by

x(𝑗)(𝑡𝑘) =

⎛⎜⎜⎜⎝
𝑝𝑥

(𝑗)(𝑡𝑘)
𝑝𝑦

(𝑗)(𝑡𝑘)
𝑣(𝑗)(𝑡𝑘)
𝜙(𝑗)(𝑡𝑘)

⎞⎟⎟⎟⎠ , (3.9)

where 𝑝𝑥
(𝑗)(𝑡𝑘) and 𝑝𝑦

(𝑗)(𝑡𝑘) again describe the 2D position in x- and y-direction, 𝑣(𝑗)(𝑡𝑘)
describes the magnitude of the velocity and 𝜙(𝑗)(𝑡𝑘) describes the orientation, also re-
ferred to has heading or yaw angle. The heading angle can be estimated with the smart-
phone’s internal IMU and is considered as the angle representing the smartphone’s
orientation projected on a horizontal plane when it is for instance being held in texting
mode. The determination of the heading angle is focused on in Section 3.6.

Equation (3.9) can be extended by another state, the so-called yawrate Δ𝜙(𝑗)(𝑡𝑘),
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resulting in

x(𝑗)(𝑡𝑘) =

⎛⎜⎜⎜⎜⎜⎝
𝑝𝑥

(𝑗)(𝑡𝑘)
𝑝𝑦

(𝑗)(𝑡𝑘)
𝑣(𝑗)(𝑡𝑘)
𝜙(𝑗)(𝑡𝑘)

Δ𝜙(𝑗)(𝑡𝑘)

⎞⎟⎟⎟⎟⎟⎠ . (3.10)

The yawrate Δ𝜙(𝑗)(𝑡𝑘) describes the derivation of the heading angle 𝜙(𝑗)(𝑡𝑘).
Using Equation (3.10) has the advantage of introducing more flexibility when it

comes to the alignment of the world coordinate system and the local coordinate system
of the smartphone. Normally, the coordinate systems of the smartphone and the world
are not aligned, meaning the heading direction estimated by the smartphone does not
represent the actual walking heading direction, since the heading angle of the smart-
phone is a measure relative to the initial heading. Equation (3.10) solves this problem
by integrating the differential angle, i.e. the yawrate, with a given or assumed initial
heading 𝜙(𝑗)(0).

In this case the particle state is propagated from the previous step 𝑡𝑘−1 to the current
one 𝑡𝑘 by using

x(𝑗)(𝑡𝑘) = x(𝑗)(𝑡𝑘−1) +

⎛⎜⎜⎜⎜⎜⎝
𝑇𝑔 sin

(︀
𝜙(𝑗)(𝑡𝑘)

)︀
𝑇𝑔 cos

(︀
𝜙(𝑗)(𝑡𝑘)

)︀
0

𝑇𝑔 Δ𝜙(𝑗)(𝑡𝑘)
0

⎞⎟⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎜⎝
0
0

𝜎2
𝑞𝑢

0
𝜎2

𝑞𝑦

⎞⎟⎟⎟⎟⎟⎠ . (3.11)

The IMU-Transition-Model builds upon a white noise model where inaccuracies
are modeled using a zero mean Gaussian process with standard deviation 𝜎𝑞𝑢

for the
magnitude of the velocity and 𝜎𝑞𝑦

for the yawrate.
Modeling the transition using the IMU-Transition-Model using Equation (3.10) is

expected to lead to better results, since the heading angle and yawrate introduce another
measurand to the state representation and the PF has more information about the
current target state. The IMU-Transition-Model is schematically depicted in Figure
3.7.
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Figure 3.7: Illustration of the IMU-Transition-Model.

3.6 Determination of the Orientation of a Mobile Device
The modeling of the dynamics of an object to be tracked is often done by fusing sensor
data from different kinds of sensors. As described in Section 3.5, for indoor tracking of
a mobile device, further information about the movement is expected to lead to better
accuracy. However, the variety of sensors suitable for indoor tracking on mobile devices
is limited [2].

Typically, modern smartphones feature multiple optical sensors like multi-lens cam-
eras, microphones, hygrometers, barometers, thermometers, light sensors, GNSS re-
ceivers for outdoor positioning, radio transceivers, and inertial sensors to determine
the orientation. As already mentioned in Section 2.1, BLE is utilized for distance es-
timation. In the IMU-Transition-Model described in Section 3.5.2, the orientation is
a suitable additional measurand. Orientation measurement is often realized by sensor
fusion of inertial sensors like gyroscopes, accelerometers and magnetometers [14].

Gyroscopes measure angular velocities on the three axes of smartphones and can
thus observe changes in the three rotational axes of the device (yaw, pitch and roll).
Accelerometers record the total external specific forces applied to it, including accel-
erations and gravity. However, hardware sensors like gyroscopes or accelerometers are
often subject to noise, drift, bias and deviation and thus cannot be directly utilized.
To obtain angular measurands, gyroscopes are often integrated, whereby noise and bias
often lead to drift. To use the result, different sensors that complement one another are
typically fused [14].

If the right representation is adopted, it is simple to combine sensors that produce
a 3D rotation. Different formats can be used to depict a rigid body’s rotation in 3D
space. For instance Euler angles represent a 3D rotation as a vector of three angles
(yaw, pitch, roll), are easy to interpret, but suffer from gimbal lock. Another possible
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representation is the 3× 3 rotation matrix. Widely used are so-called quaternions, that
use a real part and 3 imaginary parts similar to a complex number. Quaternions are
elegantly handlable when it comes to further mathematical operations like 3D rotation
interpolation [14].

For the purpose of sensor data fusion, different algorithms are available. The simplest
version is a complementary filter. A complementary filter combines a high-pass filter for
drift elimination of the integrated gyroscope and a low-pass filter for noisy acceleroemter
or magnetometer values. Often a drift-free angle can be obtained with good dynamic
response.

A higher sophisticated but more computationally intensive fusion can be realized
with a KF, that is based on the Bayesian Filtering, described in Section 2.2.1. KFs
implement a feedback loop with a prediction and an update stage, assuming a linear
system with Gaussian noise. An extension to non-linear systems is also possible.

A widely used fusion filter is the Mahony filter, which improves the complementary
filter by applying a proportional integral controller to the error function between the
orientation from the acceleration data and the orientation from the gyroscope data.
The integral part of the controller is able to reliably remove a constant offset caused by
biased acceleration or gyroscope data. This filter has two parameters to tune the results.
The controller correction is also applied to the gyroscope data. The proportional error
is calculated as the sum of the cross product between the gravity vector estimated by
the orientation and updated by the gyroscope data and the gravity vector measured by
the accelerometer [14]. In Section 3.6, the Mahony fusion algorithm is implemented to
obtain the orientation of the smartphone.

3.7 Particle Filter-Based Position Estimation
To utilize BLE signals for positioning purposes, the localization problem can be ex-
pressed using a state-space representation. The state of the mobile device 𝐵𝑏 at time
instant 𝑡𝑘 can be defined using the state-space description explained in Section 3.5. As
in this case a dynamic system is considered, the state estimation can be described based
on a discrete-time formulation using a transition and a measurement model [11].

The measurement model uses a potential non-linear function and measurement noise
to associate the state vector to the measurements at time instant 𝑡𝑘. By using Equation
(3.6), the distance

𝑑𝐵𝑏,𝑖(𝑡𝑘) =
⃦⃦
x(𝑡𝑘)− 𝑟B𝑖

⃦⃦
+ 𝑛𝑚(𝑡𝑘) , (3.12)

can be obtained where 𝑛𝑚(𝑡𝑘) describes the general measurement noise with standard
deviation 𝜎𝑚 for the measurement.

From a Bayesian perspective, the transition model can be expressed by the condi-
tional PDF p

(︀
z(𝑡𝑘)

⃒⃒
x(𝑡𝑘)

)︀
, which is referred to as transition prior distribution, where

z(𝑡𝑘) defines the set containing the MRSSI measurements at time instant 𝑡𝑘 with

z(𝑡𝑘) =
[︀
𝑧1(𝑡𝑘), 𝑧2(𝑡𝑘), . . . , 𝑧𝑁c

(𝑡𝑘)
]︀𝑇 =

[︁
𝑑𝐵𝑏,1(𝑡𝑘), 𝑑𝐵𝑏,2(𝑡𝑘), . . . , 𝑑𝐵𝑏,𝑁c

(𝑡𝑘)
]︁𝑇

. (3.13)

Here the availability of the MRSSIs from all 𝑁c BLE sniffers at each time instant 𝑡𝑘 is
assumed whereby the adaption to a time-variant size of z(𝑡𝑘) is possible as well.
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In the Gaussian-Transition-Model, only distance estimates are used as measure-
ments z(𝑡𝑘) for the weight update in the SIRPF. Hence, the likelihood distribution
p
(︀
z(𝑡𝑘)

⃒⃒
x(𝑗)(𝑡𝑘)

)︀
of the measurement model can be expressed as

p
(︀
z(𝑡𝑘)

⃒⃒
x(𝑗)(𝑡𝑘)

)︀
=

𝑁c∏︀
𝑖=1

p
(︀
z(𝑖)(𝑡𝑘)

⃒⃒
x(𝑗)(𝑡𝑘)

)︀
(3.14)

=
𝑁c∏︀
𝑖=1

1√
2𝜋𝜎𝑚

𝑒
− 1

2

⎛⎝ ⃦⃦⃦
x(𝑗)*(𝑡𝑘)−𝑟B𝑖

⃦⃦⃦
−𝑑𝐵𝑏,𝑖(𝑡𝑘)

𝜎𝑚

⎞⎠2

,

where x(𝑗)*(𝑡𝑘) =
[︀
𝑝𝑥(𝑡𝑘), 𝑝𝑦(𝑡𝑘)

]︀𝑇 and independent MRSSI measurements and normally
distributed measurement noise samples are assumed. For the distance measurement,
𝜎𝑚 = 3 m is empirically chosen. [11].

In the IMU-Transition-Model, two different kinds of measurements are considered
for the weight update, namely distance estimates z(𝑡𝑘) and yawrate measurements
Δ𝜙𝐵𝑏

(𝑡𝑘). In a discrete-time system as a difference equation, the yawrate Δ𝜙𝐵𝑏
(𝑡𝑘)

is calculated with
Δ𝜙𝐵𝑏

(𝑡𝑘) = 𝜙𝐵𝑏
(𝑡𝑘)− 𝜙𝐵𝑏

(𝑡𝑘−1) . (3.15)

Hence, two distinct likelihood distributions are used to do the overall weight update.
For the distance estimates z(𝑡𝑘), the likelihood distribution described in Equation (3.16)
is used. For the yawrate measurements, the likelihood distribution
p
(︀
Δ𝜙𝐵𝑏

(𝑡𝑘)
⃒⃒
x(𝑗)(𝑡𝑘)

)︀
is formulated as

p
(︀
Δ𝜙𝐵𝑏

(𝑡𝑘)
⃒⃒
x(𝑗)(𝑡𝑘)

)︀
= 1√

2𝜋𝜎Δ𝜙

𝑒
− 1

2

⎛⎝Δ𝜙
(𝑗)(𝑡𝑘)−Δ𝜙𝐵𝑏

(𝑡𝑘)

𝜎Δ𝜙

⎞⎠2

. (3.16)

For the likelihood distribution of yawrate of the IMU-Transition-Model, 𝜎Δ𝜙 is set to
0.5 rad/s.

The overall weight update is therefore relying on two different likelihood distributions
and is performed by combining the two likelihood distributions with

p
(︀
z(𝑡𝑘)

⃒⃒
x(𝑗)(𝑡𝑘)

)︀
· p

(︀
Δ𝜙𝐵𝑏

(𝑡𝑘)
⃒⃒
x(𝑗)(𝑡𝑘)

)︀
. (3.17)

3.8 Further Measures to Enhance the Position Estimation

As investigated in [11], the quality of the position estimation is heavily influenced by
the accuracy of the distance estimations between the mobile device 𝐵𝑏 and the static
BLE sniffers c𝑖. Furthermore, the spatial setup of the sniffers has an impact on the
positioning performance, where according to [11] a setup with fewer sniffers does not
necessarily lead to a worse positioning performance. Building on these two insights,
two more methods concerning the improvement of the positioning in case of severe
fluctuations are proposed.
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Choosing the Sniffers with the Highest RSSI

One possible countermeasure to severe fluctuations can be the elimination of sniffers
with low RSSI measurements and thus high distance estimates. Following this approach,
only the 𝑁*

c sniffers with the highest RSSI measurement are chosen for the position
estimation, with 𝑁*

c = 𝛼 ·𝑁c. In this case, the implementation has to deal with a time-
variant size of z(𝑡𝑘). To avoid ambiguities in the position estimation, it suggested to
choose 𝛼, that 𝑁*

c ≥ 3 is fulfilled.
One problem with this approach is the possible concentration of the resulting 𝑁*

c
sniffers in one point, leading to a poor positioning performance. To avoid the concen-
tration in one point, a second condition concerning the all-to-all distances between the
sniffers could be introduced when selecting the relevant sniffers. This approach is ex-
pected lead to better estimations in bigger environments with a high number of sniffers.

Dynamic Weighting in the SIRPF

As described in Section 2.2.2, the contribution of a particle x(𝑗)(𝑡𝑘) to posterior distri-
bution p

(︀
x(𝑡𝑘)

⃒⃒
z(𝑡1:𝑘) is determined by its weight 𝑤(𝑗)(𝑡𝑘) which is derived from the

measurement z(𝑡𝑘) using Equation (3.14) with a fixed specified standard deviation. By
introducing a distance-dependent standard deviation 𝜎𝑚 = 𝑓

(︁
𝑑𝐵𝑏,𝑖(𝑡𝑘)

)︁
, particles with

great distances can be assigned a lower weight, resulting in a smaller contribution to
the position estimation, where 𝑓(·) denotes a possible non-linear function to determine
the standard deviation 𝜎𝑚. This procedure is referred to as dynamic weighting. Similar
to activation functions in artificial neural networks, a parameterized sigmoid function
is used, denoted as

𝜎𝑚 = 𝑓
(︁

𝑑𝐵𝑏,𝑖(𝑡𝑘)
)︁

= 𝑎 + 𝑏 · 1
1 + 𝑒

−𝑐·𝑑𝐵𝑏,𝑖(𝑡𝑘)+𝑑
, (3.18)

with the parameters 𝑎, 𝑏, 𝑐, and 𝑑. The parameters are empirically determined by posi-
tioning runs and depend on the concrete scenario. The likelihood distribution
p
(︀
z(𝑡𝑘)

⃒⃒
x(𝑗)(𝑡𝑘)

)︀
can then be expressed as

p
(︀
z(𝑡𝑘)

⃒⃒
x(𝑗)(𝑡𝑘)

)︀
=

𝑁c∏︀
𝑖=1

p
(︀
z(𝑖)(𝑡𝑘)

⃒⃒
x(𝑗)(𝑡𝑘)

)︀
(3.19)

=
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𝑖=1

1√
2𝜋𝑓

(︁
𝑑𝐵𝑏,𝑖(𝑡𝑘)

)︁𝑒
− 1

2

⎛⎝ ⃦⃦⃦
x(𝑗)*(𝑡𝑘)−𝑟B𝑖

⃦⃦⃦
−𝑑𝐵𝑏,𝑖(𝑡𝑘)

𝑓
(︁

𝑑𝐵𝑏,𝑖(𝑡𝑘)
)︁

⎞⎠2

.



Chapter 4

Implementation of the Server-Based
Indoor Positioning System

This chapter focuses on the concrete implementation of the proposed concept of Chap-
ter 3. The first part copes with the implementation a Matlab version. Thereafter, the
embedded firmware of the nRF52840 Dongle is focused on. After that, the implemen-
tation of the Android application is presented. In the end, the server-based approach is
implemented as an actual embedded IPS in C++ that supports live positioning.

4.1 Matlab Version
The proposed concept of the server-based BLE IPS is first implemented in Matlab.
The aim is to investigate whether accurate positioning is possible using the selected
hardware components and which initial parameters and tuning values are required for
the proposed algorithms. The Matlab version follows a post-processing approach, where
the BLE data is first recorded and stored and the algorithms are evaluated and tested
afterwards. It can for instance be used for calibration of the path loss model of each
individual sniffer. In this case the BLE data is first recorded by the embedded IPS in
a log file. The data can then be read in and be processed using Matlab. That way, the
path loss model coefficients are determined, which can then be fed back to the embedded
IPS. Also, the Matlab version can be utilized to test the proposed algorithms and to
compare the results of the post-processed data with the live processed data from the
embedded IPS. The logged data file from the server is read and the data of the format
described in Equation 4.2 is parsed into a nested database-like structure. The data is
grouped by sniffer identification number (ID), by BLE receiver ID and by advertising
channel with associated timestamps. With this data structure, a detailed analysis of
every single channel of every BLE receiver of every sniffer is possible and the necessary
filtering algorithms can be developed and implemented according to the requirements.

4.2 nRF52840 Dongle Firmware
As mentioned, the IPS in this thesis is implemented relying on a server-based approach,
where the mobile device, e.g. a smartphone, acts as a transmitter. The distance estima-

31
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tion is done using multiple static sniffers connected to a server hosting the positioning
algorithm. The first step to establish the server-based approach is the implementation
of a BLE receiver on the nRF52840 Dongle. The nRF52840 Dongle is chosen because
of the provided access to the BLE radio. It is possible to select the scanning channel,
scanning window, and scanning interval at your discretion since the firmware is devel-
oped in embedded C. The program can be split into three parts: Initialization, BLE
radio management, and the receiving callback.

In the first step, the nRF52840 Dongle is configured by initializing the board hard-
ware, the USB interface, a 1 ms timer, the BLE radio, and by setting a receiving callback
for received BLE advertisements. Next, the reading of the dongle-unique serial number
is used to assign a unique ID to the dongle based on a table lookup. The program then
runs into a while loop, which is responsible for managing the advertising channel, scan
window 𝑑𝑠 and scan interval 𝑇𝑠.

Based on the previously initialized 1 ms timer, the checks for the scan interval 𝑇𝑠

and scan window 𝑑𝑠 are performed. When the timer exceeds the threshold for the scan
window 𝑑𝑠, the BLE radio is disabled and the time is remembered. When the timer
exceeds the threshold for the scan interval 𝑇𝑠, the BLE radio is prepared with the
currently selected scanning channel and then activated and put into receiving mode.
The time is remembered. The next channel is prepared for the next scan interval 𝑇𝑠.
This mechanism ensures a rolling scanning of the advertising channels.

When a BLE packet is received by the dongle, the previously set callback is asyn-
chronously triggered. The callback checks the CRC and parses the received PDU in a
predefined structure in case of a valid CRC. The nRF52840 Dongle receives all BLE
packets of surrounding BLE devices. To distinguish between a device of interest and
other BLE devices of the surroundings, the advertising data is analyzed. The device
of interest is the Android smartphone Google Pixel 5 used in the experiments. On the
Android side, the advertising data is set to a specific value, which also known by the
nRF52840 Dongle. Only incoming BLE packets with this value are accepted and used
for further processing. In some cases, also the advertising address in the BLE packets
could be utilized to identify a BLE device. On Android devices, the BLE advertising
address is periodically changing as a security measure and thus cannot be used. The
Android side is focused in Section 4.3. If the BLE device is identified as a device of
interest, a predefined data structure is reported over the serial port with USB. The
data includes the receiver ID, the obtained advertising address and data, the currently
scanned advertising channel, the obtained RSSI value from the BLE radio API, and the
current timer counter value. An example of the data reported by the dongle over USB
with the structure elements is given by

6
Receiver

ID

;
Advertising address

69:d9:e2:a4:b7:ae; Pixel 5
Device
name

;
Heading

17,2

Advertising
data

; 37
Channel

;
RSSI

59; 89494
Counter

. (4.1)

This data can be used at a receiving serial port host for further processing. The men-
tioned procedures are depicted in the flowchart in Figure 4.1.
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Figure 4.1: Flowchart of the nRF52840 Dongle firmware implementation showing the
three main parts: Initialization, BLE radio management, and BLE radio receiving call-
back.

4.3 Android Application
In the server-based approach, the smartphone acts as a BLE transmitter, also referred
to as BLE beacon. Considering orientation measurements for the position estimation
is expected to lead to better positioning performance. The determination of the ori-
entation is established by sensor fusion of the inertial sensors of the smartphone. The
implementation of the BLE beacon and the orientation determination is combined in a
single Android application, which is focused on in the following sections.

4.3.1 BLE Beacon
The Android platform provides Bluetooth stack support, which allows a device to wire-
lessly communicate data with other Bluetooth devices through the Android Bluetooth
APIs. The BLE API is supported since Android 4.3 (API 18) [21]. As mentioned in
Section 2.1.2, for distance and further position estimation purposes, a BLE advertiser
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with undirected, unconnectable, and unscannable advertising events is sufficient. For
the smartphone to work as a BLE beacon, the minimum required API level is set
to API 26, which enables the application to dynamically modify the BLE advertis-
ing data at runtime. That is especially useful when transmitting BLE advertising data
which is not constant. As an advertiser, the Android class BluetoothLeAdvertiser is
used. Settings regarding the advertising parameters can be made with the Android class
AdvertisingSetParameters. The advertisement is set to not connectable, the advertis-
ing interval 𝑇𝑎 is set to INTERVAL_MIN to ensure the advertising events happen as often
as possible. According to [10], the advertising interval 𝑇𝑎 is therefore set to 100 ms.
Moreover, the BLE radio transmitter power is set to TX_POWER_MAX. As described in
Equation (2.3), the received power depends on the transmitter power. It is expected to
acquire a more reliable RSSI with a transmission power as high as possible. The data
being advertised is configured to contain the device name and custom data, which can
be added as so-called service data. Therefore the Android class ParcelUuid is utilized to
generate a 16 byte Universally Unique Identifier (UUID) [21]. The custom data contains
the current heading angle 𝜙𝐵𝑏

(𝑡), which is described in Section 3.6.

4.3.2 Integration of the Inertial Data Fusion
The implementation of the proposed sensor data fusion in the Android application is
realized by using the Android system service SENSOR_SERVICE in combination with the
Android class SensorManager. The SensorManager is utilized to access the hardware
sensors TYPE_ACCELEROMETER, TYPE_GYROSCOPE, TYPE_MAGNETIC_FIELD of the Android
class Sensor. The SensorManager is then used to register a SensorEventListener to
each sensor with a sampling time of SENSOR_DELAY_FASTEST. The SensorEventListener
is responsible for the triaxial data acquisition of every sensor [21].

The next step involves the periodical execution of the fusion filter, in this particular
case, a Mahony Filter is implemented according to [14]. The timer of the class Timer is
scheduled with a sampling rate of 100 Hz and an initial delay of 1 s. The fusion is then
performed in a thread by passing the sensor values from the gyroscope, accelerometer,
and magnetometer to the Mahony fusion algorithm to perform an update with the new
values. The fusion result can be obtained in the format of Euler angles, whereby also
quaternion is possible. Internally, the Mahony algorithm builds upon quaternions.

As the acquisition of the orientation of the smartphone is implemented, the heading
angle has to be forwarded to the positioning algorithm running on the server. This can
be done by using a separate data link, e.g. a Transmission Control Protocol (TCP) or
User Datagram Protocol (UDP) connection. Since the positioning on the server fuses the
orientation with the same sampling rate 𝑇𝑔 as the distance measurements, it is sufficient
to embed it as advertising data in the BLE advertisement packet. The heading angle can
be processed by the sniffer and server. Before Android API version 26, a dynamically
at runtime changeable BLE advertising data was not supported but the advertising has
to be restarted [21]. In API 26, the Android class AdvertisingSet was introduced,
which is utilized in this thesis. When the fusion is performed, the obtained heading
angle 𝜙𝐵𝑏

(𝑡) is extracted from the fusion result and is included in the advertising data
using the Android function setAdvertisingData after the device name as described in
Section 4.3.1.
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For developing purposes, the sensor and fusion values are also displayed using text
fields. The advertising can be started using a button after the Bluetooth functionality
is enabled in the system settings. A screenshot of the application is depicted in Figure
4.2.

Figure 4.2: Screenshot of the Android application displaying the sensor values of the
inertial sensors, the system Euler angles, and the result of the implemented Mahony
fusion algorithm. The button at the bottom is used to start the BLE advertising in case
the Bluetooth functionality is enabled.

4.4 Embedded Implementation
Based on the developed concept described in Chapter 3, an embedded implementation
that supports live positioning is realized. First, an embedded platform has to be chosen.
After that, the proposed server-based architecture is realized and the algorithms are
implemented.

The embedded IPS is supposed to be flexible for modifications and future extensions
as well as scalable, is supposed to cope with big, multiple-room environments, and
may as well support future multiple target tracking with live positioning functionality.
According to the required features, a powerful host platform is demanded. The server-
based architecture is decided to be based on the network protocols TCP or UDP. The
network communication is responsible for the data exchange between the sniffers and
the server.

As mentioned in Section 3.2, a nRF52840 Dongle is used as a BLE receiver. For
communication with a host platform, serial port support is required to read the data
from the dongle and further process it. The dongle itself does not provide a time base,
this might also be done by the host platform. To perform a time-grid-based averaging
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mentioned in Section 3.4 a shared time base has to be established among all participants
in the server-based architecture, meaning a time synchronization is necessary.

To meet performance requirements, not rely on interpreted or intermediate-language-
based programming languages, access low-level hardware like serial ports, and allow a
manageable programming effort, C++ is chosen as a target embedded programming
language.

Regarding the aspects mentioned in the above paragraphs, it is decided to build the
embedded implementation upon already existing and in practice established hardware.
As a host platform for the sniffers and the server, the Raspberry Pi 4 platform is
deployed. It provides a 64 bit Quad core Cortex-A72 (ARM v8) and up to 8 GB RAM
[13]. As an operating system, the Linux-based Raspberry Pi OS Buster is utilized.

4.4.1 Server-Based Architecture
With the Raspberry Pi 4 based setup, it is possible to establish the proposed server-based
architecture. The IPS consists of multiple static sniffers, whereby a sniffer is a system
consisting of a Raspberry Pi 4 and two nRF52840 Dongles acting as BLE receivers.
The two dongles act as redundancy helping each other to compensate for small-scale
fading resulting from multipath propagation. The dongles receive BLE advertisements
of a target of interest to be tracked and report the received data over the serial ports.
The Raspberry Pi 4 acts as a local processing unit and reads the serial data from the
dongles and processes it. Since the positioning task is done by the server, the sniffers
have to forward the processed data to the server. As in this particular case the data
from the sniffers is streaming data, the network protocol UDP is sufficient to send the
data from the sniffers to the server, where the communication between the sniffers and
the server is planned to be unidirectional.

The server receives the streaming data from the sniffers over UDP. The data is then
parsed, locally persisted, and pre-processed in terms of filtering described in Section 3.4.
After the pre-processing, the server performs the positioning with a SIRPF using the
filtered data described in Section 2.2.4. The server is executed simultaneously on one
Raspberry Pi 4 that also runs a sniffer, both running in different processes.

As mentioned in the above paragraphs, the server and the sniffers have to be time
synchronized to perform the time-grid-based averaging. Time synchronization for net-
work devices is often realized using NTP, which calculates time differences and creates
a feedback loop by adjusting the clock frequency accordingly and is thus capable of
achieving millisecond accuracy [15]. For the positioning server, a NTP server from an
internet server pool is used. At the same time, the positioning server can act as a local
NTP server for the sniffers. With this approach, only the positioning server needs an
internet connection since the sniffers only rely on the local NTP server of the positioning
server in the local network. The proposed server-based architecture including all data
flows is depicted in Figure 4.3.

4.4.2 Sniffer Implementation
As mentioned in Section 4.4.1, the sniffers are responsible for reading data from the
connected dongles and forwarding it to the server. The sniffer main program is imple-
mented in C++ without external libraries. For the hardware access like serial port and
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Figure 4.3: Server-based system architecture: The sniffers equipped with two BLE re-
ceivers receive the BLE packets from the advertising mobile device and forward the data
to the server with UDP. The server does the positioning and synchronizes the sniffers
using NTP.

socket communication, C libraries are utilized.
To send the data to the server using UDP, the Internet Protocol (IP) address of

the server is to be known. The used local network equipment provides a Dynamic Host
Configuration Protocol (DHCP) server that automatically assigns IP address for all par-
ticipants. The server’s IP address is thus determined with name resolution. To perform
a name resolution, the network name of the server has to be set in advance. The IP
address of the server can as well be set as static and would thus be a constant value
for the sniffer. In this case, a DHCP server on the network side and a name resolution
would not be necessary, resulting in less flexibility in case of network changes.

After the name resolution, two serial port communication interfaces are requested to
open with ioctl system calls. After that, the two serial port interfaces are alternatingly
polled for available data to be read in a loop. When available serial data is read, a
Coordinated Universal Time (UTC) timestamp, the time difference to the previous
data, and the sniffer ID are prepended. This data frame is sent over the UDP socket to
the server. The full data frame that is sent to the server is composed like

2023-06-22 14:08:38.889
UTC timestamp

;
t

2558.120; 3
dt

;

Sniffer
ID
c1; 6
Receiver

ID

;
Advertising address

69:d9:e2:a4:b7:ae; Pixel 5
Device
name

;
Heading

17,2

Advertising
data

; 37
Channel

;
RSSI

59; 89494
Counter

,

(4.2)
where the sniffer ID represented by the value c1 is utilized to distinguish between the
sniffers on the server.
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4.4.3 Server Implementation
As indicated in Section 4.4.1, the server acts as the central part that performs the
necessary steps to do the indoor positioning. In the next sections, the C++ server im-
plementation is described.

Sniffers Ground Truth Position and Individual Path Loss Model

To perform the indoor positioning, the server must be provided with knowledge about
the ground truth positions of the sniffers and the path loss model of each sniffer of the
current setup. In this case, both parameters are determined with the optical motion
capture system mentioned in Section 5.2 and are stored individually for each sniffer in a
class Anchor. The information of all sniffers is organized in a constant single-key-single-
value structure std::unordered_map<std::string, Anchor> where the sniffer ID is
utilized for identification. The sniffer IDs to be used for the positioning can be specified,
enabling the testability with different sniffer setups.

UDP Server Socket

The server receives the data in the format described in Section 4.4.2 from the sniffer
over UDP. To do so, the server creates a UDP server socket on its local IP address
and a specified port. This socket is used for blocked receiving of the UDP data from
the sniffers in a while loop. The blocked receiving is sufficient since there is no need
for the server to perform other calculations when there is no available data from the
sniffers. When UDP data is received, it is parsed into an object of the class RxData,
which encapsulates all properties listed in Section 4.4.2.

UDP parsing

If the data is parsed successfully, the parsed object is inserted into a single-key-multiple-
value structure std::unordered_multimap<std::string, RxData> where the sniffer
ID is again utilized for identification. This structure records all data for the time window
𝑇𝑔 and is cleared when a new window starts. A std::unordered_multimap supports
multiple values for one key in contrast to a std::unordered_map. With this structure,
it is possible to persist an incoming parsed object to the associated sniffer ID. This
reduces the effort of mapping and searching in the further processing steps.

Initial Heading and Heading Alignment

In case of the first received UDP packet, the heading 𝜙𝐵𝑏
(𝑡𝑘) is extracted from the

packet and set as the initial heading 𝜙𝐵𝑏
(0). By subtracting the initial heading 𝜙𝐵𝑏

(0)
from all following angles, the offset is corrected and the resulting initial heading is 0∘.
To align the estimated heading of the SIRPF with the actual walking direction, the
initial walking direction 𝜙𝑊 (0) is added. As a result for the IMU-Transition-Model,
every particle state 𝜙(𝑗)(𝑡𝑘) is initialized using

𝜙(𝑗)(𝑡𝑘) = −𝜙𝐵𝑏
(0) + 𝜙𝑊 (0) . (4.3)

The initial walking direction 𝜙𝑊 (0) is assumed to be known for the concrete scenario.
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Time-Grid-Based Averaging

In the while loop, the program then compares the UTC timestamp extracted from the
most recently received UDP packet to the one of the previous time window 𝑇𝑔. If the
sampling period 𝑇𝑔 of the time grid is exceeded, a SIRPF iteration is triggered. The
server does not use the UTC timestamp when the UDP packet is received at the server,
but uses the UTC timestamp, the serial data was read at the sniffer which is embedded
in the UDP packet. With this approach, the problem of possibly different UDP network
traveling times of the UDP packets is avoided.

Available Sniffers

Before the SIRPF can perform a position estimation, several pre-processing steps have
to be run through. First, the available sniffers of the recorded time window are extracted.
With this approach, it is not necessary for all sniffers to be available for the calculation
all the time. This is for instance the case due to too great a distance to a specific sniffer.
The available sniffers are then filtered to finally get the sniffers that should be used and
also are available.

RSSI Pre-processing

After that, the MRSSI of the recorded time window is calculated. This procedure im-
plements the first filter stage of the RSSI pre-processing explained in 3.4. The MRSSI
is then persisted to enable the moving average filter of a desired length. This realizes
the second filter stage explained in Section 3.4.

Distance Estimation and SIRPF Positioning

With the filtered MRSSI and the path loss model of the anchors to be used, the dis-
tances between the target to be tracked and the anchors to be used can be determined
based on the filtered MRSSI. In case of the first iteration, the SIRPF is initialized, or
else the prediction is performed. Afterwards, the current heading 𝜙𝐵𝑏

(𝑡𝑘) of the most
recent UDP packet is read, the heading alignment is performed and the differential to
the previous iteration, also referred to as yawrate Δ𝜙𝐵𝑏

(𝑡𝑘), is calculated. With the
estimated distances between the target and the anchors to be used, with the ground
truth positions of the anchors to be used, and with the yawrate Δ𝜙𝐵𝑏

(𝑡𝑘), the data is
now ready for the SIRPF weight update. After the update, the MMSE from the particle
set is calculated to get a point estimate. Finally, the particles are resampled and the
time window 𝑇𝑔 is cleared for the next iteration.

Data Logging

To also allow post-processing of the recorded data, all UDP packets from the sniffers are
stored in a log file at the moment they are received. To evaluate the positioning results
from the server, the currently available MRSSI, distance estimates, and the states of
the MMSE of the particle set are logged in a separate log file.
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The structure of the server program is depicted in Figure 4.4 as class diagram. The
procedure of the main program of the server is shown in Algorithm 4.1.

Figure 4.4: Class diagram of the server main program.

4.5 Offline and Live Positioning Mode

The C++ server program is designed to work as a hardware-in-the-loop (HIL) system to
validate the functionality of the implementation with already available log data as well
as with live data from the sniffers. The switch between HIL and live mode can be done
with a single C++ macro. In HIL mode, the server reads an already recorded log file
line by line, while in live mode the data is acquired from the UDP connections to the
sniffers. It is possible to provide the HIL mode with the same data as the Matlab model.
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Algorithm 4.1: Server main program
1: Define all sniffers of the setup
2: Define sniffers to be used
3: Open UDP server socket
4: while 1 do
5: Read UDP data from the socket, log in file and parse in object
6: Insert object in time window
7: if FirstUDP then
8: Set initial heading from first UDP packet
9: if Time window 𝑇𝑔 elapsed since previous iteration then

10: Extract available sniffers from time window 𝑇𝑔

11: Filter sniffers with sniffers to be used
12: Extract MRSSI measurements of time window 𝑇𝑔

13: Compute moving average with MRSSI
14: Estimate distance with individual path loss model between target and sniffers

to be used
15: if FirstRun then
16: Initialize SIRPF
17: else
18: SIRPF prediction
19: Heading alignment and yawrate computation
20: SIRPF weight update
21: SIRPF calculate MMSE
22: Log MMSE in file
23: SIRPF resample
24: Clear time window 𝑇𝑔

With the HIL mode is thus possible, to perform offline tests, where no connection to the
sniffers is necessary. After the result data from the SIRPF of the HIL mode is logged,
it can be compared with the Matlab results. Due to stochastic processes in the SIRPF
and different random seeds, the results slightly differ.



Chapter 5

Evaluation of the Server-Based Indoor
Positioning System

The implementation described in Chapter 4 is evaluated in this chapter by conducting
multiple measurement campaigns and comparing the results of the described algorithms.

5.1 Testbed and Experimental Setup for Data Acquisition
A second measurement campaign is conducted at the location named in Section 3.3. This
time, the indoor environment is equipped with 𝑁𝑐 = 6 static BLE sniffers mounted on
tripods at a height of 1.4 m above the ground, depicted in Figure 5.1a.
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Figure 5.1: Indoor environment for measurement campaign 2.
(a) Indoor measurement setup with the robot and the BLE sniffers c𝑖 mounted on tripods
for measurement campaign 2 to evaluate the distance and position estimation algorithms.
(b) Ground truth view of the indoor environment with the traversed path 𝑆2 for the
moving robot and the sniffers c𝑖.

The sniffers c𝑖, located at 𝑟c𝑖
with 𝑖 ∈ {1, . . . , 6}, are units equipped with two

42
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closely spaced nRF52840 Dongles acting as BLE receivers mounted in a USB hub. The
3D ground truth positions of the sniffers on the tripods are obtained using the optical
motion capture system.

The movement of the mobile device is performed by a controllable, omnidirectional-
wheeled mobile robot. The robot can be configured with a predefined trajectory where it
uses positioning data from the optical motion capture system to autonomously traverse
the path. In Figure 5.1b the indoor environment is illustrated as a view from the ground
truth system. The traversed path 𝑆2 is shown in black, and the placed static tripods
with the sniffers c𝑖 are depicted in red. The robot is equipped with a smartphone on
top, which is acting as a BLE beacon broadcasting BLE advertisement packets.

The BLE advertisement packets are detected by the nRF52840 Dongles, read by
the serial port of the sniffers and reported to the server, where the data is logged
with associated UTC timestamps for later post-processing.. The optical motion capture
system simultaneously records the 3D ground truth position of the moving robot. The
ground truth dataset is available as a text file and consists of the UTC timestamp, the
3D position, and the 3D orientation represented as a quaternion.

5.2 Preparation of the Recorded BLE and Ground Truth Data
After the BLE data and the ground truth data are recorded, both datasets need to be
prepared for further processing and determining the path loss model. First, both datasets
are read, and the UTC timestamps are compared. The sample rate of the ground truth
dataset is 1 kHz and thus higher than the advertising rate of the smartphone. Hence,
only the relevant data is extracted from the ground truth dataset by using a nearest
neighbor search on the UTC timestamps of both sets. The first UTC timestamp is
subtracted from all subsequent timestamps as an offset to start at time 𝑡𝑘 = 0 and the
dataset is converted to seconds domain to later establish a time-grid for filtering and
positioning. Afterward, the BLE data is processed and organized as described in Section
4.1.

5.2.1 Individual Path Loss Model Calibration
After the data is prepared for each sniffer, further processing can be conducted. Due
to the knowledge of the ground truth position from the optical motion capture system
and now available RSSI data from the sniffers, an individual calibration of the path loss
model described in Section 3.3 is possible. In comparison to measurement campaign 1,
more data with a higher time resolution is available. Since the robot is not driving a
straight line anymore but a trajectory, the RSSI data is expected to look more Gaussian.
In reality, the RSSI is expected to still be biased and non-Gaussian due to multipath.
However, a larger dataset can be better utilized for curve fitting.

By plotting the recorded RSSI over the ground truth distance for each sniffer and
calculating the path loss model with OLS, each of them can be individually calibrated,
with the results depicted in Figure 5.2, where the raw RSSI is shown in blue, and the
fitted path loss model is depicted in red.
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Figure 5.2: Individual calibration of the path loss model of each sniffer using a moving
robot.

The fitted path loss coefficients are shown in Table 5.1. As can be seen, the path
loss coefficients differ significantly from each other. A single combined path loss model
for all sniffers might also work but the error of the distance estimation is expected to
rise.

Table 5.1: Coefficiants of the individually fitted path loss model for each sniffer.

Sniffer c1 c2 c3 c4 c5 c6

𝛽1 -59.5 -54.00 -61.39 -60.44 -49.37 -50.61
𝛽2 -14.89 -17.07 -14.16 -12.00 -25.93 -21.11

With the knowledge of the path loss model and the ground truth position, the
theoretical RSSI can be calculated and compared to the measured RSSI. With this
approach, the further processing of the RSSI is shown very intuitively.

5.2.2 Filtering and Distance Estimation
After the calibration, the filtering of the raw RSSI of each sniffer is investigated. The
filtering is suggested as a countermeasure against heavily fluctuating RSSI measure-
ments. As mentioned in Section 3.4, the filtering can be realized in two stages. The first
stage acts as a downsampler and calculates the average of the specified time window
𝑇𝑔. The second stage builds upon the first stage and calculates a moving average. The
decoupling of the two stages is expected to lead to better performance since the filtering
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of the second stage and the positioning algorithm can be performed on fewer samples
than would be necessary for the first stage.

The RSSI filtering result over time for path 𝑆2 of sniffer c1, consisting of the two
BLE receivers c1,1 and c1,2 is depicted in Figure 5.3. The upper figure shows the RSSI
and MRSSI for BLE receiver c1,1, the middle figure for BLE receiver c1,2 and the lower
figure for BLE sniffer c1.
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Figure 5.3: Raw, filtered, combined and ground truth RSSI of sniffer c1 over time of
path 𝑆2 using a moving robot.

Additionally, the figures show the MRSSI in light blue (−) and the expected RSSI
calculated using the ground truth data in red (−). The lower figure shows all RSSI from
both receivers and all channels indicated in (−), the MRSSI and ground truth RSSI are
indicated by (−) and (−). While the RSSI are varying by up to 20 dBm between two
adjacent measurements, it can be observed, that a good match between the MRSSI and
the expected ground truth RSSI is obtained.

Figure 5.4 shows the MRSSI of the sniffers c𝑖 in dark blue (−) and the expected
RSSI from the ground truth system in red (−) over time for path 𝑆2. As shown in Figure
5.4, the measured and the expected RSSIs match for high RSSI amplitudes. The shapes
are identical, but the amplitudes sometimes mismatch which is related to multipath
propagation. Especially in low RSSI amplitudes, more uncertainty is observable.
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Figure 5.4: Combined and ground truth RSSI of all sniffers c𝑖 over time of path 𝑆2 using
a moving robot.

Figure 5.5 shows the estimated distance based on the MRSSI of the sniffers c𝑖 in
dark blue (−) and the expected ground truth distance from the ground truth system
in red (−) over time for path 𝑆2. As can be seen in Figure 5.5, the estimated and the
expected RSSI match for low distances. As the distance increases, uncertainties due to
multipath propagation are more observable.

5.3 Evaluation of the Positioning Performance
To evaluate the positioning performance of a SIRPF for indoor positioning purposes
with different sniffer setups and the transition models described in Section 3.5, multiple
measurement campaigns are conducted in the indoor environment described in Section
5.1. To rate the positioning accuracy, the root mean square error (RMSE) between the
estimated and the ground truth position is used as an error metric.

5.3.1 Positioning Performance of a Moving Robot
The second measurement campaign aims to evaluate the SIRPF positioning algorithm
for the mobile robot described in Section 3.7. The robot is programmed to traverse the
path 𝑆2 depicted in black in Figure 5.1b with a constant speed of 10 cm/s. The shape
of the traversed track is purposely chosen to have no sudden but only smooth changes
in its direction. Corners are mostly difficult to track for estimation algorithms and are
as well not characteristic for dynamic systems following the principle of inertia.

Based on the acquired path loss model described in Section 5.2.1 and the distance
estimates explained in Section 5.2.2, the SIRPF positioning algorithm according to
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Figure 5.5: Estimated and ground truth distance to all sniffers c𝑖 over time of path 𝑆2
using a moving robot.

Algorithm 2.2 is performed. The parameters 𝑇𝑔 = 0.5 s for the SIRPF, 𝜎𝑞𝑢
= 0.05 rad

for the Gaussian-Transition-Model and 𝜎𝑞𝑢
= 0.01 rad, 𝜎𝑞𝑦

= 0.5 rad/s for the IMU-
Transition-Model are determined empirically by multiple positioning runs.

Gaussian-Transition-Model

The first positioning run is performed using the Gaussian-Transition-Model. Figure 5.6
shows the ground truth path indicated in black and the estimated path in light blue using
the Gaussian-Transition-Model described in Equation (3.8) for one run of measurement
campaign 2 for the mobile robot. The static sniffers c𝑖 are shown in red.

Overall, a good positioning performance can be obtained. The estimated path in
light blue matches the ground truth path in black.

Figure 5.7 shows the associated time course of the SIRPF broken down into the
individual states. The ground truth data is indicated in blue, the estimated data is
depicted in red. The first row shows the data for the x-axis, and the second row for
the y-axis. The left column shows the position, and the right the velocity vectors. The
ground truth velocity vector is calculated by

𝑣𝑥,𝑦(𝑡𝑘) =
𝑝𝑥,𝑦(𝑡𝑘)− 𝑝𝑥,𝑦(𝑡𝑘−1)

𝑇𝑔
(5.1)

with 𝑇𝑔 = 𝑡𝑘−𝑡𝑘−1. As there is no sensor providing measurements of the velocity vectors
𝑣𝑥,𝑦(𝑡𝑘) that are used in the Gaussian-Transition-Models, the ground truth velocity
vectors are calculated for plotting purposes and to visualize, whether those states are
estimated correctly. As shown in Figure 5.7, the estimated position matches the ground
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Figure 5.6: SIRPF positioning result of a moving robot using the Gaussian-Transition-
Model for path 𝑆2.

truth position. The quality of the position in x-direction is slightly better than in y-
direction. The velocity vectors are estimated without measurements but nevertheless
show a good match with the ground truth equivalent but are lagging, which might be
the reason for the overshooting of the position estimate.

0 200 400 600

Time [s]

-10

-5

0

5

x
[m

]

Position

0 200 400 600

Time [s]

-4

-2

0

2

4

y
[m

]

0 200 400 600

Time [s]

-0.2

-0.1

0

0.1

0.2

v
x
[m

/s
]

Velocity

0 200 400 600

Time [s]

-0.2

-0.1

0

0.1

0.2

v
y
[m

/
s]

Figure 5.7: SIRPF tracking states of a moving robot using the Gaussian-Transition-
Model for path 𝑆2.
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IMU-Transition-Model

The positioning of the SIRPF with the dataset used in Section 5.3.1 is also performed
using the IMU-Transition-Model. The IMU-Transition-Model is based on measurements
consisting of distance estimates and the yawrate measurement of the mobile device.
As the mobile robot carrying the mobile device used in this experiment is equipped
with omnidirectional wheels, its orientation and yawrate do not change. However, to
investigate whether the IMU-Transition-Model achieves better positioning performance,
the heading and yawrate measurements are simulated based on the ground truth data
and an initial heading is assumed. The heading 𝜙𝐵𝑏

(𝑡𝑘) can be calculated with

𝜙𝐵𝑏
(𝑡𝑘) = arctan

(︂
𝑝𝑦(𝑡𝑘)− 𝑝𝑦(𝑡𝑘−1)
𝑝𝑥(𝑡𝑘)− 𝑝𝑥(𝑡𝑘−1)

)︂
. (5.2)

The yawrate Δ𝜙𝐵𝑏
(𝑡𝑘) is calculated according to Equation (3.15) and is then fused as

a measurement in the SIRPF.
Figure 5.8 shows the ground truth path 𝑆2 indicated in black and the estimated

path in light blue using the IMU-Transition-Model described in Equation (3.11) for one
run of measurement campaign 2 for the moving robot.
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Figure 5.8: SIRPF positioning result of a moving robot using the IMU-Transition-Model
for path 𝑆2.

Figure 5.9 shows the associated time course of the SIRPF broken down into the
individual states, where the ground truth data is indicated in blue and the estimated
data is depicted in red. The left column depicts the position in the x- and y-direction,
and the right column shows the speed vector and the heading. The ground truth speed
magnitude can be calculated with

𝑣(𝑡𝑘) =

√︁(︀
𝑝𝑥(𝑡𝑘)− 𝑝𝑥(𝑡𝑘−1)

)︀2 +
(︀
𝑝𝑦(𝑡𝑘)− 𝑝𝑦(𝑡𝑘−1)

)︀2

𝑇𝑔
, (5.3)

but is just used for plotting purposes and is not used as a measurement for the SIRPF
since a measurement of the speed is not provided by any sensor.
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As can be seen in Figure 5.7, the estimated position matches the ground truth better
with the IMU-Transition-Model than with the Gaussian-Transition-Model. The speed
estimation is sufficient. The heading estimation matches the ground truth heading.
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Figure 5.9: SIRPF tracking states of a moving robot using the IMU-Transition-Model
for path 𝑆2.

The positioning for measurement campaign 2 is performed five times for both transi-
tion models. Table 5.2 shows the result of the five positioning runs. With the Gaussian-
Transition-Model, the RMSE is about 1.1 m. The IMU-Transition-Model showed a
RMSE of 0.75 m, which corresponds to an error reduction of 31.8 %.

Table 5.2: RMSE for five runs for measurement campaign 2 with different transition
models.

Run 1 2 3 4 5
Gaussian-Transition-Model 1.12 m 1.05 m 1.09 m 1.14 m 1.20 m

IMU-Transition-Model 0.75 m 0.81 m 0.69 m 0.78 m 0.85 m

In Section 3.5, the IMU-Transition-Model is expected to give better performance
since the SIRPF has more information about the current target state than without an
IMU. The proposed better result using the IMU-Transition-Model is evidenced based
on the experiment in measurement campaign 2.

Influence of the Number of Particles

As described in Section 2.2.2, a PF uses set of 𝑁𝑝 particles to approximate the a pos-
teriori distribution p

(︀
x(𝑡𝑘)

⃒⃒
z(𝑡1:𝑘)

)︀
. Hence, the positioning performance in terms of
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the quality of the estimation is dependent on the number of particles 𝑁𝑝. The evaluate
the impact of 𝑁𝑝 on the positioning performance, the experiment is conducted for both
transition models with 𝑁𝑝 ∈ {100, 500, 1000, 1500, 2000, 3000}. The results are depicted
as CDFs in Figure 5.10.
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Figure 5.10: Evaluation of the positioning performance of a moving robot for a different
number of particles with two transition models.
(a) CDF of the positioning error for a moving robot using the Gaussian-Transition-Model.
(b) CDF of the positioning error for a moving robot using the IMU-Transition-Model.

As can be seen in both transition models, the distance error decreases as the number
of particle increases. Nevertheless, the resulting positioning error converges to a distinct
level when 𝑁𝑝 > 1000. As a result of this, 𝑁𝑝 = 1000 is used in all further experiments.
Having a look at the Algorithms 2.2 and 2.1 showing the SIRPF, a runtime complexity
of 𝒪(𝑁𝑝) is achieved. Hence, in cases where high dynamic response is required, a tradeoff
between computational effort and positioning accuracy might be reasonable.

Influence of the Number of Sniffers

After the two transition models are validated and good results are achieved, the depen-
dency of the number of sniffers on the positioning accuracy is investigated. The results
for different setups and both transition models are depicted in Figure 5.11. The left col-
umn shows the results of the Gaussian-Transition-Model and the right column depicts
the results for the IMU-Transition-Model. The ground truth path is indicated in black,
the estimated position in light blue, and the sniffer positions are shown in red.
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Figure 5.11: Comparison of the positioning result of a moving robot using the Gaussian-
and IMU-Transition-Model with different sniffer setups for path 𝑆2.
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As shown in Figure 5.11, the Gaussian-Transition-Model still performs well with
five sniffers but the accuracy drops when below five sniffers are in use. With four and
three sniffers the shape of the track is not recognizable anymore. In contrast to that,
the IMU-Transition-Model still has remarkable performance when only three sniffers
are utilized where the shape is still recognizable but the accuracy drops as well.

The achieved RMSE for Gaussian-Transition-Model is depicted in Table 5.3.

Table 5.3: RMSE for measurement campaign 2 with the Gaussian-Transition-Model.

Setup a) c) e) g)
Gaussian-Transition-Model 1.18 m 1.01 m 1.68 m 1.66 m

Table 5.4 shows the RMSE for the IMU-Transition-Model.

Table 5.4: RMSE for measurement campaign 2 with the IMU-Transition-Model.

Setup b) d) f) h)
IMU-Transition-Model 0.79 m 0.62 m 0.87 m 0.94 m

The CDFs of the positioning error for the sniffer setups evaluated in Figure 5.11
with the two motion models are depicted in Figure 5.12.
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Figure 5.12: Evaluation of the positioning performance of a moving robot for a different
number of sniffers with two transition models.
(a) CDF of the positioning error for a moving robot using the Gaussian-Transition-Model.
(b) CDF of the positioning error for a moving robot using the IMU-Transition-Model.

Comparing the CDFs of Figure 5.12a using the Gaussian-Transition-Model with
Figure 5.12b using the IMU-Transition-Model, the IMU-Transition-Model outperforms
the Gaussian-Transition-Model in terms of the total positioning error.
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Influence of the Time Window 𝑇𝑔

As explained in Section 3.4, the distance and position estimation of the SIRPF run
on a fixed sampled time grid 𝑡𝑘, with 𝑇𝑔 = 𝑡𝑘 − 𝑡𝑘−1 denoting the time between two
adjacent time stamps. The bigger 𝑇𝑔 is chosen, the more RSSI measurements are used
to determine the MRSSI on the sniffers and the more the RSSI data is smoothed. The
evaluate the impact of 𝑇𝑔 on the positioning performance, the experiment is conducted
for both transition models with 𝑇𝑔 ∈ {0.2𝑠, 0.5𝑠, 1.0𝑠, 2.0𝑠}. The results are depicted as
CDFs in Figure 5.13.
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Figure 5.13: Evaluation of the positioning performance of a pedestrian with two transi-
tion models and different 𝑇𝑔.
(a) CDF of the positioning error for a robot using the Gaussian-Transition-Model.
(b) CDF of the positioning error for a robot using the IMU-Transition-Model.

Figure 5.13a shows better positioning performance with lower 𝑇𝑔 for the Gaussian-
Transition-Model, whereas the Figure 5.13b shows similar positioning performance for
all 𝑇𝑔 for the IMU-Transition-Model.

5.3.2 Positioning Performance of a Pedestrian
After measurement campaign 2 shows remarkable performance for a moving robot, a
third measurement campaign is conducted in the same area to obtain the positioning
performance for a pedestrian holding the mobile device. The path 𝑆3 to be traversed is
depicted in black in Figure 5.14b and has a similar shape to the path 𝑆2 of the robot
in measurement campaign 2.
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Figure 5.14: Indoor environment for measurement campaign 3.
(a) Indoor measurement setup with a pedestrian and the BLE sniffers c𝑖 mounted on
tripods for measurement campaign 3.
(b) Ground truth view of the indoor environment with the traversed path 𝑆3 for a pedes-
trian and the sniffers c𝑖.

To have a ground truth reference to quantify the positioning error, the mobile device
is mounted in a box, which is tracked by the optical motion capture system.

The positioning error is expected to increase in comparison to measurement cam-
paign 2. Since the mobile device is carried, the human body acts as an absorber of the
BLE signal and attenuates the RSSI. As a result, errors in the estimated distances might
lead to worse positioning performance.

Moreover, the orientation of the mobile device is changing as the path is traversed.
The orientation is determined by the mobile device itself using IMU measurements
and a fusion algorithm. The fusion result is embedded in the BLE advertisements. The
positioning performance is thus relying on the accuracy of the orientation calculation
of the mobile device.

As the mobile device’s orientation changes, the orientation of its BLE antenna
changes as well. In measurement campaign 2 the orientation of the mobile’s BLE an-
tenna is constant since the robot is not changing its orientation to traverse the path due
to the omnidirectional wheels. Hence, it is expected, that multipath propagation now
has a bigger impact on the result than in measurement campaign 2.

Accuracy of the Mobile Device’s Heading Determination

The first task of measurement campaign 3 is to investigate the accuracy of the mobile’s
heading estimation. To compare it with the ground truth heading, it has to be converted
according to the heading alignment described in Section 4.4.3.

In Figure 5.15 the ground truth heading is indicated in red. Since there is no move-
ment in the intervals [0, 15] s and [105, 140] s the ground truth heading is invalid here
and flips. The calculated heading on the mobile device is indicated in blue where the
initial angle is 𝜋/2 and the data is free of drift. As can be seen, in the dynamic phases
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both angles match and the heading alignment works.
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Figure 5.15: Comparison of the ground truth heading and the heading estimation of the
mobile device after the heading alignment.

The positioning is then performed again for both transition models with different se-
tups regarding the number of sniffers, where the results are depicted in Figure 5.16. The
left column shows the results of the Gaussian-Transition-Model and the right column
depicts the results for the IMU-Transition-Model. The ground truth path is indicated
in black, the estimated position in light blue, and the sniffer positions are shown in red.
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Figure 5.16: Comparison of the positioning result of a pedestrian using the Gaussian-
and IMU-Transition-Model with different sniffer setups for path 𝑆3.
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As can be seen in Figure 5.16, both models perform better when fewer sniffers are
utilized. In general the results show a better positioning result for the IMU-Transition-
Model. The achieved RMSE for the Gaussian-Transition-Model is depicted in Table 5.5
and for the IMU-Transition-Model in Table 5.6.

Table 5.5: RMSE for measurement campaign 3 with the Gaussian-Transition-Model.

Setup a) c) e) g)
Gaussian-Transition-Model 2.05 m 1.16 m 1.40 m 0.99 m

Table 5.6: RMSE for measurement campaign 3 with the IMU-Transition-Model.

Setup b) d) f) h)
IMU-Transition-Model 1.3 m 0.89 m 1.08 m 0.94 m

In comparison to the Gaussian-Transition-Model, the IMU-Transition-Model reduces
the positioning error by an average of 25 % among the different sniffer setups.

The CDFs of the positioning error for the sniffer setups evaluated in Figure 5.16
with the two motion models are depicted in Figure 5.17.
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Figure 5.17: Evaluation of the positioning performance of a pedestrian for a different
number of sniffers with two transition models.
(a) CDF of the positioning error of a pedestrian using the Gaussian-Transition-Model.
(b) CDF of the positioning error of a pedestrian using the IMU-Transition-Model.

Comparing the CDFs of Figure 5.17a using the Gaussian-Transition-Model with
Figure 5.17b using the IMU-Transition-Model, both models perform similar in terms
of total positioning error. In contrast to measurement campaign 2 described in Section
5.3.1, the positioning result obviously depends more on the sniffer setup than on the
number of the sniffers.
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Influence of the Sniffers Setup

In Figure 5.16 the achievable positioning performance with the two transition models is
depicted. Especially worth mentioning is the difference between the Figures 5.16b and
5.16d for the IMU-based approach with the same data. In Figure 5.16d the sniffer c3 is
not considered in the SIRPF and the positioning error is reduced from 1.3 m in Figure
5.16b to 0.9 m in Figure 5.16d, which corresponds to a reduction of 31.5 %. This case is
further investigated.

To acquire a better understanding, the RSSIs and the estimated distances are first
focused on. In Figure 5.18 the time course of the MRSSIs are depicted in blue and the
expected ground truth RSSIs are shown in red. As can be seen, the MRSSIs match for
every sniffer, except for sniffer c3. The MRSSI obtained by sniffer c3 differs tremendously
from the ground truth especially in the intervals [27, 49] s and [72, 93] s. The maximum
difference is approximately −8 dBm. The error in the MRSSI is expected to originate
from multipath propagation.
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Figure 5.18: Combined and ground truth RSSI of all sniffers c𝑖 over time of path 𝑆3 for
a pedestrian.

Figure 5.19 shows the time course of the estimated distances for every sniffer. In
the mentioned intervals, the sniffer c3 shows a maximum distance estimation error of
approximately 13 m. The enormous distance error of sniffer c3 is expected to cause
problems in the positioning.
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Figure 5.19: Estimated and ground truth distance to all sniffers c𝑖 over time of path 𝑆3
for a pedestrian.

The phenomenon of multipath propagation can as well be observed in measurement
campaign 2, but not to this extent. There the multipath mitigation could be compen-
sated with the approach of two closely spaced BLE receivers and a pre-processing of the
RSSI. A disturbance of this magnitude cannot be filtered with the proposed filtering
approach.

Having a look at measurement campaign 2 in Section 5.3.1, the setup is nearly
identical. Sniffer c3 is utilized but multipath mitigation is barely present. The multipath
error in measurement campaign 3 on sniffer c3 is supposed to be caused by two reasons.
As can be seen in Figure 5.1a, sniffer c3 is placed in front of a metal-built radiator, which
is not the case for any other sniffer. The radiator might act as a perfect reflector to the
BLE signal when it perpendicularly hits the surface of the radiator. In measurement
campaign 2, the mobile device is also not shadowed by a human body. Both aspects
might lead to the severe multipath impact.

To test the proposed dynamic weighting, the experiment of measurement campaign
3 described in Section 5.3.2 is conducted again for a pedestrian traversing the path
𝑆3. In this experiment, sniffer c3 is considered for as measurement in the SIRPF as
depicted in Figure 5.14. The dynamic weighting is implemented in the SIRPF according
to Equation (3.19) and the positioning is performed for both transition models where
the result is depicted in Figure 5.20.
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Figure 5.20: Comparison of the positioning result of a pedestrian using dynamic weight-
ing with two transition models for path 𝑆3.
(a) Positioning result using the Gaussian-Transition-Model with dynamic weighting.
(b) Positioning result using the IMU-Transition-Model with dynamic weighting.

Comparing Figure 5.20a with 5.16a and Figure 5.20b with 5.16b, a clear improvement
is achieved by dynamic weighting. A direct comparison of normal and dynamic weighting
for both transition models is given by the CDFs in Figure 5.21.
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Figure 5.21: Evaluation of the positioning performance of a pedestrian using dynamic
weighting with two transition models.
(a) CDF of the positioning error for a pedestrian using the Gaussian-Transition-Model
with dynamic weighting.
(b) CDF of the positioning error for a pedestrian using the IMU-Transition-Model with
dynamic weighting.

As shown in this experiment, the implementation of dynamic weighting is one of the
most effective countermeasures against strongly non-linear fluctuations and drastically
enhances the positioning accuracy.



Chapter 6

Conclusion and Future Work

6.1 Conclusion
In this thesis, a BLE-based IPS for mobile devices was developed. The system was
realized using a server-based approach where the position estimation is performed on a
server but not on the mobile device itself. Based on the procedure of advertising and
scanning, low-cost USB dongles are programmed as static BLE receivers providing RSSI
measurements from a mobile device acting as a BLE beacon. The RSSIs of the BLE
receivers are processed on a server, which smooths the RSSIs over time. The positioning
utilizes a ranging-based approach, where the distances between the mobile device and
multiple static BLE sniffers is used to gather knowledge about the position of the mobile
device.

To estimate the distance between the mobile device and static BLE sniffers, the
log-distance path loss model was used as a radio propagation model, where the rela-
tionship between RSSI values and distance is modeled by a logarithmic relationship.
The parameters of this model were determined by minimizing the sum of squared errors
between the measured RSSI values and the ground-truth RSSI values using OLS. The
ground truth data was obtained using a high-precision optical motion capture system.

The RSSI is subject to highly non-linear and non-Gaussian multipath influences
from indoor environments. To still obtain a position estimate, a Bayesian filter was
investigated, which was implemented as a SIRPF. To further increase the positioning
accuracy, different countermeasures were applied:

• Each BLE sniffer is equipped with multiple closely spaced BLE receivers to reduce
small-scale fading caused by multipath propagation.

• The raw RSSI is averaged over multiple channels and over multiple receivers
equipped on each sniffer.

• The path loss model of each sniffer is calibrated individually to provide best pos-
sible distance estimation.

• The fusion of inertial data obtained by the mobile device’s IMU is utilized as
another measurand to provide better situation awareness to the SIRPF.

• The weighting of the SIRPF is implemented using a dynamic approach to prioritize
BLE sniffers with higher RSSI measurements.

62
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The proposed concept was implemented in a Matlab model and also as an embedded
IPS based on a server-based architecture in C++ with multiple Raspberry Pi 4, pro-
viding live positioning functionality. Evaluations based on indoor measurements show,
that accurate positioning based on a server-based BLE positioning system is feasible.
Especially, a positioning error with a mean RMSE of 0.75 m for a mobile robot and a
mean RMSE of 1.1 m for a walking pedestrian in an indoor environment was obtained.

6.2 Future Work
The work on the BLE-based IPS is planned to be continued. In this thesis, only 2D
scenarios are investigated. In future works, also 3D positioning might be interesting to
identify not just the position in a room but also identify the floor. Therefore a bigger
measurement campaign is necessary.

Another topic is the tracking of multiple targets, where in this thesis only one target
is tracked. A SIRPF might also work for applications with multiple target tracking,
resulting in more than one particle swarm. It would have to be investigated, how multiple
particle swarms can be distinguished from each other or if multiple SIRPFs are necessary.
The number of particles would probably also have to be increased, resulting in a higher
computational effort.

Another important aspect may be considering other types of transition models. In
this thesis, transition models similar to vehicular motions like driving are investigated,
where for pedestrians other models exist. These models often rely on detecting steps
also based on inertial measurement data. By implementing a simultaneous localization
and mapping system, the BLE-based positioning might help an IMU-based system to
periodically recalibrate a possible drift. Combining a step detection and simultaneous
mapping approach with BLE-based positioning might be a promising technique for
indoor position tracking of pedestrians.

The BLE-based IPS developed in this thesis can as well be used as a backup system
for already existing IPS solutions that rely on other technologies like UWB. The other
way round is also be possible if mobile devices provided better access to UWB func-
tionality. In this case, the positioning accuracy might be enhanced dramatically and
probably allow cm precision.

This thesis presents a range-based approach to determine the indoor position of a
mobile device. Based on the RSSI, the distance to fixed reference points based on a
radio propagation model is calculated. It is also possible to determine a position using
an angular approach. This feature, also referred to as direction finding, was introduced
in Bluetooth standard 5.1 in 2019. However, the direction-finding functionality is not
yet supported by the operating systems of mobile devices. The benefit and the impact
on the accuracy gained by including the direction-finding feature would have to be
investigated as well in future works.
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