
Technical University of Munich

School of Computation, Information and Technology - Informatics

Master’s Thesis
to attain the degree

Master of Science Computational Science and Engineering

Physics-Informed Deep Learning for Wave-Based Seismic
Imaging

Submitted by

Kai Nierula

Technical University of Munich

School of Computation, Information and Technology - Informatics

Master’s Thesis
to attain the degree

Master of Science Computational Science and Engineering

Physics-Informed Deep Learning for Wave-Based Seismic
Imaging

-

Physikalisch informiertes Deep Learning für
wellenbasierte seismische Bildgebung

Submitted by

Kai Nierula

Supervisor: Prof. Dr. Michael Bader

Advisors: Dr. Ban-Sok Shin,

Sebastian Wolf

Submission date: 30 June 2023

I confirm that this master’s thesis is my own work and I have documented all sources and
material used.

Munich, 30 June 2023
Kai Nierula

Abstract

This thesis investigates using a physics-informed continuous conditional Generative
Adversarial Network (CcGAN) for simulating seismic wave propagation. Seismic wave
simulations are a key element in seismic imaging used for subsurface exploration and
discovery. In recent years, physics-informed machine learning (ML) and deep learning
(DL) methods have emerged as valuable additions or substitutes to classical numerical
simulation of partial differential equations (PDEs), one of their main benefits being fast
computing time after training. We extend Kadeethum, et al. [1]’s CcGAN designed to
solve a time-dependent PDE on a 2D domain by adding a physics consistency-based
loss. The time-depended PDE of interest in this thesis is the acoustic wave equation.
A CcGAN allows for generalization across velocity distribution inputs and handling
continuous conditional variables like time. To our knowledge, this is the first use of a
physics-informed CcGAN.

We first compare a traditional CcGAN to a physics-informed one using uniform
velocity distributions. Contrary to expectations, the traditional one outperformed the
physics-informed one. Despite this, we applied the physics-informed CcGAN to a data set
consisting of horizontally layered velocity distributions, hypothesizing that the advantages
of using a physics-informed approach would become apparent with a more complex
problem. However, the model showed mode collapse on the validation and test data sets,
generating identical pressure wavefields regardless of the input velocity distributions. This
mode collapse, a common issue in training traditional GANs, persisted despite employing
a Wasserstein gradient-penalty GAN, which should have mitigated this problem.

Encouragingly, our model generated varied pressure wavefields on the training dataset.
Additionally, it demonstrated the ability to handle wavefield progression based on input
times, thereby enabling the possibility of querying wavefields at individual timesteps
without the need for preceding ones. Unfortunately, continuous time-stepping defaulted
back on timesteps used during training.

These findings underscore the need for additional research to address the unexpected
physics-informed CcGAN behavior. Despite the challenges, the possibility of querying
wavefields at arbitrary time steps highlights the potential of using DL methods to
contribute to computational speed-ups in seismic simulation and imaging.

Acknowledgements

This thesis would not have been completed without the help of many people. First and
foremost, I would like to thank Prof. Dr. Michael Bader for the opportunity to write
this thesis under his supervision. I would like to thank Dr. Ban-Sok Shin for taking on
the co-supervision, for lending his time and expertise, and for the warm welcome to the
German Aerospace Center. I am very grateful for the support I received from Sebastian
Wolf, who always offered his help an was quick to respond to any issues. Furthermore,
I want to thank Dr. Linda Sauer Bredvik for taking the time to proofread my thesis
and for helping me navigate the intricacies of the English language. Many thanks to my
colleagues at the German Aerospace Center for the joyful distraction during breaks and
the support during times of writing. I also want to thank Anne-Cathrine for proof-reading
and motivating me. Last but not least, I would like to thank my parents. Their permanent
support reaches far beyond this thesis.

Table of Contents

List of Figures i

List of Tables iv

1 Introduction 1
1.1 Motivation . 1
1.2 Related work and contribution . 2

1.2.1 Wave equation solver . 2
1.2.2 Predicting subsurface properties 3
1.2.3 Our contribution . 3

2 Theoretical background 5
2.1 Seismic imaging . 5

2.1.1 Wave equation . 5
2.1.2 Seismic inversion . 6

2.2 Deep learning . 7
2.2.1 Introduction to deep learning procedure 8
2.2.2 Modern network architectures . 13

2.2.2.1 Generative adversarial nets 13
2.2.2.2 Convolutional neural networks 15

2.2.3 Physics-informed deep learning . 19

3 Methodology 21
3.1 Wavefield data generation . 21

3.1.1 Simulation domain and parameters 21
3.1.2 Data processing . 23

3.2 Network building and training . 24
3.2.1 Continuous conditional generative adversarial network 25

3.2.1.1 Architecture . 25
3.2.1.2 Objective function . 28

3.2.2 Physical consistency-based losses 31
3.2.3 Training procedure . 33

4 Results 37
4.1 Physics-informed vs. purely data-driven 37

4.1.1 Learning dynamics and hyperparameters 37
4.1.2 Visual inspection of generated pressure wavefields 42

4.2 Layered velocity distribution . 45
4.2.1 Learning dynamics and hyperparameters 45
4.2.2 Visual inspection of generated pressure wavefields 49
4.2.3 Computational time comparison 55

5 Discussion 56
5.1 CcGAN performance . 56
5.2 Comparison to other work . 58
5.3 Limitations and potential improvements 58

6 Conclusion 61

A Appendix 62

Bibliography 68

List of Figures

2.1 No linear function can separate the two colored data sets (assuming no
further modifications to the representation). 8

2.2 Deep neural network structure modified after Kavlakoglu [54]. Each circle
corresponds to a neuron and carries equation (2.5). Different number of
neurons per layer are allowed. 9

2.3 Computational graph of the equation e = c · d, where c = a+ b and d = b+1. 11
2.4 Computational graph of the equation e = c · d with exemplary input values. 11
2.5 Derivatives on edges. 12
2.6 Reverse-mode differentiation or backpropagation. The change of arrow

direction indicates that the gradient information flows from the output
back to all previous nodes. 13

2.7 Example of how one neuron (green) is connected to one column in one
channel of the image (blue), inspired by lecture notes from Nießner [75].
Overall, 1500 connections (black lines) would be present if all pixels were
connected to all neurons. 15

2.8 Example how a kernel (light orange) turns an image (blue) into feature
map (purple), inspired by lecture notes from Nießner [75]. The orange
arrows indicate the sliding of the kernel across the image. A stride of 1
was assumed for the calculation of the dimensions of the feature map. . . 17

2.9 Getting the receptive field (dotted squares) of one pixel in the intermediate
layer and output with regard to the input, assuming a (3, 3) kernel. The
different colors indicate different image-kernel interactions. Inspired by
lecture notes from Nießner [75]. 17

3.1 Sketch of the simulation domain. 22
3.2 Processed and normalized examples of velocity distributions (first column)

and corresponding pressure wavefields at exemplary time steps. 24
3.3 Sketch of CcGAN architecture and time-inputting mechanism, modified

after Kadeethum, et al. [1]. 25
3.4 Activation functions used in the CcGAN. 27
3.5 Optimal discriminator and critic when learning to differentiate two

Gaussians. The discriminator of a classical min-max GAN saturates and
results in vanishing gradients. In contrast, WGAN critic provides linear
gradients on all parts of the space. Modified after Arjovsky, et al. [99]. . . 30

3.6 Visualization of the parts of the LPDE loss for one specific wavefield, where
the subscripts in the titles of the middle row denote the second derivatives
w.r.t. x, z, and t, respectively. Residual in the lowest plot is the result of(

1
c2

∂2PG
∂t2

−∇2PG − 0
)2

. 34

i

LIST OF FIGURES

4.1 The upper plot shows 12 of the best trials out of 100. Trials with a batch
size of 8 all end in the upper curly bracket and trials with a batch size of 4
all end in the lower curly bracket. The best trials for the physics-informed
and non-physics-informed approach are highlighted in the lower plot. . . . 38

4.2 Comparison of alternative loss metrics. Notice the x-axis in steps, not
epochs. The graphs are extremely smoothed as the variance between steps
is very high. The orange function ends earlier, as a batch size of 8 leads to
less steps required per epoch to get trough the whole training data set. . . 39

4.3 Generator’s learning curve (lowest plot) and behavior of the unweighted
summands of the generators’s cost function. 40

4.4 Part of the generator’s cost that stems from the traditional WGAN’s
generator’s cost function. 41

4.5 Critic’s learning curve. 41
4.6 Non-smoothed training and validation RMSEs for the two best runs. . . . 42
4.7 Validation examples from the epoch with the lowest validation RMSE of

all non-physics-informed runs. 43
4.8 Training examples at the end of the best non-physics-informed run based

on lowest validation RMSE. 43
4.9 Validation examples from the epoch with the lowest validation RMSE of

all physics-informed runs. 44
4.10 Training examples at the end of the best physics-informed run based on

lowest validation RMSE. 44
4.11 The upper plot shows all 14 trials. Trials with a batch size of 32 all end in

the upper curly bracket and trials with a batch size of 16 all end in the
lower curly bracket. The two best trials are highlighted in the lower plot. . 46

4.12 Generator’s learning curve (lowest plot) and behavior of the unweighted
summands of the generators’s cost function. 47

4.13 Critic’s learning curve. 48
4.14 Non-smoothed training and validation RMSEs for the two best runs. . . . 49
4.15 Generated pressure wavefields and pixel-wise RMSE on the validation data

set using generator from epoch 106 (with lowest validation RMSE) of trial
0. Wavefields are shown in a zig-zag pattern from top left to bottom right
for time steps [0.18, 0.25, 0.32, 0.39] seconds. 49

4.16 Generated pressure wavefields and pixel-wise RMSE on the validation data
set using generator from epoch 90 (with lowest validation RMSE) of trial
3. Wavefields are shown in a zig-zag pattern from top left to bottom right
for time steps [0.18, 0.25, 0.32, 0.39] seconds. 50

4.17 Generated pressure wavefields on the training data set over the epochs. . . 51
4.18 Generated pressure wavefields and pixel-wise RMSE on the validation data

set using generator from end of trial 0. Wavefields are shown in a zig-zag
pattern from top left to bottom right for time steps [0.18, 0.25, 0.32, 0.39,
0.46, 0.53] seconds. 52

ii

LIST OF FIGURES

4.19 Generated pressure wavefields and pixel-wise RMSE on the validation data
set using generator from end of trial 3. Wavefields are shown in a zig-zag
pattern from top left to bottom right for time steps [0.18, 0.25, 0.32, 0.39,
0.46, 0.53] seconds. 53

4.20 Generated pressure wavefields and pixel-wise RMSE on the test data set
using generator from end of trial 3. Wavefields are shown in a zig-zag
pattern from top left to bottom right on time steps not present in training
([0.21, 0.28, 0.35, 0.42, 0.49, 0.56, 0.63, 0.70] seconds). 54

4.21 Generated pressure wavefields on the test data set using generator from
end of trial 3. Boxes indicate time steps that are used during training. . . 54

A.1 In-depth look at generator and critic architecture, visualized using
PlotNeuralNet. Blue numbers indicate the channels after a convolution,
the black numbers the height and width of the image before being passed
to the maxpooling or upsampling layer. The amount of channels in the
generator is exemplary. 62

A.2 Generated pressure wavefields and pixel-wise RMSE on the validation data
set using generator from epoch 106 (with lowest validation RMSE) of trial
0. Wavefields are shown in a zig-zag pattern from top left to bottom right
for timesteps in training. 63

A.3 Generated pressure wavefields and pixel-wise RMSE on the validation data
set using generator from epoch 90 (with lowest validation RMSE) of trial
3. Wavefields are shown in a zig-zag pattern from top left to bottom right
for timesteps in training. 64

A.4 Generated pressure wavefields and pixel-wise RMSE on the validation data
set using generator from end of trial 0. Wavefields are shown in a zig-zag
pattern from top left to bottom right for timesteps in training. 65

A.5 Generated pressure wavefields and pixel-wise RMSE on the validation data
set using generator from end of trial 3. Wavefields are shown in a zig-zag
pattern from top left to bottom right for timesteps in training. 66

A.6 Generated pressure wavefields and pixel-wise RMSE on the test data set
using generator from end of trial 3. Wavefields are shown in a zig-zag
pattern from top left to bottom right on time steps not present in training
([0.21,0.28, 0.35, 0.42, 0.49, 0.56, 0.63, 0.70, 0.77, 0.84, 0.91, 0.98] seconds) 67

iii

https://github.com/HarisIqbal88/PlotNeuralNet

List of Tables

3.1 Generator’s input and output sizes for each block, where B is the batch size 28
3.2 Patch-based critic’s input and output sizes for each block, where B is the

batch size. 28
3.3 Hyperparameters used in the Optuna optimization process with their type,

minimum, and maximum values. When optimizing hyperparameters for a
non-physics-informed NN, we simply set λPDE = λb = 0. 36

4.1 Hyperparameters used in the trials resulting in the lowest validation RMSE 38
4.2 Hyperparameters used in the two trials resulting in the lowest validation

RMSE . 46

iv

1. Introduction

1.1 Motivation

Waves are an ubiquitous phenomenon that influences nearly every facet of our world. The
most common aspect when defining waves is that they are a disturbance, i.e., a change
from an equilibrium state [2]. They appear either as mechanical waves such as sound
waves or electromagnetic waves such as light waves [3]. These examples already prove the
importance of waves in our everyday life. In addition, they find extensive applications
across many scientific and engineering disciplines.

Consider our modern information era, where waves play a crucial role in transporting
information over long distances, e.g., using fiber-optics [4], to more close range applications
such as wireless networking [5]. In medicine, wave phenomena are used to create detailed
images of the body, helping healthcare providers make informed decisions on treatments
[6]. Waves even provide insights into the very fabric of our universe from the quantum (e.g.
wave-particle duality, where particles like photons exhibit wave-like properties [7]) to the
cosmological scale (e.g., gravitational waves [8]). In geophysics, waves are indispensable
for estimating subsurface structures [9], aiding in the discovery of resource deposits [10],
understanding a planet’s deep structure [11], and assessing potential natural hazards like
earthquakes [12], amongst many other applications.

This process of estimating subsurface structures is referred to as seismic imaging [9]
and often relies heavily on solving the wave equation that describes how waves propagate
through a medium [13]. Over the years, many highly sophisticated numerical methods
have been developed to solve the wave equation by discretizing the equation and employing
iterative time-stepping schemes [14]. However, a key challenge is still their computational
cost, especially in the 3D domain [15]. Additionally, numerically solving the wave equation
creates challenges in terms of stability and meshing [14].

In recent years machine learning, and, in particular, deep learning techniques have
shown promising results in their ability to simulate physical phenomena in a variety of
scientific fields. In the field of fluid dynamics, machine and deep learning have been used
for turbulence modeling around airfoils, significantly reducing the computational cost
[16], [17]. In the realm of material science, machine learning has assisted in predicting
properties of new materials, thus accelerating the discovery process [18]. In computational
biology, deep learning has facilitated the understanding and prediction of protein structure
and function [19]. In the context of geophysics, deep learning has shown potential in
detecting and locating earthquakes [20], fast estimation of ground motion after earthquakes
[21], volcano monitoring via automatic classification of volcano seismic events [22], and
landslide susceptibility mapping for hazard assessment [23].

Many of these methods typically rely solely on their training data and therefore
perform poorly outside of it, meaning that they do not generalize to other, but very
similar problems [24]. As an extension to this purely data-driven approach, physics-

1

CHAPTER 1. INTRODUCTION

informed neural networks (PINNs), introduced by Raissi, et al. [25] insert existing
physical knowledge into the neural network, e.g., using the underlying physical laws.
The goal: ensuring physics-correct output and better generalization [25]. In the field
of computational chemistry, physics-informed deep learning has been used to solve the
time-independent electronic Schrödinger equation of a given atomic system to predict
molecular properties by integrating a quantum wave-function ansatz [26]. In meteorology
and climatology, physics-informed machine learning methods have been used for weather
and climate modelling by incorporating physical knowledge of the atmosphere [27]. In
geophysics, physics-informed neural networks have been used for fault prediction [28] and
modelling of crustal deformation due to earthquakes [29], using the governing equations
of rock mechanics.

These examples underscore the transformative potential of deep learning across many
disciplines and in particular in geophysics. Given the significant computational cost of
traditional methods in solving the wave equation, the primary motivation of this work is
to explore an alternative approach using physics-informed deep learning to solve the wave
equation.

1.2 Related work and contribution

There are two prevalent research directions on (physics-informed) machine learning and
deep learning for seismic imaging. The first one is to simulate the wave equation, while
the second focuses on predicting subsurface properties directly from measurements. In the
context of seismic imaging, the former can be used in conjunction with classical numerical
methods. In contrast, the second approach aims to completely replace traditional methods.

1.2.1 Wave equation solver

Here, we will shortly review a few examples of using a physics-informed deep learning
approach to solve the wave equation. Karimpouli, et al. [30] solved the wave equation on
a 1D domain with constant velocity using physics-informed deep learning. They relied on
training data across the entire space and time domain. Moseley, et al. [31] solved the
wave equation in a 2D domain, relying on numerical simulation for early wavefields, and
showed that physics-informed deep learning can extrapolate from that point on, even in
complex subsurface media. Rasht-Behesht, et al. [32] extended this 2D approach with
more realistic boundary conditions, namely a reflective boundary at the top of the domain.
While being only an extract of all studies done on solving the wave equation using physics-
informed deep learning, they are all limited in that they solve the wave equation for a
single subsurface only. Therefore, for other subsurfaces of interest, retraining is necessary.
This is more compute-intensive than traditional numerical methods [31]. The advantage
of these methods is that they are mesh-free and, once trained, arbitrary space-time points
can be queried extremely fast [31].

2

CHAPTER 1. INTRODUCTION

1.2.2 Predicting subsurface properties

Using a deep learning approach to predict realistic subsurface properties from measurement
data only is an active field of research. In addition to a wave equation solver, Rasht-
Behesht, et al. [32] used a physics-informed deep learning approach to identify a subsurface
that fits both the measurement data and the initial wavefields, both simulated using
traditional numerical methods. Each distinct subsurface required its network, and the
correct subsurface was found in an iterative manner during the training period. Song, et
al. [33] moved the problem to the frequency domain. They first used a physics-informed
network to reconstruct the wavefield in the frequency domain on a specific domain for a
single source frequency. They relied on training data from a classical numerical simulation
for this portion. Afterwards, a second physics-informed network was used to map the
wavefield produced previously to a subsurface velocity. Wang, et al. [34] introduced a
combination of two networks that do not use any physics-information or training data,
but that can still generalize to other subsurfaces. The training process starts by giving
an initial velocity distribution to the first network, which acts as a wave equation solver.
The produced wavefields are then passed to a second network that tries to output the
initial velocity distribution again. Using a complex, cyclic interplay, these two networks
are trained so that the second network can be used to find subsurfaces that correspond to
measurement data.

Direct subsurface imaging is advantageous in that the structural complexity is much
simpler in nature than the wavefield’s variations in space and time. This is the case
as the subsurface is assumed to be constant in time for seismic imaging [32]. Still, as
shown by these, this approach typically requires either simulated measurement data for a
known subsurface or inversion results from a classical method if only measurement data
is present.

1.2.3 Our contribution

In this study, we choose to focus on solving the wave equation instead of attempting to
go directly from measurement data to estimating subsurface properties. Our reasoning
is that having a (universal) wave-equation solver could be used with the already proven
traditional numerical methods for seismic imaging. Moreover, to have a universal seismic
imaging method would require obtaining a extremely large set of realistic velocity models
that contain complex structures, such as salt bodies and faults [35].

The primary objective of our research is to explore the possibility of using a physics-
informed deep learning method to generate pressure wavefields at arbitrary time steps,
without the need to for a time-stepping scheme. Additionally, our deep learning method
should have the ability to generalize to varying velocity distributions The ability to
solve the wave equation more rapidly could significantly improve the inversion process,
providing an advantageous edge in subsurface exploration.

This thesis is divided into six parts. Chapter 2 introduces the topic of seismic imaging
and deep learning, with a focus on physics-informed GANs. Chapter 3 is concerned

3

CHAPTER 1. INTRODUCTION

with the methodology of this thesis. The wavefield data generation is explained and the
neural network architecture, configuration, and training procedure detailed. Chapter 4
demonstrates the results, split into two distinct parts. The first portion is a comparison
between a traditional and a physics-informed neural network on a simple problem. The
second is a detailed look at the neural network’s performance on a more complex issue.
In Chapter 5, the results and limitations of our approach are discussed. Chapter 6
provides a conclusion for this thesis and gives an outlook for further research.

4

2. Theoretical background

2.1 Seismic imaging

The goal of seismic imaging is to estimate subsurface parameters from seismic data.
Interpreting the distribution of these parameters then allows for an estimation of the
geometry and lithology of subsurface layers [9]. Exemplary subsurface parameters are the
spatial distribution of P- or S-wave velocities. P-waves (pressure waves) refer to waves
traveling longitudinally, meaning that particles hit by this wave oscillate back and forth
around their equilibrium position in the same direction as the wave propagates. They
travel faster than S-waves (secondary or shear waves), which is why they are also called
primary waves [36]. S-waves travel transversely, meaning that the particle motion is
confined to the planes perpendicular to the direction of propagation [37].

To get an interpretable subsurface image, two main steps need to occur beforehand:
seismic data acquisition and data processing. Seismic data acquisition is the process of
generating seismic signals and the reception and storage of those signals after they have
traveled through the interior of the body of interest. During the processing step an attempt
is made to remove all effects on the signal that are not from the causative structure of
interest or undesired in the context of the current research question [38]. An exemplary
early processing measure is a gain correction, compensating for the reduction in signal
amplitude due to wavefront divergence from geometric spreading [10]. Different research
fields consider different signals to be undesirable, so while reflection seismics - a method
commonly used in exploration of hydrocarbons - tries to remove non-geological ambient
noise such as wind-driven surface gravity waves [38], there is an active research field
that uses natural sources, e.g., to relate Antarctic sea ice extent to seismic activity [39].
Therefore, the amount and method of processing differs widely. An in-depth introduction
to the topic of seismic data analysis is provided by Yilmaz [10].

2.1.1 Wave equation

The PDE describing the propagation of seismic waves, e.g. P- or S-waves, is the wave
equation [11]. A few assumptions are usually done on the type of materials for which the
PDE is introduced. These are acceptable in most cases when it comes to studying the
subsurface and are the following [37]:

• Perfect elasticity, i.e., the material goes back to original shape after deformation,
• Isotropy, i.e., the material’s properties are the same in all directions, and
• Neglection of body forces, i.e., gravity

With these assumptions, the wave equation is [11]:

ρ
∂2u

∂t2
−∇λ(∇ · u)−∇µ ·

[
∇u− (∇u)T

]
− (λ+ 2µ)∇∇ · u+ µ∇×∇× u = s , (2.1)

5

CHAPTER 2. THEORETICAL BACKGROUND

with ρ the density, u(x, t) the displacement vector with components u, v, w, s = s(x, t) the
source which is an applied force. λ and µ are the two elastic moduli for solids describing
the stress-strain relation, also known as Lamé parameters, given by

λ =
σE

(1 + σ)(1− 2σ)
, µ =

E

2(1 + σ)
, (2.2)

where E is Young’s modulus and σ is Poisson’s ratio [40].
The second and third subtrahends in equation (2.1) involve gradients in the Lamé

parameters and are non-zero whenever the material is inhomogeneous, making it difficult
to solve efficiently. If the velocity of the seismic waves is only a function of depth -
meaning the velocity distribution is horizontally layered - each material in these layers
can be treated independently as homogeneous and the gradients of the Lamé parameters
are 0. The solutions in the different media are then linked with an additional process.
This is a common approach for solving the wave equation [11].

In this thesis, we only consider acoustic waves traveling in a 2D fluid medium that is
horizontally layered or homogeneous. Therefore, the gradients of the Lamé parameter are
0 and only P-waves travel through the medium A further simplification to acoustic waves
is commonly done to show that a certain wave-propagation method has promise, e.g., in
Moseley, et al. [31], Rasht-Behesht, et al. [32]. Combining these further simplifications
we get the well-known and easier formulation of the wave equation [41]:

1

c2
∂2P

∂t2
−∇2P = s , (2.3)

where P (x, t) is the time-varying scalar pressure wavefield and per-layer constant speed
of sound c.

2.1.2 Seismic inversion

There are multiple ways of getting from the recorded and - to some degree - processed data
to an estimation of subsurface properties such as the P-wave velocity. One method with
the most active research [42] is the Full-Waveform Inversion (FWI), which has the ability
to provide high-resolution quantitative - not only structural - results [43]. In one of the
main early works on this method, Tarantola [13] proposes a way to handle full-wavefield
data for inversion. This is in contrast to other methods that rely on only part of the
wavefield by not taking into account all different waveforms and/or only relying on the
amplitude - not the phase - of the recorded wavefield [44]. The goal of FWI is to solve
the minimization problem

E(m) = min
m

{
∥dobs − dcalc(m))∥22

}
, (2.4)

where m = m(x) is a function of a subsurface property at a certain position x = (x, y, z),
dobs is a vector of sampled measurement data at receiver position r(x). The calculated
data dcalc sampled at certain receiver positions are a function of the model m. This
calculation is based on the wave equation (2.3) [43], [45].

6

CHAPTER 2. THEORETICAL BACKGROUND

The actual process of FWI is quite difficult. It is a non-linear, ill-posed optimization
problem that is solved iteratively [13], [46]. In each iteration step, the model m is updated
to reduce the misfit function (2.4). As per Tarantola [13], each step in the iterative
procedure encompasses a forward wave propagation simulation originating from the actual
source, as well as a forward propagation (backward in time) of the residuals between the
observed and simulated data at the receiver locations. Forward wave propagation refers
to a simulation that solves the wave equation at successive timesteps, while "backward
in time" refers to the technique of propagating the wavefield residuals from the receiver
positions back towards the source, effectively using negative timesteps as if reversing
time. Subsequently, the two wavefields are correlated at each spatial point, yielding a
correction of the model. With this being only a very superficial description of the process,
the interested reader is referred to Tarantola [13] to delve deeper into the topic.

This procedure requires both a good initial model and many computational resources
for larger seismic experiments, which is why a more widespread use has only become
possible recently, thanks to improved algorithms and progress in high-performance
computing [44]. Efficient numerical modeling of the complete seismic wavefield remains a
central challenge in FWI [46], as many wave propagation simulations solving wave
equation (2.1) need to be done per iteration step.

2.2 Deep learning

Deep Learning (DL) is a subset of Machine Learning (ML) which in itself is an Artificial
Intelligence (AI) method [47]. There is no unique and agreed upon definition of AI
[48]. McCarthy [49] describes AI as “the science and engineering of making intelligent
machines, especially intelligent computer programs [...], but AI does not have to confine
itself to methods that are biologically observable.” Again, there is no general definition
of intelligence, so we again refer to McCarthy [49], who defines intelligence as “the
computational part of the ability to achieve goals in the world”. ML is defined by Bishop
[50] as a discipline where computers are programmed to optimize a performance criterion
using example data or past experience without being explicitly programmed. Goodfellow,
et al. [47] define DL as a specific kind of machine learning where the underlying algorithms
are inspired by the structure and function of the brain.

Conventional ML methods struggle to work on raw data and instead require manual
engineering of a feature extractor to turn data into a representation with which the method
can work [51]. A good example of this is given in Goodfellow, et al. [47]: a conventional
ML method cannot directly infer medical recommendations from MRI scans, but can do
so if given relevant information, e.g., the presence or absence of certain structures in the
scan. Deep Learning methods on the other hand can be fed with raw data, as they have
the ability to automatically discover the representations needed for the task at hand [51].
In this thesis, we will make use of a DL method.

There are three common forms of machine learning, be it deep or not. These are
supervised, unsupervised and reinforcement learning [52]. Supervised learning is defined by
the use of a labeled data set to classify or predict outcomes [53]. In unsupervised learning,

7

CHAPTER 2. THEORETICAL BACKGROUND

the model can analyze and cluster unlabeled data sets, identifying hidden patterns in the
data set [53]. In reinforcement learning, the model learns through trial and error; it is
rewarded for good outcomes and penalized for bad ones without there being a ground
truth label [52]. The most common form is supervised learning [51], which is the one used
in this thesis.

2.2.1 Introduction to deep learning procedure

Deep Learning is built upon Artificial Neural Networks (ANNs), in short neural networks
(NNs) [54]. NNs can be seen as a universal approximator [55], meaning that they can
approximate any continuous function with an arbitrary precision [56].

In their simplest form, NNs consist of an input, a hidden and an output layer. Each
layer l contains many connected neurons, which are simple processing elements that work
on inputs u, part of the weighting parameter matrix W and biases b [57]. The elements
W l

ij in weight matrix W are used to connect the ith neuron in layer l − 1 with the jth
neuron in layer l. The weighting parameter controls the strength of the connection of two
neurons. A bias term bi is used as a shifting parameter. The output for the kth neuron
in the lth layer (ulk) can be determined by a weighted sum of the inputs (outputs of the
previous layer ul−1) as follows [50]:

ulk = ϕ

kl−1∑
j=1

wl
kju

l−1
j + blk

 , (2.5)

where ϕ is a non-linear activation function. The reason for non-linear activation function
is that in practice, data is generally not separable by linear functions (see Fig. 2.1).
Therefore, non-linear activation functions are needed as otherwise even deep NNs will
only produce output as linear function of inputs [58]. In the example below (see Fig.
2.1), this would mean that a NN would act as a function that when inputting a (x, y) -
coordinate, outputs the color to which a dot at that position would belong to.

Figure 2.1: No linear function can separate the two colored data sets (assuming no
further modifications to the representation).

The deep in deep learning refers to the use of multiple hidden layers, creating a depth
in the network structure [47] (see Fig. 2.2). NNs in which all of the nodes in a layer are
connected to all the output nodes in the next layer for all layers as in Fig. 2.2 are called
fully-connected neural networks [59] or equivalently multilayer perceptrons (MLPs) [47].

8

CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.2: Deep neural network structure modified after Kavlakoglu [54]. Each circle
corresponds to a neuron and carries equation (2.5). Different number of
neurons per layer are allowed.

Our introduction to supervised learning is based on LeCun, et al. [51], if not noted
otherwise. Our exemplary supervised learning task is to correctly identify objects shown
in an image. This is a common goal in supervised learning. As a first step, a large
data set is gathered or generated and each sample from the data set is labelled with its
corresponding category, meaning the feature that is present in the image (e.g. a subsurface
fault structure). The NN outputs a vector of scores for each image passed to it. Each
entry in the score vector corresponds to one of the categories present in the data set.
We want the NN to give the highest value to the entry that corresponds to the object
present in the image. To get the NN to perform this task, a training phase for the NN
is necessary. In this phase, an objective function J that measures the error between the
output scores and the desired ones is used. Other terms for the objective function are
cost function or loss function [47]. Based on the measured error, adjustable parameters -
of which there can be hundreds of millions in modern NNs - are altered to minimize this
error. These adjustable parameters are the weights W and biases b. We will note both
of them together as θ. The objective function is a high-dimensional function of θ: J(θ).
By calculating the negative gradient vector −∇θJ(θ) of this function with respect to
(w.r.t.) the current adjustable parameters, one can find the direction of steepest descent,
indicating the direction of a local minimum where the cost function’s value is smaller.
The weights and biases are then adjusted with a small step towards the local minimum.
This method is known as gradient descent [60]:

θnew = θ − η · ∇θJ(θ) , (2.6)

where η is the learning rate, determining the size of the step taken toward the (local)
minimum. This procedure is repeated during the training phase to optimize the NN.
One should keep in mind that with gradient descent, one cannot guarantee that a global
minimum can be found. This is often irrelevant in practice, as most local minima provide
adequate results [61].

There is an additional difference between traditional optimization problems and
optimization for NNs as Goodfellow, et al. [47] point out: In machine learning only
the cost function J(θ) over the finite data set can be minimized but not over the true

9

CHAPTER 2. THEORETICAL BACKGROUND

underlying data distribution as this is unknown. The finite data set that is used during
training is called training data set. The hope is that by minimizing the cost function
in the training phase, minimization also occurs w.r.t the underlying data distribution.
This procedure is prone to overfitting, meaning that the NN memorizes the training data
set instead of generalizing to the underlying data distribution. To mitigate the issue of
overfitting, a stopping criterion based on the performance of the NN on the validation
data set is introduced. Due to the early stopping of the training, gradients might still be
large - contrary to traditional optimization [47]. There is a third and final phase: the test
phase with the testing data set. All the data sets stem from the same data distribution
and the samples are assumed to be independently and identically distributed (i.i.d) [62].
In the validation phase, the network’s behavior is checked during training, but no weight
optimization is done. This is to determine if the network is overfitting, as stated above,
and to gain an intermediate result on non-training data. The same validation data set is
therefore seen multiple times by the network. In the test phase, the NN’s performance on
data that has never been seen before is evaluated after the completion of the training.
This can be understood as a check for the generalization ability of the NN to new data
[47].

The optimization process contains two main concepts in the gradient calculation:
stochastic gradient descent (SGD) and backpropagation [51]. SGD is a variation of the
traditional gradient descent algorithm from (2.6). The explanation of SGD is based on
Ruder [60]. SGD usually refers to mini-batch gradient descent, an algorithm that is
typically chosen in training. Instead of computing the gradient of the cost function w.r.t.
θ for all training data at once and then updating the weights and biases, an update is
performed for every mini-batch of n training samples:

θnew = θ − η · ∇θJ(θ;x
(i:i+n),y(i:i+n)) , (2.7)

where x(i:i+n) are n samples with their corresponding labels y(i:i+n). A mini-batch is
therefore just a pick of n samples from the overall training data set. The number of
samples in a mini-batch is commonly referred to as batch size [63]. Mini-batch gradient
descent brings a few advantages with it: With traditional gradient descent, we need to fit
the whole data set into memory which is not possible for larger data sets. In contrast,
with SGD, only n training samples of a mini-batch need to be in memory, where n can
be chosen accordingly. Additionally, SGD’s gradient calculations have high variance, as
the true shape of the cost function of the whole training set is only approximated with
the limited amount of samples in a mini-batch. The high variance and the resulting
fluctuations of the gradient allow SGD to evade non-optimal local minima or saddle points
to get to potentially better local minima. However, it might be necessary to decrease the
learning rate η to decrease overshooting while converging to the lowest point of a local
minimum.

Backpropagation is a simple, computationally inexpensive method to calculate the
gradient of the cost function J(θ) w.r.t. all θ needed for the SGD [47]. Backpropagation
works on the concept of a computational graph, which is a way of rewriting a mathematical

10

CHAPTER 2. THEORETICAL BACKGROUND

expressions into multiple intermediate calculations and connecting these to show how
intermediate results are passed on [64]. We will stick to the example given in Olah [64] to
explain both the computational graph, as well as the backpropagation algorithm, with
additional information from other sources cited accordingly. Consider the expression

e = (a+ b) · (b+ 1) (2.8)

with intermediate variables c = a+ b and d = b+ 1. This gives every function output its
own variable and e can be then calculated as e = c · d. The computational graph for the
calculation of e can be seen in Fig. 2.3.

e = c · d

c = a+ b d = b+ 1

a b

Figure 2.3: Computational graph of the equation e = c ·d, where c = a+b and d = b+1.

The graph is created by putting each operation and the inputs into nodes. The edges
of the graph are represented as arrows, indicating that one node’s value is used as an
input for another node. The inputs a and b provide initial information that flows upwards
towards the final node with the value e. A neural network can be understood as a more
complex computational graph than our example. The neural network structure in Fig.
2.2 visualizes this concept, where the equivalent procedure of information flow from input
through hidden layers towards the output layer is called forward propagation [47]. The
flow of information through the graph is further visualized in Fig. 2.4 by setting the input
variables to a = 2 and b = 1.

e = c · d
e = 6

c = a+ b
c = 3

d = b+ 1
d = 2

a
a = 2

b
b = 1

Figure 2.4: Computational graph of the equation e = c · d with exemplary input values.

11

CHAPTER 2. THEORETICAL BACKGROUND

The key to understanding derivatives in the context of computational graphs is
understanding derivatives on the edges. These are the partial derivatives of one node
w.r.t. the input node(s), e.g. ∂c

∂a , see Fig. 2.5.

e = c · d
e = 6

c = a+ b
c = 3

d = b+ 1
d = 2

a
a = 2

b
b = 1

∂c
∂a = 1 ∂c

∂b = 1 ∂d
∂b = 1

∂e
∂c = 2 ∂e

∂d = 3

Figure 2.5: Derivatives on edges.

As stated in the beginning of the explanation of the backpropagation method, in the
case of NNs, we are interested in the partial derivatives of the cost function J(θ) w.r.t.
all θ. Translating our example equation (2.8) and the related computational graph to the
case of a NN would mean that the value of the cost function J(θ) for specific θ’s would
correspond to e. In this context, calculating all the partial derivatives of e w.r.t. all the
other nodes is equivalent to the calculation of ∇θJ(θ). The general rule of calculating
the partial derivatives w.r.t. another node is to sum over all possible paths from one node
to the other, multiplying the partial derivatives on each edge of a specific path. This is
the equivalent of the multivariate chain rule. For example, for ∂e

∂b we get

∂e

∂b
=

∂e

∂c

∂c

∂b
+

∂e

∂d

∂d

∂b
= 1 · 2 + 1 · 3 . (2.9)

In practice, with large computational graphs - or in our case large NNs - repeating
this chain rule for all partial derivatives of interest is inefficient mainly for two reasons:
First, due to repeated calculation of some partial derivatives [47]. In our case an example
would be ∂e

∂d which is needed for both ∂e
∂a and ∂e

∂b (see Fig. 2.5). Second, the need to
sum up over many different paths to get the derivative w.r.t. a single value. Both issues
accumulate over large neural networks. This issue can be overcome with a method called
reverse-mode differentiation which, in the context of NNs, is backpropagation. In it, the
gradient information flows backwards through the network. It is still based upon the
chain rule but allows for a layer-wise calculation of the gradients of the output w.r.t. all
the previous nodes, making it an efficient method for the calculation of ∇θJ(θ). Fig. 2.6
gives an idea of the process based on our exemplary mathematical expression.

The interested reader is referred to Part II of Goodfellow, et al. [47] for both an outlook
on variations from the standard training procedure, with adaptations of the optimization
process, and another slightly different introduction to the topic of backpropagation.

12

CHAPTER 2. THEORETICAL BACKGROUND

∂e
∂e = 1

∂e
∂c = ∂e

∂c ·
∂e
∂e

= b = 2

∂e
∂c = ∂e

∂c ·
∂e
∂e

= b = 3

∂e
∂a = ∂c

∂a · ∂e
∂c

= 2

∂e
∂b = ∂c

∂b ·
∂e
∂c +

∂d
∂b ·

∂e
∂d

= 2 + 3 = 5

∂e
∂c = 2

∂e
∂c = 2 ∂e

∂b = 3

∂e
∂e = 1 ∂e

∂e = 1

Figure 2.6: Reverse-mode differentiation or backpropagation. The change of arrow
direction indicates that the gradient information flows from the output back
to all previous nodes.

2.2.2 Modern network architectures

There are many different neural network architectures that deviate from the fully connected
neural network as seen in Fig. 2.2. Many of them perform better at certain tasks than
fully connected NNs. An example would be Long Short-Term Memory Recurrent Neural
Networks (LSTM-RNNs) for dynamic classification, where signals from previous timesteps
are fed back into the network [65]. They have circular connections between higher- and
lower-layer neurons and optionally self-feedback connections, therefore deviating from
the layer-wise, static fully connected neural networks. They have been proven to perform
well for tasks related to memorizing data for longer time, such as speech and handwriting
recognition or machine translation. Another example would be graph neural networks
(GNNs) [66]. As the name suggests, they operate on graph data structures, an example
being the computational graphs described earlier. Graphs can be used as a denotation of
a large number of systems. These appear in many different areas, such as social networks
(interaction/connection between participants) or molecule interaction where one might
want to predict whether it will bind to a receptor implicated in a disease [67].

In this thesis, we will also deviate from the fully-connected NN architecture. The
change consists of two parts. First, instead of using a single neural network to produce
output, an adversarial modeling framework containing two NNs that have a special kind
of interplay is used, called Generative Adversarial Nets (GANs) [68]. Second, instead of
using two fully connected neural networks for the NNs in a GAN, Convolutional Neural
Networks (CNNs) are used [69].

2.2.2.1 Generative adversarial nets

We will be brief in our introduction to the topic of GANs here and will go more in-depth
on changes done to the traditional GAN - such as different objective functions - in Chapter
3.2.1. Goodfellow, et al. [68] introduced GANs, which consist of a generative model - the

13

CHAPTER 2. THEORETICAL BACKGROUND

generator G - designed to replicate the training data distribution, and a discriminative
model - the discriminator D - aimed at determining the likelihood of a sample originating
from the training data rather than from G. This allows GANs to excel in applications in
image/video processing, i.e., image-to-image translation, image manipulation or increasing
the resolution of an image/video [70].

The following introduction is adapted from Goodfellow, et al. [68]. The training
methodology for G is centered on increasing the odds of D committing errors. To learn a
generator distribution pg over training data x, the generator builds a mapping function
from a prior noise distribution pz(z) (e.g., a vector filled with uniform random values) to
data space as G(z;θg), where θg are the generator’s weights and biases. The discriminator
D(x;θd) - where θd are the discriminator’s weights and biases- outputs a single scalar
representing the probability that x came from the training data rather than pg. The
discriminator can be understood as a binary classifier, trying to assign probability 1

to data samples from the training set and 0 to generated data samples. G and D are
trained simultaneously, with the goal of adjusting the parameters θg and θd so that G

minimizes log(1−D(G(z)) and D maximizes the probability of correctly detecting if its
input is from the training data or an output of the generator. This structure aligns with
a two-player, min-max game

min
G

max
D

J(D,G) = Ex∼pdata (x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] , (2.10)

with objective function J(D,G). Within the realm of arbitrary functions G and D, a
singular solution is attainable, whereby G successfully mimics the distribution of the
training data, while D is uniformly 0.5 everywhere. For a more extensive introduction to
classical GANs, their advantages and shortcomings, see Goodfellow [71].

In its original formulation, GANs are an unsupervised learning method as they do
not work on labeled data. As we are interested in producing pressure wavefields that
correspond to certain subsurface velocity distribution, we will make use of an extension of
GANs, namely conditional GANs (cGANs). These were introduced by Mirza, et al. [72],
who conditioned both the generator as well as the discriminator on extra information y

(e.g., class labels encoded in a one-hot encoded vector). With this, cGANs are becomeing
a supervised learning method. The conditioning works by feeding y into both networks as
additional input next to the prior noise distribution pz(z). The exact implementation of
the input mechanism for y can vary, but the objective function of the two-player min-max
game stays the same as in Eq. (2.10), with the only change being that the generator and
discriminator now have an additional input y:

min
G

max
D

J(D,G) = Ex∼pdata (x)[logD(x|y)] + Ez∼pz(z)[log(1−D(G(z|y)))] . (2.11)

As previously implied, GAN can support various network architectures - not only
fully-connected NN (e.g., LSTM-RNNs [73] or CNNs [74]).

14

CHAPTER 2. THEORETICAL BACKGROUND

2.2.2.2 Convolutional neural networks

In this thesis, CNNs are used for both the generator and discriminator, which is why we
will introduce the basic concepts of CNNs here. The introduction to CNNs is based on
Goodfellow, et al. [47], if not noted otherwise.

CNNs are a specialized type of neural network engineered for processing data with a
grid-like structure. This encompasses data such as time series, which can be seen as a
one-dimensional grid with samples taken in regular timesteps, and image data, which can
be considered as a two-dimensional grid of pixels. As the name suggests, the prevalent
mathematical operation in a CNN is a convolution. In CNNs, convolutions replace general
matrix multiplications in at least one of the layers. Before explaining the mathematical
underpinnings of convolutions, let us first understand one of the main issues that arises
with handling images with fully-connected NNs. Assume a 3-channel (C) image with
height (H) and width (W) 10, denoted as (10, 10, 3) with (H,W,C). We want to feed that
image to just 5 neurons in a single layer. In a fully-connected NN, each neuron would be
connected to each pixel in the image, resulting in 300 weights per neuron, so overall 1500
weights in the specific layer (see Fig. 2.7).

Figure 2.7: Example of how one neuron (green) is connected to one column in one
channel of the image (blue), inspired by lecture notes from Nießner [75].
Overall, 1500 connections (black lines) would be present if all pixels were
connected to all neurons.

This becomes rapidly impractical when increasing both the image size as well as the
amount of neurons in just the one layer, where an image of size (512, 512, 3) feeds into
1000 neurons in a layer - which are reasonable values - resulting in more than 700 million
weights just for the one layer. Before explaining how CNNs provide a remedy to this
issue, let us consider what convolutions are. In the most general form, convolution is a
mathematical operation on two functions with real-valued arguments. In the continuous
case it is defined as

s(t) =

∫
x(a)k(t− a)da , (2.12)

where a practical example would be to think of k(a) as a weighting function for time-
dependent measurement data x(t), where a is the age of the measurement. The weighting
function k(a) is reflected about the y-axis and shifted before being put into the integral.

15

CHAPTER 2. THEORETICAL BACKGROUND

The convolution operation is typically denoted with an asterisk:

s(t) = (x ∗ k)(t) . (2.13)

In convolutional network terminology, the initial argument (in the above example x) to
the convolution is usually referred to as input, and the second argument (in our example
k) as kernel. The result of the convolution is often called a feature map.

When working with computers data is discretized, so that we also require a discrete
convolution:

s(t) = (x ∗ k)(t) =
∞∑

a=−∞
x(a)k(t− a) . (2.14)

In deep learning applications, the input is usually a (multidimensional) array of data
and the kernel a (multidimensional) array of weights. Therefore, it is fair to assume that
functions x(t) and k(a) are zero everywhere except in the finite set of points that are
covered by the aforementioned arrays. This means that, in actual implementation, we do
not need to calculate infinite sum

∑∞
a=−∞ ..., only requiring a summation over a finite

number of array elements. In the case of a two-dimensional image X as input, we might
be interested in doing the convolution with a two-dimensional kernel K, resulting in the
discrete convolution in two-dimensions:

S(i, j) = (X ∗K)(i, j) =
∑
m

∑
n

X(m,n)K(i−m, j − n) . (2.15)

Many neural network libraries do not implement convolutions, but rather cross-
correlations. The operation is exactly the same but the kernel is not flipped before its use.
In practical deep learning application, it does not matter if the kernel is flipped or not,
as the learning algorithm will learn the appropriate weights at the appropriate place in
the kernel. In most cases, the libraries therefore do not differentiate when it comes to
naming the two and use the term "convolution" for both cross-correlation and normal
convolutions. We will follow this convention of calling both operations convolution.

Fig. 2.8 sketches how a kernel works on a RGB image. In order to calculate the
dimensions of the feature map, the following formula was used [76]:(

width(X)− width(K)

Si
+ 1,

height(X)− height(K)

Sj
+ 1

)
, (2.16)

where S is the stride, indicating how many pixels the filter slides before its impact on the
input is calculated again. The subscripts indicate that this calculation needs to be done
in both image dimensions. In our example of the RGB image, the depth of the kernel
equals the number of channels in the input image, reducing the depth of the feature map
to 1.

To calculate the impact of the kernel - the weights - and a specific chunk of the
image, the dot product can be used after flattening both three dimensional matrices to a
one-dimensional vector. As with fully-connected NNs, there is also a bias term that is
constant for the convolution. Therefore, a value si in the feature map can be calculated

16

CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.8: Example how a kernel (light orange) turns an image (blue) into feature map
(purple), inspired by lecture notes from Nießner [75]. The orange arrows
indicate the sliding of the kernel across the image. A stride of 1 was assumed
for the calculation of the dimensions of the feature map.

from the flattened kernel k and xi - the flattened i-th chunk of the input image X - and
the bias b [76]:

si = kTxi + b . (2.17)

Understanding the basics of how a convolution works, let us now consider the
advantages of CNNs compared to fully connected NN, namely sparse interaction,
parameter sharing and equivariant representation of CNNs. Sparse interaction solves the
issue of having an interaction between each input and output unit as sketched in Fig. 2.7
and previously explained. With a convolutional, one output node is only connected to
part of the input image. The spatial extent of this connectivity is called receptive field.
It can also be tracked through multiple convolutions, see Fig. 2.9. This means that while
direct connections are very sparse, deeper layers are indirectly connected to all or most of
the input image.

Figure 2.9: Getting the receptive field (dotted squares) of one pixel in the intermediate
layer and output with regard to the input, assuming a (3, 3) kernel. The
different colors indicate different image-kernel interactions. Inspired by
lecture notes from Nießner [75].

17

CHAPTER 2. THEORETICAL BACKGROUND

Parameter sharing - also referred to as tied weights - allows the model to use the same
parameter multiple times across different functions, contrary to fully-connected neural
networks where each weight is used only once. In a CNN, each member of the kernel - a
weight value - is used at every position of the input so that only a single set of parameters
is learned instead of a set of for every location. In practice, this does not impact the
runtime of forward propagation, but further reduces memory requirements.

The particular form of parameter sharing causes the convolutional to be equivariant
to translation. This property means that the output mirrors the way the input changes,
specifically when the input is shifted or translated. An example would be shifting an
image pixel to the right before applying the convolution, leading to an equivalent outcome
as if the convolution was applied first and the shift second. This property is advantageous
in time-series data and image processing, as it creates a timeline or 2-D map that reflects
when or where particular features appear in the input. This is useful in scenarios like
detecting edges across an image where we know that the same parameters - so the
same kernel - can achieve this. There are circumstances, however, where parameter
sharing might not be desired, such as processing images focused on a person’s face, where
different features need to be extracted at different locations. There are other kinds
of transformations, like rotation of an image, that require other mechanisms so that
convolution is able to handle these.

There are two other main components - next to the convolution - that make up a
convolutional layer that is used in a CNN. As the convolution is a linear transformation,
we need again to pass the results of it through a non-linear activation function. These
intermediate values are then fed into a pooling function that can be understood as a
feature selector, with the convolution being a feature extractor in this sense. The pooling
also makes the representation approximately invariant to small translations of the input.
This invariance can be a useful property when we are more concerned with whether a
feature exists rather than its exact location. A common example for a pooling function is
max-pooling, where the maximum value within a neighbourhood - e.g., a square in two
dimensions - is picked. This further reduces the output size, improving the computational
efficiency of the network.

When it comes to training deep convolutional GANs (DCGANs), the block of
convolutional layer, activation and pooling layer is often interlaced with a normalization
layer and/or a dropout layer [77]. Usually batch normalization is used as a normalization
layer, stabilizing learning by transforming each training mini-batch to have zero mean
and unit variance [78]. This procedure is still not to be confused with normalizing values
to a specific range, e.g., [0, 1], but rather a form of standardization [78]. Dropout acts as
a regularization in deep NNs to prevent the network from overfitting and was initially
developed for fully-connected NNs [79]. With it, a certain amount of random neurons in
each layer and their connections are dropped during training. Therefore, multiple
different thinned networks are trained and then averaged in validation/testing, where
dropout is inactive. The approach can be translated to CNNs, where entire channels of
intermediate feature maps are dropped [80], [81].

18

CHAPTER 2. THEORETICAL BACKGROUND

2.2.3 Physics-informed deep learning

While classical numerical methods based on the discretization of PDEs have shown
great progress in simulating multi-physics problems, it is still challenging to seamlessly
incorporate noisy data into existing algorithms and to generate the necessary meshes.
Additionally, solving inverse problems with only partially known physics - such as missing
boundary conditions - is often prohibitively expensive [82]. Moreover, maintaining the
used programs with often more than 100, 000 lines of code adds another layer of complexity.
With the increase of available multi-fidelity observation data, data-driven methods such
as machine learning have shown to be a promising alternative to classical numerical
method due to their ability to explore massive design spaces, identify multi-dimensional
correlations, and manage ill-posed problems [82]. This is especially true for deep learning
approaches [83]. Additionally - depending on the complexity of the problem - a data-driven
approach can outperform the classical method in terms of computational speed after
training, while retaining a high or equal quality of the solution [84].

Nonetheless, even with the large amount of observational data, labeled data required
for supervised machine learning is scarce in relation to the complexity of certain physical,
biological or engineering systems due to the cost of deploying and maintain sensors [25],
[85]. Therefore, for regimes with little to no data, conclusions need to be drawn from the
available partial information [25]. This leads us to the main drawbacks of using purely
data-driven models: They may fit quite satisfactorily fit observations, but predictions may
be physically inconsistent or implausible, leading to poor generalization performance [82].
The solution to this issue is to add prior knowledge or constraints to the machine learning
method, leading us to physics-informed machine learning. Karniadakis, et al. [82] defined
physics-informed machine learning as “the process by which prior knowledge stemming
from our observational, empirical, physical or mathematical understanding of the world
can be leveraged to improve the performance of a learning algorithm”. A common class of
deep learning algorithms that achieves this was introduced by Raissi, et al. [25], namely
physics informed neural networks (PINNs). These are trained to solve supervised learning
tasks while respecting general nonlinear partial differential equations that describe the
physical system of interest. PINNs do so by considering both measurement data as well as
information from the PDEs in the objective function of a neural network parameterized
by θ [82]:

J (θ) = αdataLdata + αphysicsLphysics , (2.18)

with weighting factors α for the losses L stemming from the purely data-driven, supervised
method and from checking the adherence with the physical underpinnings of the system
that we want to model.

Ldata =
1

Nu

Nu∑
i=1

∥u (ti, xi)− Λ (ti, xi,θ)∥2 (2.19)

is the supervised training loss, where u(t, x) represents the solution of a space and time-

19

CHAPTER 2. THEORETICAL BACKGROUND

dependent system and Λ is the prediction of the neural network. u(t, x) can either come
from measurement data or from simulation and acts as a ground truth. The physical
consistency-based losses are described by

Lphysics =
1

NΛ

NΛ∑
j=1

∥N [Λ (tj , xj ;θ) ;λ]∥2 , (2.20)

where N is an underlying differential operator parameterized by λ that describes the
physical system [31]. With this formulation, two groups of problems can be tackled:
First is the forward problem, i.e., obtaining the behavior of u(t, x) based on fixed model
parameters λ. The second is the inverse problem, where we are interested in finding
parameters λ that best describe observed data [25]. In many cases, adding the physics-
based loss also accelerates training in addition to favoring physically consistent solutions
and better generalization. Additionally, it is even possible to train the network without
any measurement data, by relying solely on physical consistency-based losses [82].

In order to differentiate from the fully-connected neural networks on which the
introduction of PINNs by Raissi, et al. [25] is based, we will refer to our approach
as physics-based deep learning (PIDL). This is to indicate that the underlying network
architecture used in the thesis is a GAN. The exact implementation of the physical
consistency-based losses is detailed in Chapter 3.2.2.

Equipped with this knowledge, we will introduce the methods used to develop a NN
that can generate pressure wavefields in Chapter 3.

20

3. Methodology

We employ a supervised NN to generate varied pressure wavefields depending on the
underlying velocity distribution. Therefore, we first have to get a labeled data set or
generate a new one for training, validation and testing purpose. The procedure is detailed
in Chapter 3.1. Afterwards, we will explain the exact network architecture, objective
function and training procedure in Chapter 3.2.

3.1 Wavefield data generation

For our study, there was no existing data set fulfilling our requirements of multiple spatial
P-wave velocity distributions with constant domain size and the corresponding pressure
wave fields in close time succession generated from the same source at the same position.
With P-waves being the only wave type present in an acoustic medium, we refer to
P-wave velocity distributions simply as velocity distribution. SpecFem2D [86], a solver
for - among other things - 2D simulations of acoustic seismic wave propagation, as well
as FWI, was used to simulate the wave propagation. It is based on a spectral element
method (SEM), which is a variant of traditional finite element methods (FEM) that use
higher order basis functions. We will not dive into the numerics of it, as we are using
SpecFem2D purely as a tool to generate wave fields for later use in the deep learning
algorithm. The interested reader is therefore referred to Hafeez, et al. [87] for an overview
on SEMs.

3.1.1 Simulation domain and parameters

We solve the acoustic wave equation (2.3) on a square domain of interest with width x

and height z of 1000m with the goal of simulating the pressure wavefield. This wavefield
is a response to an initial acoustic pressure source of Gaussian shape with a dominant
frequency of 10Hz in the middle of the domain at (x, z)-position (500, 500), with z = 0

being at the bottom of the domain. Perfectly matched layers (PMLs) [88], [89] are
employed at the left, right and bottom boundary to get absorbing boundary conditions.
These are used to minimize - in the best case eliminate - reflections from these boundaries
in order to truncate a larger domain to the domain of interest [90]. A free surface boundary
is used at the top, mimicking the behaviour at the interface between a half-space in
contact with vacuum [91]. The domain of interest is split into 40 square spectral elements
of size 25m in both directions respectively, resulting in a total of 1600 elements. The
absorbing boundaries are 3-spectral-element-thick. SpecFem2D automatically checks if
the shape and amount of the elements allows for an accurate simulation. We passed
both checks; SpecFem2D even suggested using less elements to speed up the computation.
Nevertheless, we adhered to the amount of elements to have a high resolution image that
would not introduce too many artifacts when interpolating to a different grid size (see
Chapter 3.1.2). A fourth-order 6-stage low storage Runge-Kutta time-stepping scheme

21

CHAPTER 3. METHODOLOGY

with a time step size of 0.001 s is chosen to simulate 1 s. Fig. 3.1 shows an overview of
the domain .

Figure 3.1: Sketch of the simulation domain.

Simulation parameters are passed to SpecFem2D via the source, interface, and
parameter file. The source file contains information about the source location, type, and
dominant frequency and is constant throughout all simulations. The interface file
requires the amount of interfaces, the interface vertices and the amount of spectral
elements in vertical direction. The parameter file is the main input file, where the
parameters of interest for us can be split into the constant ones and the ones that are
adjusted for different simulations. The constant parameters are the time step size, the
simulation period, the amount of spectral elements for the PML boundaries, amount of
spectral elements in x direction, and the output step-size of 0.01 s for the wavefield data.
For the adjustable category, we first have the amount of material layers, where a layer is
the space between two interfaces from the interface file. Second are the associated
material velocities and corresponding densities. Finally, we have to define which spectral
elements belong to which layer.

In order to generate a large data set covering multiple layers and multiple different
velocity distributions, we automate the process of changing all the parameters using bash
scripts to change the interface and parameter file. We generate two distinct data sets.
The first being a simple one, consisting of 15 different uniform velocity distributions.
This data set will be used to compare the performance between a physics-informed NN
and a non-physics-informed NN. The second data set is more complex, though we still
only consider horizontal layering and three types of velocity layering - uniform, tow-
and three-layer. Layer thicknesses were calculated randomly in a loop, with a minimum
layer thickness of 150m, and the upper limit depending on the amount of layers that
still need to be put in the domain. The thickness of the upmost layer - the one at the
surface - was chosen to fill the domain. The amount of spectral elements per layer is
proportionally distributed. A similar procedure is used to distribute the density and
velocity values to the layers. We chose a minimum density value of 800 kg/m3 and a
maximum of 2500 kg/m3 with corresponding minimum velocity of 1200m/s and maximum
of 2700m/s. A minimum difference of 180 kg/m3 between density values was chosen. We
use a minimum layer thickness as well as a minimum step size between density values
(from which the velocity values result), to allow for a visual inspection of the results. If

22

CHAPTER 3. METHODOLOGY

layers are too thin, we would not notice them and if the difference in velocities is too
small, almost indiscernible reflections would occur.

When modifying the velocity values in the parameter file, it is important to also
change the corresponding density values. Even though we are only interested in velocities
as an input to our NN, SpecFem2D will produce artifact-heavy wavefields if the densities
are held constant for velocities with larger differences. To solve that problem, we employ
a linear interpolation between pairs of (density, velocity) values for which the simulation
produced artifact-free wavefields to calculate velocity values from certain velocities. This
fixed the issue, but it is important to note that the density values were not chose to
represent a specific material. The generated density values and accompanying velocity
values are randomly given to a certain layer in the parameter file.

3.1.2 Data processing

There are four main data processing steps that need to be done before feeding data to the
NN. First, a velocity distribution image needs to be generated. We were unable to retrieve
the underlying velocity distribution from SpecFem2D directly, which is why we wrote a
Python program that reads all the necessary values from the interface and parameter file
and creates a velocity distribution image of size (128, 128). Second, the pressure wavefields
outputted by SpecFem2D contain PMLs that we do not need as part of the input to the
NN. Moreover, we require the image size to be (128, 128), whereas SpecFem2Ds output
size - including the PMLs - is (173, 185) in z- and x-direction, respectively. Therefore, the
pressure wavefields are interpolated to an equidistant 2D grid that excludes the PMLs
and has a size of (128, 128). Third, early simulation time steps before 0.18 s were removed
from the data set to remove wavefields that are mainly dominated by source physics.
Close to the source in space and time deformations might not be elastic and/or not small
[11]. Therefore, we empirically remove any time steps for which the simplifications of the
acoustic wave equation (2.3) that we use in our physics consistency-based loss are not
valid. Afterwards, time steps in an interval of 0.7 s are chosen as time steps of interest on
which the NN is trained on. Additionally, we save four surrounding time steps for each
time step of interest, e.g. [0.23, 0.24, 0.26, 0.27] for 0.25. We require these to calculate
the partial derivative of the wavefield w.r.t. the time step of interest for the physics
consistency-based loss. Fourth, all input and output variables of the network - in our case
velocity and the pressure values - are normalized to the interval [0, 1] ∈ R, as this is the
range of values on which the NN can perform.

After processing, the accumulated training, validation, and testing data set contains 12
time steps of interest with related pressure wavefields for each velocity distribution. For the
more complex data set with horizontal layering, we have 200 examples of uniform velocity
distributions, 300 for the two-layer case, and 400 different three-layer velocity distributions.
We chose an uneven split to give more examples of the more intricate velocity distributions
to the NN. Overall, the more complex NN data set contains (200+300+400) ·12 = 10, 800

wavefields, compared to the 15 · 12 = 300 wavefields for the data set with only uniform
velocity distributions. Fig. 3.2 shows examples for the normalized velocity distributions

23

CHAPTER 3. METHODOLOGY

and corresponding pressure wavefields. In addition to the above data sets that play a direct
role in the learning phase, 48 overall wavefields surrounding all the time steps of interest
are needed per velocity distribution for the calculation of the physics consistency-based
loss (see Chapter 3.2.2).

Figure 3.2: Processed and normalized examples of velocity distributions (first column)
and corresponding pressure wavefields at exemplary time steps.

3.2 Network building and training

The deep learning approach is taken from Kadeethum, et al. [1] and adapted only
minimally. In their work, Kadeethum, et al. [1] use a continuous conditional generative
adversarial network (CcGAN) to solve the time-dependent PDE of the transient response
of the coupled poroelastic process on a 2D domain, where heterogeneous permeability
fields are used as input and pressure or displacement fields over time are outputted.
Their approach generalizes well to other permeability fields and allows for a continuous
time-stepping without the necessity to compute output of preceding time steps. Given our
goal of inputting a velocity distribution and a specific time step and obtaining a pressure
wavefield as output, their approach served as a logical foundation for our work. It is
important to note, that Kadeethum, et al. [1] do not use any physical consistency-based
losses.

24

CHAPTER 3. METHODOLOGY

CcGAN combines the image-to-image translation cGAN from Isola, et al. [74] with
Ding, et al. [92]’s extension to cGANs with continuous variables as the condition. An
earlier work from Kadeethum, et al. [93] on solving the steady-state solution of the
same coupled poroelastic process provides the reasoning for many of the decisions for the
network architecture and training process. The code to build and train the NNs has been
published under the "CC0 1.0 Universal" license at https://codeocean.com/capsule/
2052868/tree/v1 and was used as a basis for our program. It is built upon PyTorch, an
open-source deep learning framework compatible with Python [94].

3.2.1 Continuous conditional generative adversarial network

We split the introduction to the CcGAN into two parts. First, the exact architecture of
the network is detailed, e.g., the different layers. Moreover, the scheme to input the time
information is presented. Second, changes to the classical GAN’s objective function are
explained in Chapter 3.2.1.2.

3.2.1.1 Architecture

The CcGAN consists of a generator built from a U-Net and a patch-based critic. Fig. 3.3
shows a sketch of the architecture as well as the inputs and outputs of the generator and
critic.

Figure 3.3: Sketch of CcGAN architecture and time-inputting mechanism, modified
after Kadeethum, et al. [1].

The input to the U-net generator is the one-channel normalized velocity distribution
and the output is a generated pressure wavefield with values in the interval [0, 1] ∈ R. The
U-Net architecture was first introduced by Ronneberger, et al. [95] for image segmentation
tasks. It consists of an encoder/contracting path that takes the velocity distribution

25

https://codeocean.com/capsule/2052868/tree/v1
https://codeocean.com/capsule/2052868/tree/v1

CHAPTER 3. METHODOLOGY

as the input and a decoder/expanding path that reconstructs the wavefield. Both are
built upon blocks of convolutional layers. Additionally, cropped feature maps from the
contracting path are fed and concatenated to a corresponding intermediate feature map
in the block of convolutional layers in the expanding path. The cropping is required as
border pixels can get lost when doing convolutions [95]. These concatenations are also
referred to as skip-connections and can help the recovery of spatial information - often
the location of certain features in the image - in the decoder path. This information is
lost in the pooling operation, as mentioned in Chapter 2.2.2 [96].

A critic is a special kind of discriminator, for which we will explain the differences
in Chapter 3.2.1.2. For now, it is enough to think of it as a traditional discriminator
that takes the velocity distribution, as well as either the output of the generator or a real
pressure wavefield as an input. The output score is a matrix, not a single value as would
be the case for non-patch based critic [74]. This patch-based approach means that patches
that cover only part of the image are evaluated and given a score, instead of evaluating
a whole image at once. Each value in the critic’s output matrix has a receptive field
that corresponds to a patch in the input image to the critic. This helps with modeling
high-frequency structures, as the attention of the critic is focused on local image patches.
The matrix of scores outputted by the critic is averaged at the end. The critic consists of
only contracting blocks that are very similar to the decoder part of the generator.

Modifications are needed to the classical U-Net to input the necessary time information.
Kadeethum, et al. [1] treat time as a continuous variable and show that the improved label
input (ILI) from Ding, et al. [92] performs very well in their research. However, their way
of inputting the time information differs from Ding, et al. [92] and relies on conditional
batch normalization (CBN) from Vries, et al. [97] to input the temporal term to all layers
inside the generator. Instead of using embedding layers as in Ding, et al. [92] and Vries,
et al. [97], a fully-connected NN is used in conjunction with a batch normalization layer.
The weights of the fully-connected NN are also learned during the training. To pass the
time information to the critic, its patch score is element-wise added to an inner product
resulting from the time and the output of the contracting blocks being passed through
linear layers.

A detailed look at the generator and critic is given in Fig. A.1, with exemplary image
dimensions to understand the impact of different operation. The encoder part of the
generator starts with a convolutional layer with a 1× 1 kernel, stride 1, no padding and
no activation function to map the input channels to a larger hidden layer size. The output
of this convolutional layer is passed to the first skip-connection. This first convolutional
layer is followed by six contracting blocks consisting of two blocks of each a convolutional
layer with kernel size 3× 3, stride 1 and a padding of 1; the CBN; a dropout layer with
probability 0.5 of dropping a channel; and Leaky Rectified Linear Unit (LeakyReLU, see
Fig. 3.4) with a slope of 0.2 in the negative domain as the activation function, defined as

fLeakyReLU(x) =

x if x > 0 ,

0.2x otherwise .
(3.1)

26

CHAPTER 3. METHODOLOGY

This combination is followed by a max-pooling operation with a 2× 2 kernel and a stride
of 2 that halves the image height and width. Except for the sixth block, the output of the
max-pooling is also where the other skip-connections begin. The decoder consists of six
expanding blocks. Each of them starts with a 2D bilinear upsampling to double the image
height and width. This is followed by a first convolutional layer with a 2× 2 kernel, stride
1 and no padding. The cropped image from the skip-connection is concatenated to the
resulting feature map. The input image to the skip-connection needs to be cropped, as
the output of the first convolutional layer is 1 smaller in both width and height than the
image on the encoder side. The concatenated image is then passed to a 3×3 convolutional
layer with stride 1 and a padding of 1; a CBN; a dropout layer with probability 0.5; and
a normal Rectified Linear Unit (ReLU, see Fig. 3.4) activation function

fReLU(x) =

x if x > 0 ,

0 otherwise .
(3.2)

This process is repeated once more, exchanging the 3 × 3 convolutional layer with a
convolutional layer with kernel size 2× 2, stride 1 and a padding of 1 which increases the
image size by 1 compared to the convolutional layers before. After the sixth expanding
block, a convolutional layer with a 1× 1 kernel, stride 1, and no padding is used to reduce
the amount of channels to 1. The output of that last convolution is passed through a
sigmoid activation function (see Fig. 3.4) to map the output to the [0, 1] ∈ R interval,
defined as

fsigmoid(x) =
1

1 + e−x
. (3.3)

Figure 3.4: Activation functions used in the CcGAN.

To understand the impact of the operations on the size of the input, feature maps,
and output, see Table 3.1. The amount of channels for the feature maps are only an
example; we will use multiple different ones later. The table also highlights that dropout
was only used in the first three contracting blocks.

27

CHAPTER 3. METHODOLOGY

Input size
[B, C, H, W]

Output size
[B, C, H, W] CBN Dropout

1st convolutional layer [B, 1, 128, 128] [B, 32, 128, 128]
1st contracting block [B, 32, 128, 128] [B, 64, 64, 64] ✓ ✓
2nd contracting block [B, 64, 64, 64] [B, 128, 32, 32] ✓ ✓
3rd contracting block [B, 128, 32, 32] [B, 256, 16, 16] ✓ ✓
4th contracting block [B, 256, 16, 16] [B, 512, 8, 8] ✓
5th contracting block [B, 512, 8, 8] [B, 1024, 4, 4] ✓
6th contracting block [B, 1024, 4, 4] [B, 2048, 2, 2] ✓
1st expanding block [B, 2048, 2, 2] [B, 1024, 4, 4] ✓
2nd expanding block [B, 1024, 4, 4] [B, 512, 8, 8] ✓
3rd expanding block [B, 512, 8, 8] [B, 256, 16, 16] ✓
4th expanding block [B, 256, 16, 16] [B, 128, 32, 32] ✓
5th expanding block [B, 128, 32, 32] [B, 64, 64, 64] ✓
6th expanding block [B, 64, 64, 64] [B, 32, 128, 128] ✓
2nd convolutional layer [B, 32, 128, 128] [B, 1, 128, 128]

Table 3.1: Generator’s input and output sizes for each block, where B is the batch size

The contracting path in the critic is constructed very similarly to the encoder part in
the generator. It also starts with a convolutional layer with 1× 1 kernel, stride 1, and no
padding to increase the channel size. Four contracting block follow that are the same as
in the generator with the difference being that the aforementioned layer normalization is
used. After four contracting block, another convolutional layer with 1× 1 kernel, stride
1 and no padding is used to reduce the channel size back to 1. There is no need for an
activation function when using a WGAN-gp. In contrast to Kadeethum, et al. [1], we use
dropout layers in the critic, as this has shown better results. To understand the impact of
the operations on the size of the input, feature maps, and output of the critic, see Table
3.2. Here, the amount of channels in the feature map is correct for all later experiments.

Input size
[B, C, H, W]

Output size
[B, C, H, W]

Layer
normalization

Dropout

1st convolutional layer [B, 2, 128, 128] [B, 8, 128, 128]
1st contracting block [B, 8, 128, 128] [B, 16, 64, 64] ✓ ✓
2nd contracting block [B, 16, 64, 64] [B, 32, 32, 32] ✓ ✓
3rd contracting block [B, 32, 32, 32] [B, 64, 16, 16] ✓ ✓
4th contracting block [B, 64, 16, 16] [B, 128, 8, 8] ✓ ✓
2nd convolutional layer [B, 128, 8, 8] [B, 1, 8, 8]

Table 3.2: Patch-based critic’s input and output sizes for each block, where B is the
batch size.

3.2.1.2 Objective function

We exchanged the traditional GAN from Chapter 2.2.2 with a Wasserstein GAN with
gradient penalty (WGAN-gp). These were introduced by Gulrajani, et al. [98] as an
improved version of Wasserstein GANs (WGANs). WGANs were proposed by Arjovsky,

28

CHAPTER 3. METHODOLOGY

et al. [99] to stabilize the training of GANs/cGANs. The difference between a WGAN
and a normal GAN is in the objective functions. This difference in objective function
also means a different purpose of the discriminator in a classical GAN/cGAN and of the
critic from a WGAN, explaining the change in naming.

Arjovsky, et al. [99] found that an optimal discriminator in a traditional GAN will
provide adequate information upon which the generator can improve. In many cases,
though, the generator is not yet good enough to produce images that are close enough to
the ground truth distribution. In these cases, the gradient for the generator diminishes
and it will not learn anything. From the original GAN cost equation (2.10), this means:

−∇θG [log(1−D(G(z)))] → 0 . (3.4)

Even with an alternative cost function for the generator

[log(D(G(z)))] , (3.5)

from the original paper by Goodfellow, et al. [68], which was proposed to solve the issue
of vanishing gradients, training remains unstable due to large variances of gradients [99].
Instead, Arjovsky, et al. [99] propose using the Wasserstein-1 W1 distance, which is also
commonly refereed to as Kantorovich–Rubinstein distance [100]. It is defined as

W1 (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ [∥x− y∥] , (3.6)

with real data distribution Pr and generated data distribution Pg. Π(Pr,Pg) denotes
the set of all joint distributions γ(x, y) whose marginals are respectively Pr and Pg. γ(x, y)
describes how much "mass" needs to be transported from x to y to transform Pr into Pg.
Π contains all the different transport plans. The W1 distance is the cost - mass times
transport distance - of the optimal transport plan, meaning the minimum work that
needs to be done to transform one data distribution into the other. The advantage of this
approach is that the W1 distance is continuous and almost differentiable everywhere (see
Fig. 3.5) [99].

However, equation (3.6) is highly intractable due to the infimum [99]. A work-around
is using the duality formula for the Kantorovich–Rubinstein distance

W1 (Pr,Pg) = sup
∥f∥L≤1

Ex∼Pr [f(x)]− Ex∼Pg [f(x)] , (3.7)

where the supremum is over all the 1-Lipschitz functions f : X → R [100]. Replacing
∥f∥L ≤ 1 for ∥f∥L ≤ K (K-Lipschitz for some constant K), we end up with a distance
K ·W1 (Pr,Pg) [99].

With parameterized family of functions {fw} , w ∈ W that are K-Lipschitz for some
K, we can consider solving the WGAN objective function

max
w∈W

E
x∼Pr

[fw(x)]− E
x̃∼Pg

[fw(x̃))] , (3.8)

29

CHAPTER 3. METHODOLOGY

Figure 3.5: Optimal discriminator and critic when learning to differentiate two
Gaussians. The discriminator of a classical min-max GAN saturates and
results in vanishing gradients. In contrast, WGAN critic provides linear
gradients on all parts of the space. Modified after Arjovsky, et al. [99].

where x̃ is the output of the generator Gθ. fw is approximated by a NN - the critic
- parameterized with weights w lying in a compact space W [99]. In contrast to the
discriminator in a classical GAN, which works as a classifier, using the W1 distance gives
a meaningful loss metric. When the critic is adequately trained, the generator loss is
an estimate of the W1 distance up to a constant factor K. Therefore, a reduction in
generator loss correlates to the quality of the generated samples, which is not the case
with classical GANs [99]. To emphasize this difference, the counterpart of the generator
in a WGAN is named critic [99].

A challenge that comes with using the W1 distance is enforcing the Lipschitz constraint
by having the weights w of the critic laying in a compact space W . In the original WGAN
paper, Arjovsky, et al. [99] clipped the weights of the critic to be in a compact space
[−c, c]. They already noted that this is not an optimal way of enforcing the Lipschitz
constraint, as it can severely limit the capability of the WGAN to model complex functions.
Gulrajani, et al. [98] solve that issue by introducing a gradient penalty term. They note
that a differentiable function is 1-Lipschtiz if and only if it has gradients with norm at
most 1 everywhere. Therefore, they constrain the gradient norm of the critic’s output
w.r.t. its input. They do so using a soft version of the constraint by employing a penalty
on the gradient norm for random samples x̂ ∼ Px̂. The new objective function of the
WGAN-gp is then

J = E
x̃∼Pg

[fw(x̃)]− E
x∼Pr

[fw(x)]︸ ︷︷ ︸
Original critic loss

+λgp E
x̂∼Px̂

[
(∥∇x̂fw(x̂)∥2 − 1)2

]
︸ ︷︷ ︸

Gradient penalty

, (3.9)

where λgp is a weighing parameter. x̂ ∼ Px̂ is sampled uniformly along straight lines
between pairs of points x sampled from real data distribution Pr and x̃ from generated
data distribution Pg:

x̂ = ϵx̃+ (1− ϵ)x , (3.10)

where ϵ is a random number in [0, 1] ∈ R.

30

CHAPTER 3. METHODOLOGY

It is important to note that using the gradient penalty does not allow for the usage of
batch normalization in the critic, as the norm of the critic’s gradient w.r.t. each input is
independently penalized. Batch normalization introduced a correlation between samples
as it uses batch-level metrics - such as the average batch value - to normalize all samples
in a batch (see end of Chapter 2.2.2). This would invalidate the training objective [99].
Looking at their code, Kadeethum, et al. [93] - and in conclusion Kadeethum, et al.
[1] - seemingly did not take that into consideration and still used batch normalization
layers in their critic, nevertheless producing high-quality results. Nonetheless, we deviated
from Kadeethum, et al. [1]’s approach by following the recommendation of Gulrajani, et
al. [98] to instead use a layer normalization procedure. With layer normalization, the
normalization is done along the feature dimension instead of across the batch dimension,
so that no correlation between samples in a batch is introduced [101]. In our case, the
feature dimension are the channels of the intermediate feature maps.

The objective function of the WGAN-gp is further enhanced by an ℓ1 loss to help
with low-frequency features [74]. To summarize, the critic’s cost function for one image is
calculated as

Jcritic = [fw(x̃)− fw(x)] + λgp [∥∇x̂fw(x̂)∥2 − 1]2 . (3.11)

The generator’s cost function is calculated as

JG = fw(x̃) + λℓ1∥x̃− x∥1 , (3.12)

where λℓ1 is a hyperparameter that is searched for in the hyperparameter-tuning phase
(see Chapter 3.2.3). Hyperparameters control the learning algorithm and are set by the
user. That is in contrast to the internal parameters of the network such as the weights
and biases [47].

3.2.2 Physical consistency-based losses

We follow Rasht-Behesht, et al. [32]’s reasoning for the physical consistency-based losses.
They use a PINN to solve the wave equation on a domain with a free surface on top and
absorbing boundaries everywhere else. We add the physical consistency-based losses to
the cost function of the generator similar to Yang, et al. [102], as we want the generator
to produce physics-consistent wavefields.

In the introduction to physical consistency-based losses in Chapter 2.2.3, we put all
the physics-related losses into equation (2.20). For our approach, we can split these into
two parts: Checking the output of the generator for adherence to the boundary conditions
and to the acoustic wave PDE (2.3). Rasht-Behesht, et al. [32] set the source term s in
the wave equation to s ≡ 0 and instead enforce external forces through a perturbation of
the initial field acting at some time. This is without loss of generality, but helps with
calculating the adherence to the PDE, as we can simply check if

1

c2
∂2PG

∂t2
−∇2PG = 0 , (3.13)

31

CHAPTER 3. METHODOLOGY

for each point on the 128× 128 grids for PG generated by the generator and c from the
underlying velocity distribution. Additionally, we denormalize the pressure and velocity
values. Rasht-Behesht, et al. [32] argued that PINNs are able to enforce absorbing
boundary conditions by default without the need to prescribe them in the training.
Following their approach, the only boundary condition that we check for is at the free
surface, where pressure is fixed to zero

PG(x, t, z = 1000m) = 0 . (3.14)

Rasht-Behesht, et al. [32] do the adherence check with regards to the PDE by using the
automatic differentiation capabilities of the neural network libraries to get the required
partial derivatives in the wave equation. We cannot use that method for two reasons.
First, in order to solve

∇2PG =
∂2

∂x2
PG +

∂2

∂z2
PG , (3.15)

we need the second partial derivatives of PG w.r.t. x, z, and t. As we do not input
specific x and z values to the NN - but rather use an image - we cannot use the automatic
differentiation as we do not have x and z on the underlying computational graph needed
for the differentiation. This differentiation process is very similar to the backpropagation
in Chapter 2.2.1 [103]. Second, when trying to solve ∂2PG

∂t2
using automatic differentiation

a different problem occurs. The differentiation works, but because we input t multiple
times to the generator using the CBN, multiple values for ∂2PG

∂t2
are returned, which we

cannot interpret. To address these issue, we use a fourth-order accurate central finite
difference approximation for the second derivatives in space and time with uniform grid
spacing [104]. Calculating ∂2

∂x2PG and ∂2

∂z2
PG for all pixels in the image except for the two

rows and columns close to the boundaries can be done pixel-wise using

∂2

∂x2
PGi,j ≈

− 1
12PGi−2,j +

4
3PGi−1,j − 5

2PGi,j +
4
3PGi+1,j − 1

12PGi+2,j

dx2
+O

(
dx4

)
(3.16)

and

∂2

∂z2
PGi,j ≈

− 1
12PGi,j−2 +

4
3PGi,j−1 − 5

2PGi,j +
4
3PGi,j+1 − 1

12PGi,j+2

dz2
+O

(
dz4

)
, (3.17)

where PGi,j indicate the pressure value at a certain pixel (i, j), and PGi−1,j the one to left
and PGi,j+1 the one under it. The other subscripts follow accordingly. dx and dz represent
the uniform spacing between two adjacent pixels, calculated from the overall domain size
and the amount of pixels to be ≈ 7.87m. We cannot compute the second derivatives for
the pixels that are in the two rows or columns close to the boundary, as we would need
values outside of the domain. Therefore, we get two images of size 126×126 that represent
∂2

∂x2PG and ∂2

∂z2
PG, respectively. The same central finite difference approximation is used

to calculate the second derivative of PG w.r.t. t. However, there is an added difficulty, as
this requires full wavefields from two previous and two later wavefields. We circumvent

32

CHAPTER 3. METHODOLOGY

that issue by using the additional wavefields that we saved during the data processing
(see Chapter 3.1). We therefore surround the generated wavefield by the real wavefields
from that dataset to calculate

∂2

∂t2
Pgt ≈

− 1
12Pgt−2 +

4
3Pgt−1 − 5

2Pgt +
4
3Pgt+1 − 1

12Pgt+2

dt2
+O

(
dt4

)
, (3.18)

with Pgt the current pressure wavefield, Pgt−1 the preceding one, and Pgt+1 the one directly
following with a step size in time of dt = 0.1 s. The other subscripts follow accordingly.
The whole pressure wavefield PG can be treated at once instead of pixel-wise. The
resulting 128 × 128 image representing ∂2

∂t2
PG is cropped to 126 × 126 so that we can

check the pixel-wise adherence to the PDE for all pixels that are not in a two-pixel thick
area next to the boundary.

Finally, the two physical consistency-based losses are added to the generator cost
function (3.12) to get

JG = fw(x̃) + λℓ1∥x̃− x∥1 + λPDELPDE + λbLb , (3.19)

with the PDE-related loss (see Fig. 3.6 for a visualization of the process to calculate it):

LPDE =
1

Np

Np∑
np=1

(
1

c2
∂2PG

∂t2
−∇2PG − 0

)2

(3.20)

and the boundary-related loss

Lb =
1

Nb

Nb∑
nb=1

(PG(x, t, z = 1000m)− 0)2 , (3.21)

where the running subscripts np and nb are left out of the equation for readability
purposes. np refers to the pixels (i, j) on which LPDE is calculated, of which there are
Np = 126 · 126 = 15, 876. Additionally, λ should be thought of as discretized, not
continuous anymore, as we working on individual pixels. nb refers to the pixels depicting
the free surface of which there are Nb = 128. λPDE and λn are again hyperparameters
that are searched for in the hyperparameter-tuning phase (see Chapter 3.2.3).

3.2.3 Training procedure

We use PyTorch as the deep learning framework of choice and use a graphics card (GPU)
to accelerate the training. We use the same seed for the random variables for all runs.
With runs we denote a complete training and validation procedure. The same seed is
used to ensure that the same data are always in the different data sets. This does not
mean that the training is completely reproducible even for the same hyperparameters, as
non-deterministic algorithms, e.g., the 2D convolution on a GPU, are used during training
to increase the performance of the underlying calculations. It is possible to require many
of the non-deterministic algorithms to use a deterministic version, but some algorithms

33

CHAPTER 3. METHODOLOGY

Figure 3.6: Visualization of the parts of the LPDE loss for one specific wavefield, where
the subscripts in the titles of the middle row denote the second derivatives
w.r.t. x, z, and t, respectively. Residual in the lowest plot is the result of(

1
c2

∂2PG
∂t2

−∇2PG − 0
)2

.

do not allow for that [105]. In our case the backpropagation through the 2D bilinear
upsampling layer prohibited using a deterministic implementation.

We divide the data set into three parts: the training set, the validation set, and the
testing set. We allocate 80% of the data for training purposes, as this constitutes the
majority of the data from which our model learns. The remaining data is divided equally
into validation and test sets, each representing 10% of the total data. This is a commonly
used split in deep learning [47]. The samples in the training data set are shuffled randomly,
ensuring that the network does not learn on data that is in chronological order. We do
this, as we want our network to produce single pressure wavefields at certain time steps
without the need to have early wavefields.

Next, we initialize the model’s weights with values drawn from a normal distribution
with a mean of 0.0 and a standard deviation of 0.02. The biases of the model are initialized
to a constant 0. These values follow Kadeethum, et al. [1]’s recommendation. Although
the choice of initialization in deep learning architectures can significantly impact the
model’s performance, our usage of normalization layers alleviates much of this concern
[78], [101].

34

CHAPTER 3. METHODOLOGY

Instead of using the traditional SGD introduced in Chapter 2.2.1, we use a more
advanced learning rate optimization algorithm called Adam [106]. It is an adaptive
learning rate method that changes the learning rate of the gradient descent depending
on exponential moving averages of the gradients as well as the squared gradients. The
moving average of the gradients is an estimate of the first moment (the mean) and the
moving averages of the squared gradients is an estimate of the second raw moment (the
uncentered variance) of the gradient. With the current gradient matrix Gk = ∇θJ k

calculated using backpropgataion, mk the current vector-valued first moment value, and
vk the current vector-valued second moment value, the next moment’s values can be
calculated using

mk+1 = β1m
k + (1− β1)G (3.22)

vk+1 = β2v
k + (1− β2)G⊙G , (3.23)

where hyperparameters β1, β2 ∈ [0, 1) control the exponential decay rates of these moving
averages, and ⊙ indicates that the matrices are element-wise multiplied. m and v are
usually initialized to 0, therefore being biased towards 0. To counteract that bias, we
introduce the bias-corrected moments

m̂k+1 =
mk+1

1− βk+1
1

(3.24)

v̂k+1 =
vk+1

1− βk+1
2

(3.25)

The updated weights θk+1 are then calculated via

θk+1 = θ − η
m̂k+1

√
v̂k+1 + ϵ

, (3.26)

with η the an initial learning rate and ϵ a small value to prevent division by 0. Adam is
fairly robust to the choice of values for the decay rates and initial learning rate, especially
compared to SGD [107]. No single best optimization algorithm has emerged so far, but
the robustness of adaptive methods have made them the preferred choice of use [47].

We employ Optuna for finding the best hyperparameter for our model. Optuna is an
automatic hyperparameter optimization software framework for machine learning [108]. It
works by doing multiple trials - meaning multiple runs - with different hyperparameters.
It enables efficient hyperparameter optimization using sampling algorithms, from the more
traditional grid search and random search to the default Tree-structured Parzan Estimator
(TPE) [109], which we use in this thesis. In the grid search approach, hyperparameters
are selected from an exhaustive set of combinations that lie on a high-dimensional grid,
ensuring thorough but computationally heavy exploration. Random search arbitrarily
chooses hyperparameters in a certain range, reducing the computational load and allowing
for wider and more efficient exploration, particularly in high-dimensional spaces [110].
TPE is a more sophisticated approach, as it models the objective function as a mixture of
two Gaussian processes and iteratively updates these processes to make informed decisions

35

CHAPTER 3. METHODOLOGY

about where to smaple next in the hyperparameter space. This method balances the
exploration-exploitation trade-off and can deliver superior results in less time compared
to grid search or random search [108]. The hyperparameters and the ranges in which we
search for optimal values can be found in Table 3.3.

Hyperparamter Type Min Max

Generator learning rate Float 5 · 10−5 8 · 10−4

Generator hidden channel amount Integer 32 50
Discriminator learning rate Float 5 · 10−5 1 · 10−3

β1 Float 0.6 0.99
β2 Float 0.9 0.999
Batch size larger data set Categorical 16 32
Batch size smaller data set Categorical 4 8
CBN hidden layer size Integer 50 100
CBN output size Integer 6 12
λgp Integer 5 15
λℓ1 Integer 5 250
λPDE Integer 50 400
λb Integer 0 15

Table 3.3: Hyperparameters used in the Optuna optimization process with their type,
minimum, and maximum values. When optimizing hyperparameters for a
non-physics-informed NN, we simply set λPDE = λb = 0.

Following Kadeethum, et al. [93], the metric that we use to measure the performance
of our network is the relative root-mean-square error (RMSE) between the sampled real
wavefield Pr and generated wavefields PG, defined as√√√√√√

1

N

∑N
n=1 (PG − Pr)

2

1

N

∑N
n=1 Pr

2
, (3.27)

where N = 128 ·128 = 16, 384 is the total amount of pixels in the pressure wavefield image.
Again, we left out the subscript n referring to all pixels (i, j) for readability purpose.

For both the smaller data set with only uniform velocity distributions as well as for
the larger data set with examples of horizontal layering, we train the network for 400

epochs, where an epoch is a complete pass through the entire dataset [63]. We stop the
training of the network early if either the average RMSE of the training samples in an
epoch (we will refer to that as training RMSE) or the average RMSE of the validation
samples in an epoch (validation RMSE) surpasses a certain threshold. Additionally, if the
validation RMSE does not improve for 270 epochs, training also stops. The first check is
to catch networks that do not learn properly. The other two are done at later epochs
to stop training when overfitting occurs, which is indicated by the validation RMSE not
improving any more and rising after reaching a minimum [111].

36

4. Results

4.1 Physics-informed vs. purely data-driven

In a first step, we want to check how our physics-informed network compares to the
non-physics-informed counterpart. Both network architectures are exactly the same, the
only difference is that λPDE and λb are set to 0 in the non-physics-informed cost function
of the generator. We use the smaller data set of 15 uniform velocity distributions and do
100 Optuna-trials for both the physics- and the non-physics-informed network to find the
hyperparameters that minimize the validation RMSE. We restrict ourselves to the small
data set to reduce the time training and validating takes. We will refer to both together
as learning time. Relatively small batch sizes of 4 or 8 are tried, where 4 is the batch
size used in Kadeethum, et al. [93], but 8 provides a faster learning time of ≈ 40min

compared to ≈ 60min. The runtime varied with the hyperparameters, but were similar
for both physics- and non-physics-informed training. The 100 trials were performed on
the two GeForce RTX 3080 10GB GPUs simultaneously and overall took ≈ 84 hours.
The network occupied between ≈ 2GB and ≈ 4GB on a GPU’s memory, depending on
the number of hidden channels in the generator and the CBN’s hidden layer & output
size - where more layers and larger output size means a bigger network. All wavefields
surrounding the time steps of interest are also put on the GPU for fast access and occupy
≈ 55MB. This is less then the ≈ 3GB and ≈ 7GB after deducing background operations
when querying the memory usage using nvidia-smi in the terminal. This is because
some unused memory can be held by the caching allocator and some context needs to be
created on GPU [112].

4.1.1 Learning dynamics and hyperparameters

Out of 100 trials, the 12 with the lowest epoch-averaged validation RMSE are picked. We
usually stick with epoch-averaged values instead of per step (equal to per mini-batch)
metrics, as we are generally interested in the performance on the whole training or
validation data set. From the 12 best trials, 6 each are from the physics-informed and
non-physics-informed approach. These are again equally split into runs with a batch size
of 4 or 8. Out of 12 trials, the two best are chosen for further examination, one from
the physics-informed and one from the non-physics-informed approach. Fig. 4.1 shows
the progression of the lowest validation RMSE through the epochs. After a fast initial
drop, the RMSEs stay constant until around epoch 150 for a batch size of 4 and epoch
250 for a batch size of 8 before they start to improve. The best hyperparameters for
the physics-informed approach were found in optimization trial 51, where the network
parameters θ that minimize the validation RMSE were calculated in epoch 364. The best
hyperparameters for the non-physics-informed network were found in trial 26, with the
best network parameters θ determined in epoch 263 (see Table 4.1).

37

CHAPTER 4. RESULTS

Figure 4.1: The upper plot shows 12 of the best trials out of 100. Trials with a batch
size of 8 all end in the upper curly bracket and trials with a batch size of 4
all end in the lower curly bracket. The best trials for the physics-informed
and non-physics-informed approach are highlighted in the lower plot.

Hyperparameter Physics-informed Non-physics-informed

Generator learning rate 3.6107 · 10−4 2.4762 · 10−4

Generator hidden channel number 35 33
Discriminator learning rate 6.1314 · 10−4 7.4802 · 10−4

β1 0.95404 0.82513
β2 0.90882 0.93580
Batch size 4 4
CBN hidden layer size 74 55
CBN output size 6 7
λgp 13 11
λℓ1 217 70
λPDE 318 0
λb 0 0

Table 4.1: Hyperparameters used in the trials resulting in the lowest validation RMSE

We verify that the best RMSEs are dependent on the batch size and that this is not due
to an error in the calculation of the RMSE for different batch sizes. We do so by using two
additional loss metrics, the well-known mean squared error (MSE) 1

N

∑N
n=1

[
(Pg − Pr)

2
]

and the structural similarity index measure (SSIM). The Structural Similarity Index
(SSIM) is a method for measuring the similarity between two images, which focuses on the
preservation of structural information by comparing local patterns of pixel intensities that
have been normalized for luminance and contrast, thereby providing a more perceptually
relevant assessment of image quality [113]. We do the verification on non-averaged metrics
on the training data set of the best performing trials with a batch size of 4. We add the
best performing run with a batch size of 8 from the non-physics-informed hyperparameter

38

CHAPTER 4. RESULTS

search, which is from trial 4. All of these coincide with the respective best performing
runs based on the validation RMSE. Instead of relying on the highly fluctuating epoch-
averaged validation RMSE, we use training metrics as these converge to lower values
over time, making it easier to compare the different runs. We can then see that the best
performing run with a batch size of 8 performs worse than the run with a batch size of
4, validating our finding that the RMSEs are batch-size dependent. Interestingly, the
training metrics of the best physics-informed trial with a batch size of 4 is lower than the
best non-physics-informed trial with a batch size of 8 (see Fig. 4.2). This is in contrast
to the minimum validation RMSE, where the trials with smaller batch sizes outperform
the ones with larger batch sizes in all cases - independent of the whether or not they are
physics-informed.

Figure 4.2: Comparison of alternative loss metrics. Notice the x-axis in steps, not
epochs. The graphs are extremely smoothed as the variance between steps
is very high. The orange function ends earlier, as a batch size of 8 leads to
less steps required per epoch to get trough the whole training data set.

We now take a closer look at the network’s learning behavior for the two best trials.
It is important to note that the cost values are the current values of the high-dimensional
cost function, not a representation of the function itself. This current value representation
is also called learning curve of the network - in our case, for both the generator as well as
the critic [114]. The generator’s learning curve as well as the unweighted, i.e., without
taking into account the λ’s, parts that make up the generator’s cost, namely the ℓ1-related
loss, LPDE, and Lb are shown in Fig. 4.3. In the following, we will refer to the current
value of the ℓ1-related loss as L1 loss, of LPDE as PDE loss and of Lb as boundary loss.

39

CHAPTER 4. RESULTS

Figure 4.3: Generator’s learning curve (lowest plot) and behavior of the unweighted
summands of the generators’s cost function.

One can see that the non-physics-informed network outperforms the physics-informed
network for all parts of the generator’s cost. For the non-physics-informed run, the L1 loss
reduces rapidly for about 50 epochs. It is then relatively stagnant until approximately
epoch 160, with the exception of a sudden spike in loss at around epoch 80. After epoch
160, the loss decreases again, but slower than in the beginning. The PDE loss behaves
very similar to the L1 loss, reducing around epoch 160 after an initial drop followed by
a constant loss from epoch 50 to 160. A similar spike can be seen at around epoch 80.
The boundary loss also shows the initial, fast drop to lower values. The same pronounced
spike as in the L1 loss at around epoch 80 can be seen as well. Afterwards, the loss stays
at a constant low value.

For the physics-informed run, the L1 loss stagnates at around epoch 125, after an
initial reduction accompanied by two bigger fluctuations. The L1 loss goes down only
slightly starting around epoch 350. In contrast to the non-physics-informed run, the PDE
loss behaves differently than the L1 loss, showing a clear reduction in loss starting around

40

CHAPTER 4. RESULTS

epoch 180, though it never reaches as low values as the non-physics-informed run. The
boundary loss is characterized by large fluctuations throughout and generally slightly
higher values after the initial drop. Additionally, the loss seems to go up again at around
epoch 300. The weighting λb is 0 for the best physics-informed run, which might explain
the high fluctuations for the boundary loss. In the non-physics-informed run, the L1 loss
also leads to a lower boundary-related loss. In the physics-informed run, the L1 loss is
almost constant for most of the epochs later then 125, meaning that the network does
not learn to enforce it and consequently the boundary-related losses are also neglected.

The two learning curves of the generator cannot be compared, as the weighting
of the different parts of the cost function defines the scaling of it. In the traditional
WGAN-setting, the generator’s current cost value corresponds to the quality of the output.
This is not the case with our new cost function, as the non-physics-informed generator’s
learning curve’s value increases almost throughout, even though the metrics on the training
images improve. The increase in cost seems counterintuitive, as the different parts of
the cost function shown in Fig. 4.3 have a decreasing tendency. This increase is due
to the unweighted part in our generator’s cost function that stems from the traditional
WGAN-generator cost function - we will refer it as traditional WGAN-loss (see equation
3.19 and Fig. 4.4). The addition of the different loss parts - as well as their weighting -
therefore plays a big role in the shape of the generator’s learning curve. Moreover, these
additions mean that the generator’s learning curve no longer gives an indication of the
output’s quality.

Figure 4.4: Part of the generator’s cost that stems from the traditional WGAN’s
generator’s cost function.

The critic’s learning curve is presented in Fig 4.5, showing that the cost converges
towards 0 very quickly. This a wanted behavior, as the WGAN approach works on the
assumption of an optimal critic. This rapid drop to almost 0 at around epoch 50 correlates
to the change in behavior in the generator’s cost function at the same epoch.

Figure 4.5: Critic’s learning curve.

41

CHAPTER 4. RESULTS

The training and validation RMSE can be seen in Fig. 4.6. The behavior of the
training RMSEs is very similar to the PDE-related loss. It is almost constant with a value
≈ 7.5% from epoch 50 to 160 for both the physics-informed and the non-physics-informed
networks. From epoch 160 onward, the non-physics-informed network’s training RMSE
decreases steadily to a minimum of ≈ 5.3% at the end of the training. In contrast, the
physics-informed network’s training RMSE stays almost constant until around epoch 300,
where it reaches a value of ≈ 7.4%, from where on it decreases to a minimum of ≈ 6.4%

at the end of the training. The validation RMSE behaves similarly to the training RMSE
with its initial reduction to a constant RMSE until around epoch 200, though in validation
this constant value is ≈ 7.0%. Following this phase, the graph transitions into a period
denoted by high fluctuations. To make these fluctuations more visible, we show only the
non-smoothed RMSE graphs in Fig. 4.6. From epoch 200 to 350, the values oscillate
around what could be visualized as a convex parabola, akin to an upside-down bowl.
Some of the values in this phase go down so far that we find the minimum validation
RMSE of 5.7% at epoch 263 for the non-physics-informed run. For the last 50 epochs,
the RMSE oscillates around ≈ 7.0%. Here we also find the lowest validation RMSE of
5.8% at epoch 364 for the physics-informed run.

Figure 4.6: Non-smoothed training and validation RMSEs for the two best runs.

4.1.2 Visual inspection of generated pressure wavefields

We will look at examples of generated pressure wavefields to see how they correspond
to the calculated RMSEs. For both physics-informed and non-physic-informed runs, we
will present examples corresponding to velocity distributions from the validation data set
at the epochs where the best RMSE was calculated. Additionally, generated wavefields
corresponding to velocity distributions from the training data set at the end of training
are shown. A few remarks to the figures: Unfortunately, we made a mistake in the saving
of the figures, which is why we did not have access to all batches of training or validation
data and do not have the time step for which the wavefields are generated. In addition,

42

CHAPTER 4. RESULTS

we only saved the pressure wavefields in gray-scale, instead of using the same color as in
Chapter 3. Nonetheless, as we are purely interested in the visual quality of the wavefield
images right now, these issues are not important. Also, we do not label the axis to make
it easier to focus on the actual wavefield images.

On the validation data set, we see that the non-physics-informed generator is able to
produce wavefields that resemble the true wavefields at time steps before it is affected by
the boundary. While the position, shape, and size are good, the amplitudes are slightly
off. As soon as the wavefields come into contact with the boundary, the shape of the
wavefields starts smearing, therefore differing from the true one. Reflected waves from
the free-surface boundary are never drawn by the generator (see Fig. 4.7). The same
behavior can still be observed on the training data set at the end of training, with slightly
better performance for wavefields close to the boundaries. Even on the training data set,
no reflected waves are generated (see Fig. 4.8).

Figure 4.7: Validation examples from the epoch with the lowest validation RMSE of all
non-physics-informed runs.

Figure 4.8: Training examples at the end of the best non-physics-informed run based
on lowest validation RMSE.

43

CHAPTER 4. RESULTS

The physics-informed generator struggles to reproduce wavefields on the validation
data set. Though limited by the available examples, we can still see that it has even more
problems generating wavefields at later time steps. Not only are no reflected waves visible
from the free surface, but also no wavefields touching the boundaries can be seen. The
only wavefield shown has a circular shape, but it differs in its diameter from the true
one. The amplitude is also off significantly. We can also see a kind of focal point in the
middle of the generated wavefield with high amplitude which is not present in the real
wavefield (see Fig. 4.9). On the training data set, the visual quality of the generated
wavefields does not improve significantly. We still observe that the generated wavefields
are not matching the real ones in size and amplitude. Again, no wavefields are drawn for
later time steps at which the wavefield is impacted or reflected from the boundaries (see
Fig. 4.10).

Figure 4.9: Validation examples from the epoch with the lowest validation RMSE of all
physics-informed runs.

Figure 4.10: Training examples at the end of the best physics-informed run based on
lowest validation RMSE.

44

CHAPTER 4. RESULTS

In conclusion, our findings that the metrics of the non-physics-informed network
outperform those of the physics-informed networks are confirmed by the superior visual
quality of the wavefield images in both testing and validation. We will do a more thorough
inspection of generated wavefield images for the layered velocity distributions in Chapter
4.2. We did not check the networks performance on the testing dataset. The main reason
is that we would have needed to save all the networks during the hyperparameter search to
select the relevant examples at a later stage. This would have occupied prohibitively large
storage in the system we used. Assuming a middle ground scenario where the network
takes up 3GB, we would have needed 2 checkpoints · 2GPUs · 100 trials · 3GB = 1200GB,
as we would have needed to save the network producing the lowest validation RMSE as
well as the final network. This amount of storage was not available on the computer we
used. We therefore checked the performance on the test data set in the layered velocity
distribution portion (see Chapter 4.2), where we were able to save the best and final
network for all trials done.

4.2 Layered velocity distribution

Even though the physics-informed network performed worse on the data set with only
uniform velocity distributions, we anticipated that adding physics information to the
generator would be helpful in a setting where the velocity distributions and therefore
the pressure wavefields are more complex. We therefore decided to continue with the
physics-informed approach to test its performance on the more complex and larger data
set with layered velocity distributions. We did not do a comparison between physics-
and non-physics-informed networks on the larger data set due to restrictions in computer
capabilities. We used a GeForce RTX 4080 16GB GPU, which is generally more capable
than the previously used GeForce RTX 3080s, but only a single unit was available. In
the smaller data set, we see that a smaller batch size improves the validation RMSE but
also means an increase in learning time. In order to get reasonable learning times we let
Optuna try 16 or 32 as batch size, resulting in learning times of ≈ 16 hours, independent
of the two batch sizes. It should be noted that we tried smaller batch sizes and saw a
significant slow-down compared to the above chosen batch sizes. Overall the 14 trials
performed took ≈ 171 hours or ≈ 7 days to complete.

The network occupies the same amount of GPU memory as before. All wavefields
surrounding the time steps of interest now occupy ≈ 3.5GB due to the increased data-set
size. Overall, after deducing background processes, between ≈ 7.5GB and ≈ 12GB of the
GPU’s memory are used during the learning process, explaining our need for a different
graphics card with more memory than the GeForce RTX 3080 with 10GB of available
memory.

4.2.1 Learning dynamics and hyperparameters

The progression of the lowest validation RMSE of the 14 trials is shown in Fig. 4.11. We
again see a dependency of the validation RMSE on the batch size, with the additional

45

CHAPTER 4. RESULTS

finding that most of the trials with a batch size of 32 are stopped very early due to high
training RMSEs. There is only a single trial that reaches epoch 400, though its validation
RMSE only improves from 5.089% to 5.088% after epoch 6. We focus our examination
on the two best performing trials 0 and 3 (see lower plot in Fig. 4.11). Trial 0 reaches
the lowest validation RMSE of all trials at epoch 106 and is stopped at epoch 376. Trial
3 has its lowest validation RMSE in epoch 90 and is also stopped early at epoch 360.
Both of them are stopped early as they fulfilled the criterion of stopping based on the
validation RMSE not improving for 270 epochs. The hyperparamters that lead to network
parameters θ that minimize the validation RMSE are presented in Tab. 4.2.

Figure 4.11: The upper plot shows all 14 trials. Trials with a batch size of 32 all end in
the upper curly bracket and trials with a batch size of 16 all end in the
lower curly bracket. The two best trials are highlighted in the lower plot.

Hyperparameter trial 0 trial 3

Generator learning rate 5.4078 · 10−4 3.6146 · 10−4

Generator hidden channel number 38 44
Discriminator learning rate 2.3158 · 10−4 8.2316 · 10−4

β1 0.81743 0.80751
β2 0.94956 0.92293
Batch size 16 16
CBN hidden layer size 70 82
CBN output size 7 7
λgp 12 15
λℓ1 180 246
λPDE 253 110
λb 14 2

Table 4.2: Hyperparameters used in the two trials resulting in the lowest validation
RMSE

46

CHAPTER 4. RESULTS

The generator’s learning curve as well as the unweighted parts that make up the
generator’s cost, namely the traditional WGAN-loss, the ℓ1-related loss, LPDE, and Lb

are shown in Fig. 4.12.

Figure 4.12: Generator’s learning curve (lowest plot) and behavior of the unweighted
summands of the generators’s cost function.

The traditional WGAN-loss’s behaviour differs strongly between trial 0 and trial 3.
For trial 3, it increases almost linearly from 0 to ≈ 9 at the end of training. In contrast,
for trial 0 it decreases after an initial increase from 0 to almost 2 at epoch 6. It starts
becoming negative at epoch 9, after which it decreases almost linearly to ≈ −1.5. The
other losses behave similar between trials, though trial 0’s values fluctuate more and

47

CHAPTER 4. RESULTS

are generally larger. For trial 0, after a fast reduction in loss and a phase with high
fluctuations up to approximately epoch 100, the L1 and PDE show a decreasing tendency.
The boundary loss decreases until epoch 200, after which it is constantly close to 0. The
decrease is not linear, but rather interrupted by some plateaus and spikes. Trial 3’s values
for the L1 and PDE loss are almost constant until epoch 80 after an initial fast drop.
Afterwards, both losses decrease without any fluctuations until the end of training, with
the rate of decrease slowing over the epochs. The boundary loss in trial 3 falls rapidly
towards 0 and is almost constant starting at epoch 80.

The learning curve of the generator of trial 0 is clearly dominated by the boundary
loss, as the shapes of the two curves almost perfectly overlap. The learning curve of the
generator of trial 4 has four phases: it decreases rapidly until epoch 20 when it plateaus
until epoch 80, similar to the L1 and PDE loss. This almost constant value is overprinted
with fluctuations stemming from the boundary loss. These fluctuations stop afterwards
and the learning curve follows the downward trend of the L1 and PDE loss. Around
epoch 200, the traditional WGAN loss takes over, where the generator’s learning-curve
shape and its tendency starts to follow it. It is interesting to see that the boundary loss
of trial 0 is larger and has a higher amplitude than the one of trial 3, even though the
weighting λb in trial 0 is seven times larger than the one in trial 3 (14 vs 2). This is
possibly countered by the larger value of λℓ1 of 246 in trial 3 compared to 180 in trial 0.
The L1 loss does a per-pixel check between real and generated wavefields, so it will also
penalize the values on the free-surface boundary.

The critic’s cost is almost 0 throughout after an initial reduction for both trials (see
Fig. 4.13). Again, this is a wanted behaviour as far as traditional WGAN go, as an
optimal critic is required.

Figure 4.13: Critic’s learning curve.

We again show the non-smoothed training and validation RMSEs, as the fluctuations
between epochs have a high impact on which epoch is chosen for the best validation
RMSE (see Fig. 4.14). While trial 3’s validation RSME is smaller for most epochs, both
end with a similar RSME of ≈ 5.6%. The training RMSEs of both trials closely follows
the behaviour of the L1 and PDE loss from the generator (see Fig. 4.12) and reach their
minimum at the end of training, with a value of 2.7% for trial 0 and 1.6% for trial 3.
Similar to what we saw when we evaluated the generator’s learning curve, trial 0 has
more fluctuations for both RMSEs.

48

CHAPTER 4. RESULTS

Figure 4.14: Non-smoothed training and validation RMSEs for the two best runs.

4.2.2 Visual inspection of generated pressure wavefields

We will visually compare the generator’s output on the validation data set for both trials.
For that, we make use of saved generator states. We saved the state of the generator -
i.e., all its weights and biases - at the epochs of lowest validation RMSE and at the end of
training. We compare the wavefields generated for the same three velocity distributions
- uniform, two-layer, and three-layer. This is done for all 12 time steps on which the
network was trained: [0.18, 0.25, 0.32, 0.39, 0.46, 0.53, 0.6, 0.67, 0.74, 0.81, 0.88, 0.95]
seconds. We present wavefields for selected time steps in Fig. 4.15 for trial 0 and Fig.
4.16 for trial 3 (for all time steps see Fig. A.2 for trial 0 and Fig. A.3 for trial 3).

Figure 4.15: Generated pressure wavefields and pixel-wise RMSE on the validation data
set using generator from epoch 106 (with lowest validation RMSE) of trial
0. Wavefields are shown in a zig-zag pattern from top left to bottom right
for time steps [0.18, 0.25, 0.32, 0.39] seconds.

49

CHAPTER 4. RESULTS

Figure 4.16: Generated pressure wavefields and pixel-wise RMSE on the validation data
set using generator from epoch 90 (with lowest validation RMSE) of trial
3. Wavefields are shown in a zig-zag pattern from top left to bottom right
for time steps [0.18, 0.25, 0.32, 0.39] seconds.

It appears that the lowest validation RMSE were achieved by networks that are only
able to generate wavefields for early time steps. Seemingly, it was enough to generate
near optimal background pressure and only some overlapping structures between real and
generated wavefields to achieve the best validation RMSE. This also explains why the
lowest validation RMSE was found at in epochs in training (90 and 106), as these epochs
coincide with the epochs where the training RMSE began reducing. This reduction is
an indication that the generator starts to create wavefield images with structures other
than the background in training. This change in output carries over to the validation
data set. We can confirm that the generator produces more complex structures over time
by checking the generated wavefields during training of trial 3 in Fig. 4.17. We use trial
3, as the training RMSE is smoother and has more clear phases in its development, as
described above. We rely on gray-scale images as theses images cannot be post-processed
or redone as we did with the other images. Additionally, the generated images are shuffled
as they are from the training data set (see Chapter 3.2.3). The generated images of the
epochs clearly follow the training RMSE. Starting at epoch 15, the generator produces
the correct background value. At epoch 87, we first see early-time wavefields produced by
the generator. The quality of the generated wavefields improves quickly through the next
following epochs, with later-time wavefields at epoch 99 and visible differences between
wavefields stemming from different velocity distributions at epoch 146. At epoch 296, the
real and generated wavefields overlap in most cases and no visual improvements can be
seen by going to one of the last epochs 355.

50

CHAPTER 4. RESULTS

Figure 4.17: Generated pressure wavefields on the training data set over the epochs.

51

CHAPTER 4. RESULTS

Moreover, in Fig. 4.18 for trial 0 and Fig. 4.19 for trial 3, we observe that the
network generates more complex wavefields on the validation data set at the end of
training (only selected wavefields are shown, for all time steps see Fig. A.4 for trial 0 and
Fig. A.5 for trial 3). If we use the generator from the end of training on the validation
dataset, we see that it starts to generate wavefields for later time steps. In both cases
though, the generator produces the same wavefields independent of the underlying velocity
distribution. This is in contrast to the wavefields generated on the training data set.

Figure 4.18: Generated pressure wavefields and pixel-wise RMSE on the validation data
set using generator from end of trial 0. Wavefields are shown in a zig-zag
pattern from top left to bottom right for time steps [0.18, 0.25, 0.32, 0.39,
0.46, 0.53] seconds.

52

CHAPTER 4. RESULTS

Figure 4.19: Generated pressure wavefields and pixel-wise RMSE on the validation data
set using generator from end of trial 3. Wavefields are shown in a zig-zag
pattern from top left to bottom right for time steps [0.18, 0.25, 0.32, 0.39,
0.46, 0.53] seconds.

Finally, we use the test data set to check the network’s performance on time steps
not present in the training set. We choose time steps that are shifted by 0.03 s compared
to the standard ones, so [0.21, 0.28, 0.35, 0.42, 0.49, 0.56, 0.63, 0.70, 0.77, 0.84, 0.91,
0.98] seconds. We rely on the saved model at the end of training as we saw that the
longer the training takes, the more wavefield features are generated. We concentrate
our examination on the network from trail 3, as the average validation RMSE at the
end of training is better than trial 0’s (see Fig. 4.14). In Fig. 4.20, we observe that the
wavefields generated are again the same, independent of the velocity distribution that
was given to the generator (for all timesteps, see Fig. A.6). Additionally, they are the
same as the wavefields that were produced using the validation data set on time steps
that were used during training. The generator simply generates the wavefields of the time
steps from training instead of interpolating between them. We verify this in Fig. 4.21,
where we see that the generator outputs the wavefields from the time steps present in
training that are lower than the one given, except of the closest one to the next later one.
An example would be [0.19, 0.20, 0.21, 0.22, 0.23] seconds all being interpreted as 0.18 s

from training and 0.24 s as 0.25 s from training.

53

CHAPTER 4. RESULTS

Figure 4.20: Generated pressure wavefields and pixel-wise RMSE on the test data set
using generator from end of trial 3. Wavefields are shown in a zig-zag
pattern from top left to bottom right on time steps not present in training
([0.21, 0.28, 0.35, 0.42, 0.49, 0.56, 0.63, 0.70] seconds).

Figure 4.21: Generated pressure wavefields on the test data set using generator from
end of trial 3. Boxes indicate time steps that are used during training.

In conclusion, we find that the generators from the epochs with the lowest validation
RMSE of both trials produce wavefields at early time steps that only overlap partially with
the ground truth. Additionally, on the validation and test data set, the same wavefields
are always produced, irrespective of the underlying velocity distribution.

54

CHAPTER 4. RESULTS

4.2.3 Computational time comparison

We briefly compare the time it takes to generate a wavefield using the generator vs.
using SpecFem2D. The parameters for the simulation using SpecFem2D are exactly the
same as described in Chapter 3.1. We do five simulations per velocity distribution-type
(uniform, two-layer, and three-layer). For one second of simulated time, 1000 wavefields
are simulated. We average the computational time and conclude that calculating a single
pressure wavefield takes ≈ 0.015 s on average, using a serial calculation on an Intel Core
i7-3820 @ 3.60GHz. For the generator, we average the time over all samples in the test
dataset, which are 1080 generated pressure wavefields. On average, it took 0.028 s on the
Geforce RTX 4080 to generate a single pressure wavefield. This is about twice the amount
of time that the numerical simulation needs. The main advantage of using the generator
though is that it can produce wavefields without the need to calculate wavefields at earlier
time steps. Imagine we are interested in the wavefield at t = 0.5 s. For the numerical
simulation to calculate that, it needs to calculate 499 previous wavefields when using a
time step of 0.01 s. The overall time to get the result is then 500 · 0.015 s = 7.5 s, now
making it a much slower option than using the generator.

55

5. Discussion

The primary objective of our research is to explore the possibility of efficiently generating
pressure wavefields at arbitrary time steps for varying velocity distributions. In the
following sections, we will delve into the performance of our model in this regard, compare
our results to those obtained in Kadeethum, et al. [1] upon which we based our approach,
and discuss the limitations and potential solutions to our method.

5.1 CcGAN performance

Our physics-informed CcGAN presented predominantly poor outcomes. The biggest issue
is the generator’s incapability to produce pressure wavefields that vary depending on the
inputted velocity distribution. It resembles a common problem in training traditional
GANs: mode collapse, where the generator ends up producing only a limited variety of
samples, often almost identical [115]. This is usually seen on all data sets - including the
training data set - whereas in our case the issue was only seen on the validation and test
data set. The issue of model collapse in traditional GANs is usually explained as the
generator simply memorizing a few training examples that fool the discriminator [116].
One of the supposed advantages of using WGANs instead of traditional GANs is that
they prevent the issue of mode collapse [99], though Lala, et al. [117] show that mode
collapse can still happen in certain cases. Additionally, conditioning GANs is also known
to help mitigate mode collapse, as conditioned with labels should lead to generating
samples with more variety in modes [72]. However, Shahbazi, et al. [118] show that
in the case of a limited data set, conditioning can lead to mode collapse, even in cases
where unconditioned GANs performed well. We made sure that the issue was not due
to improper saving and loading the generator’s state when redoing the plots shown in
Chapter 4.2, as the outputs during the learning phase showed similar results.

Moreover, contrary to our initial assumption, the non-physics-informed model
consistently outperformed the physics-informed model for the uniform velocity
distribution. Additionally, we saw that high λℓ1 were preferred in the physics-informed
trials. This pattern underlines the critical role that the L1 loss plays, even when physical
consistency-based losses are present. This is even more obvious in the non-physics-
informed approach, where the L1 loss is solely responsible for reducing the PDE loss to a
lower level than in the physics-informed approach. This result suggests that adding the
physics consistency-based losses might interfere with the generator’s cost function,
making finding an optimal solution more challenging, as optimization need to be taking
into account the different parts of the cost function. It would be interesting to see how
the network behaves if λℓ1 was to be set to zero, so that only the physics-consistency
based losses are added to the traditional WGAN loss.

The performance of a deep learning approach can be highly dependent on the choice
of hyperparameters[119]. Using Optuna for our hyperparameter search, we were able to

56

CHAPTER 5. DISCUSSION

try many different configurations and showed that this is also the case for our CcGAN.
Optuna requires an initial range of hyperparamters in which it is supposed to find an
optimal set. These ranges are mostly based around values from Kadeethum, et al. [93].
Particular attention was given to the weights λ of the cost functions. The gradient
penalty’s λgp value was chosen in the range of 5 to 15, based on the recommendation
of Arjovsky, et al. [99], who found a value of 10 to be effective in their experiments.
Kadeethum, et al. [93] used an L1-loss weight of λℓ1 = 250. As we additionally incorporate
the physical consistency-losses, we let Optuna search in a range from 5 to 250 to see if
the reliance on the L1 loss reduces. For λPDE, we chose values ranging from 50 to 400

to allow the network to give substantial importance to the physics-consistency of the
model. The λb values chosen were much smaller, ranging from 0 to 15. This decision was
driven by the observation that the magnitude of the boundary loss values was in the tens,
significantly higher than the L1 and PDE loss values, which are in the range of 0.010s and
0.10s/0.010s, respectively. Interestingly, a coding error unexpectedly provided insightful
results regarding λb. Originally, the lower limit of it was intended to be 0.2, but due to
asking Optuna to only pick integer values for λb, it was interpreted as 0. We saw that
the boundary loss had a very large impact on the generator’s learning curve in one of
the trials chosen for the layered velocity distribution. This level of influence is possibly
undesirable, as evidenced by the best trial for the uniform velocity distribution preferring
a λb of 0.

The best validation RMSE was often found quite early in the trials: specifically trials
51 and 26 out of 100 for the uniform velocity distributions and 0 and 3 out of 14 for the
layered velocity distribution. It is important to note that Optuna performs an initial
random search of ten trials, which aids in familiarizing it with the cost function landscape.
Therefore, we would expect Optuna to find better hyperparameters after this initial phase
and even more so the longer the hyperparameter search continues. However, Optuna
struggled with conducting an effective hyperparameter search for a two possible reasons.
First, not enough trials were done for the layered velocity distribution data set. Second,
that the lowest validation RMSE was early in the learning process where almost no
wavefields were produced. Consequently, the metric rarely corresponded to a genuinely
good performance, so Optuna tried to optimize for an unwanted behavior.

One beneficial aspect of our work is that when specific time steps are provided, the
generator does show the progression of the actual wavefield. This means we can request a
wavefield at a certain time step without needing to calculate the preceding time steps.
Unfortunately, this only worked for time steps that were also used in training. This
means that we did not achieve continuous time stepping. Nevertheless, this feature
theoretically reduces the computational effort compared to classical numerical simulations
as it eliminates the need to generate all preceding wavefields. However, this advantage
is only theoretical in nature due to the significant discrepancies between the generated
output and the ground truth, rendering our current model an inadequate option for
practical applications.

57

CHAPTER 5. DISCUSSION

5.2 Comparison to other work

Our approach draws heavily on the work of Kadeethum, et al. [1], yet their success
did not transfer to our research, despite the similarity in having an underlying 2D time-
dependent PDE. First, we compare data-set sizes. Our layered data set contains 10, 800

wavefield samples, which is larger than the data sets used in Kadeethum, et al. [1].
They experimented with multiple sizes, ranging from 1, 250 to 10, 000 samples, observing
promising results across the board, with the results improving with larger data sets. This
suggest that our model’s performance issues are unlikely to be related to the size of the
used data set.

Even though both experiments are interested in generating pressure distributions -
pressure wavefields in our case - the feature and frequency content of the inputs and
outputs are noticeably different. The inputs from Kadeethum, et al. [1] feature more rich
and varied samples, rather than simply uniform or layered. This raises the possibility
that our velocity distributions might not encode enough features for the network to
distinguish between uniform, two-layer, and three-layer velocity distributions. However,
this assumption is partially invalidated by the variety of wavefields generated for different
inputs during the training phase.

In terms of outputs, our generated wavefields essentially form high amplitude, sharp
structures against a uniform background. This is in contrast to the smooth, low frequency
output of Kadeethum, et al. [1]. Our generator can easily identify and draw the correct
uniform background value, but takes many epochs before starting to generate structures
that resemble wavefields. It is possible that generating low-frequency, smooth outputs
is an easier task, especially when using the L1 loss. As Isola, et al. [74] have pointed
out, this loss is responsible of enforcing low-frequency content, while the generator-
discriminator interplay tends to be responsible for the high-frequency content. Contrary
to this assumption, our network showed the capability to generate varied, high-frequency
wavefields, especially when overfitting on the training dataset. in conclusion, the exact
cause of the poor performance of our experiment relative to that of Kadeethum, et al. [1]
remains unclear.

5.3 Limitations and potential improvements

Our current research is characterized by several limitations, a number of which have been
intentionally imposed in order to simplify the problem at hand. In this section, we will
discuss the main limitations and potential improvements.

One of the key disadvantages of our approach compared to other physics-informed
neural networks is its reliance on a grid. This is because we worked with images, which
inherently represent data in a grid-like format. Additionally we need the grid’s step size
for the computation of the physics-consistency score. As GANs always work on images,
this issue cannot be overcome. Moreover, the model is currently limited to a single domain
size and a 128 × 128 grid. While convolutional neural networks can handle images of
varying sizes, our use of fully-connected layers at certain points currently prohibits us

58

CHAPTER 5. DISCUSSION

from training on different domain/grid sizes. Future research could work on overcoming
this limitation to achieve more generalized applicability.

We have based our analysis on the simplified case of a 2D acoustic wave equation.
This means we do not take into account other wave types like S-waves. It might be
feasible to ask a modified generator to output two wavefields, one each for S-waves and
P-waves. It would be interesting to see how or if the transformation between wave types
at boundaries can be captured. Furthermore, incorporating these waves would necessitate
the use of a more complex wave equation for the physics-consistency loss.

Another aspect of our simplification is the 2D nature of our model. Real-world wave
propagation is in a 3D subsurface, so it would make sense to try to capture that behavior
in the model as well. If we conceptualize 3D images as stacked 2D gray-scale images, we
could theoretically feed in a 3D velocity distribution and output 3D wavefield images
using a GAN. CNNs lend themselves to such a problem, as they are inherently able to
work on multi-channel images. An exemplary work using GANs to generate 3D images
is by Wu, et al. [120]. In our context, using 3D images would require some changes to
the network, especially when it comes to the time-inputting scheme. Due to its complex
nature, we assume that this will be quite difficult. Additionally, the increase in data size
from 3D images, the accompanying need for more GPU memory, and subsequent increase
in training time imposes a practicality limit when using our current hardware.

We use only a single source location and type for all the ground truth wavefields.
Therefore, the network was only able to produce wavefields that are generated by that
specific source. As Kadeethum, et al. [93] point out, the framework of CcGANs allows for
multiple (continuous) inputs to the network, not just the time steps. We could therefore
explore the potential of including variables such as source location and type as additional
inputs. While source location can be encoded using coordinate values, more possibilities
exist for the type of source. We could focus solely on different source frequencies as single
values, or add different source types as a one-hot encoded vector. This addition of the
source information might necessitate a modification of the physics-consistency loss to
incorporate the source into the PDE again. A further note to the input mechanism for
the condition made by Kadeethum, et al. [93] is that the CcGAN framework is able to
handle data stemming from simulations with non-constant time-stepping.

We have only used a single network structure without verifying if others might
yield better results. One change that would be interesting to explore is using batch
normalization layers in the critic, as done by Kadeethum, et al. [1], who did so even
though Gulrajani, et al. [98] specifically said that these are inappropriate in the context
of WGAN-gp’s. Additionally, we only used a physics-informed generator. Daw, et al.
[121] used a physics-informed discriminator instead, pointing out that this will influence
the generator physics-consistency as well due to the feedback the discriminator gives
to the generator. This method is more difficult to implement, which is why we chose
a physics-informed generator only, but a physics-informed discriminator is a natural
extension. A possible change related to the network’s cost functions is Wang, et al.
[122]’s dynamic weight updating process to find the optimal weighting parameters λ and

59

CHAPTER 5. DISCUSSION

dynamically adapting them during training. In addition, this could potentially help with
the hyperparameter tuning since not taking these parameters into account reduces the
search space.

Another limitation is that we were bound by the accuracy of the SpecFem2D simulation
used to generate the ground truth data. While physics-informed neural networks have
demonstrated potential to improve the accuracy of coarse simulation outputs or noisy
measurements [32], [123], it would be worth exploring how a successful model would
handle this aspect. Additionally, our physics-loss based on finite differences has inherent
errors, which might affect the physics-loss and consequently the accuracy of the generated
wavefields. This is especially true, because we took a step size of dt = 0.1 s for the
finite-difference approximation of the second partial derivative. This is 10 times larger
than the step size that SpecFem2D uses for its simulation. There was a two-fold reasoning
in taking such a large step size. First, saving every wavefield from Optuna in an dt = 0.01 s

interval would have taken too much time storage when generating wavefields for the 900

velocity distributions. Second, we already had to employ some memory saving techniques
when processing the data set of simulated wavefields. This would have become even more
challenging to do on a more extensive data set. Eventually, we decided to write only every
tenth simulated wavefield to file after visual inspection of PDE losses on real wavefields
with different dt’s.

Finally, in this thesis we only considered simple uniform or horizontally layered
velocity distributions. This decision was made to check if the network can perform on
these simple velocity distributions to warrant further research towards more realistic
subsurface velocity distributions. In reality, subsurface velocity distributions can contain
heterogeneous distributions with complex structures. As such, it may be beneficial for
future work to consider irregular velocity distributions to enhance the applicability of the
model. To introduce more variability into the data sets, synthetic models with varying
geological features, such as faults, inclusions, and salt domes, could be created.

60

6. Conclusion

The primary motivation that we outlined for solving the wave equation using a physics-
informed deep learning approach was to accelerate seismic imaging by substituting the
traditional numerical solver in FWI with a NN. Due to the issues observed in our approach,
we think that it might be advantageous to focus on direct inversion using deep learning.
Although in many cases it is extremely dependent on large data sets, the fact that only a
single output - a subsurface image - needs to be produced per input, i.e., measurement
data, reduces the complexity of the issues compared to the time-dependent nature of the
wave equation. In this context, Wang, et al. [34]’s approach of the two networks in a
cyclic interplay from Chapter 1 seems to be very promising, especially as it does not rely
on training data. Nonetheless, further research on using physics-informed deep learning
as a solver for the wave equation should still continue due to the importance of simulating
wave propagation in many different disciplines, e.g., for simulating seismic waves induced
by earthquakes.

In this regard, we again reviewed some promising alternatives to our CcGAN due to
its performance issues. An important trait of our problem is its time-dependent nature, so
network structures that are designed to handle these kinds of issues, such as LSTM-RNNs,
seem to be well-suited. However, as indicated by Rodriguez-Torrado, et al. [124], this
approach is currently limited to one-dimensional problems. This is due to the increase in
memory load for higher-dimensional problems, as many or all preceding results need to
be accessed to calculate the results at the next time step. It is again important to note
that our CcGAN does not suffer from this issue, as it treats wavefields independently.

Another option to address the complexity introduced by the time dependency, as well
as the intricacy of the reflections and the sharp contrast between a uniform background
and the actual wave, is solving the wave equation in the frequency domain. This is
commonly done by employing the Helmholtz equation [125]. Instead of relying on physics-
informed NNs to solve this equation, Fourier Neural Operators (FNOs) have very recently
emerged as a promising alternative [126]. They are a type of NN designed to approximate
the solution operator of a PDE, which under certain assumptions can be understood as a
convolution kernel. Leveraging the convolution theorem that states that convolution is
equivalent to multiplication in the Fourier space, convolutional layers are replaced with
Fourier layers [127]. The advantage of this approach is that it can learn a family of PDEs,
is a mesh-free method, and has demonstrated the ability to solve the wave equation for
complex velocity distributions and to generalize to similar ones [126].

In conclusion, although our current implementation of a physics-informed CcGAN for
wavefield generation presents multiple limitations and unsatisfactory performance, it lays
the groundwork for future research. We have identified several potential enhancements
and research directions and are confident that it is worthwhile to pursue them to achieve
a fast, universal wave equation solver using physics-informed deep learning to advance
wave-based seismic imaging.

61

Appendix

Figure A.1: In-depth look at generator and critic architecture, visualized using
PlotNeuralNet. Blue numbers indicate the channels after a convolution,
the black numbers the height and width of the image before being passed
to the maxpooling or upsampling layer. The amount of channels in the
generator is exemplary.

62

https://github.com/HarisIqbal88/PlotNeuralNet

Figure A.2: Generated pressure wavefields and pixel-wise RMSE on the validation data
set using generator from epoch 106 (with lowest validation RMSE) of trial
0. Wavefields are shown in a zig-zag pattern from top left to bottom right
for timesteps in training.

APPENDIX A. APPENDIX

Figure A.3: Generated pressure wavefields and pixel-wise RMSE on the validation data
set using generator from epoch 90 (with lowest validation RMSE) of trial 3.
Wavefields are shown in a zig-zag pattern from top left to bottom right for
timesteps in training.

64

APPENDIX A. APPENDIX

Figure A.4: Generated pressure wavefields and pixel-wise RMSE on the validation data
set using generator from end of trial 0. Wavefields are shown in a zig-zag
pattern from top left to bottom right for timesteps in training.

65

APPENDIX A. APPENDIX

Figure A.5: Generated pressure wavefields and pixel-wise RMSE on the validation data
set using generator from end of trial 3. Wavefields are shown in a zig-zag
pattern from top left to bottom right for timesteps in training.

66

APPENDIX A. APPENDIX

Figure A.6: Generated pressure wavefields and pixel-wise RMSE on the test data set
using generator from end of trial 3. Wavefields are shown in a zig-zag
pattern from top left to bottom right on time steps not present in training
([0.21,0.28, 0.35, 0.42, 0.49, 0.56, 0.63, 0.70, 0.77, 0.84, 0.91, 0.98] seconds)

67

Bibliography

[1] T. Kadeethum, D. O’Malley, Y. Choi, H. S. Viswanathan, N. Bouklas, and H.
Yoon, “Continuous Conditional Generative Adversarial Networks for Data-Driven
Solutions of Poroelasticity with Heterogeneous Material Properties,” Computers &
Geosciences, vol. 167, p. 105 212, Oct. 2022.

[2] D. Fleisch and L. Kinnaman, A Student’s Guide to Waves (Student’s Guides).
Cambridge: Cambridge University Press, 2015.

[3] Science Mission Directorate. National Aeronautics and Space Administration,
Anatomy of an Electromagnetic Wave, 2010. [Online]. Available: https://scienc
e.nasa.gov/ems/02%5C_anatomy (visited on 06/25/2023).

[4] S. Kaur, P. Singh, V. Tripathi, and R. Kaur, “Recent Trends in Wireless and
Optical Fiber Communication,” International Conference on Intelligent
Engineering Approach(ICIEA-2022), vol. 3, no. 1, pp. 343–348, Jun. 2022.

[5] M. S. Zahrani, “Telecommunications Network using Electromagnetic Waves,”
Information Technology Journal, vol. 9, no. 3, pp. 430–437, 2010.

[6] A. P. Sarvazyan, M. W. Urban, and J. F. Greenleaf, “Acoustic Waves in Medical
Imaging and Diagnostics,” Ultrasound in Medicine & Biology, vol. 39, no. 7,
pp. 1133–1146, Jul. 2013.

[7] “Wave–Particle Duality: De Broglie, Einstein, and Schrödinger,” in Critical
Appraisal of Physical Science as a Human Enterprise: Dynamics of Scientific
Progress, M. Niaz, Ed., Dordrecht: Springer Netherlands, 2009, pp. 159–165.

[8] LIGO Scientific Collaboration and Virgo Collaboration, B. P. Abbott, R. Abbott,
et al., “Observation of Gravitational Waves from a Binary Black Hole Merger,”
Physical Review Letters, vol. 116, no. 6, p. 061 102, Feb. 2016.

[9] G. T. Schuster, “Seismic Imaging, Overview,” in Encyclopedia of Solid Earth
Geophysics, ser. Encyclopedia of Earth Sciences Series, H. K. Gupta, Ed., Dordrecht:
Springer Netherlands, 2011, pp. 1121–1134.

[10] Ö. Yilmaz, Seismic Data Analysis: Processing, Inversion, and Interpretation of
Seismic Data. Society of Exploration Geophysicists, Jan. 2001.

[11] P. M. Shearer, Introduction to Seismology, Second. Cambridge: Cambridge
University Press, 2009.

[12] Y. Cui, K. B. Olsen, T. H. Jordan, et al., “Scalable Earthquake Simulation
on Petascale Supercomputers,” in SC ’10: Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis, 13, pp. 1–20.

[13] A. Tarantola, “Inversion of Seismic Reflection Data in the Acoustic Approximation,”
Geophysics, vol. 49, no. 8, pp. 1259–1266, Aug. 1984.

[14] H. Igel, Computational Seismology: A Practical Introduction. Oxford University
Press, Nov. 2016. (visited on 06/25/2023).

68

https://science.nasa.gov/ems/02%5C_anatomy
https://science.nasa.gov/ems/02%5C_anatomy

BIBLIOGRAPHY

[15] K. Leng, T. Nissen-Meyer, M. van Driel, K. Hosseini, and D. Al-Attar, “AxiSEM3D:
Broad-Band Seismic Wavefields in 3-D Global Earth Models with Undulating
Discontinuities,” Geophysical Journal International, vol. 217, no. 3, pp. 2125–2146,
Jun. 2019.

[16] L. Zhu, W. Zhang, J. Kou, and Y. Liu, “Machine Learning Methods for Turbulence
Modeling in Subsonic Flows around Airfoils,” Physics of Fluids, vol. 31, no. 1,
p. 015 105, Jan. 2019. (visited on 06/25/2023).

[17] C. Li, P. Yuan, Y. Liu, et al., “Fast Flow Field Prediction of Hydrofoils Based on
Deep Learning,” Ocean Engineering, vol. 281, p. 114 743, Aug. 2023.

[18] J. Schmidt, M. R. G. Marques, S. Botti, and M. A. L. Marques, “Recent Advances
and Applications of Machine Learning in Solid-State Materials Science,” npj
Computational Materials, vol. 5, no. 1, p. 83, Aug. 2019.

[19] A. W. Senior, R. Evans, J. Jumper, et al., “Improved Protein Structure Prediction
Using Potentials from Deep Learning,” Nature, vol. 577, no. 7792, pp. 706–710,
Jan. 2020.

[20] T. Perol, M. Gharbi, and M. Denolle, “Convolutional Neural Network for
Earthquake Detection and Location,” Science Advances, vol. 4, no. 2, e1700578,

[21] L. Lehmann, M. Ohrnberger, M. Metz, and S. Heimann, “Accelerating Low-
Frequency Ground Motion Simulation for Finite Fault Sources Using Neural
Networks,” Geophysical Journal International, ggad239, Jun. 2023.

[22] M. Malfante, M. Dalla Mura, J. I. Mars, J.-P. Métaxian, O. Macedo, and A. Inza,
“Automatic Classification of Volcano Seismic Signatures,” Journal of Geophysical
Research: Solid Earth, vol. 123, no. 12, pp. 10, 645–10, 658, Dec. 2018.

[23] M. Azarafza, M. Azarafza, H. Akgün, P. M. Atkinson, and R. Derakhshani, “Deep
Learning-Based Landslide Susceptibility Mapping,” Scientific Reports, vol. 11,
no. 1, p. 24 112, Dec. 2021.

[24] Z. Zhang and Y. Lin, Data-driven Seismic Waveform Inversion: A Study on the
Robustness and Generalization, Jun. 2019. eprint: 1809.10262 (eess). (visited on
06/25/2023).

[25] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics Informed Deep Learning
(Part I): Data-driven Solutions of Nonlinear Partial Differential Equations, Nov.
2017. arXiv: 1711.10561 [cs, math, stat].

[26] J. Hermann, Z. Schätzle, and F. Noé, “Deep-Neural-Network Solution of the
Electronic Schrödinger Equation,” Nature Chemistry, vol. 12, no. 10, pp. 891–897,
Oct. 2020.

[27] K. Kashinath, M. Mustafa, A. Albert, et al., “Physics-Informed Machine Learning:
Case Studies for Weather and Climate Modelling,” Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 379,
no. 2194, p. 20 200 093, Feb. 2021.

69

1809.10262
https://arxiv.org/abs/1711.10561

BIBLIOGRAPHY

[28] P. Borate, J. Rivière, C. Marone, A. Mali, D. Kifer, and P. Shokouhi, “Using a
Physics-Informed Neural Network and Fault Zone Acoustic Monitoring to Predict
Lab Earthquakes,” Nature Communications, vol. 14, no. 1, p. 3693, Jun. 2023.

[29] T. Okazaki, T. Ito, K. Hirahara, and N. Ueda, “Physics-Informed Deep Learning
Approach for Modeling Crustal Deformation,” Nature Communications, vol. 13,
no. 1, p. 7092, Nov. 2022.

[30] S. Karimpouli and P. Tahmasebi, “Physics Informed Machine Learning: Seismic
Wave Equation,” Geoscience Frontiers, vol. 11, no. 6, pp. 1993–2001, Nov. 2020.

[31] B. Moseley, A. Markham, and T. Nissen-Meyer, Solving the Wave Equation with
Physics-Informed Deep Learning, Jun. 2020. arXiv: 2006.11894 [physics].

[32] M. Rasht-Behesht, C. Huber, K. Shukla, and G. E. Karniadakis, “Physics-Informed
Neural Networks (PINNs) for Wave Propagation and Full Waveform Inversions,”
Journal of Geophysical Research: Solid Earth, vol. 127, no. 5, e2021JB023120, 2022.

[33] C. Song and T. A. Alkhalifah, “Wavefield Reconstruction Inversion via Physics-
Informed Neural Networks,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 60, pp. 1–12, 2022.

[34] Z. Wang, S. Wang, C. Zhou, and W. Cheng, “Dual Wasserstein Generative
Adversarial Network Condition: A Generative Adversarial Network-Based
Acoustic Impedance Inversion Method,” GEOPHYSICS, R401–R411, Nov. 2022.

[35] Y. Ren, X. Xu, S. Yang, L. Nie, and Y. Chen, “A Physics-Based Neural-Network
Way to Perform Seismic Full Waveform Inversion,” IEEE Access, vol. 8,
pp. 112 266–112 277, 2020.

[36] A. Adler, M. Araya-Polo, and T. Poggio, “Deep Learning for Seismic Inverse
Problems: Toward the Acceleration of Geophysical Analysis Workflows,” IEEE
Signal Processing Magazine, vol. 38, no. 2, pp. 89–119, 2021.

[37] M. Båth, “Seismic Waves,” in Introduction to Seismology, ser. Wissenschaft Und
Kultur, Second, Basel: Birkhäuser Basel, 1979, pp. 61–103.

[38] K. Roy Chowdhury, “Seismic Data Acquisition and Processing,” in Encyclopedia
of Solid Earth Geophysics, ser. Encyclopedia of Earth Sciences Series, H. K. Gupta,
Ed., Dordrecht: Springer Netherlands, 2011, pp. 1081–1097.

[39] A. Cannata, F. Cannavò, S. Moschella, S. Gresta, and L. Spina, “Exploring the
Link between Microseism and Sea Ice in Antarctica by Using Machine Learning,”
Scientific Reports, vol. 9, no. 13050, Sep. 2019.

[40] P. Richards, Mathematical Methods in the Earth Sciences, W4950, Lecture Notes;
Columbia University, NY, 2006. [Online]. Available: https://www.ldeo.colum
bia.edu/~richards/webpage_rev_Jan06/Ch2_ElasticWaves_in_Solids.pdf

(visited on 05/10/2023).

[41] J. Billingham and A. C. King, Wave Motion (Cambridge Texts in Applied
Mathematics). Cambridge: Cambridge University Press, 2001.

70

https://arxiv.org/abs/2006.11894
https://www.ldeo.columbia.edu/~richards/webpage_rev_Jan06/Ch2_ElasticWaves_in_Solids.pdf
https://www.ldeo.columbia.edu/~richards/webpage_rev_Jan06/Ch2_ElasticWaves_in_Solids.pdf

BIBLIOGRAPHY

[42] Y. Lin, J. Theiler, and B. Wohlberg, “Physics-Guided Data-Driven Seismic
Inversion: Recent Progress and Future Opportunities in Full-Waveform Inversion,”
IEEE Signal Processing Magazine, vol. 40, no. 1, pp. 115–133, Jan. 2023.

[43] H. Chauris, “Chapter 5: Full Waveform Inversion,” in Seismic Imaging: A Practical
Approach, EDP Sciences, Feb. 2021, pp. 123–146.

[44] R. Huang, Z. Zhang, Z. Wu, Z. Wei, J. Mei, and P. Wang, “Full-Waveform Inversion
for Full-Wavefield Imaging: Decades in the Making,” The Leading Edge, vol. 40,
no. 5, pp. 324–334, May 2021.

[45] Y. Lin and L. Huang, “Acoustic- and Elastic-Waveform Inversion Using a
Modified Total-Variation Regularization Scheme,” Geophysical Journal
International, vol. 200, no. 1, pp. 489–502, Jan. 2015.

[46] J. Virieux and S. Operto, “An Overview of Full-Waveform Inversion in Exploration
Geophysics,” GEOPHYSICS, vol. 74, no. 6, WCC1–WCC26, Nov. 2009.

[47] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[48] P. Wang, “On Defining Artificial Intelligence,” Journal of Artificial General
Intelligence, vol. 10, no. 2, pp. 1–37, 2019.

[49] J. McCarthy, WHAT IS ARTIFICIAL INTELLIGENCE? 2007. [Online]. Available:
http://www-formal.stanford.edu/jmc/whatisai/node1.html (visited on
05/11/2023).

[50] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer New York, NY, Aug. 2006.

[51] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521, no. 7553,
pp. 436–444, May 2015.

[52] R. Sathya and A. Abraham, “Comparison of Supervised and Unsupervised Learning
Algorithms for Pattern Classification,” International Journal of Advanced Research
in Artificial Intelligence (IJARAI), vol. 2, no. 2, 2013.

[53] J. Delua, Supervised vs. Unsupervised Learning: What’s the Difference? 2021.
[Online]. Available: https://www.ibm.com/cloud/blog/supervised-vs-unsupe
rvised-learning (visited on 05/15/2023).

[54] E. Kavlakoglu, AI vs. Machine Learning vs. Deep Learning vs. Neural Networks:
What’s the Difference? May 2020. [Online]. Available: https://www.ibm.com/cl
oud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks

(visited on 05/15/2023).

[55] K. Hornik, M. Stinchcombe, and H. White, “Multilayer Feedforward Networks Are
Universal Approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, Jan. 1989.

[56] M. van der Baan and C. Jutten, “Neural Networks in Geophysical Applications,”
GEOPHYSICS, vol. 65, no. 4, pp. 1032–1047, Jul. 2000.

71

http://www-formal.stanford.edu/jmc/whatisai/node1.html
https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning
https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning
https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks

BIBLIOGRAPHY

[57] I. H. Sarker, “Deep Learning: A Comprehensive Overview on Techniques, Taxonomy,
Applications and Research Directions,” SN Computer Science, vol. 2, no. 6, p. 420,
Aug. 2021.

[58] S. R. Dubey, S. K. Singh, and B. B. Chaudhuri, “Activation Functions in Deep
Learning: A Comprehensive Survey and Benchmark,” Neurocomputing, vol. 503,
pp. 92–108, Sep. 2022.

[59] B. Ramsundar and R. Zadeh, TensorFlow for Deep Learning: From Linear
Regression to Reinforcement Learning. O’Reilly Media, 2018.

[60] S. Ruder, An Overview of Gradient Descent Optimization Algorithms, Jun. 2017.
arXiv: 1609.04747 [cs].

[61] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun, “The
loss surfaces of multilayer networks,” English (US), Journal of Machine Learning
Research, vol. 38, pp. 192–204, 2015, 18th International Conference on Artificial
Intelligence and Statistics, AISTATS 2015 ; Conference date: 09-05-2015 Through
12-05-2015.

[62] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From
Theory to Algorithms. Cambridge University Press, 2014.

[63] J. Brownlee, Difference Between a Batch and an Epoch in a Neural Network, Aug.
2022. [Online]. Available: https://machinelearningmastery.com/difference
-between-a-batch-and-an-epoch/ (visited on 06/16/2023).

[64] C. Olah, Calculus on Computational Graphs: Backpropagation, Blog, Aug. 2015.
[Online]. Available: http://colah.github.io/posts/2015- 08- Backprop/

(visited on 05/25/2023).

[65] R. C. Staudemeyer and E. R. Morris, Understanding LSTM – a Tutorial into Long
Short-Term Memory Recurrent Neural Networks, Sep. 2019. arXiv: 1909.09586
[cs].

[66] J. Zhou, G. Cui, S. Hu, et al., “Graph Neural Networks: A Review of Methods
and Applications,” AI Open, vol. 1, pp. 57–81, Jan. 2020.

[67] B. Sanchez-Lengeling, E. Reif, A. Pearce, and A. B. Wiltschko, “A Gentle
Introduction to Graph Neural Networks,” Distill, vol. 6, no. 9, e33, Sep. 2021.

[68] I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., “Generative Adversarial Nets,” in
Advances in Neural Information Processing Systems, Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K. Weinberger, Eds., vol. 27, Curran Associates, Inc.,
2014.

[69] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based Learning Applied
to Document Recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
Nov. 1998.

[70] J. Gui, Z. Sun, Y. Wen, D. Tao, and J. Ye, “A Review on Generative Adversarial
Networks: Algorithms, Theory, and Applications,” IEEE Transactions on
Knowledge and Data Engineering, vol. 35, no. 4, pp. 3313–3332, 2023.

72

https://arxiv.org/abs/1609.04747
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
http://colah.github.io/posts/2015-08-Backprop/
https://arxiv.org/abs/1909.09586
https://arxiv.org/abs/1909.09586

BIBLIOGRAPHY

[71] I. Goodfellow, NIPS 2016 Tutorial: Generative Adversarial Networks, Apr. 2017.
arXiv: 1701.00160 [cs].

[72] M. Mirza and S. Osindero, Conditional Generative Adversarial Nets, Nov. 2014.
arXiv: 1411.1784 [cs, stat].

[73] G. Zhu, H. Zhao, H. Liu, and H. Sun, “A Novel LSTM-GAN Algorithm for Time
Series Anomaly Detection,” in 2019 Prognostics and System Health Management
Conference (PHM-Qingdao), Oct. 2019, pp. 1–6.

[74] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, Image-to-Image Translation with
Conditional Adversarial Networks, Nov. 2018. arXiv: 1611.07004 [cs].

[75] M. Nießner, Introduction to Deep Learning (I2DL) (IN2346), Lecture Notes;
Technical University of Munich, GER, 2023. [Online]. Available:
https://niessner.github.io/I2DL/ (visited on 06/14/2023).

[76] F.-F. Li, Y. Li, and R. Gao, CS231n: Deep Learning for Computer Vision, Lecture
Notes; Stanford University, CAL, 2023. [Online]. Available: https://cs231n.git
hub.io/convolutional-networks/#conv (visited on 05/30/2023).

[77] A. Radford, L. Metz, and S. Chintala, Unsupervised Representation Learning with
Deep Convolutional Generative Adversarial Networks, Jan. 2016. arXiv: 1511.064
34 [cs].

[78] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift,” in Proceedings of the 32nd
International Conference on International Conference on Machine Learning -
Volume 37, ser. ICML’15, Lille, France: JMLR.org, Jul. 2015, pp. 448–456.

[79] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” Journal
of Machine Learning Research, vol. 15, no. 56, pp. 1929–1958, 2014.

[80] S. Cai, Y. Shu, G. Chen, B. C. Ooi, W. Wang, and M. Zhang, Effective and
Efficient Dropout for Deep Convolutional Neural Networks, Jul. 2020. arXiv: 1904
.03392 [cs].

[81] PyTorch, Dropout2d — PyTorch 2.0 documentation. [Online]. Available: https
://pytorch.org/docs/stable/generated/torch.nn.Dropout2d.html (visited
on 06/11/2023).

[82] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang,
“Physics-Informed Machine Learning,” Nature Reviews Physics, vol. 3, no. 6,
pp. 422–440, Jun. 2021.

[83] M. Reichstein, G. Camps-Valls, B. Stevens, et al., “Deep Learning and Process
Understanding for Data-Driven Earth System Science,” Nature, vol. 566, no. 7743,
pp. 195–204, Feb. 2019.

[84] S. Markidis, “The Old and the New: Can Physics-Informed Deep-Learning Replace
Traditional Linear Solvers?” Frontiers in Big Data, vol. 4, 2021.

73

https://arxiv.org/abs/1701.00160
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1611.07004
https://niessner.github.io/I2DL/
https://cs231n.github.io/convolutional-networks/#conv
https://cs231n.github.io/convolutional-networks/#conv
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1904.03392
https://arxiv.org/abs/1904.03392
https://pytorch.org/docs/stable/generated/torch.nn.Dropout2d.html
https://pytorch.org/docs/stable/generated/torch.nn.Dropout2d.html

BIBLIOGRAPHY

[85] X. Jia, J. Willard, A. Karpatne, et al., “Physics-Guided Machine Learning for
Scientific Discovery: An Application in Simulating Lake Temperature Profiles,”
ACM/IMS Trans. Data Sci., vol. 2, no. 3, May 2021.

[86] D. Komatitsch and J.-P. Vilotte, “The Spectral Element Method: An Efficient Tool
to Simulate the Seismic Response of 2D and 3D geological structures,” Bulletin of
the Seismological Society of America, vol. 88, no. 2, pp. 368–392, Apr. 1998.

[87] M. B. Hafeez and M. Krawczuk, “A Review: Applications of the Spectral Finite
Element Method,” Archives of Computational Methods in Engineering, vol. 30,
no. 5, pp. 3453–3465, Jun. 2023.

[88] D. Komatitsch and J. Tromp, “A Perfectly Matched Layer Absorbing Boundary
Condition for the Second-Order Seismic Wave Equation,” Geophysical Journal
International, vol. 154, no. 1, pp. 146–153, Jul. 2003.

[89] Z. Xie, D. Komatitsch, R. Martin, and R. Matzen, “Improved Forward Wave
Propagation and Adjoint-Based Sensitivity Kernel Calculations Using a
Numerically Stable Finite-Element PML,” Geophysical Journal International,
vol. 198, no. 3, pp. 1714–1747, Jul. 2014.

[90] B. Engquist and A. Majda, “Absorbing Boundary Conditions for the Numerical
Simulation of Waves,” Mathematics of Computation, vol. 31, no. 139, pp. 629–651,
1977.

[91] T. Lay and T. C. Wallace, “Chapter 4 - surface waves and free oscillations,” in
Modern Global Seismology, ser. International Geophysics, R. Dmowska and J. R.
Holton, Eds., vol. 58, Academic Press, 1995, pp. 116–172.

[92] X. Ding, Y. Wang, Z. Xu, W. J. Welch, and Z. J. Wang, “Continuous Conditional
Generative Adversarial Networks: Novel Empirical Losses and Label Input
Mechanisms,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 45, no. 7, pp. 8143–8158, 2023.

[93] T. Kadeethum, D. O’Malley, J. N. Fuhg, et al., A framework for data-driven
solution and parameter estimation of PDEs using conditional generative adversarial
networks, 2021. arXiv: 2105.13136 [cs.LG].

[94] NVIDIA, What is PyTorch? 2023. [Online]. Available: https://www.nvidia.com
/en-us/glossary/data-science/pytorch/ (visited on 06/20/2023).

[95] O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional Networks for
Biomedical Image Segmentation, 2015. arXiv: 1505.04597 [cs.CV].

[96] H. Wang, P. Cao, J. Wang, and O. R. Zaiane, “UCTransNet: Rethinking the
Skip Connections in U-Net from a Channel-Wise Perspective with Transformer,”
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 3,
pp. 2441–2449, 2022.

[97] H. de Vries, F. Strub, J. Mary, H. Larochelle, O. Pietquin, and A. Courville,
Modulating early visual processing by language, 2017. arXiv: 1707.00683 [cs.CV].

74

https://arxiv.org/abs/2105.13136
https://www.nvidia.com/en-us/glossary/data-science/pytorch/
https://www.nvidia.com/en-us/glossary/data-science/pytorch/
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1707.00683

BIBLIOGRAPHY

[98] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “Improved
Training of Wasserstein GANs,” in Proceedings of the 31st International Conference
on Neural Information Processing Systems, ser. NIPS’17, Long Beach, California,
USA: Curran Associates Inc., 2017, pp. 5769–5779.

[99] M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein GAN, 2017. arXiv: 1701.07
875 [stat.ML].

[100] C. Villani, “The Wasserstein Distances,” in Optimal Transport: Old and New, A.
Chenciner and S. Varadhan, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 93–111.

[101] J. L. Ba, J. R. Kiros, and G. E. Hinton, Layer Normalization, Jul. 2016. arXiv:
1607.06450 [cs, stat].

[102] Y. Yang and P. Perdikaris, “Adversarial uncertainty quantification in physics-
informed neural networks,” Journal of Computational Physics, vol. 394, pp. 136–152,
2019.

[103] PyTorch, Automatic Differentiation with torch.autograd, 2023. [Online]. Available:
https://pytorch.org/tutorials/beginner/basics/autogradqs%5C_tutorial

.html (visited on 06/13/2023).

[104] B. Fornberg, “Generation of Finite Difference Formulas on Arbitrarily Spaced
Grids,” Mathematics of Computation, vol. 51, no. 184, pp. 699–706, 1988.

[105] PyTorch, Reproducibility — PyTorch 2.0 documentation, 2023. [Online]. Available:
https://pytorch.org/docs/stable/notes/randomness.html (visited on
06/17/2023).

[106] D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, Jan. 2017.
arXiv: 1412.6980 [cs].

[107] T. Schaul, I. Antonoglou, and D. Silver, Unit Tests for Stochastic Optimization,
Feb. 2014. arXiv: 1312.6055 [cs].

[108] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, Optuna: A Next-generation
Hyperparameter Optimization Framework, Jul. 2019. arXiv: 1907.10902 [cs,

stat].

[109] Optuna Contributors, Efficient Optimization Algorithms, 2018. [Online]. Available:
https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/003

_efficient_optimization_algorithms.html#pruning (visited on 06/20/2023).

[110] N. Selvaraj, Hyperparameter Tuning Using Grid Search and Random Search in
Python, 2022. [Online]. Available: https://www.kdnuggets.com/2022/10/hyp
erparameter-tuning-grid-search-random-search-python.html (visited on
06/18/2023).

[111] J. Brownlee, How to Identify Overfitting Machine Learning Models in Scikit-Learn,
Nov. 2020. [Online]. Available: https://machinelearningmastery.com/overfit
ting-machine-learning-models/ (visited on 06/16/2023).

75

https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1607.06450
https://pytorch.org/tutorials/beginner/basics/autogradqs%5C_tutorial.html
https://pytorch.org/tutorials/beginner/basics/autogradqs%5C_tutorial.html
https://pytorch.org/docs/stable/notes/randomness.html
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1312.6055
https://arxiv.org/abs/1907.10902
https://arxiv.org/abs/1907.10902
https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/003_efficient_optimization_algorithms.html#pruning
https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/003_efficient_optimization_algorithms.html#pruning
https://www.kdnuggets.com/2022/10/hyperparameter-tuning-grid-search-random-search-python.html
https://www.kdnuggets.com/2022/10/hyperparameter-tuning-grid-search-random-search-python.html
https://machinelearningmastery.com/overfitting-machine-learning-models/
https://machinelearningmastery.com/overfitting-machine-learning-models/

BIBLIOGRAPHY

[112] PyTorch, Torch.cuda.memory_allocated — PyTorch 2.0 documentation, 2023.
[Online]. Available: https://pytorch.org/docs/stable/generated/torch.cud
a.memory_allocated.html (visited on 06/19/2023).

[113] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image Quality Assessment: From
Error Visibility to Structural Similarity,” IEEE Transactions on Image Processing,
vol. 13, no. 4, pp. 600–612, Apr. 2004.

[114] J. Brownlee, How to use Learning Curves to Diagnose Machine Learning Model
Performance, Feb. 2019. [Online]. Available: https://machinelearningmastery
.com/learning-curves-for-diagnosing-machine-learning-model-performa

nce/ (visited on 06/18/2023).

[115] A. Srivastava, L. Valkov, C. Russell, M. U. Gutmann, and C. Sutton, “VEEGAN:
Reducing Mode Collapse in GANs Using Implicit Variational Learning,” in
Proceedings of the 31st International Conference on Neural Information
Processing Systems, ser. NIPS’17, Red Hook, NY, USA: Curran Associates Inc.,
2017, pp. 3310–3320.

[116] Y. Saatci and A. G. Wilson, “Bayesian GAN,” in Advances in Neural Information
Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, et al., Eds., vol. 30,
Curran Associates, Inc., 2017.

[117] S. Lala, M. Shady, A. Belyaeva, and M. Liu, “Evaluation of mode collapse in
generative adversarial networks,” High Performance Extreme Computing, 2018.

[118] M. Shahbazi, M. Danelljan, D. P. Paudel, and L. Van Gool, Collapse by
Conditioning: Training Class-conditional GANs with Limited Data, Mar. 2022.
eprint: 2201.06578 (cs). (visited on 06/23/2023).

[119] M. Feurer and F. Hutter, “Hyperparameter Optimization,” in Automated Machine
Learning: Methods, Systems, Challenges, F. Hutter, L. Kotthoff, and J. Vanschoren,
Eds., Cham: Springer International Publishing, 2019, pp. 3–33.

[120] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum, “Learning a Probabilistic
Latent Space of Object Shapes via 3D Generative-Adversarial Modeling,” in
Advances in Neural Information Processing Systems, D. Lee, M. Sugiyama, U.
Luxburg, I. Guyon, and R. Garnett, Eds., vol. 29, Curran Associates, Inc., 2016.

[121] A. Daw, M. Maruf, and A. Karpatne, “PID-GAN: A GAN Framework Based on
a Physics-informed Discriminator for Uncertainty Quantification with Physics,”
in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery
& Data Mining, ser. KDD ’21, New York, NY, USA: Association for Computing
Machinery, Aug. 2021, pp. 237–247.

[122] S. Wang, Y. Teng, and P. Perdikaris, “Understanding and Mitigating Gradient Flow
Pathologies in Physics-Informed Neural Networks,” SIAM Journal on Scientific
Computing, vol. 43, no. 5, A3055–A3081, 2021.

76

https://pytorch.org/docs/stable/generated/torch.cuda.memory_allocated.html
https://pytorch.org/docs/stable/generated/torch.cuda.memory_allocated.html
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
2201.06578

BIBLIOGRAPHY

[123] M. Bode, M. Gauding, Z. Lian, et al., “Using Physics-Informed Enhanced
Super-Resolution Generative Adversarial Networks for Subfilter Modeling in
Turbulent Reactive Flows,” Proceedings of the Combustion Institute, vol. 38, no. 2,
pp. 2617–2625, Jan. 2021.

[124] R. Rodriguez-Torrado, P. Ruiz, L. Cueto-Felgueroso, et al., “Physics-Informed
Attention-Based Neural Network for Hyperbolic Partial Differential Equations:
Application to the Buckley–Leverett Problem,” Scientific Reports, vol. 12, no. 1,
p. 7557, May 2022.

[125] S. Fu and K. Gao, “A Fast Solver for the Helmholtz Equation Based on the
Generalized Multiscale Finite-Element Method,” Geophysical Journal International,
vol. 211, no. 2, pp. 797–813, Nov. 2017.

[126] B. Li, H. Wang, S. Feng, X. Yang, and Y. Lin, Solving Seismic Wave Equations on
Variable Velocity Models with Fourier Neural Operator, 2023. arXiv: 2209.12340
[cs.LG].

[127] Z. Li, N. Kovachki, K. Azizzadenesheli, et al., Fourier Neural Operator for
Parametric Partial Differential Equations, 2021. arXiv: 2010.08895 [cs.LG].

77

https://arxiv.org/abs/2209.12340
https://arxiv.org/abs/2209.12340
https://arxiv.org/abs/2010.08895

	List of Figures
	List of Tables
	Introduction
	Motivation
	Related work and contribution
	Wave equation solver
	Predicting subsurface properties
	Our contribution

	Theoretical background
	Seismic imaging
	Wave equation
	Seismic inversion

	Deep learning
	Introduction to deep learning procedure
	Modern network architectures
	Generative adversarial nets
	Convolutional neural networks

	Physics-informed deep learning

	Methodology
	Wavefield data generation
	Simulation domain and parameters
	Data processing

	Network building and training
	Continuous conditional generative adversarial network
	Architecture
	Objective function

	Physical consistency-based losses
	Training procedure

	Results
	Physics-informed vs. purely data-driven
	Learning dynamics and hyperparameters
	Visual inspection of generated pressure wavefields

	Layered velocity distribution
	Learning dynamics and hyperparameters
	Visual inspection of generated pressure wavefields
	Computational time comparison

	Discussion
	CcGAN performance
	Comparison to other work
	Limitations and potential improvements

	Conclusion
	Appendix
	Bibliography

