Consideration of Material Criticality for Battery Sub-Technologies in an Energy System Optimization Model for Belgium and the Netherlands

Thesis Research Project

Lilli Martens

13.12.2023

Overview

- 1. Research Institute
- 2. Context
- 3. Research objective
- 4. Methodology
- 5. Results
- 6. Discussion
- 7. Conclusion

Research Institute

Institute of Networked Energy Systems, Department of Energy System Analysis

- System analysis and technology assessment in the field of energy supply
- Focus on scenario development, agent-based modelling

Introduction

Development of renewable energy technologies needs to increase

Demand for raw materials will grow substaintially

Raises concerns about the availability of raw materials for the energy transition

- Valero et al. (2018)
- Moreau et al. (2019)
- Junne et al. (2020)
- Schlichenmaier & Naegler (2022)
- List of Critical Raw Materials from European Comission (2023)

Research Objective

- Integrate the criticality of a technology class into an energy system modelling framework to perform a multi-objective optimisation
- Analyse how the energy system design differs in Belgium and the Netherlands

How do designs of a fully renewable energy system in Belgium and the Netherlands differ if they are optimized to minimize the system cost and criticality of different battery sub-technologies in utility-scale energy storage systems?

Methodology

Battery Sub-Technologies

Criticality Factor

Energy system modelling framework (REMix)

Methodology – Sub-Technologies

Chosen sub-technologies:

- Lithium nickel cobalt manganese oxide (NMC-111)
- Lithium iron phosphate (LFP)
- Lead Acid
- Redox Flow

Techno-economic data for storage technologies:

- Investment & Operation and Maintenance Cost
- Life time & Efficiency

Methodology – Criticality Factor

Criticality factor from MaTiC-M project

Based on the Supply
 Disruption Probability
 (SDP) indicator from EU methodology

Mass weighted criticality factor on a technology level

Mass weighted criticality factor for chosen sub-technologies in 2023

Methodology – REMix

- Large-scale, publicly available data set aimed at modelling renewable European electricity systems
- Simplified representation of Belgium and the Netherlands
- Electricity solely from solar photovoltaic and wind turbines
- Possibility of electricity import from outside the modelled system

Map of Network Nodes and Transmission Lines of Original Dataset

Methodology – REMix

Two indicators for the multi-objective optimisation:

	SystemCost	Criticality
1. 2. 3.	Investment cost Maintenance & Operation cost Electricity import	1. Criticality factor

REMix built-in pareto method:

- 5 pareto points and a pareto factor of 1.02
- 1. Base scenario (cost optimisation)
- 2. Criticality scenario (multi-objective optimisation)

Results

Pareto front of the results of the criticality scenario

Composition of SystemCost varies between Belgium and the Netherlands

Belgium	The Netherlands
- Electricity Import	- Investment in wind turbines and
	storage technologies

Electricity Balance in the Netherlands between 11.02.2013 15:00:00 until 28.02.2013 07:00:00

- High share of Redox Flow in NL relates to high share of wind power
- Less expensive LFP in BEL due to less intermittency by renewable energy sources

- The decrease in criticality results from the decrease in storage capacity
- The increase in cost results from the increase in electricity import needed to substitute the reduced storage capacity

- Total number of storage units decreased in both countries
- Shift from LFP to Redox Flow batteries in BEL

Discussion

Criticality factor

Limitations to the calculation of criticality factor

 Other methodologies with different focus points

Sub-Technologies

- Current market distribution among battery types
- Promising new technologies, e.g. sodiumion batteries

Proof of Concept

- Immense upscaling potential
 - European model
 - Technological scope
 - Pareto implementation

Conclusion

Implementation of a criticality factor for one technology has an effect on the design of the energy system

Reduction of storage capacity to reduce criticality

Changes in the choice of sub-technology due to characteristics of battery Substitution with other technologies due to missing implementation of criticality

A first approach at considering criticality in energy system modelling with many potential expansions