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Abstract

In the field of remote sensing, the scarcity of stereo-matched data often hinders
the training of deep neural networks. The use of synthetically generated images
as an alternative alleviates this difficulty but suffers from the problem of domain
generalization. Unifying the capabilities of image-to-image translation and stereo-
matching presents an effective solution to address the problem of domain generalization.
Current methods involve combining two networks—an unpaired image-to-image
translation network and a stereo-matching network—while jointly optimizing them.
This work proposes a single edge-aware GAN-based network that effectively tackles
both tasks simultaneously. We obtain edge maps of input images from the sobel
operator and use it as an additional input to the encoder in the generator to enforce
geometric consistency during translation. Additionally, we include a warping loss
from translated images to maintain the stereo consistency. This work performs
qualitatively and quantitatively better than existing models, and its applicability
extends to diverse domains, including autonomous driving.
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Zusammenfassung

Zusammenfassung Im Bereich der Fernerkundung wird das Training von tiefen neu-
ronalen Netzen oft durch die Knappheit von Stereodaten behindert. Die Verwendung
von synthetisch generierten Bildern als Alternative mildert diese Schwierigkeit, lei-
det aber unter dem Problem der Domänengeneralisierung. Die Vereinheitlichung
der Fähigkeiten der Image-To-Image-Übersetzung und des Stereo-Matchings stellt
eine effektive Lösung dar, um das Problem der Domänengeneralisierung zu lösen.
Bei den derzeitigen Methoden werden zwei Netzwerke kombiniert - ein ungepaartes
Image-To-Image-Übersetzungsnetzwerk und ein stereo matching netzwerk - und
gemeinsam optimiert. Wir schlagen vor ein edge-aware-GAN-basiertes Netzwerk vor,
das beide Aufgaben effektiv und gleichzeitig bewältigt. Wir erhalten Kantenkarten
der Eingabebilder vom Sobel-Operator und verwenden sie als zusätzliche Eingabe für
den Encoder im Generator, um geometrische Konsistenz während der Übersetzung zu
erzwingen. Wir beziehen zusätzlich einen Warping-Verlust aus übersetzten Bildern
ein, um die Stereokonsistenz zu erhalten. Wir zeigen, dass unser Modell qualitativ
und quantitativ bessere Ergebnisse liefert als bestehende Modelle und dass seine
Anwendbarkeit sich auf verschiedene Bereiche erstreckt, einschließlich des autonomen
Fahrens.
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1 Introduction

Translation is that which transforms
everything so that nothing changes.

Günter Grass

The challenges in obtaining ground truth images in the remote sensing domain stem
from the difficulty in capturing matching images due to temporal changes, sparse
measurements and a significantly large baseline. Correspondence tasks like disparity
estimation or stereo reconstruction for these images, can be both cumbersome and
expensive. An additional layer of complexity in obtaining stereo-paired images for
aerial applications arises from the use of single cameras along an acquisition line. In
this scenario, the challenge extends beyond the initial capture, as the stereo matching
process demands meticulous consideration of the acquisition geometry. The singular
camera approach, while efficient in terms of data acquisition, introduces the intricacy
of orthorectification due to variations in terrain and elevation along the acquisition
line. The need for precise orthorectification in such cases is important to maintain
the accuracy of the derived 3D information from the stereo-paired images.

The concept of using synthetic data for training deep neural networks arises from the
persistent problems posed by data scarcity, privacy concerns, and the overall difficulty
in acquiring authentic data. Synthetic data generation allows for the creation of
simulated datasets that provide essential ground truth information, including accurate
labels and stereo disparity maps. The quality of synthetic data generation techniques
and their ability to mimic real-world characteristics are critical factors in determining
the success of vision model training using synthetic datasets.

While the synthetic data is obtained from a simulation of real-world scenario, it
may not perfectly represent the complexities and variations in real-world data in
remote sensing domain due to the subtleties and variations of buildings, bridges and
vegetation. This can result in domain shift, where the model struggles to generalize
to real world data. Unpaired image-to-image translation algorithms have been used
to address the problem of domain shift. They provide promising results to reduce the
domain gap between the domains. However they can alter the structural information as
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Figure 1: Aerial images translated using CUT[1]. The model tends to hallucinate
when translating images with diverse scenes, where the target distribution is more
likely to be unbalanced.

shown in Figure 1. This can pose as a serious challenge when training on downstream
tasks such as stereo matching or instance segmentation because the translated images
no longer align with their corresponding labels. Our approach focuses on the specific
task of translating synthetic images to realistic domain while maintaining the stereo
constraints. Some of the existing methods such as StereoGAN [8] have addressed this
task for autonomous driving datasets with joint optimization of image translation
and disparity estimation networks. Moreover images from remote sensing domain are
rich with diverse content. Existing methods suffer from the problem of an increased
likelihood of hallucinations and discrepancies to preserve epipolar geometry and fail
to perform good quality image translations.

We address this problem using a light-weight single edge-based GAN network, that
performs unpaired image-to-image translation while maintaining the stereo constraints.
At first, the edge maps of input images are obtained from Sobel operator. They
are provided as an additional input along with image pairs from both domains to
the generator. The encoder of the generator computes the content and edge code
separately from the input image and its edge map. The content code is added together
with the edge code as content edge code. The content edge code is provided to the
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decoder along with a random style to generate images of different domain as shown in
Figure 9. The style code is generated randomly from a normal distribution for each
domain and is maintained as a constant throughout the training. The use of edge
maps ensures that the structure of the image is retained and not lost in translation
and thus helps in matching to calculate the disparity map. Additionally, we use
warping loss, where we warp the left translated image with its respective disparity
map and compare it to the right translated image to enforce stereo constraints.
Extensive experiments across multiple datasets demonstrate our method outperforms
the existing methods quantitatively and qualitatively. Moreover, we use a single
light-weight network to perform optimization on two tasks without the use of any
pre-trained networks.

To sum up, our main contributions are:

• Developing a framework for image-to-image translation of stereo pairs con-
sidering a consistent translation of left and right images that preserves the
matching.

• Employing edge maps in the generator to retain essential geometric content and
enhance the preservation of sharp boundaries within the translated images.

• Incorporating warping loss to enforce stereo consistency without the need for
an additional stereo matching network.
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Figure 2: Examples of aerial scene translated by SyntStereo2Real. Our model can
produce semantically consistent realistic translations.
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2 Related Work

2.1 Unpaired image-to-image translation

The concept of image-to-image translation was first introduced by Hertzmann et al[9]
called Image analogies, which used non parametric texture model to generate a new
image that is analogous to a given image based on the analogy with another pair of
images. More recent approaches use a parametric translation function approach using
CNN such as pix2pix[10], where the mapping function is learned for the input-output
image pair. But these approaches required image pairs in the input and output
domain. On the other hand, unpaired image data is more abundant and accessible
than paired data. In many real-world scenarios, obtaining a large and diverse set
of paired images with corresponding translations or annotations is impractical or
expensive. CycleGAN [2] has been a pioneer in solving this task by identifying the
key mappings in unpaired data from two different domains. The authors introduced
cycle consistency loss to constrain the one-to-one mapping space by reconstructing
the original image back from the translated image. This loss, in conjunction with
adversarial loss and identity loss, plays a pivotal role in image-to-image translation,
leading to remarkable visual results. The CUT [1] model extends this concept for
one-sided image translation with a contrastive loss. It is calculated using negative
samples obtained from the same input, thus enabling faster training. However, the
addition of contrastive loss function does not translate well to images from certain
domains such as remote sensing as shown previously in Figure 1. Satellite images
are typically high-resolution, which leads to a large number of features learned by
the model, thereby inducing the problem of hallucination. UNIT [11] carries out
unsupervised image-to-image translation under the assumption that images from
both domains consist of a shared latent space. The model uses weight sharing
between the layers of generators and discriminators to learn the joint distribution
of data. MUNIT [12] extends this architecture to handle multiple styles using the
disentanglement principle to obtain content and style code separately. The content
code from the image is combined with a random style code from cross-domains to
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obtain diverse styled images.

2.2 Stereo matching

Semi-global matching (SGM) [13], is a classical stereo method that uses pixel-wise
matching cost for computing the disparities between two images. It produces an
approximate global optimal solution and is still one of the best performing classical
techniques for disparity estimation in certain domains with the advantage of an efficient
implementation. MC-CNN [14] introduced disparity estimation techniques based on
convolutional neural networks where pairs of small image patches are compared to
initialise the matching cost. A number of post processing steps are applied to the
matching cost which includes cross-based cost aggregation and semiglobal matching
refinement, followed by a left-right consistency check to eliminate errors in the
occluded regions. DispNet [6] is one of the pioneering networks that involves direct
estimation of disparity maps. It includes a 1D correlation layer which is used to
estimate a cost volume and then is refined using subsequent convolutional networks
for accurate disparity estimation. PSMNet [15] introduces spatial pyramid pooling
(SPP) to estimate cost volume at different scales of the image and a stacked hourglass
3D CNN to process the cost volume.

2.3 Domain adaptation

The task of translating synthetic images to realistic has been an active research
topic with multiple applications such as semantic segmentation, stereo matching and
pseudo label learning. StereoGAN [8] is specifically designed for the task of translating
synthetic images to realistic domain while maintaining the stereo constraints. It
utilizes a CycleGAN for image translation and a DispNet [6] for disparity estimation.
Secogan [16] utilized content disentanglement architecture from MUNIT for translating
synthetic images of autonomous driving datasets to realistic domain. SDA [17] utilizes
the spatial feature transform to fuse features of edge maps with source images. The
authors use CycleGAN for unapaired image translation along with warping loss to
enforce the stereo matching.

The task of translating images to a realistic style while maintaining the content
structure for stereo matching is a dual optimization task. Although the existing
networks address this problem, they suffer when applied to remote sensing images
due to large disparity values, seasonal effects and temporary objects. The models
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developed are predominantly applied in the field of autonomous driving and struggle
in achieving domain generalisation. Another challenge is the training of existing
models tends to become computationally expensive, as it is a combination of two
deep learning networks, one for image translation and the latter for stereo matching.
The number of parameters required for training is high and can slow the training
process. We address both of the above concerns in our work by employing a single
edge-based image translation GAN model trained additionally with warping loss to
enforce the stereo constraints.
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3 Background

3.1 GANs for Image to Image translation

Some of the prominent methods used for domain adaptation are using GAN-based
models. The initial works on image-to-image translation using GANs were carried
out by Shrivastava et al [18] for generating highly realistic images for gaze and hand
pose estimation. They used the SimGAN architecture where synthetic images from
the simulator were enhanced using a refiner network (similar to a generator) and a
discriminator to distinguish real from generated images.

GANs consists of two networks: the generator and the discriminator. The job of
the generator is to create new examples, while the discriminator aims to distinguish
between real and generated examples. They go back and forth in a competitive process.
The generator gets better at creating realistic examples, and the discriminator gets
better at telling real from fake. The training continues until the generator can produce
realistic examples which that cannot be labelled as fake by the discriminator.

Much recent work on domain adaptation is based on pix2pix [10] architecture
for paired image translation and CycleGAN [2] architecture for unpaired image
translation. The challenge in obtaining accurate remote sensing data for paired
translation of synthetic images makes pix2pix network infeasible to apply image
translation.

3.1.1 CycleGAN

CycleGAN consists of a pair of generator and discriminator for each domain as shown
in Figure 3. In order to learn the translation from one domain to other domain
images, the generator creates images from the first domain that match the output
distribution of the other domain. The task of the discriminator is similar to other
GANs where it distinguishes the translated image from the original image. To prevent
mode collapse during adversarial training, where all images map to the same output
image, a cycle consistency loss is added along with adversarial loss during training.
This loss ensures that the translated image retains the original structure of the image
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and modifies only the style.

Figure 3: (a) CycleGAN model architecture[2]. The model consists of two mapping
functions G and F, G : X → Y , F: Y → X and its associated discriminators to
distinguish real images from translated images. Cycle consistency ensures that the
same image is be obtained on translating one domain to other and the generated
image is translated back to first domain.

3.1.2 PatchGAN based discriminator

PatchGAN based discriminator is a type of discriminator that has been used in the
image generation tasks extensively. It was introduced by Isola et al[19], for image to
image translation tasks. The PatchGAN based discriminator learns to classify whether
each N×N patch in an image is real or fake. This is done by passing the discriminator
convolutionally across the image and averaging all responses from patches to provide
the final output of D. By only looking at local image patches, PatchGAN can capture
textures or styles of an image, rather than just its overall structure. Through its
emphasis on local patches instead of the broader structure, PatchGAN has the
capability to generate images with better detailed textures and styles. PatchGAN
exhibits increased robustness to image distortions and inconsistencies by concentrating
on small, localized regions rather than the complete image. It is also efficient to use
on large datasets as it assumes independence among pixels and thus minimizing the
computational workload.

3.2 Autoencoder

Autoencoder is a type of neural network which is used to obtain efficient encoding in
a latent space. The autoencoder processes input data through the encoder function,
denoted as f , to obtain a compressed representation in a lower-dimensional latent
space. The compressed image is then reconstructed using the decoder function,
represented as g, with the aim of faithfully reproducing the original input.

h = f(X), X̃ = g(h) (1)
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Theoretically, the weight Wf is a pseudo inverse of the weight Wg . It is important
to note that the functions f and g are typically nonlinear, allowing for more expressive
mappings.

Figure 4: Architecture of autoencoder. The input X is compressed using a function
f , encoder to project it to a lower dimension and is then reconstructed to the original
data using function g, decoder. [3].

3.3 Adaptive instance normalisation

Adaptive Instance Normalization (AdaIN)[20] is a technique used in neural networks
for image style transfer and other tasks where adjusting the visual appearance of
an image is important. It builds upon the concept of Instance Normalization but
introduces a more flexible and adaptable approach.

In Instance Normalization, you normalize the input data to a specific style using
parameters that adjust the mean and variance of each channel. AdaIN takes it a step
further by allowing you to specify both content and style inputs. AdaIN aligns the
mean and variance of the content input to match those of the style input. This is done
separately for each channel, allowing AdaIN to capture detailed style characteristics.

In equation 2, z refers to the activation of the output from encoder, γ and β are
the style code parameters of the target domain.

AdaIN(z, γ, β) = γ

(
z − µ(z)

σ(z)

)
+ β (2)
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Figure 5: In general configuration of two pinhole cameras, varying the 3D position of
a point along its projection ray in one camera leads to pixel motion along a different
line in the other camera. In stereo camera, a point projects to same scan-line in both
cameras. The gray triangle represents the epipolar plane in which the 3D point, its
projections and the camera centers are co-planar [4].

3.4 Stereo Matching

The task of stereo matching is to find corresponding points or features in two images
taken from different viewpoints. To find the corresponding points, we need to enforce
the epipolar geometry constraint that guarantees that a point seen on one camera’s
view projects onto a line in another camera. Since the images are taken in a calibrated
setup, the epipolar line is known. The epipolar constraint restricts the disparity
estimation into a 1D search problem as shown in Figure 5. Disparity is the signed
distance between images of the same 3D point in two views. Disparity estimation
can be considered as a special case of optical flow, since it is a scalar quantity rather
than vector field.

The disparity value is directly related to the depth value in the pixel. It is given
by the equation 3. Focal length is an attribute of camera and the baseline is the
distance between the two camera projection centers. Since the images are captured
after camera calibration both the values are known, and hence the depth values can
be estimated. This can help in creating 3D models using stereo reconstruction from
disparity values.

depth =
focallength · baseline

disparity
(3)

Stereo matching for high-resolution satellite images or remote sensing data has
been an active research topic in the field of photogrammetry and remote sensing.
Generally, stereo matching consists of four steps : matching cost computation, cost
aggregation, disparity computation and optimization, and disparities refinement [21].
The methods to solve stereo matching problem can be classified into three categories :
variational methods, combinatorial optimization and deep learning based approaches.

Variational methods formulate the disparity estimation as an energy minimization
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problem. The goal is to find a set of flow vectors that minimize the energy function.
Variational methods typically assume that disparities vary smoothly within a local
neighborhood. This assumption is reasonable for small disparities, where neighboring
pixels are likely to have similar disparities. However, for larger disparities, this
assumption can break down, leading to inaccurate results. Larger disparities are
preferred for disparity estimation as they can lead to accurate estimation of height of
buildings for 3D model. Due to this reason, combinatorial approaches are preferred
for the task of disparity estimation. The most common combinatorial technique is
the Semi-global matching technique (SGM) by Hirschmüller [13].

3.4.1 Semi-global Matching

Semi-global matching uses pixel-wise matching cost for computing the disparities
between two images. Thanks to the stereo rectification, the corresponding matching
pixel for each pixel needs to be looked upon only on the same row in the second
image. The matching cost is defined by a unary cost function θ(xp), where each pixel
p is matched with the pixel that looks closest to it in the other image. A pairwise
cost θpq(xp, xq) is added as a smoothness constraint, where p is the matching pixel
and q are the neighboring pixels in the same row as shown in Equation 4. This leads
to approximations only along the x-axis and no smoothness in the y-direction as
shown in Figure 6. Thus in SGM, the author proposes to consider not only horizontal
direction but lines in multiple directions. Applying this idea leads to quite an accurate
estimation of disparity values for each pixel. This method does not provide a globally
optimal solution (it is an NP-Hard problem), but a good approximate solution for
disparity estimation. SGM is still one of the best-performing classical stereo method
and is efficient for real-time implementations.

E(x) =
∑
p

θ(xp) +
∑

p,q∈N
θ(xp, xq) (4)

Figure 6: (a) Disparity estimated with dynamic programming along x-axis (b)
Disparity estimated using SGM (c) Ground truth disparity [5].
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3.4.2 Deep learning based techniques

Deep learning based approaches have also been implemented to solve the problem of
disparity estimation. Siamese network is one of the initial methods to perform patch
based disparity estimation. The network takes input of two image patches from the
left and right images, and use convolutional layers to compute feature representation.
The network then consists of fully connected layers on top to calculate the similarity
scores. The network is trained to compute the similarity between left and right patch.
This method is slow and the matching score is not great for all resolutions, because
score is not calculated for different disparity ranges.

DispNet

DispNet is the first neural network to process stereo camera images as a complete
unit, and to predict a dense disparity map in a single inference step. The model
follows a similar architecture to FlowNet[22] with the addition of only two structural
changes: a correlation layer and additional convolutional layers in between upsampling
layers. FlowNet consists a contractive part and an expanding part with long-range
links between them. The contracting path captures fine-grained details through
convolutional and pooling layers, while the expanding path recovers spatial information
and synthesizes a holistic understanding of the image. This dual pathway enables the
network to seamlessly integrate local features and context, enhancing its ability to
comprehend and interpret global structures within the image. The correlation layer
in DispNetC (adapted from the FlowNet-C network) computes the scalar product
between a feature vector from the first image and a 2D region of feature vectors in the
second image, spread around the location of the first image’s reference feature. With
the extra convolutions, the network can produce outputs with significantly reduced
visible artifacts. Predicted disparity maps are subpixel accurate.

Figure 7: DispNet architecture. [6].
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3.4.3 AANet

In this work, we use AANet to evaluate the performance of stereo matching of our
network with other existing works[7]. In Figure 8, the Adaptive Aggregation Network
(AANet) architecture is presented. The process begins with a stereo pair, from
which a downsampled feature pyramid is extracted at resolutions of 1/3, 1/6, and
1/12 using a shared feature extractor. Following this, multi-scale cost volumes are
generated by correlating left and right features at corresponding scales. The raw cost
volumes undergo aggregation through six stacked Adaptive Aggregation Modules
(AAModules). Each AAModule is composed of three Intra-Scale Aggregation (ISA,
as detailed in Sec. 3.1) modules and a Cross-Scale Aggregation (CSA, as explained in
Sec. 3.2) module, catering to three pyramid levels. Subsequently, multi-scale disparity
predictions are regressed. It is noteworthy that dashed arrows serve a specific role
during training and can be omitted during inference. Finally, the disparity prediction
at 1/3 resolution undergoes hierarchical upsampling and refinement to achieve the
original resolution.

Figure 8: AANet architecture. [7].
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4 Approach

For correspondence tasks like disparity estimation or stereo reconstruction in the
field of remote sensing, obtaining aerial or satellite images of cities using a stereo-
rectified camera can be cumbersome and expensive. Some stereo matching for aerial
is done with single cameras but along an acquisition line, which adds the difficulty of
orthorectification. The idea of using synthetic data for training deep neural networks
is motivated by data scarcity, privacy concerns, avoiding manual annotation costs,
and difficulty in obtaining data. While the synthetic data consists of the simulation
of real-world scenario, it may not perfectly represent the complexities and variations
in real-world data. This can result in domain shift, where the model struggles
to generalize from synthetic data to real-world data. Image-to-image translation
algorithms have been used to address the problem of domain shift. Our approach
focuses on this problem, if we can translate a photo to an artistic-styled Van Gogh
painting using image-to-image translation algorithms, why not use it for translating
the synthetically generated images to real-world data for models to learn from?
Some of the existing methods have addressed this task for autonomous driving
datasets (Driving[6] and SYNTHIA[23] for synthetic datasets, KITTI2012[24] and
KITTI2015[25] for real-world datasets) using GAN based approaches[8][17]. Although
these methods produce promising results, the translations of images from remote
sensing domain are poor due to large disparity values and occlusions as shown
previously in Figure 1. We carry out the translation of synthetic to realistic domain
images under the assumption that both domains share universal features that describe
the elements in the scene (such as buildings, roads, vegetation), as well as distinctive
features specific to the particular domain, focusing on visual attributes like appearance
or style.

Given a synthetic left-right-disparity tuple (xcl, xcr, xd)a ∈ Xa denoting the stereo
pair of left and right image with its corresponding disparity for source domain, a
real image xcb ∈ Xb representing the target domain, and two randomly sampled style
codes sa, sb for each domain, our model synthesizes a realistic stereo matched pair of
the synthetic image.
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Figure 9: Illustration of the generator architecture in an autoencoder with edge map
integration. The image along with its corresponding edge map is encoded and added
together as content edge code before applying it as an input to the decoder. The
decoder merges the content-edge code with style code from every domain to generate
content that is contextually fitting. xca, xcb represents the input images from both
domains (content), xea, xeb represents the corresponding edge maps. ca, cb, ea, eb
represents the content and edge code from encoder for both domains. sa, sb are the
randomly initialized style code before the training. xaa, xab, xba, xbb represents the
respective output images from the decoder.

Our work draws inspiration from MUNIT [12] and Secogan [16] to learn disentangled
representations from two domains without supervision. Similar to [16], our translation
model consists of an autoencoder (encoder E and decoder G) as a generator for both
domains. The encoder factorizes each input into latent content code ci(i = a, b), where
ci = E(xci). Style code is initialized before the training using normal distribution as
si = (γi, βi) for each domain and remains constant during the training. Edge maps of
the corresponding input images are obtained from the Sobel operator xei = SO(xci)

and are given as additional input to preserve structural information. The encoder
generates the latent edge code ei = E(xei) from the edge maps. The edge code is
added to the content code as content-edge code cei = ci + ei and is provided as
an input to the decoder as shown in Figure 9. The decoder generates the output
image by swapping the content and style codes. The discriminator distinguishes the
original image to the generated image by adversarial training. Since we have a real
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and synthetic domain, we have two discriminators DA and DB.
Multiple losses help in constraining and generating images in a meaningful manner

in GAN based networks. Figure 10 shows an overview of the losses used in the
training of the model. A reconstruction loss

Laa
rec(E,G) = Exa∼Xa∥G(E(xa), sa)− xa∥1 (5)

ensures that the model generates accurate reconstruction of images after content
disentanglement.

In image-to-image translation, it is essential that the generated images in the target
domain are not only realistic but also faithfully represent the original content. Cycle
consistency loss [2],

Laba
cycle(E,G) = Exa∼Xa∥G(E(xab), sa)− xa∥1 (6)

enforces this constraint by calculating the loss between original image and the
transformation of original image to another domain (xab), and transform it back
again to original domain (xaba).

Since we use a GAN based approach to train the model, we use an adversarial loss

La
adv(E,G,Da) =Exa∼Xa logDa(p(xa)) + Exb∼Xb

log(1−Da(p(xba)) (7)

to match the data distribution of translated images to the distribution of target
domain. The adversarial loss is employed by both the discriminator and generator,
whereas the other mentioned loss exclusively guides the training of the generator.
Since we use a patch based discriminator, the p in Equation 7 refers to random
patches of image.

Considering the images from one domain are synthetically generated, we assume
to have access to additional information like ground truth labels, disparity maps,
and segmentation masks. Warping loss as an additional constraint can be a useful
addition, especially in tasks where the images are later used for training disparity
estimation models. We compute the warping loss

Lwarp = λ4 · L1(G(E(xra), sb)−W (G(E(xla), sb), xd)

+ λ5 · (1− SSIM(G(E(xra), sb)−W (G(E(xla), sb), xd)))
(8)

by comparing the warped left image W (xlab , xd) (which has undergone translation)
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Figure 10: Illustration of the GAN-based model architecture featuring multiple
loss functions. The design incorporates a combination of adversarial, reconstruction,
cycle and warping losses. Adversarial loss promotes realistic image generation, while
reconstruction loss ensures faithful reproduction of input data, cycle loss enforces
the correct mapping between domains and warping loss enforces geometrical stereo
constraints.
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and the right image after translation xrab . We use a combination of L1 loss and SSIM
loss for calculating the warping loss.

The corresponding losses from other domain Lbb
rec, Lbab

cycle and Lb
adv are calculated

in a similar manner. Therefore, the overall loss function for the generator is given by

min
E,G

max
Da,Db

L(E,G,Da, Db) =λ1 · (Laa
rec + Lbb

rec) + λ2 · (Laba
cyc + Lbab

cyc) + λ3 · (La
adv + Lb

adv) + Lwarp

(9)
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5 Experiments

5.1 Network architecture

We adopt the architecture of secogan with one generator and two discriminators. The
autoencoder, with a pair of encoder and decoder for generator is based on MUNIT
architecture[12]. The discriminators are implemented using PatchGAN architecture.
The input to the network consists of images from two domains and their corresponding
edge map and the output consists of translated images with the style from other
domain.

5.2 Datasets

We use two sets of datasets from different application areas to study the generalisability
of our model architecture. For remote sensing data, we use SyntCities dataset for
synthetic data and Urban semantic 3D dataset for real domain data[26][27].

For autonomous driving data, we use the Driving dataset from Sceneflow for
synthetic domain and KITTI(2015) dataset in real domain[6][25].

5.2.1 Syntcities

Syntcitites is a large dataset set consisting of synthetically generated images of remote
sensing imagery. It is specially developed to train deep learning networks for disparity
estimation. It consists of 8100 pairs of images resembling three cities : New York,
Paris and Venice. Large city models were generated using CityEngine, a software to
build cities in 3D environment. The models were then refined using Blender software
based on different illumination conditions, camera properties and reflection properties.
RGB images were then rendered from these models along with their corresponding
depth and segmentation maps. Disparity maps can be obtained from depth maps
using the equation 3. New York dataset consists of images with tall buildings that
help us study various lighting conditions such as shadows and reflection, where as
Paris and Venice consists of more street views and city maps which help us understand
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traffic and urban data. The size of the images is of 1024× 1024. We use 4000 sets of
images taken evenly from all the three cities for training.

5.2.2 Urban 3D semantic dataset

Urban Semantic 3D Dataset is a large-scale public data set hosted on IEEE DataPort1.
It consists of more than 320GB of data for training and evaluation of urban areas
based on some of the states in the USA. It offers multiview satellite images, airborne
lidar data for estimating digital surface models (DSMs) and semantic labels for
important features in the urban data. Since we primarily focus on urban areas for
image translation, we filter images which consists of atleast 15% of area as buildings
and not completely vegetation based on the label map. We obtain 1683 images each
of 1024× 1024 size for training after applying this filter.

5.2.3 Sceneflow

We use the Driving dataset from Sceneflow as synthetic data for training. Driving
consists of 4,400 images that decribe a virtual environment simulating car driving
scenarios. It encompasses fast and slow sequences of images, comprising scenes of
both forward and backward driving directions with accurate disparity maps. Each
image is of 540× 960 size and we use the complete dataset for training the network.

5.2.4 KITTI 2015

KITTI 2015 dataset is a subset of the KITTI Vision Benchmark Suite, specifically
designed for evaluating stereo vision and optical flow algorithms. KITTI is a widely
used benchmark in computer vision, particularly for tasks related to autonomous
driving. The KITTI 2015 dataset focuses on stereo and optical flow challenges and
provides ground truth annotations for evaluation purposes. The dataset includes
image pairs captured by stereo cameras, consisting of left and right images. For stereo
vision tasks, the dataset includes pixel-level annotations for disparities, representing
the perceived depth in each pixel.

We use 1000 tuples of images taken evenly from Syntcities dataset from all the three
cities for training. In US3D dataset, a significant portion of the images primarily
consists of vegetation with limited urban content. To address this, we filtered images

1The authors would like to thank the Johns Hopkins University Applied Physics Laboratory and
IARPA for providing the data used in this study, and the IEEE GRSS Image Analysis and Data
Fusion Technical Committee for organizing the Data Fusion Contest.
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based on label data, retaining only those images that contain a minimum of 15%
building-related content. We randomly selected 1000 samples each of size 1024× 1024

for training.
We use the complete dataset from Driving consisting of 4400 images of size 540×960

and the 160 training images each of size 385×1242 provided by KITTI2015 benchmark.
We resize the images of 512 × 512 for remote sensing dataset and 256 × 512 for
autonomous driving dataset during training due to memory and time constraints.

5.3 Loss functions

The adversarial loss Ladv aims to train the discriminator to distinguish between real
and fake samples. Using L2 loss in this context helps ensure that the discriminator
assigns higher scores to real samples and lower scores to fake samples. The squared
error L2 loss is a common choice for this task as it produces smoother gradients which
can lead to more stable training and avoid vanishing gradients.

In case of cycle loss Lcycle, we measure the difference between the original image
and the image that has been created through the generator. It is the same case with
recreation loss Lrec. Using L1 loss here encourages the generator to produce images
that are close in pixel-wise similarity to the original. It performs well on sparse data,
and can help preserve fine details in the generated images, which is crucial for tasks
like image-to-image translation. Using L2 loss for cycle-consistency might result in
overly smooth images, as it tends to blur details due to its sensitivity to outliers.

For warping loss Lwarp, we use a combination of L1 loss and SSIM as given in
equation 8[28]. Holes or gaps, can occur as a result of warping when a pixel in the
transformed image does not have a corresponding pixel in the original image. We
avoid calculating the loss in those regions, by masking those areas. This helps in
reducing error while calculating the loss. SSIM computes the perceptual distance
between the translated image and its ground truth. It assesses the similarity between
two images based on their luminance, contrast, and structure. This can be helpful to
measure the quality of warping.

5.4 Training

The network model is implemented using Pytorch [29] and the training is carried out
for 100 epochs with a batch size of 4. The hyperparameter values for λ1, λ2, λ3, λ4

and λ5 in 8 and 9 are set to 10,10,1,1 and 0.8 respectively. We use stochastic mini
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batch gradient descent with Adam optimizer [30]. Beta coefficients of Adam are set
to 0.5 and 0.999 respectively.

5.5 Evaluation metrics

We compare the two models based on three criteria : performance of stereo matching,
performance of unpaired image-to-image translation, and the number of learnable
parameters required to train the model.

We acquire translated images and assess their performance on disparity estimation
by training them on a disparity network. Specifically, we employ AANet [7] for the
training and evaluation of estimation. For the case of SyntCities to US3D we trained
for 400 epochs and for Driving to KITTI 2015 for 120 epochs, as this is a larger
dataset. In both cases we used a batch size of 20 and the maximum disparity was
set to 192. To evaluate the predicted disparity maps, we removed the areas where
the ground truth is not defined. 60 samples from US3D are used for testing and 40
for KITTI 2015 (these samples were not included in the GAN training). The cases
where the original data (before translation) is taken as input is named as Inference.

Given the scarcity of models specializing in synthetic-to-real domain adaptation with
stereo constraints, we conduct a comparative analysis of our model against StereoGAN.
We use MAD (Median Absolute Deviation) [31], 3px accuracy percentage and 1px
accuracy percentage for evaluation of stereo matching. MAD is a robust statistic,
being resilient to outliers in a dataset compared to standard deviation because it is
calculated by obtaining the median of the absolute difference of pixels and not the
squared mean as in standard deviation. 3px accuracy represents the percentage of
pixels in the disparity map for which the estimated disparity is within a range of
±3 pixels from the ground truth disparity and 1px refers to the same metric but for
a 1 pixel range. The results are given in Table 1. To evaluate the performance of
image translation, we compute the FID [32] score to calculate the similarity between
distributions of feature vectors for two separate datasets of image as given in Table 2.

5.6 Quantitative Results

As indicated in Table 1, our approach demonstrates enhancements, showcasing
a notable improvement with respect to StereoGAN of +3.14% in 3px accuracy
and +2.30% in 1px accuracy for remote sensing images. Additionally, the model
exhibits improvements of +1.727% in 3px accuracy and +1.621% in 1px accuracy for
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Datasets Metrics Inference StereoGAN SyntStereo2Real(ours)

SyntCities MAD ↓ 1.801 1.520 1.319
to US3D 3px-acc% ↑ 63.097 66.765 69.906

1px-acc% ↑ 30.790 33.619 35.928

Driving MAD ↓ 0.721 0.626 0.575
to KITTI 3px-acc% ↑ 88.871 89.646 91.373

1px-acc% ↑ 61.832 64.271 65.892

Table 1: Comparison of metrics for SyntCities to US3D and Driving to KITTI. The
table illustrates the performance across datasets, showcasing results for the original
synthetic dataset (Inference), StereoGAN, and SyntStereo2Real(ours). Bold values
highlight superior performance in MAD reduction and accuracy enhancement.

autonomous driving datasets. Please note that the ground truth in the KITTI dataset
is sparse and can not be evaluated for all the pixels. Despite that, we can visually
compare the reconstruction capabilities for not labelled pixels. The disparity maps
illustrated in Figure 12 and Figure 13 highlight a more complete prediction without
empty regions. FID in Table 2 shows the significant difference in the quality of image
translation compared to StereoGAN as the value is significantly lower indicating the
similarity of the nature of data. Comparing the number of parameters in Table 3,
our model has a significantly smaller number of learnable parameters for training,
making it ideal for applications with limited storage and processing capabilities.

Datasets Models FID ↓

SyntCities StereoGAN 188.913
to US3D SyntStereo2Real(ours) 152.863

Driving StereoGAN 188.112
to KITTI SyntStereo2Real(ours) 154.055

Table 2: Frechet Inception Distance (FID) Comparison between StereoGAN and
SyntStereo2Real (ours).

Model nparams

StereoGAN 54M
SyntStereo2Real(ours) 11M

Table 3: Comparison of the number of learnable parameters to train model between
StereoGAN and SyntStereo2real models.
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Figure 11: Comparison of image translations: The first row showcases original
synthetic images, the second row presents images translated using StereoGAN, and
the third row exhibits images translated using our SyntStereo2Real.

5.7 Qualitative Results

Figure 11 shows the results of translation of synthetic images using StereoGAN and
our network SyntStereo2Real. The main challenge in translating in remote sensing
images is maintaining the structural information for all resolution of images. Our
model effectively captures and reproduces the content such as architectural details of
building rooftops, bridges and roads. StereoGAN, while proficient in certain aspects
of disparity estimation, fails in the translation of shadows by hallucinating green
patches instead of building shadows. We can also notice StereoGAN generates small
colorful artifacts on the generated images as shown in Figure 11. Our method shows
consistent prediction of disparity maps for complete objects without empty gaps or
unclear boundaries.

5.8 Ablation Studies

In the Table 4, various configurations of the model are evaluated based on the
presence or absence of edge information and warping loss for disparity. Firstly, the
inclusion of edge information results in a decrease in the Mean Absolute Deviation
(MAD), indicating improved results in predicting deviations from the ground truth.
This decrease, coupled with a corresponding increase in both 3px accuracy and 1px
accuracy indicates the importance of addition of edge maps. Similarly, addition of
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warping loss helps in improving the accuracy and MAD of the model significantly.
Thus the the ablation study demonstrates that incorporating both edge information
and disparity significantly improves the model’s performance across all evaluated
metrics for the used datasets.

Metrics No Edge With Edge With Disp With Edge
and No Disp and Disp

MAD ↓ 1.779 1.755 1.646 1.319
3px-acc% ↑ 62.670 62.887 63.847 69.906
1px-acc% ↑ 31.503 31.853 32.600 35.929

Table 4: Ablation studies. Here the Edge refers to the addition of edge information
along with input image and Disp refers to the additional use of warping loss to enforce
disparity constraints.
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(a) Reference

(b) Ground Truth

(c) Inference

(d) StereoGAN

(e) SyntStereo2Real(ours)

Figure 12: Results of disparity estimation from the AANet for the KITTI 2015
dataset. Three models are computed for the image shown in (a) RGB reference image,
(b) Ground truth, (c) Model trained on Driving (Inference), (d) Model trained on
Driving translated using StereoGAN (e) Model trained on Driving translated using
SyntStereo2Real(ours).
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(a) Reference (b) Ground Truth (c) Inference

(d) StereoGAN (e) SyntStereo2Real(ours)

Figure 13: Results of disparity estimation from the AANet for the US3D dataset.
Three models are computed for the image shown in (a) RGB reference image, (b)
Ground truth, (c) Model trained on SyntCities (Inference), (d) Model trained on
SyntCities translated using StereoGAN (e) Model trained on SyntCities translated
using SyntStereo2Real(ours).
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6 Conclusion

This work introduces a novel, lightweight Generative Adversarial Network (GAN)
model tailored for unpaired image-to-image translation from synthetic to real data,
while emphasizing adherence to stereo constraints. Unlike traditional approaches, the
proposed model incorporates the significance of edge maps and integrates a warping
loss into the translation process. By leveraging edge maps, the model preserves
structural information during translation, aiding in reducing hallucination and en-
hancing the shadowing effects. The inclusion of a warping loss ensures accuracy in
the estimation of disparities, crucial for maintaining the integrity of translated images
in the stereo context. The experimental results showcase the model’s state-of-the-art
performance in single synthetic-to-real image translation networks, demonstrating
its potential to contribute to 3D reconstruction tasks with reduced domain gap
dependence.

Moreover, here we highlight the broader applicability of the proposed model by
emphasizing its flexibility across different domains. The method not only improves the
completeness of disparity predictions but also showcases advantages in terms of reduced
memory resource requirements when compared to existing StereoGAN techniques.
The flexibility of the model for diverse domains underscores its adaptability to various
synthetic-to-real translation scenarios, making it a promising solution for real-world
applications where image fidelity, disparity accuracy, and resource efficiency are
essential considerations.
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