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Abstract
Objective. Unsupervised myocontrol methods aim to create control models for myoelectric
prostheses while avoiding the complications of acquiring reliable, regular, and sufficient labeled
training data. A limitation of current unsupervised methods is that they fix the number of
controlled prosthetic functions a priori, thus requiring an initial assessment of the user’s motor
skills and neglecting the development of novel motor skills over time. Approach.We developed a
progressive unsupervised myocontrol (PUM) paradigm in which the user and the control model
coadaptively identify distinct muscle synergies, which are then used to control arbitrarily
associated myocontrol functions, each corresponding to a hand or wrist movement. The
interaction starts with learning a single function and the user may request additional functions
after mastering the available ones, which aligns the evolution of their motor skills with an
increment in system complexity. We conducted a multi-session user study to evaluate PUM and
compare it against a state-of-the-art non-progressive unsupervised alternative. Two participants
with congenital upper-limb differences tested PUM, while ten non-disabled control participants
tested either PUM or the non-progressive baseline. All participants engaged in myoelectric control
of a virtual hand and wrist.Main results. PUM enabled autonomous learning of three myocontrol
functions for participants with limb differences, and of all four available functions for
non-disabled subjects, using both existing or newly identified muscle synergies. Participants with
limb differences achieved similar success rates to non-disabled ones on myocontrol tests, but faced
greater difficulties in internalizing new motor skills and exhibited slightly inferior movement
quality. The performance was comparable with either PUM or the non-progressive baseline for the
group of non-disabled participants. Significance. The PUM paradigm enables users to
autonomously learn to operate the myocontrol system, adapts to the users’ varied preexisting
motor skills, and supports the further development of those skills throughout practice.

1. Introduction

Myoelectric prosthetic hands can restore or enhance
independence for individuals with limb differences,
enabling them to perform various activities of daily
living [1, 2]. Machine learning-based myocontrol
approaches offer intuitive control of advanced pros-
theses [3] and are currently available in commercial
systems [4, 5]. Classification techniques enable con-
trol over multiple grasp types by defining an asso-
ciation between muscular activity and the desired

grasp [6, 7], while regressionmethods establish a con-
tinuous mapping between the user’s muscle activa-
tions and motor commands for the degrees of free-
dom (DoFs) of the prosthesis [8, 9]. These techniques
typically learn the myocontrol model in a supervised
way, meaning that surface electromyography (sEMG)
measurements of the forearm’s muscles are associated
with prescribed motor commands during a calibra-
tion phase.

Supervised myocontrol relies on the assumptions
that the distribution of the control signal remains
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consistent between training and testing conditions,
and that training samples are accurately labeled [10].
However, meeting these assumptions in a realistic set-
ting poses methodological challenges. The character-
istics of sEMG signals can change over time due to
factors like muscle fatigue, limb position, and elec-
trode displacement [11, 12]. Common approaches to
reduce this distribution shift involve capturing more
of the signal variability in the training data [13, 14]
or iteratively recalibrating the system with additional
data over time [15, 16]. These methods come there-
fore at the cost of an increased burden on users by
prolonging the data acquisition process. Additionally,
accurately labeling samples can be difficult for indi-
viduals with limited residual muscle control, such as
those with limb differences. Extensive preprosthetic
user training is often required to generate muscle sig-
nals that are sufficiently distinguishable, stable, and
repeatable for myocontrol. This typically includes
mental practice, emulation of specific gestures using
the phantom limb, and sEMG visualization using
biofeedback [17, 18]. However, such training can be
demanding and requires supervision from healthcare
professionals. The requirement for expert guidance
typically confines preprosthetic training to clinical
facilities, which increases the associated costs, lim-
its the user’s exposure to training, and potentially
slows down the adoption of the myocontrol techno-
logy [18].

Unsupervised myocontrol is a desirable alternat-
ive to supervisedmyocontrol, as it eliminates the need
for hard-to-obtain labeled training data. Existing
unsupervised myocontrol approaches derive low-
dimensional approximations of the muscular input,
corresponding to distinct muscle coactivation pat-
terns, and employ them as control commands for
the kinematic or kinetic variables of interest [19–
22]. This is based on the neuromotor control prin-
ciple that the human nervous system efficiently real-
izes movement by recruiting and coordinating non-
redundant muscle synergies [23–25]. In this con-
text, the nervous system treats the activations of each
muscle synergy as high-level motor commands that
can be combined to generate the muscular activ-
ity necessary to accomplish the desired movement.
This also entails that information about the syn-
ergies’ structure and coactivation is encoded into
multichannel sEMG measurements of the muscular
activity [24].

Nonnegative matrix factorization (NMF)
algorithms are commonly utilized to extract muscle
synergies from sEMG signals. The advantage of this
specific factorization is that it decomposes signals
into linear nonnegative combinations of nonnegat-
ive components, which mirrors the central nervous
system’s approach of combining nonnegative antag-
onistic muscle activations [24–26]. In addition, using
these components as control inputs for prosthetic

devices enables users to naturally control multiple
prosthetic functions at once and adjust their intensity
proportionally. However, standard NMF solutions
can be ill-posed, and they therefore need particular
training procedures or formulations to enforce the
identification of minimally overlapping components
that could serve as reasonable proxies for muscle syn-
ergies [19, 26].

Jiang et al [19] proposed a minimally supervised
approach for simultaneous and proportional (SP)
myocontrol of a virtual cursor using muscle syner-
gies related to wrist movements. To identify these
synergies, they developed a DoF-wise calibration of
the myocontrol system, which involved concatenat-
ing partial NMF models trained on sEMG data of
antagonistic movement pairs, taking advantage of the
distinct muscle activation patterns each pair gen-
erated. This method reduced supervision compared
to traditional approaches, but still required users to
perform specific movements in a predefined order,
potentially posing challenges for individuals with
limb differences.

Building on this work, Lin et al [20] developed
an extension that imposed sparsity constraints on
NMF to allow for a more flexible calibration pro-
cedure. During this calibration, participants were
allowed to perform random wrist movements, enga-
ging multiple DoFs of the wrist simultaneously.
The sparse NMF formulation encouraged the extrac-
tion of minimally overlapping components, which
were then manually associated with the control of
the desired cursor directions. This manual associ-
ation was performed to ensure an intuitive cor-
respondence between muscle synergies and cursor
directions but required direct supervision during
the process. Moreover, their calibration procedure
explicitly excluded finger movements, which could
hinder the identification of potentially more effect-
ive muscle commands and could prove challenging
for individuals who struggle to isolate wrist and hand
movements.

Yeung et al [21] designed an adaptive version
of the paradigm by Lin et al [20], in which the
factorization model was automatically updated dur-
ing operation to account for changes in muscle syn-
ergies caused by the nonstationarity of sEMG and
the user’s adaptation to the myocontrol system. The
same quasi-unsupervised calibration procedure was
followed to build amyocontrol model for a prosthetic
wrist, which involved performing specific actions in
anunstructuredmanner andmanually defining a bio-
mimetic motor mapping between muscle synergies
and wrist actions. The myocontrol system automat-
ically updated the factorization model when it detec-
ted model degradation, characterized by increased
coactivation of antagonistic muscle synergies. Model
updates were made possible by adopting an incre-
mental NMF approach with sparsity constraints and
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a forgetting mechanism to gradually reduce the influ-
ence of older data. Even though this incrementalNMF
formulation allowed for fully unsupervised model
updates, the paradigm still relied on a partially super-
vised and constrained calibration procedure to create
a biomimetic motor mapping for myocontrol in the
first place.

Other approaches have also attempted to reduce
the amount of supervision necessary for defining
biomimetic motor mappings. This includes meth-
ods that identify relationships between muscular
activity and kinematic variables in a shared latent
space [27, 28], or those leveraging musculoskeletal
models to estimate forearm muscle forces directly
from electromyographic recordings [29]. However,
these strategies still require a loosely supervised cal-
ibration phase, involving synchronized acquisition of
sEMG and ground truth data for the estimated kin-
ematic variable.

As an alternative to biomimetic mappings,
abstract motor mappings can be adopted to imple-
ment fully unsupervised myocontrol. This type of
mapping, commonly used in supervised myocontrol
approaches, links muscle activations to hand gestures
without requiring a direct physiological relationship
between them [30, 31]. Research shows that humans
can learn such arbitrary mappings, including muscle
synergy-based ones, through closed-loop interaction
with a myocontrol system, making them a viable
approach for prosthetic control [24, 32]. Abstract
motor mappings based on muscle synergies provide
flexibility and robustness, enabling users to control
complex hand actions with comfortable, reliable, and
stable muscle activations [22, 33], while also being
more resistant to variations inmyoelectric signals due
to the muscle synergies’ focus on underlying muscle
coactivation structures [24].

Gigli et al [22] used abstract motor mappings
to devise a fully unsupervised coadaptive simul-
taneous and proportional myocontrol paradigm for
hand and wrist actions. Similarly to the method
from Yeung et al [21], this also originated as an
adaptive extension of the work of Lin et al [20].
However, this approach completely eliminated the
need for initialmodel calibration and allowed users to
identify viable muscle inputs autonomously. This was
achieved through a combination of adaptive NMF, an
abstract motor mapping, and a straightforward inter-
action strategy. An adaptive sparse NMF formula-
tion was devised to extract muscle synergies from the
user’s sEMG in realtime. An abstract motor mapping
was established by arbitrarily associating the extrac-
ted muscle synergies with predefined hand actions
of the myocontrolled hand. As users interacted with
the system and discovered action-triggering muscle

patterns, the synergies were continuously refined for
enhanced control. This approach provided an adapt-
ive and low-dimensional visualization of the muscle
space, enabling users to discover complex muscle
coactivation patterns, including those difficult to dis-
cern with standard biofeedback methods. Moreover,
the approach demonstrated performance comparable
to state-of-the-art supervised adaptive myocontrol
approaches.

A limitation of all existing unsupervised myocon-
trol paradigms that rely on NMF, is that the num-
ber of components for sEMG factorization must
be set to match the preexisting number of inde-
pendent muscle synergies that the user can gener-
ate. Specifically, allowing toomanyNMF components
might lead the factorization model to identify com-
ponents unrelated to physiological muscle synergies,
potentially resulting in unintended activations of the
myocontrolled hand. Determining how many inde-
pendent and stable muscle synergies the user can eli-
cit is challenging. First, the amount of sensors used
by the sEMGmeasurement system limits the number
of detectable synergies [34]. Second, the individual’s
preexisting motor capacities can significantly impact
the number of synergies elicited [25, 35]. Lastly, the
number of distinct synergies may increase over time
as the individual progressively familiarizes themselves
with more motor tasks [25, 36]. In practice, determ-
ining the number of independent muscle synergies
often requires extensive collaboration between the
user and a clinician,makingmore autonomousmeth-
ods for identifying and refining available synergies
desirable.

An alternative approach is to use a progressive
learning strategy for myocontrol functions, where
users begin with a single function and gradually
‘unlock’ additional functions as they master exist-
ing ones. This method mirrors the progressive nature
of human motor development, which involves the
ongoing expansion and refinement of motor func-
tions [25, 37, 38]. Throughout an individual’s life,
innate reflexes are integrated with newly acquired
rudimentary motor skills, which are then refined and
combined to form more advanced and specialized
skills. This progression is connected to the develop-
ment of muscle synergies, as new motor skills are
achieved by adapting preexisting muscle synergies
to meet the demands of tasks and efficiency [25,
38]. Moreover, the challenge point framework theory
suggests that a progressive motor learning approach
would support the acquisition of new motor func-
tions. In fact, adapting the task difficulty to an indi-
vidual’s current skill level has proven helpful to reg-
ulate the learning workload and ultimately accelerate
motor learning [39–41].

3



J. Neural Eng. 20 (2023) 066016 A Gigli et al

A sequential NMF formulation could be
employed to implement a progressive motor learning
procedure [42, 43]. This algorithm learns the factor-
ization model by adding one component at a time,
ensuring the stability of existing components when
new ones are introduced. However, existing sequen-
tial NMF methods are not suitable for incremental
settings as they are based on iterative warm reinitial-
ization of progressively larger models and retraining
on historical data to preserve the continuity of the
existing components. Simply discarding the histor-
ical data when attempting online sequential NMF is
unlikely to be successful, as the lack of context may
lead to a loss of continuity in the existing compon-
ents. Therefore, there is a need for an online factoriz-
ation method that maintains component continuity
without requiring the storage of historical data.

In this work, we introduce progressive unsu-
pervised myocontrol (PUM), a fully unsupervised
and coadaptive paradigm inspired by the progress-
ive nature of human motor learning. PUM enables
users to autonomously learn to control the functions
of a myocontrolled hand one at a time. These func-
tions are implemented through an abstract mapping
between the users’ muscle synergies and the desired
actions of the hand and wrist. Users refine muscle
synergies for myocontrol autonomously while famil-
iarizing themselves with the system and request to
unlock new functions as they become proficient with
the existing ones. The result is a coevolving and coad-
aptive interaction dynamics between the user and
the system. To achieve this, we extend the adaptive
NMF from [22] with an algorithmic procedure to
increase the number of components while preserving
the existing ones without explicitly storing historical
data. Moreover, we adjust the loss function to reduce
the overlap between the identified components and to
improve their stability over time.

In a multi-session user study, we evaluate how
effectively PUM enables users and the myocontrol
system to synergistically learn a control model in
a completely unsupervised manner. We specifically
investigate the performance of individuals with limb
differences (LD), who stand to benefit the most from
an unsupervised myocontrol paradigm, in compar-
ison to non-disabled (ND) participants, who repres-
ent the best-case scenario for myocontrol due to their
more extensive motor skills. Moreover, we exam-
ine how PUM compares to a non-progressive unsu-
pervised myocontrol (UM) paradigm, based on that
of [22], which serves as a baseline for identifying
potential advantages and limitations of our approach.
Our assessments and comparisons are based on the
workload associated with the progressive learning of
motor skills, as well as the evolution and retention of
myocontrol performance in a series of target achieve-
ment control (TAC) tests involving a virtual hand.

The paper is structured as follows. In section 2, we
detail the methods employed for the PUM paradigm.

Section 3 presents the study’s findings, followed by
a discussion of their implications in section 4. The
appendix includes mathematical derivations of the
factorization algorithm utilized in the myocontrol
paradigms.

2. Methods

In this section, we introduce the PUM paradigm
and discuss its relation to the non-progressive UM
paradigm adapted from Gigli et al [22]. We then
outline a multi-session study where we assess the
effectiveness of PUM in enabling participants to pro-
gressively learn, refine, and retain control of a vir-
tual hand’s functions, and compare its performance
to that of UM.

2.1. PUM
The PUM paradigm is inspired by the way humans
progressively develop theirmotor skills when learning
new tasks. The system factorizes muscular inputs into
muscle synergies and arbitrarily maps them to func-
tions of the myocontrolled virtual hand, while users
learn the motor mapping by interacting with the sys-
tem. Upon user request, the system adapts the num-
ber of synergies to accommodate an increasing num-
ber of functions, while aiming forminimal disruption
to previously learned synergies. A schematic overview
of the control paradigm is presented in figure 1.

2.1.1. Progressive incremental sEMG factorization
We introduce progressive incremental sparse nonneg-
ative matrix factorization (P-ISNMF), an algorithm
that adaptively computes an NMFmodel and enables
online identification of additional components while
preserving existing ones without model retraining.
It builds upon incremental sparse nonnegative mat-
rix factorization (ISNMF) [22], an adaptive NMF
variant with sparsity constraints and a forgetting
mechanism to discount outdated information. In
addition to incorporating a progressive mechanism,
our proposed approach features an improved object-
ive function that results in sparser and more stable
components.

NMF approximates a nonnegative matrix V of
size n× s as the product of nonnegative factorsW of
size n× r and H of size r× s, that is, V≈WH [44].
When the columns of V represent a series of s n-
dimensional data samples, the columns of W repres-
ent a set of r basis vectors and those of H a series
of s r-dimensional encoding coefficients that indic-
ate the relative contribution of the bases to each data
sample. In the context of myoelectric control, where
data samples correspond to positive envelopes of the
myoelectric signal, the bases and encoding coeffi-
cients can be loosely interpreted as muscle synergies
and their activations.
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Figure 1. Schematics for the progressive unsupervised myocontrol (PUM) paradigm.While the user interacts with the system to learn
myocontrol functions, the factorization model refines the identified muscle synergies by conducting periodic unsupervised model
updates. Myoelectric control is achieved by factorizing muscle activity into muscle synergies and arbitrarily mapping the
encoding coefficients to predefined myocontrol functions, obtaining motor commands for the orange myocontrolled hand. Users
progressively unlock more myocontrol functions on demand. This scheme evolves to accommodate user skill evolution and allows
the user and system to coadaptively refine control over new motor functions. A gray virtual hand serves as a reference during
performance evaluation, presenting the users with functions to replicate in realtime with the myocontrolled hand.

Algorithm 1. ISNMF. © 2022 IEEE. Reprinted, with per-
mission, from [22].

Input stream S of n-dim nonnegative samples
Parameter r, β, γ, µ, ϵ, tmax

1m← 0
2 A0← [0]n×r

3 B0← [0]r×r

4 while true do
5 m←m+ 1
6 Vm← n× kmatrix with k new samples from S
7 If m= 1 then
8 Wm← n× r positive random matrix
9 else
10 Wm←Wm−1

11 end
12 Hm

m← r× k positive random matrix
13 e0←∥Vm−WmHm

m∥2F
14 t← 0
15 repeat
16 t← t+ 1

17 Wm←Wm ◦ µAm−1+VmH
m⊺
m

µWmBm−1+WmHm
mH

m⊺
m +

µ(1−µm)
1−µ

βWm

18 Wm←max(Wm, ϵ)

19 Hm
m← Hm

m ◦ Wm⊺
Vm

Wm⊺WmHm
m+γ(Hm

m)
−0.5

20 Hm
m←max(Hm

m, ϵ)

21 et←∥Vm−WmHm
m∥2F

22 until |et− et−1|/e0 < ϵ or t> tmax

23 Am← µAm−1 +VmH
m⊺
m

24 Bm← µBm−1 +Hm
mH

m⊺
m

25 end

ISNMF [22] is an incremental solution to the
NMF problem that updates the factorization model
with new data while discounting the contribution of
previous data, without the need for storing it. We
present a refined version of this algorithm that fea-
tures an improved objective function for a sparser
factorization and increased stability, and we provide
a complete derivation in the appendix. In the fol-
lowing, we employ block notation for matrices, with

subscripts identifying specific matrix blocks and
superscripts representing thematrix status at particu-
lar updates. For instance, V j denotes the data samples
received during the jth update,Wm indicates the bases
values at the mth update, and Hm

j corresponds to
the encoding coefficients computed during the mth
update for the block of data samples collected at the
jth incremental update (with m⩾ j for obvious reas-
ons). Furthermore, all product, division, or power
operators applied to matrices in the update rules are
understood to be elementwise. At themth update, the
algorithm refines the factorization model by minim-
izing the following objective function that incorpor-
ates new data and discounts past contributions

Fm =
m∑
j=1

µm−j

(
1

2

∥∥∥Vj−WmHm
j

∥∥∥2
F
+

β

2
∥Wm∥2F

+ 2γ
∥∥∥Hm

j

∥∥∥0.5
0.5

)
. (1)

The forgetting factor µ ∈ (0,1] diminishes the influ-
ence of old data exponentially via µm−j, ensuring the
model adapts without excessive reliance on historical
data. ∥·∥F and ∥·∥0.5 denote the Frobenius and the ele-
mentwise L0.5 norms respectively. The scalars β ⩾ 0
and γ ⩾ 0 determine the regularization strength for
the bases and encoding matrices.

The new objective function improves the one
from the original method [22] by also scaling the reg-
ularizer of the bases with the exponential forgetting
factor. The motivation for this change is to ensure
that all three terms are balanced identically, regardless
of the number of block updates5. Furthermore, the
new objective function replaces L1 regularization for

5 Note that the scaling factor s(m) =
∑m

j=1µ
m−j starts at s(1) = 1

and converges to lim
m→∞

s(m) = 1
1−µ

.
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the encoding coefficients H with a sparser L0.5 regu-
larizer. A preliminary empirical validation confirmed
that both modifications had the desired effect on sta-
bility and sparsity.

An incremental solution to this problem based on
multiplicative updates is given in algorithm 1. The
derivation of the incremental algorithm, found in the
appendix, relies on the assumption that the model
undergoes small changes in each update, meaning
that old encodings remain practically unchanged
when new data arrives. As a result, they no longer
have to be optimized and past data samples and
encoding coefficients can be aggregated into fixed-
size history matrices rather than being stored expli-
citly. This, in turn, leads to a significant reduction
in the computational and memory complexities of
an incremental update, which are now constant in
the number of updates [45, 46]. The hyperparameter
r specifies the number of NMF components and is
chosen to be lower than the data dimension. The
tolerance ϵ> 0 and the maximum number of iter-
ations tmax > 0 establish the stopping condition for
the iterative minimization of the objective function
within each model update. The elements of W1 and
Hm

m are initialized to strictly positive random values
sampled from max(0,N (V̄

m
,1)), where N denotes

the normal distribution and V̄
m
represents the his-

torical average value of the data samples computed
online.

Algorithm 2. Adding one component to the ISNMF
model.

input r,W, A, B

1 w̃← n× 1 positive random vector
2W← [W|w̃]
3 ã← [0]n×1

4 A← [A|ã]
5 b̃← [0]r×1

6 B←
[
B b̃
b̃
⊺

0

]
7 r← r+ 1

The P-ISNMF method extends ISNMF to enable
increasing the number of components r progressively
without disrupting existing ones, while avoiding the
need to store and retrain the model on past data.
It achieves this by appropriately expanding the his-
tory matrices, which subsequently inform the model
updates. The foundation of this method is the obser-
vation that the bases W , encoding coefficients H,
and history matrices A and B encode component-
specific information in designated columns and rows.
Specifically,W and A keep information about the rth
component in their rth columns, H in its rth row,
and B in both its rth row and column. Building on
this observation, components can be introduced by
extending W with strictly positive random values,
sampled from the previously described distribution
max(0,N (V̄

m
,1)). A similar extension of the old

data encoding matrix H is possible but practically
unnecessary as the incremental update rules only
involve new data encodings, which are initialized at
the appropriate size at the beginning of each update
(line 12 in algorithm 1). Accordingly, historymatrices
A and B are augmented through zero padding to
accommodate the lack of historical information for
the new component, ensuring that the data related to
existing components remain unaffected. This proced-
ure is outlined in algorithm 2.

After incorporating the additional components,
the model update process resumes, utilizing the his-
tory matrices to maintain the stability of existing
components, as shown in algorithm 1. Despite not
providing theoretical guarantees that this method
preserves the stability of existing components, extens-
ive preliminary analyses conducted on synthetic data
have confirmed this.

2.1.2. Motor mapping and learning
Muscular input signals are periodically encoded into
the synergy space using the rule in line 19 of algorithm
1 and subsequently used for position control of the
virtual hand. The process involves establishing an
abstract motor mapping that assigns the available
muscle synergies, in the order of extraction, to pre-
defined myocontrol functions. The mapping is arbit-
rary because the muscle synergy extraction process
depends on the subject’s physiology, the movements
they performed, and the random initialization of
bases and encodings. The encoding coefficients are
scaled to consistent magnitudes by dividing them
by their historical 95th percentile computed incre-
mentally and then clipping them within the range
[0,1]. These scaled coefficients are interpreted as the
activation values for their corresponding functions.
Specifically, since myocontrol functions are intended
to be hand and wrist actions, the activation of each
function is translated into the position command that
realizes the corresponding action. A full activation
executes the action completely, while a zero activa-
tion brings the hand to a rest position. Finally, given
the graded nature of the coefficients and the possibil-
ity of activating multiple coefficients simultaneously,
our system supports SP myocontrol.

Subjects learn to control the virtual hand one
function at a time by practicing with the myocon-
trol system without expert supervision. Initially, sub-
jects are introduced to the set of basic functions
that the hand can perform and are informed that
these functions may be controlled by muscular activ-
ations that are not necessarily physiologically related.
During practice, subjects learn to control each func-
tion by isolating the associated muscle synergy. Once
they feel confident in their command over a function,
they can request unlocking another one and continue
practicing, ensuring that they retain control over the
previously learned functions. This procedure defines
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a coevolving and coadapting myocontrol paradigm.
Coevolving refers to progressively increasing the
number of myocontrol functions to mirror the devel-
opment of the user’s skills. Coadaptive refers to a
synergistic adaptation process where the user pro-
duces increasingly distinctive muscle synergies while
the system optimizes the sparsity of the identified
synergies.

2.1.3. Comparison to UM
We compare the PUM paradigm with its non-
progressive counterpart based on the ISNMF
algorithm detailed in algorithm 1. The difference
is that in UM all basic functions are learned simul-
taneously rather than sequentially.

2.2. Experiment
We designed a multi-session user study to com-
pare the realtime performance of myocontrol models
obtained with PUM and UM, to track their evolution
over time, and to assess the retention of performance
after a period of non-use of the myocontrol system.

2.2.1. Participants
Ten ND subjects and two subjects with a unilat-
eral upper-limb differences participated in the study.
The ND participants, aged 27 to 33, had no previ-
ous experience with unsupervised myocontrol. Half
of the NDparticipants tested PUM, and the other half
tested UM. The participants with limb differences are
denoted LD1 and LD2 in this paper. LD1, 35 years old,
had a trans-radial congenital difference in the right
arm. They could activate only two distinct muscle
groups before the experiment, corresponding to fore-
arm extensors and flexors. They were not a pros-
thetic user and had limited experience with myoelec-
tric hands, having tested them for a fewmonths at the
ages of 5 and 20. LD2, 22 years old, had a transcarpal
congenital difference in the left hand. They could per-
form visible wrist flexion, extension, and adduction at
the time of the experiment. Theywere not a prosthesis
user and had no experience with myoelectric control.
Both LD participants tested PUM, because insightful
comparisons between the two paradigms with only
two LD subjects would have been unattainable. The
studywas conducted following theWMADeclaration
of Helsinki and approved by the Ethics committee of
Friedrich-Alexander Universität (No. 22-275-S). All
participants gave written informed consent to parti-
cipate in the study.

2.2.2. Experimental Setup
AMyo armband by Thalmic Labs provided 200Hz, 8-
channel sEMGmeasurements of the forearmmuscles
on the subjects’ dominant or different arm. The
sEMG armband was positioned over the widest part
of the forearm with the first sensor aligning with the
brachioradialis muscle. This placement was done as

precisely as possible to minimize electrode displace-
ment across subjects and sessions. ND subjects and
LD2 wore a resting hand orthotic splint and suit-
able padding to restrict hand or wrist movements
and were instructed to avoid wrist rotations dur-
ing the experiment. This requirement aimed at pro-
moting isometric muscle contractions and has been
found effective in making the sEMG of ND sub-
jects more similar to that of individuals with upper-
limb differences [47]. As indicated in figure 1, a
monitor displayed an orange virtual hand visualizing
the predictions of the myocontrol model and a gray
hand serving as a reference during the experiment.
Our experimental setup mirrored that of [22], who
compared a state-of-the-art supervised myocontrol
approach with an unsupervised myocontrol method
analogous to our baseline paradigm, UM. This design
was intended to facilitate an indirect comparison of
the merits of our PUM paradigm with those of a
standard supervised one.

2.2.3. Myoelectric control
The sEMG measurements were band-pass filtered
online and in realtime using a second-order
Butterworth filter with cutoff frequencies at 10Hz
and 90Hz. The root mean square envelope of each
channel was then computed over the last 300ms and
utilized as input for both myocontrol paradigms. The
factorization algorithm used by both PUM and UM
had hyperparameters of r= 4, β = γ = 32, µ= 0.8,
ϵ= 1 · 10−5, and tmax = 200. The factorizationmodel
was updated at 0.2Hz, while muscular encodings
were computed at 20Hz, normalized within the [0,1]
range, low-pass filtered online and in realtime with a
fourth-order Butterworth filter with a 2Hz cutoff fre-
quency, and used as motor controls for the myocon-
trol functions arbitrarily associated to them.

Drawing from the work of Gigli et al [22], we lim-
ited the maximum number of myocontrol functions
to four, as learning more functions with our setup
would prove excessively demanding, even forND sub-
jects. For this study, we represented the four con-
trol functions with a power grasp, index finger point-
ing, wrist flexion, and wrist extension. This selec-
tion facilitates the evaluation ofmyocontrol perform-
ance on both individual and combined functions, as
combinations of hand and wrist actions are usually
more discernible than those of two hand actions, for
example. Throughout this paper, we refer to these
functions and their combinations as ‘basic’ and ‘com-
bined’, respectively. Since our system implements
position control, the myocontrolled hand automatic-
ally returns to a rest configuration when none of the
functions is activated. Importantly, different control
functions could be chosen without actually influen-
cing the user’s control strategy or the model perform-
ance. This is because our abstract motor mapping
does not require a physiological association between
muscle synergies and controlled functions.
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Table 1. Structure of the multisession experiment. The experiment consists of five sessions held on distinct days. This table outlines the
temporal organization and the specific exercises featured in each session.

TRNF TAC Time since
(retention) (retention) Coadaptation TRNF TAC previous session

S1 — — x x x —
S2 — — x x x 24 h–72 h
S3 x x x x x 24 h–72 h
S4 — — x x x 24 h–72 h
S5 x x x x x 7–10 d

2.2.4. Experimental protocol
The experiment, detailed in table 1, included five
sessions across different days. The initial four sessions
were scheduled at least 24 h apart from each other
and completed within two weeks, while the fifth
session occurred about one week after the fourth.
Each session included a coadaptation phase in which
the system and participant synergistically refined the
myocontrol model, along with two tests to assess
myocontrol performance. One test was conducted
without visual feedback and is referred to as target
reaching with no feedback (TRNF), while the other
featured visual feedback and is referred to as target
achievement control (TAC). The myocontrol model
was randomly initialized at the beginning of the first
session and updated in later sessions to account for
the participant’s motor skills evolution and for the
sEMG armband repositioning.

During the coadaptation phase, participants
learned to control the four basic myocontrol func-
tions while the myocontrol model was refined. This
phase lasted 3 to 15min but could be terminated early
upon proficiently controlling all four basic functions.
In the PUM paradigm, basic functions were learned
progressively, with participants requesting to unlock
a new function when confident in their control of the
existing ones. To maintain consistency across par-
ticipants, the experimenter verified that each func-
tion could be controlled stably and independently
before unlocking the next one. The functions were
always unlocked in the same order: power grasp,
index pointing, wrist flexion and wrist extension. The
chosen order held no specific significance and could
in principle be tailored to different requirements or
preferences. If the participant did not unlock all func-
tions within the coadaptation phase duration, the
subsequent myocontrol tests would only focus on the
functions that the subject had unlocked so far.

In certain situations, the sparsity constraint in P-
ISNMFmay drive a component to zero if it is not con-
sidered essential for the reconstruction of new or his-
torical data. Newly introduced components are par-
ticularly susceptible to this effect, as there is only a
small amount of data available to reliably determine
their added value to the model. Once the basis of a
component has shrunk to zero, it becomes locked in
this deactivated state due to the multiplicative update

rule, and the corresponding myocontrol function is
permanently inhibited. For this reason, this problem
is referred to as zero-locking [48]. To counteract this
zero-locking issue, we set the bases’ lower limit to
a small positive threshold, as shown on line 18 and
line 20 of algorithm 1. Even with this thresholding
mechanism, however, new components remain prone
to re-suppression because their contribution to the
data reconstruction is limited due to their small mag-
nitude. Consequently, during the experiment, bases
suspected to be zero-locked were reset to their initial
values. This adjustment was made when a participant
reported that a new function was consistently inact-
ive or initiated by the experimenter if such inactivity
remained unreported for over one minute.

In the TRNF test, the gray virtual hand displayed a
sequence of reference functions and participants had
tomimic those gestures without receiving visual feed-
back from the orange hand. The reference functions
included only the basic functions unlocked so far and
were presented in a randomized sequence repeated
three times. This test assessed the participant’s intern-
alization of motor skills by focusing on feedforward
control and eliminating reliance on visual feedback
for instantaneous error compensation.

In the TAC test, participants controlled the orange
hand to match reference functions displayed by the
gray hand, using visual feedback. The reference func-
tions were presented three times in random order.
These included basic functions at full and half-
activation levels, and combined functions pairing
one hand action with one wrist action both at half-
activation levels. Therefore, our tests assessed pro-
portional control of up to four distinct functions
and simultaneous control of two functions. This test
design reflects the typical functional capabilities of
modern myocontrol solutions, as simultaneous con-
trol of three functions has only been achieved in a
few studies with more advanced setups for measur-
ing muscle signals [49, 50]. A task was deemed suc-
cessful if the myocontrol error stayed continuously
below a threshold d⩽ 0.18 for at least 2s before the
maximum task duration of 10s. This error was com-
puted as the maximum component of the element-
wise absolute difference between the predicted func-
tion and the target function. Since the system’s pre-
dictions represent position commands between 0 and
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1, an error threshold below 0.18 means that we tol-
erate a deviation of up to 18% of the full activation
range between the predicted and target functions.

Retention of myocontrol performance was evalu-
ated at the beginning of the third and fifth sessions by
administering TRNF and TAC tests using the model
from the previous sessions, without conducting a pre-
liminary coadaptation phase. These tests, referred to
as s3r and s5r, assessed short and long-term reten-
tion respectively. By comparing short-term retention,
where sensor replacement is arguably the main cause
of performance degradation, with long-term reten-
tion, we aimed to understand to which extent per-
formance degradation over time is caused by a loss
of motor skill.

2.2.5. Performance evaluation
The workload during the coadaptation exercise rep-
resented the effort made to learn and refine motor
skills based on muscle synergies by interacting
with the myocontrol system. Participants reported
their workload using the NASA-TLX questionnaire
[51], which assessed mental, physical, and temporal
demands, as well as perceived performance, effort,
and frustration on visual analog scales ranging from
very low, 0%, to very high, 100%. The overall work-
load was calculated as a weighted sum of these six
dimensions, with participant-specific weighting coef-
ficients determined through a pairwise comparison
process [51].

Myocontrol performance in TRNF and TAC tests
was assessed in terms of overall success and by eval-
uating the movement quality achieved during the
gross and fine parts of the movement. The distinction
between gross and fine movement serves to partition
the task execution before and after the target function
was first approached by themyocontrolled hand [52].
The overall performance was measured based on the
myocontrol error in the TRNF tests, and the success
rate and the completion time for TAC tests. For both
test types, the gross movement was characterized in
terms of duration and path efficiency, while the fine
movement was characterized by the mean and stand-
ard deviation of the myocontrol error. The success
rate was determined as the proportion of successful
TAC tasks to the total attempted tasks, and the task
completion time recorded the duration of success-
ful tasks. Path efficiency denoted the ratio between
the minimum required distance and the actual dis-
tance traveled along each independent DoF of the
controlled hand to reach the target hand configur-
ation. Importantly, all TAC metrics were calculated
solely based on successful tasks, with the exception of
the success rate itself.

These metrics were averaged across tasks for
each combination of subject, session, and paradigm.
Statistical tests were conducted on data from ND
subjects to assess significant differences in work-
load and performance across sessions and between

paradigms. Mixed ANOVA with the session as a
within-subject factor and the myocontrol paradigm
as a between-subject factor was used, and multiple
post-hoc t-tests were performed when necessary to
identify significant differences between sessions. The
Benjamini–Hochberg method was applied to control
the false discovery rate due to multiple comparis-
ons [53]. These tests were chosen because the assump-
tions of normality and homoscedasticity were verified
for the tested data subsets. The two LD subjects were
analyzed individually without statistical tests, com-
paring their performances to those of other subjects.

3. Results

The results of the study are organized and presented
reflecting the experimental protocol. We first report
the participants’ workload during the coadaptation
phase, we then analyze the myocontrol performance
for both TRNF and TAC tests, and we finally evaluate
the retention of the learned motor skills. Throughout
the section, our focus is on comparing the perform-
ance of LD and ND participants using PUM, as well
as comparing the performance that ND participants
achieved with the two myocontrol paradigms, UM
and PUM.

Figure 2 displays the participants’ workload dur-
ing the coadaptation phase, as reported in the NASA-
TLX questionnaire. LD and ND participants repor-
ted similar overall weightedworkloads of around 50%
in the first session, as shown in figure 2(a). The
workload of ND participants was comparable for the
two myocontrol paradigms and decreased signific-
antly to 30% by the third session. A mixed ANOVA
confirmed that the reported workload was signific-
antly affected by the session number (F4,32, p< 0.001)
but not by the control paradigm. Subsequent pair-
wise t-tests detected significant differences in work-
load between the initial two sessions and the sub-
sequent ones, as depicted in figure 2(b). Conversely,
LD participants maintained a consistently high work-
load, which may indicate that their adaptation to
the myocontrol system was ongoing throughout the
experiment. Figures 2(c) and (g) show that theirmen-
tal demand and effort levels remained around 60%
even in the final session.

The duration of each coadaptation phase appears
to relate to the reported workload. This connection
is expected due to the study design, as participants
could request the termination of this phase when they
felt in control of all the available myocontrol func-
tions. ND subjects typically completed the coadapt-
ation exercise in about 800s initially, with this dur-
ation reducing to about 300s for UM and 210s for
PUM by the last session. LD 2 always used 900s, the
maximum allowed time, while LD 1 took 900s until
the third session and then progressively less, reaching
around 750s in the final one.
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Figure 2. Coadaptation phase workload, assessed using the NASA TLX questionnaire.(a) Overall weighted workload per participant
and session. (b) Corrected p-values for statistical tests comparing overall workload between sessions for ND participants. (c)–(h)
Scores for the six TLX dimensions in the final session. Each data point represents the value of the statistic for a participant in a
session, with markers identifying participants. ND participants’ data points are grouped by myocontrol paradigm and the mean
value within each group is denoted by a circle. LD participants are displayed in a separate column.

The number of tasks in each TRNF and TAC
test varied depending on the myocontrol paradigm,
with UM consistently allowing control of four func-
tions, and PUM potentially fewer than four. All ND
participants who tested PUM achieved control of all
four functions in the first session, except one, marked
with a square symbol, who unlocked the last func-
tion in the second session. Both LD participants were
evaluated on three functions in every session. LD1,
represented by a hexagon, unlocked three functions
within the first session but only learned to control
the third one by the end of the third session. This
achievement was particularly remarkable because this
participant could only control two muscle synergies
before the experiment, and they autonomously isol-
ated a previously unknown muscle synergy using
PUM. To allow further familiarization with the newly
learned skill and in light of the significant achieve-
ment already made, the experimenters decided not to
enable the fourth function. LD2, marked with a cross,
initially achieved limited control of three functions
and reached proficiency in the third session. Despite
managing to unlock the fourth function, the parti-
cipant was unable to activate it because the factoriza-
tion algorithm did not identify additional activation
patterns in the muscular signal and repeatedly set the
magnitude of the fourth model component to zero.
Consequently,myocontrol performancewas not eval-
uated for the fourth function.

The performance in TRNF tests, as seen in
figure 3(a), indicates that LD participants performed
poorly when deprived of visual feedback, obtaining
mean errors above 0.4 and fine mean errors above
0.3 throughout the entire experiment. Conversely,
ND participants performed well in the absence

of visual feedback using both control paradigms
across all sessions, achieving a final mean error
of about 0.2. For them, a mixed ANOVA test
revealed significant changes in mean error across
sessions (F6,48 = 6.08, p= 0.002) but not between
control paradigms, and pairwise t-tests detected sig-
nificantly lower mean errors in sessions three to five
compared to the first one, as reported in figure 3(b).
Finally, the PUM paradigm enabled ND participants
to approach the target more quickly and efficiently
than UM, as indicated by the significantly lower gross
motion time (by 0.6s, p= 0.003) and higher gross
path efficiency (by 0.1, p= 0.004) in figures 3(b)
and (c).

Figure 4(a) presents the success rate achieved in
the TAC test. In the first session, ND participants
succeeded in approximately half the tasks, whereas
LD participants achieved less than 25% success rate
due to only being able to control two out of three
functions. The performance of both groups reached
equivalent success rates of 60% in the final session.
Further analysis revealed that all participants con-
trolled basic functions considerably better than com-
bined functions, with success rates of 80% and 25%
in the final session. The supplementary materials
offer a visual breakdown of these success rates for
basic and combined functions. The success rates of
ND participants were comparable for both myocon-
trol paradigms and increased significantly across ses-
sions. A mixed ANOVA test confirmed that the suc-
cess rate changed significantly across sessions (F6,48 =
6.88, p< 0.001), but was not influenced by the
myocontrol paradigm. Pairwise t-tests, summarized
in figure 4(b), indicated that the success rate increased
significantly between the first and third sessions and
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Figure 3. Performance in the myocontrol test without visual feedback (TRNF). (a) Mean myocontrol error per participant and
session. (b) Corrected p-values for statistical tests comparing mean errors between sessions for ND participants. (c)–(f)
Movement quality metrics during the gross and fine portions of the task in the final session. Markers represent the mean value of
a statistic for a participant across all trials in a session. ND participants were evaluated on four myocontrol functions while LD
participants on three. The ND participant marked with a square symbol had three actions assessed in the first session and four in
subsequent sessions. Short and long-term retention exercises are highlighted with a yellow background. Asterisks indicate
statistically significant differences between group means (∗: p< 0.05, ∗∗: p< 0.01, ∗∗∗: p< 0.001).

Figure 4. Performance in the myocontrol test with visual feedback (TAC). (a) Success rate per participant and session. (b) Corrected
p-values for statistical tests comparing mean success rates between sessions for ND participants. (c)–(h) Movement quality
metrics during the gross and fine portions of successful tasks in the final session. The same considerations regarding the graphical
conventions and the number of myocontrol functions assessed mentioned in the previous figures apply here as well.

remained stable afterward. The success rate of LD
participants also improved over time, although less
uniformly. It remained below 25% during the first
two sessions, markedly improved to above 50% in the
third session when the participants learned to control
the third function, and reached the level of ND parti-
cipants in the final session.

Figures 4(c)–(g) focus on the successful TAC
tasks in the final session. LD participants achieved
a comparatively lower movement quality than ND

participants, requiring between 0.5s and 1s longer
to complete the TAC tasks. This seemed to stem
primarily from uncertainty in reaching the target
hand configuration, rather than from inadequate
control stability in the target’s vicinity. Indeed,
they demonstrated similar fine motion time and
error as ND participants, but longer gross motion
time or much lower gross path efficiency. ND par-
ticipants attained similar movement quality with
both myocontrol paradigms. They completed the
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successful tasks with either paradigm in approxim-
ately 4s. They executed the gross part of the move-
ment significantly faster with PUM (gross motion
time was about 0.4s lower, p< 0.001) while demon-
strating similar motion time and myocontrol error
in the fine part of the movement with both control
paradigms.

The evolution of movement quality across ses-
sions, visually detailed in the supplementary mater-
ials, offers further insights into participants’ motor
skill development. Although subjects both with and
without limb differences experienced increased suc-
cess rates, only the latter group demonstrated con-
current improvement in movement quality. In fact,
LD participants displayed fluctuations in movement
quality across sessions, indicating slower motor skill
development.

Upon examining the failed TAC tasks in the last
session, it became apparent that the main cause of
failure was the difficulty to maintain the controlled
hand near the target configuration. Even though par-
ticipants reached the target configuration in at least
80% of failed tasks, they could not sustain it, resulting
in average configuration errors substantially above
the TAC success threshold of 0.18 (0.3 for ND par-
ticipants and 0.45 for LD participants). A thorough
visualization of performance during failed TAC tasks
can be found in the supplementary materials.

Short and long-term motor skill retention were
assessed by comparing performance differences
between sessions s2 and s3r, and between s4 and s5r,
respectively. Retention sessions are highlighted in yel-
low in figures 3(a) and 4(a). For these assessments, the
mean error from the TRNF test and the success rate
from the TAC test served as performance metrics. LD
participants displayed comparable retention trends
with and without visual feedback. Participant LD 2,
marked with a cross, exhibited consistent motor skill
retention in both the short and long term, while LD
1, marked with a hexagon, maintained performance
in the short term but not in the long-term retention
test. This participant reported having forgotten how
to control the motor skill they most recently acquired
but recovered it during the subsequent coadapta-
tion session. For ND participants, mixed ANOVA
results revealed that neither TRNF nor TAC perform-
ances were significantly affected by the myocontrol
paradigm or its interaction with the session num-
ber. Therefore, performance retention was analyzed
using pooled data from both myocontrol paradigms.
In TRNF tests, no significant performance degrada-
tion was observed during retention sessions. For the
TAC, while a decrease in the average pooled success
rate was observable in the short-term retention, this
was not statistically significant. However, a statistic-
ally significant decline was observed in the long term
(by about 20%, p= 0.03), as reported in figure 4(b).
Performance levels were restored however by the sub-
sequent model update.

4. Discussion and conclusions

We discuss the performance of PUM for individu-
als with limb differences and compare it to the non-
progressiveUMparadigmon a group of non-disabled
participants. Our evaluation takes into account the
workload experienced by participants while learning
myocontrol skills, as well as the subsequent evolution
and retention of myocontrol performance.

4.1. Evaluating PUM for users with LD
The study primarily evaluates the experiences of par-
ticipants with limb differences with PUM and com-
pares them to those of ND subjects. Understanding
the experience of LD participants with PUM enables
us to better identify their unique needs and challenges
in adopting the technology. Meanwhile, ND parti-
cipants serve as a best-case scenario for myocontrol
in light of their wider range of motor skills.

Using the PUM paradigm, participants demon-
strated proficient proportional control of multiple
myocontrol functions, with LD participants con-
trolling three functions and ND participants man-
aging four. By the final session, LD participants
achieved success rates similar to those of ND sub-
jects in TACt tests, albeit with a comparatively lower
movement quality. The average success rates were
around 80% for tasks involving basic functions and
25% for those requiring combinations of two basic
functions. The success rate for basic functions indic-
ates a satisfactory level of performance and is consist-
ent with findings from other studies on SP myocon-
trol [22, 49, 54]. While all participants were also able
to control combinations of two functions, the corres-
ponding success rates were considerably lower than
those achieved on basic functions and below those
reported in studies with similar experimental proto-
cols [49]. This underlines a current limitation of our
approach and identifies an area for future research. In
any case, it should be noted that comparisons between
studies on realtime myoelectric control are generally
challenging due to differences in experimental setups,
subjects characteristics, and tests being performed. A
more detailed discussion about such comparisonswill
follow in section 4.2.

The internalization process of the learned
myocontrol functions differed between the two sub-
ject groups. LD participants exhibited a consist-
ently high workload during the coadaptation phase
and a strong reliance on visual feedback during
the tests, suggesting that they were continuously
learning and adapting to the system. Conversely,
ND participants adapted at a faster pace, report-
ing decreased workloads across sessions and show-
ing better control without visual feedback in TRNF
tests.

The long-term retention of newly acquired motor
skills also varied among participants. LD 1 reportedly
forgot how to control themost recently learnedmotor

12



J. Neural Eng. 20 (2023) 066016 A Gigli et al

skill, although this ability was regained during sub-
sequent coadaptation. In contrast, LD 2 exhibited no
performance degradation, indicating good skill reten-
tion. Given the empirical evidence that LD individu-
als often require extended practice to learn newmotor
skills, even under expert guidance [55], it appears
reasonable to speculate that LD 1 could have bet-
ter internalized the new motor skill if allowed more
practice sessions. Among ND subjects, the average
TAC success rate during short-term retention tests
exhibited a decrease that was not statistically signific-
ant. However, the performance degradationwasmore
pronounced and reached statistical significance in the
long-term retention tests. This result seems consistent
with our expectation that confounding factors such
as sensor displacement cause a minor degradation in
both short- and long-term tests, whereas skill forget-
ting causes degradation that increases with time.

A noteworthy result of our study is that PUM
not only enables LD users to autonomously learn
myocontrol functions but also supports them in dis-
covering previously unexpressed motor skills. For
instance, LD 1, who could only control two muscle
groups in their affected limb before the experi-
ment, managed to identify a novel muscle synergy
and learned to control three myocontrol functions
in complete autonomy. We attribute this successful
outcome largely to the unique design of the PUM
paradigm. One key feature of this design is introdu-
cing one new function at a time. This helps maintain-
ing the complexity of the motor learning process at
a more manageable level, preventing the user from
getting overwhelmed or frustrated. At the same time,
this process continuously balances the learning diffi-
culty with the user’s evolving skill level, supporting
the user to explore their muscular space and to dis-
cover new muscle synergies for control. Another dis-
tinct feature of PUM is to provide a rich yet intuitive
biofeedback of the muscular activity. The paradigm
associates each function of the myocontrolled hand
to one distinct muscle synergy, effectively translating
complex coactivation patterns intomore understand-
able hand movements. In contrast, traditional sEMG
biofeedback systems often provide separate feedback
for each sEMG channel [56, 57], and this can be chal-
lenging to interpret for multi-channel systems [58].

The satisfactory realtime myocontrol perform-
ance of the two LD participants in basic func-
tions and the fact that one of them discovered a
new muscle synergy underline the practical value of
the proposed PUM approach. These achievements
gain further significance when considering that PUM
does not demand preliminary assessment of the
user’s motor skills or professionally guided prepros-
thetic signal training used in traditional myocon-
trol approaches [17, 18]. Normally, a healthcare
professional must assess how many distinct muscle

activations the user can elicit to set up the number
of myocontrol functions accordingly. In addition, the
user often needs coaching to learn to generate muscle
signals that are reliable and stable enough to initially
calibrate the myocontrol system. Conversely, PUM
only requires a brief instructional overview of the sys-
tem. Then, it encapsulates motor skills assessment
and signal training in an unsupervised coadaptive
and coevolving learning process, thereby supporting
a more autonomous engagement with myoelectric
control. While learning new myocontrol functions,
the user gradually generatesmore distinctmuscle syn-
ergies and the system simultaneously improves the
sparsity of the factorizationmodel.Moreover, the sys-
tem allows the user to unlock additional functions
upon mastering the existing ones, which effectively
tailors the number of functions to the user’s current
motor skills and reflects the progressive development
of those skills through practice.

It seems logical to speculate that certain user’s
characteristics may influence the number of myocon-
trol functions they would be able to control. One
such characteristic is the proximity of the limb dif-
ference. Transhumeral limb differences, for example,
are associated with a lower amount of residual mus-
culature compared to more distal ones, which poten-
tially reduces the range of muscle synergies that can
be generated with the residual limb [34]. Yet, it has
been found that some individuals with transhumeral
amputations who still experience phantom hand
movements can elicit muscle signals with their resid-
ual musculature consistent with those movements
[59, 60]. This unexpected ability, attributed to a
preserved phantom limb neural representation and
spontaneous neuronal reorganization or reinnerva-
tion, suggests that the potential for myoelectric con-
trol may not solely depend on the residual mus-
culature. Regardless, the functional restoration of
more proximal limb differences would involve con-
trol over an extended set of DoFs, possibly complicat-
ing the motor mapping. In conclusion, the influence
of the limb difference proximity on the controllable
myocontrol functions is not obvious and merits fur-
ther research.

Another aspect that may influence the learning
experience with unsupervised myocontrol paradigms
such as PUM is the person’s previous exposure to
myoelectric control. Users with previous experience
controlling a myoelectric prosthesis, or even a vir-
tual hand, might rapidly gain control over new func-
tions by drawing on their already refined repertoire of
motor skills. In contrast, people without myocontrol
experience might display more varied learning pro-
gressions. One contributing factor to this variability
is that inexperienced users must not only learn new
motor functions but also develop fundamental com-
petences for myocontrol. These competences include,
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among others, modulating muscular contractions,
actively relaxing muscles, and coordinating muscu-
lar activity with visual feedback of the controlled
hand [61]. Even though none of the participants in
our study voiced confusion pertaining these com-
petences, it is reasonable to assume that some effort
has gone into their development. Exactly delineating
these two learning processes, however, is not possible
in our experiment given that, during the coadapta-
tion phases, participants were implicitly familiariz-
ing themselves with myocontrol while concurrently
learning new myocontrol functions.

People new to myocontrol may also face chal-
lenges determined by the nature of their limb dif-
ferences. It appears plausible that amputees, draw-
ing from their past experience with motor control on
their now-absent limb, could have an advantage in
identifying distinct muscle synergies. On the other
hand, individuals with congenital limb differences
might struggle more with this task, as they may need
to concurrently form a new mental representation
of the missing limb. As this aspect was not directly
investigated in our study, we recommend it as an area
for further exploration.

4.2. Comparing PUM to UM
We continue our evaluation by examining the per-
formance of the PUM paradigm and its non-
progressive counterpart, UM, focusing on ND parti-
cipants. Participants with limb differences were not
included in this comparison because none of them
tested the UM paradigm. The main objectives of
this comparison are to determine if PUM distrib-
utes workload more effectively than UM, leading to
a lower initial workload, and to verify if the mod-
els learned with both approaches achieve equivalent
performance.

Contrary to our expectations, ND participants
reported similar workloads for both paradigms. This
outcome might have been influenced by limiting the
maximum number of myocontrol functions to four,
which appeared to be the practical limit of functions
learnable with our setup according to preliminary
tests and a previous study [22]. This limit, however,
may have unintentionally oversimplified the motor
learning task for ND participants, allowing them to
learn all functions more easily than expected. The
benefits of PUM in reducing the learning workload
could have been more pronounced by enabling an
increased number of functions. This argument seems
to be supported by previous studies showing that ND
participants often elicit five or more different muscle
synergies during grasping [35]. Moreover, conduct-
ing the workload assessment at the end of each ses-
sion could have led to underestimating the diffi-
culties experienced during the initial stages of learn-
ing with UM. In fact, participants managed to learn

all functions at the beginning of the first coadaptation
session using UM and first reported their workload in
a questionnaire at the end of that session, potentially
overlooking the challenges faced earlier.

PUM allowed ND subjects to reach equival-
ent myocontrol performance to its non-progressive
counterpart either with or without visual feed-
back. Regardless of learning myocontrol functions
progressively or simultaneously, participants also
demonstrated a similar evolution and retention of
performance. While it is difficult to compare our res-
ults with those of other studies because of the differ-
ent experimental designs, we may attempt some use-
ful comparisons. Our study design shares similarities
with that ofGigli et al [22], where analogous TAC tests
were used to compare a standard supervisedmyocon-
trol approach to an unsupervisedmyocontrolmethod
that was equivalent to our baseline UM. The results of
that study revealed that ND users achieved equivalent
success rates with both methods. Although speculat-
ive, this equivalence appears to suggest that our pro-
gressive myocontrol approach, PUM, might perform
comparably to a state-of-the-art supervised one, as
both displayed equivalent performance to two similar
unsupervised approaches. This line of comparison is
further substantiated by the work of Nowak et al [49],
who also used similarly designed TAC tests to evalu-
ate another supervised myocontrol approach. A per-
son with limb differences reportedly achieved success
rates on basic actions similar to those observed in our
study. While the success rates they observed for com-
bined functions were higher, this might be attributed
to using amore advanced high-density sEMG system.
These comparisons provide preliminary indications
that our PUM approach could perform similarly to
supervised ones, even for users with limb differences.
Nonetheless, these indications should be treated with
caution until a direct comparison, possibly using a
more advanced setup than the current one, is made
through further research.

The results of this comparison indicate that both
the PUM and UM paradigms resulted in equivalent
learning workloads and myocontrol performance for
ND participants. Speculation on how these results
would translate to LD subjects could better define
advantages and limitations of our PUMapproach.We
argue that the learning workload for each myocon-
trol paradigm depends on the relation between an
individual’s current motor skills and the number of
functions they need to learn. In line with our findings
for ND participants, we expect that both paradigms
demand comparable learning workloads as long as
the number of functions is similar to the number
of distinct muscle synergies the person can elicit.
Conversely, we contend that PUM might prove espe-
cially beneficial when the number of functions to be
learned considerably exceeds the number of available
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muscle synergies. In this scenario, PUM could limit
the learning workload by allowing the discovery of
new muscle synergies one at a time. As opposed
to that, an unsupervised myocontrol paradigm that
requires simultaneous identification of multiple new
synergies would be obviously more challenging for
the user. In this case, moreover, the factorization
algorithm could approximate a single muscle synergy
generated by the user asmultiple redundant compon-
ents, thus activating several functions at once. This
redundancy could skew the visual feedback from the
myocontrolled hand, limit the understanding of the
control model, and ultimately, impede learning. In
terms of myocontrol performance, we expect both
control paradigms to yield the same performance
also for LD users, provided that the same number of
myocontrol functions had been already learned. This
is because the difference between UM and PUM lies
in the learning process, not in their implementation
of myocontrol. While informed by preliminary tests,
these speculations need further validation through
future studies that directly compare PUMandUMon
LD subjects.

4.3. Limitations and remarks
Due to challenges in recruiting participants with
limb differences, only two individuals with congen-
ital limb differences participated in the study. This
implied that, although a qualitative analysis of their
experiences provided insights into the effectiveness
of PUM, those insights lacked statistical signific-
ance. Moreover, both limb-different participants had
to be assigned the PUM paradigm. This decision
was made to ensure a more comprehensive assess-
ment of PUM’s characteristics, as assigning the par-
ticipants to different paradigms would have not yiel-
dedmeaningful insights, due to their varied physiolo-
gical characteristics and preexisting motor capacit-
ies. However, since no LD participants tested the UM
paradigm, our study cannot confirm whether PUM
can effectively distribute and limit the workload com-
pared to UM. Despite our hypothesis that PUM may
prove beneficial under certain conditions, discussed
in section 4.2, further research is warranted to con-
firm this speculation.

The performance of LD participants was evalu-
ated on three functions instead of four, reflecting their
progress during the experiment. LD 1 notably learned
to control three myocontrol functions by discover-
ing a new muscle synergy that was different from
the two synergies they had controlled throughout
their life. However, this new function was not learned
until the end of the third session. To give LD 1 suf-
ficient time to consolidate the newly learned abil-
ity and avoid potential confusion that could affect

long-term retention, the experimenters decided not
to introduce an additional fourth function at this
stage. LD 2 learned three myocontrol functions early
in the experiment, unlocked the remaining one at the
beginning of the third session, but never managed to
activate it as the corresponding basis remained con-
sistently zero-locked. Nevertheless, we argue that LD
participants might have autonomously learned addi-
tional functions if the experiment had lasted longer
and included more sessions. This possibility aligns
not only with the experience of LD 1, who iden-
tified a previously unknown muscle synergy when
given enough time, but also with the findings of [55]
where an LD subject gained progressive mastery of
novel functions across multiple supervised experi-
mental sessions extending over many months. Yet,
practical system designs should offer users the flex-
ibility to manage their learning pace. Users should
not only be enabled to start practicing new functions,
but also to suspend or withdraw from practice when
desired.

PUM employs P-ISNMF to progressively increase
the number of components in the factorizationmodel
without compromising the stability of the existing
ones. This prevents users from needing to repeatedly
relearn myocontrol functions when new compon-
ents are introduced, thereby maintaining perform-
ance efficiency. Although we do not provide theor-
etical guarantees for the stability of existing com-
ponents, practical evidence from our experiment
suggests that incorporating new components does
not adversely impact the performance of previ-
ously learned myocontrol functions. This evidence
also aligns with the results of preliminary tests
on synthetic sEMG data. These tests assessed the
ability of NMF, ISNMF, and P-ISNMF to recon-
struct physiologically plausible muscle synergies that
were used to generate the synthetic data. The tests
showed that P-ISNMF introduces and learns com-
ponents progressively without disrupting existing
ones, and that it performs comparably to other NMF
variants in identifying and reconstructing muscle
synergies.

5. Conclusion

We developed a PUM paradigm to address the
limitations of an existing unsupervised myocontrol
approach [22]. Unlike the previous approach, PUM
does not require a preliminary assessment of the
user’s motor capacities to set up the number of
myocontrol functions of the system, and also accom-
modates for the evolution of new motor skills over
time. This is achieved through a user-driven interact-
ive process in which additional myocontrol functions
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are introduced progressively and refined in an unsu-
pervised way as the user gains proficiency with the
system.

We tested the effectiveness of PUM in a multi-
session experiment with both congenital LD parti-
cipants and ND ones, and compared it to a non-
progressive counterpart based on [22]. All par-
ticipants successfully learned to control multiple
myocontrol functions simultaneously and propor-
tionally. LD participants completed the myocontrol
tasks with comparable success rates to ND parti-
cipants, despite showing a marginally lower move-
ment quality and requiring a greater learning effort.
Remarkably, one LD participant even learned a pre-
viously unexpressed muscle synergy and used it for
myocontrol in complete autonomy. Finally, NDparti-
cipants achieved similar performancewith both PUM
and its non-progressive baseline, which had already
proved comparable to a supervised adaptive state-of-
the-art myocontrol system.

Ultimately, the PUM paradigm represents a sig-
nificant advancement in adaptive unsupervised myo-
electric control, as it offers a user-friendly and flex-
ible system that supports autonomous learning of
myocontrol functions. By catering to users with
diverse motor abilities, the coevolving system not
only supports but also promotes the development and
enhancement of motor skills for myocontrol, ulti-
mately enabling effective control of dexterous pros-
thetic devices.

Data availability statement

The data cannot be made publicly available upon
publication because the cost of preparing, depositing
and hosting the data would be prohibitive within the
terms of this research project. The data that support
the findings of this study are available upon reason-
able request from the authors.

Acknowledgments

We thank Mr Fabio Egle for his assistance in recruit-
ing participants with limb differences and his support
during the experiments. Our appreciation also goes to
Dr Bernhard Weber for the insightful discussions on
how to plan our statistical analyses. Finally, we extend
our gratitude to all the participants for their time and
commitment to this study.

This research was funded by the German
Aerospace Center (DLR).

Appendix. Derivation of the multiplicative
update rules

This appendix details the derivation of the multiplic-
ative update rules on line 17 and line 19 of algorithm
1, which are used to incrementally update the NMF
factorization model with the data received during the
mth update.

The incremental formulation of NMF is rendered
here using superscripts and subscripts for matrices.
Superscripts indicate the value of bases and encod-
ingmatrices at a specific update, while subscripts spe-
cify blocks in the data and encoding matrices. For
example, V j indicates the data samples received dur-
ing the jth update, Wm represents the bases values
at the mth update, Hm

j denotes the encoding coef-
ficients computed during the mth update for the
data samples received during the jth update. Specific
subsets of blocks are indicated using a colon, as
in Hm

1:j = [Hm
1 · · ·Hm

j ], while omitting the subscript
implies the inclusion of all matrix blocks up to the
current update, for example Hm = [Hm

1 · · ·Hm
m] at the

mth update. Since a data block Vm is never altered
by the algorithm, that is Vm

m = Vj
m ∀j ⩾m, we omit

the superscript notation for matrix V= [V1 · · ·Vm].
The multiplicative update rules use the elementwise
product, division, and power operations, which are
denoted by the circle operator, the fraction symbol,
and the power operator respectively. When super-
scripts are applied to scalars, they indicate a standard
power operation.

The rules correspond to performing alternating
gradient descent minimization of the loss function in
equation (1) with respect to the basesW and encod-
ing coefficients H with step sizes set so to guaran-
tee nonnegative updates. Both rules are calculated
based on the assumption that the factorizationmodel
undergoes only minimal changes in each update.
Specifically, it follows that the updated encodings for
previous data blocks

Hm
1:m−1 ≈Hm−1 (2)

and the solution can therefore be approximated by
only calculating the encodings Hm

m corresponding to
the new data block Vm at update m. Since the pre-
vious encodings Hm

1:m−1 remain unchanged, they no
longer influence the gradient of the loss function
in each update, meaning that in our approximation
∂Fm

∂Hm = ∂Fm

∂Hm
m
.

The multiplicative update rule for the encoding
coefficientsH in line 19 is derived from gradient des-
cent minimization
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Hm
m←Hm

m−ΛH ◦
∂Fm

∂Hm
m

=Hm
m−ΛH ◦

(
−Wm⊺Vm +Wm⊺WmHm

m + γ (Hm
m)

−0.5
)

by simply setting the step size to

ΛH =
Hm

m

Wm⊺WmHm
m + γ (Hm

m)
−0.5 .

The multiplicative update rule for the model’s basesW in line 17 also derives from gradient descent min-
imization

Wm←Wm−ΛW ◦
∂Fm

∂Wm

=Wm−ΛW ◦

− m∑
j=1

µm−j
(
VjH

m⊺
j +WmHm

j H
m⊺
j +βWm

)
by setting the step size to

ΛW =
Wm∑m

j=1µ
m−jWmHm

j H
m⊺
j +βWm

and simplifying the formulas as follows

Wm←Wm ◦
∑m

j=1µ
m−jVjH

m⊺
j∑m

j=1µ
m−jWmHm

j H
m⊺
j +

∑m
j=1µ

m−jβWm

=Wm ◦
∑m

j=1µ
m−jVjH

m⊺
j

Wm∑m
j=1µ

m−jHm
j H

m⊺
j + 1−µm

1−µ βWm

=Wm ◦
∑m−1

j=1 µm−jVjH
m⊺
j +VmH

m⊺
m

Wm∑m−1
j=1 µm−jHm

j H
m⊺
j +WmHm

mH
m⊺
m + 1−µm

1−µ βWm

=Wm ◦
µ
∑m−1

j=1 µm−1−jVjH
m⊺
j +VmH

m⊺
m

Wmµ
∑m−1

j=1 µm−1−jHm
j H

m⊺
j +WmHm

mH
m⊺
m + 1−µm

1−µ βWm

≈Wm ◦
µ
∑m−1

j=1 µm−1−jVjH
m−1⊺
j +VmH

m⊺
m

Wmµ
∑m−1

j=1 µm−1−jHm−1
j Hm−1⊺

j +WmHm
mH

m⊺
m + 1−µm

1−µ βWm
(3)

=Wm ◦ µAm−1 +VmH
m⊺
m

WmµBm−1 +WmHm
mH

m⊺
m + 1−µm

1−µ βWm
, (4)

where the approximation of equation (3) is pos-
sible under the assumption equation (2). The his-
tory matrices Am−1 :=

∑m−1
j=1 µm−1−jVjH

m−1⊺
j and

Bm :=
∑m−1

j=1 µm−1−jHm−1
j Hm−1⊺

j introduced in
equation (4) are used to store information about
the past data samples and the corresponding coef-
ficients. They can be recursively computed at the
end of each update as Am = µAm−1 +VmH

m⊺ and
Bm = µBm−1 +Hm

mH
m
m
⊺, where the recursion is com-

pleted by setting A0 and B0 to zero matrices of sizes
n× r and r× r respectively. This removes the need

to explicitly store past data, thereby enabling incre-
mental model updates and maintaining the compu-
tational complexity of each update constant.
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