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ABSTRACT 

The on-board ability to autonomously plan and execute constrained attitude manoeuvres 

is expected to play an important role in many future space missions. The work presented 

in this paper summarizes the results from a recently completed ESA study in which such 

functionality was examined. The study included the application of on-board embedded 

optimization techniques to solve constrained attitude guidance problems. Different 

heritage methods not based on on-board optimisation were also developed and applied 

for comparison. The study demonstrated the capabilities in a number of test cases 

associated with two benchmark problems based on the Comet Interceptor and Theseus 

mission studies. The performance was examined within Monte Carlo simulations as well 

as within execution on a flight-like hardware platform. 

1 INTRODUCTION  

On-board autonomous planning for execution of constrained trajectories is expected to be an 

important capability for many future space missions and will potentially allow for efficient handling 

of failure scenarios, dynamic environments or complex objectives. 

Autonomous planning typically relies on the ability to make model-based predictions about the future 

evolution of on-board states and how these evolve as a result of actuation and on-board autonomous 

decisions. Target objectives can be formulated and solved as constrained optimization problems. 

Applications within attitude guidance can e.g. involve the minimization of errors, transfer time, or 

propellant consumption during a slew manoeuvre while avoiding certain pointing directions e.g. to 

protect payload instruments from Sun illumination. The prediction model will act as additional 

constraints in the associated optimization problem, which generally becomes non-linear and non-

convex such that guaranteeing a globally optimal solution becomes computationally very demanding.  

The problem can be tackled by applying various convexification techniques to arrive at an 

approximation that is possible to solve in a practical way and that is suitable for implementation on 

an embedded system. In recent years, significant efforts have been made to provide such efficient 

solutions to several different spacecraft engineering problems [1] and many supporting tools are 

available to support deployment on embedded flight systems. 

The results presented in this paper are based on a recently completed ESA study that examined the 

use of on-board optimization for attitude guidance applied to two benchmark problems based on two 

ESA mission studies for which on-board optimised attitude guidance can bring advantages, the Comet 
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Interceptor (COMET-I) mission [2] and the Transient High Energy Sky and Early Universe Surveyor 

(THESEUS) [3]. The application of optimization methods to the COMET-I mission study was 

examined in [4], where also the background of and motivation for using optimization methods are 

provided. In the case of THESEUS, optimization-based attitude guidance can potentially provide 

efficient spacecraft reorientation in the presence of pointing avoidance constraints. 

The study consisted of a literature study and implementation of optimization functionality suitable 

for embedded systems. In parallel, corresponding attitude guidance functionality was developed 

based on heritage techniques, designed as alternative rule-based methods with a significantly lower 

computational complexity. The heritage methods were used as comparison with the optimization 

techniques in terms of performance and computational complexity, as well as in terms of development 

effort. The study included Monte Carlo simulations of the benchmark problems as well as the 

execution of the optimization methods on a flight-like hardware platform.   

The paper is organized as follows. Section 2 provides a brief description of the state-of-the-art of 

convex programming and describes how the optimization technique for the study was selected. 

Section 3 defines the benchmark scenarios and test cases used in the study and describes how the 

scenarios are transcribed into optimization problems. Section 4 summarizes the design of the heritage 

solutions and Section 5 describes the embedded optimization design and tuning. Section 6 

summarizes the results from the performance analysis while Section 7 provides the conclusions from 

the study. 

2 SELECTION OF OPTIMIZATION TECHNIQUE 

2.1 State-of-the-art in Convex Programming 

The use of numerical optimization has experienced a huge acceleration over the last years. Convex 

optimization is appealing mainly since the local optimum is also the global optimum and since very 

efficient general-purpose and highly dedicated solvers exist. In addition, the dependency on initial 

guesses is completely lifted. 

Convex optimization methods are flexible enough to permit the modelling of a huge number of 

problems of practical interest. A particularly successful category of problems, the Second-Order Cone 

Programming (SOCP) problem is a generalization of quadratic programming that includes the 

possibility of embedding conic constraints in the formulation. This type of formulation has been 

widely used in many fields, and with particular success in GNC, especially for guidance applications 

(e.g., powered-descent and landing guidance [5]–[7], and atmospheric re-entry). More notably, this 

technology has been successfully employed on several rockets and vehicles, including the Falcon 9 

[8] and the experimental DLR vehicle EAGLE [9], [10]. 

Part of the success of convex optimization is certainly due to the availability of modern numerical 

methods to deal with it. Beyond the already mentioned CVXOPT and qpOASES, it is worth 

mentioning ECOS [11]. ECOS implements a standard primal-dual Mehortra predictor-corrector 

solver, but with search directions found by solving a symmetric indefinite KKT system. The system 

of equations is solved by applying state-of-the-art LDL factorization and elimination of the numerical 

determination of pivoting sequence for improving the performance of the solver. An even more 

customized solver for SOCPs to be employed in embedded solutions has been proposed by Dueri et 

al. [12]. Given the known structure of the problem the interior-point method could be carefully 

tailored for the specific problem to be solved, leading to drastically lower times if compared to 

general-purpose embedded solvers. 
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2.2 Handling of Non-Convex Constraints 

In this study, it was compared how different methods prepare, augment or transform nonlinear 

constraints before linearization is performed: The most categorical difference is whether nonlinear 

constraints are addressed during the transcription of an optimal control problem, before it is 

transformed into a static optimization problem, or if the nonlinear constraints enter the static 

optimization problem directly. The former case leads to the recently surfacing methods of successive 

convexification [13]–[15] and successive convex programming [16], [17] (we use the terms 

successive convexification and successive convex programming interchangeably, abbreviated as 

SCVX). The latter leads to a nonlinear programming problem (NLP). 

SCVX is designed for solving discretized nonlinear optimal control problems. Nonlinear constraints 

are linearized at the operating point given by the last iteration, in that regards SCVX is no different 

from generic NLP methods. But the artificial infeasibility that can arise from this linearization is 

treated through systematically relaxing the constraints through slack variables which are included in 

an augmented cost function, such that they are driven to zero.  

2.3 Discretization Techniques for Optimal Control Problems 

Properties and empirical results for commonly used OCP discretization techniques are compared in 

[18] and [9]. The method is concerned with discretization of a function or a functional over an interval 

of an independent variable. 

Optimal control solvers such as DIDO or GPOPS-II first solve the OCP on a fixed given grid and 

after the solution has been obtained, the grid is iteratively adjusted by introducing additional 

discretization points. While this strategy is safe and preferable in a desktop environment, in an 

embedded environment it has the disadvantage, that the number of optimization variables changes, 

and with that the structure and non-zero entries in the problem matrices. This does not match well 

with static memory and requires customized solvers to solve the optimization problem.  

Pseudospectral methods gained attention due to their straightforward implementation and their 

properties, such as a pseudospectral (i.e., quasi-exponential) convergence of the discrete problem’s 

solution towards the continuous one, as the number of nodes is increased. The methods can be 

generalized to break the nonlinearity in the dynamics by separating the problem into multiple intervals 

which are connected by differential defect constraints, very similar to multiple shooting [19]. This 

increases the problem size, but also the sparsity of the problem matrices, making it an attractive 

method to pair with sparse solvers. The degree of the polynomial used in each interval can be 

controlled to trade sparsity/computation time against local discretization error. 

There is no clear ’one wins all’ situation for discretization methods as also reported in [18]. Because 

of prior experience and familiarity, we prefer the trapezoidal method with first order control 

interpolation for general prototyping of new OCP applications. Based on the problem specific impacts 

of problem matrix size, sparsity and discretization error, a choice was made to implement a 

generalized hp-pseudospectral method. 

2.4 Software Selection Logic and Trade-off Analysis 

For safety critical or very high-cost applications, such as space flight, reliability is the dominating 

criterion for making design choices. As such it is axiomatic to rely on convex methods whenever 

possible because of their global optimality and well-understood convergence properties. If the desired 

objective cannot be fulfilled by a purely convex method, the approach with the best understood and 

numerically tested convergence properties becomes the first choice. With this in mind we evaluated 

the given benchmark problems [2]–[4] and acknowledged the presence of conic constraints, nonlinear 

dynamics and a time optimality objective. Having in mind the cascade of problem complexity classes 

it follows that: 
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1. The chosen method had to be able to handle second-order cone constraints in natural convex 

form, without the need to linearize or approximate the cone. This reduced the “fitting” 

problem classes for the study to second-order-cone programming (SOCP) and semi-definite 

programming (SDP). As there are no semi-definite cone constraints present in either 

benchmark problem, the less computationally expensive SOCP was the obvious choice. 

2. Nonlinear dynamics and especially time optimality cannot be expressed within a (single) 

convex problem, thus required to compromise enough on convexity to include a strategy that 

can handle nonlinear/nonconvex problems. 

3. Because of the complexity and development effort for numerical optimization algorithms, the 

development of solver software from scratch was out of scope for the study. Thus, we needed 

to evaluate the candidate methods in combination with the availability and maturity of an 

existing solver software implementation that was able to eventually fulfil safety-critical real-

time software requirements. 

After a filtering taking into account the above three drivers, three candidates remain that fulfil the 

major driving selection criteria: PANOC+OpEn, FORCES Pro, and ESE + SCP (DLR software). 

In conclusion, the selected baseline strategy was to combine second-order cone programming with 

successive convexification into sequential convex programming, inspired by the work of Mao and 

Bonalli [14], [16]. The DLR Embedded Solver Engine (ESE) is a tried and tested tool, which 

generates static memory. The SOCP problem class perfectly fits the constraints required to model the 

benchmark scenarios and the DLR experience in using SCP for VTVL vehicles shows, that it is a 

reliable, fast convergent method. 

3 BENCHMARK SCENARIO DEFINITION 

This section defines the respective COMET-I and THESEUS benchmark scenarios and demonstrates 

how the scenarios are transcribed into optimization problems. 

3.1 COMET-I 

The Comet Interceptor (COMET-I) benchmark scenario is a based on the Comet Interceptor mission 

which is an upcoming mission that has just completed preliminary design review. 

The COMET-I benchmark scenario consists of a comet fly-by at 1000 km from the target with a 

relative velocity of 70 km/s. The analysis is performed for a duration of 200 s centred around the 

point of closest approach. The scenario assumes a visual camera with a FoV of 0.92°×0.92° and an 

IR camera with a FoV of 10°×10°. The comet is kept in the field of view of the cameras by slewing 

a mirror or the S/C (no longer in mission baseline) during the fly-by. 

The S/C is equipped with four reaction wheels for attitude control and during the flyby, the S/C is 

controlled with reaction wheels only in order to avoid contamination of scientific in-situ 

measurements of the comet’s dust environment. (Note that the baseline mission has waived this 

constraint.) Of relevance for the problem is also the solar arrays that increase the area exposed to risk 

of being hit by a dust particle. The high slew rate, dust environment, as well as the “one-shot” 

characteristics of the mission profile constitute the main fundamental challenges. 

Simulation Cases 

The results from two COMET-I simulation cases are included in this report: 

• Test case 1: Nominal fly-by case with all equipment functional 

• Test case 2: Fly-by with large dust particle impact near closest approach, leading to 

saturation of one reaction wheel, loss of attitude and loss of comet tracking. 
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Constraints and Objectives 

The constraints and objectives associated with the optimal control problem for the COMET-I 

benchmark scenario are summarized in Table 1. The four objectives are combined in a weighted sum. 

Table 1: Summary of COMET-I constraints and objectives. 

Constraint/objective Mean 

Constraints  

Dynamic constraints Rigid body dynamics and attitude kinematics. Angular momentum from reaction 
wheels. 

Reaction wheel constraints Unit level constraints for angular momentum and torque. Zero loss torque 
assuming wheel internal compensation. 

Star tracker pointing constraint 

 

The Star Tracker pointing constraints are omitted since it is assumed that the 
attitude is obtained from a gyro-stellar estimator. 

Instrument pointing constraint Sun exclusion angles of 30° are introduced for the two payload cameras. 

Objectives  

Instrument FoV objective Minimize deviation outside of the conic FoV of the instruments. 

Instrument LoS objective Minimize the angle between the instrument LoS and the vector to the comet. 

Solar array pointing objective Minimize the deviation of the solar array rotational axis. 

Command energy objective Minimize reaction wheel command energy. 

3.2 THESEUS 

The reference orbit of THESEUS is a circular LEO with an altitude of 600 km and 5.4° inclination.  

The payload of the spacecraft is an infrared (IR) telescope, with a Sun exclusion angle of 60°. 

THESEUS is expected to autonomously slew the telescope towards the target source location. The 

target source is different in case of internally (on-board) or externally (ground) triggered target 

sources. In the case of internally triggered target source, the target is within ±30.5° pitch and ±58.5° 

yaw from the initial attitude; in case of externally triggered source, the target is on the –Z axis of the 

J2000 reference frame. 

THESEUS is equipped with four star trackers (STS), characterized by an Earth-limb exclusion angle 

of 20° and a Sun exclusion angle of 27°. The star trackers impose a limitation on the maximum 

angular rate of the spacecraft, whose value should not be higher than 5°/s. Reaction wheels (RW) are 

used for actuation. 

Simulation Cases 

The results from two out of four THESEUS simulation cases are included in this report: 

• Test case 2: Minimization of slew time with external trigger source and one STS failure. 

• Test case 3: Minimization of slew time with external trigger source and one RW failure. 

The objective and constraints are analysed in more details in the next sections. The considered slew 

is an externally triggered target source slew with 180° rotation of the infrared telescope boresight, 

while maintaining the correct orientation of the Sun-shield at the end of the slew. 

Constraints and Objectives 

The constraints and objectives associated with the optimal control problem for the THESEUS 

benchmark scenario are summarized in Table 2. 
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Table 2: Summary of THESEUS constraints and objectives. 

Constraint/objective Mean 

Constraints  

Dynamic constraints The dynamic constraints include the rigid rotational dynamics and the attitude 
kinematics. Reaction wheels are included as pure integrations. 

Reaction wheel constraints Unit level constraints for angular momentum and torque. Zero loss torque 
assuming wheel internal compensation. 

Maximum slew rate of the 
spacecraft 

The spacecraft is constrained to a maximum slew rate, determined by the star 
trackers. 

Forbidden zone for the telescope The IR telescope should avoid pointing towards the Sun, within its exclusion 
angle. 

Forbidden zones for the star 
trackers 

For THESEUS, one star tracker must be available at all times. Therefore, 
simultaneous Earth and Sun blinding of all the star trackers should be prevented. 

Objectives  

Slew time Minimization of the slew time 

3.3 Scenario Transcription 

Discretization 

The Radau pseudospectral discretization method is used for the optimization procedure. Based on the 

properties of pseudospectral methods, a differentiation matrix 𝐃 is computed which can be used to 

enforce first order time derivative constraints. This matrix allows us to approximate the continuous 

derivative using discrete samples. With this matrix we can convert the differential equation 

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) 

into the discrete and purely algebraic constraint 

𝑓(𝑥𝑘 , 𝑢𝑘) −
2

𝑡𝑓 − 𝑡0
∑𝐷𝑘𝑖𝑥𝑖
𝑖

= 0 

In this way, we have now ways to compute integrals as well as derivatives by means of operating 

with discrete quantities. That is, we have the Gaussian quadrature which approximates integrals, and 

we have the Differentiation matrix which approximates local time derivatives. 

A good choice of sample points is a proportional mapping of the roots of Legendre-based 

polynomials, such as the Radau polynomial. The polynomial is the sum two Legendre polynomials 

of consecutive order: 

𝑅𝑁(𝜏) = 𝑃𝑁(𝜏) + 𝑃𝑁−1(𝜏), 𝜏 ∈ [−1,1] 

where 𝑃𝑁(𝜏) is the Legendre polynomial of order 𝑁. 

Linearization 

Nonlinear constraints can be enforced in a successive-convexification algorithm by providing the 

convex solver with an affine approximation of the constraints. In this way, enforcing a nonlinear 

constraint is a matter of enforcing the linear approximation of said constraint in an iterative manner 

until convergence is achieved. 

4 HERITAGE SOLUTION DESIGN 

The detailed design of the heritage solutions is summarized below for the respective COMET-I and 

THESEUS benchmark problems.  
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4.1 COMET-I 

The guidance functions associated with the COMET-I heritage solutions is divided into separate 

strategies for the Nominal and Contingency attitude cases. 

Nominal attitude case (Test case 1) 

Test case 1 is a nominal case where the S/C follows its nominal attitude profile but is limited by its 

actuation constraints. Assuming that the roll and pitch errors are small, the slew motion is 

characterized by the yaw-angle and the S/C slews around its y-axis to track the centre of comet (CoC). 

The main strategy, when the nominal attitude profile is not possible to follow is to saturate the rate 

profile at the corresponding maximum rate and to transition from the nominal attitude to the 

maximum rate through a linear rate profile. The strategy is illustrated with Figure 1. The torque and 

rate capacities are tracked depending on the reaction wheel configuration and the current reaction 

wheel speed distribution. 

 

Figure 1: Basic constrained approximation strategy for the LoS angle. 

Contingency attitude case (Test case 2) 

Test case 2 is a contingency attitude case that includes a large dust particle impact that leads to 

saturation of a reaction wheel and loss of S/C attitude. The main strategy is that, when a sudden 

change in momentum is detected, a new guidance profile is generated that takes the S/C back to the 

nominal attitude profile. The nominal profile is obtained as described in the previous section. The 

slew-back problem is in this way a non-rest to non-rest slew problem. In addition, the final angle and 

rate depends on the transfer time, which in its turn will depend on the final conditions. The solution 

is obtained numerically taking into account the numerical evolution of the nominal angular and rate 

profiles. 

4.2 THESEUS 

The chosen heritage guidance algorithm for THESEUS is the eigenaxis slew algorithm (EGS). 

Alternative heritage guidance methods that were evaluated for THESEUS are artificial potential 

function and path planning algorithms which both were rejected because of their computational 

complexity. 

5 EMBEDDED OPTIMIZATION DESIGN AND TUNING 

The key observations that enable the real-time use of the SCVX algorithm are the following. After 

the user has completed the problem implementation the following is true: 

1. The type, size, structure (and therefore memory use) of all components of the discretized optimal 

control problem and user defined data are known or can be automatically derived, such that when 

the transcription to the SOCP interface is performed, also the size and structure of all components 

of the resulting SOCP problem are known. 

2. The type, size and structure of the SOCP problem’s real-time inputs do not change between 

different SCVX iterations. 
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It follows that only one SOCP sparsity structure is required for an entire run of the SCVX algorithm. 

We capitalize on that by using a static memory SOCP solver that is optimized for the given sparsity 

structure. This results into a performance advantage over a general-purpose solver because some 

algebraic operations can be performed before runtime, and thus reduce the required execution time. 

5.1 Overcoming the Duality Between Rapid-Prototyping and Real-Time Environments 

To be able to use the same codebase for rapid-prototyping and real-time application we desire to 

circumvent that high level “convenience” code from the “User Interface Layer” and most code from 

the “Transcription Layer” become part of the real-time software at all. To facilitate this the software 

is built such, that the complete internal state of the framework can be “snapshotted”, saved and loaded 

again later to seamlessly resume operation from the snapshot point. Source code that was run prior to 

the snapshot and that is not required anymore afterwards can be completely replaced by loading the 

snapshot, and the dependency to this source code is eliminated. 

We utilize this pattern to create a snapshot after the transcription layer has been executed. At this 

point the user has defined the problem (User Interface Layer) and the software has deduced all sizes 

and the structure of all matrices. In particular the software has deduced the knowledge which matrix 

entries have to be updated in every iteration step and which entries stay constant. 

From the perspective of the real-time application, the snapshot data is a compile time constant, with 

one exception: the real-time parameters. To resolve this, note the following: The snapshot data is a 

true compile time constant with respect to type and size, only the numeric value of the real-time 

parameters may change. The snapshot already contains all memory required to hold the real-time 

data, but the new numeric values must be written to the correct location. Because of the general nature 

of the framework this task cannot be performed by the software automatically, additional user input 

is required. The user must write a wrapper function that receives the snapshot and the real-time 

parameters as input and outputs the snapshot updated with the real-time data, which will then be used 

in the SCVX loop. 

5.2 SCVX Real-Time Strategy 

The transcription and the SCVX logic are implemented in MATLAB using dense algebra, the SOCP 

solver is implemented in C++ using sparse algebra. The problem transcription is performed offline, 

before run-time and sparsity patterns and index structures are prepared as compile time constants. 

At run-time, the SCVX solver receives the real-time inputs which are not known ahead of time, i.e. 

the state and other quantities depending on measurements or the on-board computing system. The 

problem matrices which have already been prepared in memory during an initialization phase, are 

updated with the real-time inputs. 

To cover the sparsity structures for the THESEUS mission two-separate static SCVX solvers are 

required: The first solver is used for control with the reaction wheels, the second static solver is used 

for control with the thrusters. For the Comet-I mission the sparsity structure of all test cases is 

compatible with each other such that a single static solver is sufficient. 

The pre-computed transcription data includes the sizes of all memory objects including the sparsity 

patterns of all problem matrices. Using this information, the source code of a static memory solver 

that is dedicated for the given sparsity structure is generated (the static SOCP solver and its generator 

were not part of the software developed during the project). The dedicated solver is then linked with 

the SCVX layer to produce a static memory SCVX-Optimal-Control Solver. 

In each SCVX iteration a SOCP of the form 
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is solved. It minimizes a linear function of a set of decision variables subject to affine equality, 

inequality and second-order-conic constraints. 

This process requires for some constraints to be expressed in a convex way at the level of the 

formulation of the optimal control problem, but it also needs every nonlinear function associated with 

the problem to be linearized in each iteration. The goal is to successively solve local convex 

approximations of the nonlinear problem. Explicit trust region constraints are usually enforced in 

order to guarantee that the next solution stays within proximity of the previous one and, therefore, 

that the linear approximation model is adequate. For the benchmark problems implemented in this 

project, the trust region constraints remain unchanged throughout the optimization process. Figure 2 

shows a simplified flowchart of the main procedure of the SCVX algorithm. 

 

Figure 2: SCVX loop top-level logic. 

6 PERFORMANCE ANALYSIS 

The main closed-loop Monte Carlo results are summarized in Sections 6.1 and 6.2. 

6.1 COMET-I 

This section shows some results from the test case 1 and 2 as defined in Section 3.1. 

Test Case 1: Nominal fly-by 

The results show that the planned S/C rate and the corresponding angular momentum fully utilizes 

the available 3.2 Nms. SCvx plans a slight deviation in the slew axis to find the optimal slew with 

maximal rate and minimum attitude deviation. The Heritage solution is more conservative and plans 

the slew around Y-axis only. 

 

Figure 3: LoS error angle, test case 1. Left: Heritage. Right: SCvx. 
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Figure 4: LoS metrics, test case 1. Left: Heritage. Right: SCvx. 

Test case 2: Wheel saturation 

The results from test case 2 demonstrate significantly better results for SCvx than for the heritage 

solution. The Heritage solution was designed for early impact and tries to get back to the nominal 

trajectory. This strategy does not work well in the case of a late impact. SCvx plans the late impact 

as well as the early even though the late impact is often more challenging. For the early impact case, 

comparing the solutions shows that the SCvx can plan a higher yet achievable rate than the heritage 

solution, which is more conservative.  

 

Figure 5: LoS error angle, test case 2. Left: Heritage. Right: SCvx. 

 

Figure 6: LoS metrics, test case 2. Left: Heritage. Right: SCvx. 

Summary of Results 

Metrics based on the Monte Carlo results are summarized in Table 3. 
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Table 3: Test result metrics for COMET-I. 

Case Time outside of 
Visual Camera 

FoV [s] 

Time outside of 
IR Camera 

FoV [s] 

LoS 
Error 

[°] 

Control 
Effort 

[(Nm)2] 

Guidance Computation 
Time [s] 

Mean Max Mean Max Mean Mean Mean Min Max 

Heritage          

Test case 1 21.0 53.9 0.0 11.1 0.2 15.2 0.032 0.022 0.053 

Test case 2 104.4 162.5 63.0 121.7 7.0 47.7 0.65 0.027 1.87 

Test case 2* 114.8 157.4 46.5 106.4 3.1 58.4 0.52 0.38 1.73 

SCvx          

Test case 1 26.6 49.9 0.0 0.0 0.2 7.3 2.65 1.41 9.93 

Test case 2 85.1 143.9 9.8 78.8 1.1 37.4 1.88 0.50 20.82 

*Results for the cases with early dust impact (<10 s, 29 cases in total) within design scope of heritage algorithm. 

The results shows that the SCvx and heritage solutions are comparable for test case 1 but that the 

SCvx solution is significantly better for test case 2. The control effort for SCvx is significantly lower 

than for the heritage solution for both test cases. In particular for test case 2, the effort for the heritage 

solution is higher since it struggles more to achieve the objective but does not really succeed as well 

as the SCvx. The average guidance computation time is significantly lower for test case 1. For test 

case 2, the time is comparable to the time for the SCvx solution since in this case, the heritage 

guidance computation involves an iterative secant search. 

6.2 THESEUS 

In order to validate and verify the implemented guidance algorithms, a Monte Carlo campaign with 

300 runs for test case 2 and 1000 runs for test case 3 was performed.  

Test case 2 

The left plot of Figure 7 shows the simulation slew time and the resulting significant gain in terms of 

slew time when using SCvx. The right plot shows the guidance angular rate obtained with the heritage 

and SCvx algorithm for a single run of the MC campaign. The left plot of Figure 8 shows the wheel 

torque profiles while the right plot shows the wheel angular momentum profile from simulation. The 

computational times for the heritage solution is between 0.39 and 3.6 ms with a mean value of 

0.67 ms. For the SCvx solution the computational time is between 3.1 and 5.4 s with a mean value of 

3.9 s. The statistics are based on a Monte Carlo campaign performed with 300 runs. 

 

Figure 7: THESEUS test case 2. Left: Slew time. Right: Guidance angular rate. 
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Figure 8: THESEUS test case 2. Left: Wheel torque. Right: Wheels angular momentum. 

Test case 3 

The left plot of Figure 9 shows the simulation slew time and the overall gain in terms of slew time 

when using SCvx. The right plot shows the guidance angular rate obtained with the heritage and SCvx 

algorithm for a single run of the MC campaign. The left plot of Figure 10 shows the wheel torque 

profiles and the right plot shows the wheels angular momentum profiles from simulation. The 

computational times for the heritage solution is between 0.39 and 5.9 ms with a mean value of 

0.85 ms. For the SCvx solution the computational time is between 13.4 and 25 s with a mean value 

of 17.1 s. The statistics are based on a Monte Carlo campaign performed with 1000 runs. 

 

Figure 9: THESEUS test case 3. Left: Slew time. Right: Guidance angular rate. 

 

Figure 10: THESEUS test case 3. Left: Wheel torque. Right: Wheels angular momentum. 

6.3 Implementation on Flight-Like Hardware 

The target hardware is an ARM-Cortex-based development board (ZedBoard), which is supported by 

the MATLAB Embedded Coder for C code applications. As the SOCP solver is written in C++ we 
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cannot rely on the native support, hence we use the following procedure to facilitate runtime tests: 

The Embedded Coder is used to generate code of the SCVX algorithm for the ARM-Cortex 

architecture, including the loading and reading process of the transcription data. Then the GCC cross-

compiler builds a standalone executable which is uploaded to the ZedBoard. 

The separation of the SCVX software into offline transcription and real-time SCVX loop enables the 

user to work on problem formulation level mostly unhindered by MATLAB Coder restrictions and 

benefit from the ease of use of the Matlab environment. However, it has some drawbacks regarding 

the implementation on embedded hardware: The structure of the transcription data which arises from 

general OCPs is that of a linked list with elements of nonuniform memory size. With pure static 

memory allocation MATLAB Coder does not support such a data structure and as a workaround, the 

data must be padded such that all list elements are of the same size. This currently leads to a significant 

memory overhead, which is subject to further improvements in the future. 

The runtime is characterized with three different execution times. The first time 𝑡total denotes the 

total amount of time required to execute the SCVX algorithm from scratch, including the execution 

times required for loading and reading the structure array, for instantiating the SCVX object and 

allocating memory, and for solving the discretized optimal control problem. The SCVX raw solution 

time is denoted by 𝑡SCVX and excludes the previous pre-processing steps. Finally, the time required to 

solve all recurring SOCPs is denoted by 𝑡SOCP. To reduce the influence of run time outliers, all the 

time metrics represent the median over ten runs. The runtime is measured for the nominal case of 

both benchmark problems. For comparison, Table 4 also includes the runtime measurements on a 

common personal computer (CPU Intel Core i9-10900K, max. 3.7 GHz) for solving the same 

optimization problems (see values in parentheses). 

Table 4: ZedBoard computation times for the segments with six collocation points each. 

 Theseus Comet Interceptor 

 𝒕𝐭𝐨𝐭𝐚𝐥  𝒕𝐒𝐂𝐕𝐗 𝒕𝐒𝐎𝐂𝐏 𝒕𝐭𝐨𝐭𝐚𝐥  𝒕𝐒𝐂𝐕𝐗 𝒕𝐒𝐎𝐂𝐏 

Absolute values [s] 34.1 (1.12) 33.48 (1.07) 30.7 (0.94) 42.48 (1.35) 41.44 (1.27) 35.47 (1.08) 

Relative values [%] 100 (100) 98.18 (95.54) 90.03 (83.93) 100 (100) 97.55 (94.07) 83.5 (80) 

For the Theseus problem, a discretization mesh consisting of ten uniformly distributed segments with 

five collocation points per segment satisfies the control and state constraints as discussed above. In 

total, the mesh comprises 50 collocations points. In the nominal case, the SCVX algorithm requires 

15 iterations to satisfy the convergence criterion. Table 4 shows that the SCVX algorithm spends 

most of the computation time, approximately 90%, solving the underlying and recurring SOCPs. 

Loading the structure array and allocating memory requires less than 2% (5%) of the execution time. 

For the Comet Interceptor problem, the discretization mesh comprises ten segments and six 

collocation points per segment. The SCVX algorithm requires 13 iterations to reach the convergence 

criterion. The formulation of the Comet Interceptor problem and the resulting conditioning of the 

SOCP matrices result in a higher computation time compared to Theseus. However, the relative 

values in the second row of Table 4 are comparable between the two benchmark problems. 

The execution time on the ZedBoard is roughly 30 times higher than on the development PC, while 

the ratio of the CPU tact frequency from development PC to ZedBoard is only 5.5. The impact of the 

CPU architecture (e.g., caching, instruction set) is thus much higher than the pure CPU tact. If the 

ZedBoard is assumed as the flight hardware, trajectory computation times of 34 s for Theseus and 42 

s for Comet-I might be acceptable to perform onboard trajectory computation before the start of a 

given maneuver, but the benefit from real-time trajectory re-computation mid-maneuver, as, for 

example, in the scenario for the dust particle impact compensation, is diminished. A future 

improvement of the runtime is expected from optimizing the memory use to reduce cache misses. 
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It can be seen from the runtime analysis that the majority of computation time is spent solving SOCP 

problems. This is in line with the expectation that the solution of the linear system occurring at the 

core of the interior point method should take the majority of the computation time. Although the total 

time exceeds expectation, the SOCP solver is the part of the software with the highest level of 

optimization and the margin for improvement of the core interior point algorithm and its 

implementation is deemed low. 

More promising strategies for computation time reduction are to reduce memory use and achieve 

more efficient cache usage. Secondly trying to reduce the overall number of required SCVX 

iterations, such that a lower number of SOCPs must be solved. The main point of improvement for 

this is the trust-region strategy. While we have used a fixed trust-region size, we have seen that a 

dynamic update of the trust-region size can be beneficial in some situations. Another route of 

improvement is to try to improve the numerical conditioning of the problems, aiming at reducing the 

interior-point iterations that are required to solve the SOCP problems. Multiple OCP level problem 

scaling techniques were investigated and found of little to no benefit. A deeper analysis of the SOCP 

input matrices could however reveal a more successful scaling approach and improve the centring of 

the problem before applying the interior-point algorithm. 

7 CONCLUSIONS 

Several conclusions can be drawn from the work performed in this study with in particular the 

following main areas are of interest: 

Performance: The performance observed from the SCvx based guidance is in most of the test cases 

better than the guidance resulting from the heritage solutions. In general, the SCvx solutions can 

better utilize the capacity of the RWA or RCS since constraints are taken into account on unit level.  

Execution Time: The execution times observed from the tests on the flight like HW are in the range 

of 30 to 40 s which does not really allow for fast recomputation of the guidance profiles in connection 

with critical re-configuration of HW or in other cases, where the guidance profile is needed quickly. 

It is however expected that there is some room for improvement in terms of execution time. 

Development Effort: An estimate of development effort shows that the application-specific required, 

recurrent effort is similar for the development of the optimization-based and the heritage solutions. 

However, the optimization-based solution also requires a significant initial, non-recurring effort to 

develop the necessary numeric optimization software. This is estimated to be about 5 times as much 

as the effort for a single mission application, not counting the development of the core convex solver. 

The observations and conclusions summarized above indicate that choosing an SCvx-based attitude 

guidance solution is not a “magic” universal tool that seamlessly will solve any problem. Significant 

effort is needed to be able to arrive at a well-posed and well-tuned problem that allows the 

optimization-based framework to provide a solution. However, with such a problem at hand, the 

framework is able to provide a versatile solution that seems to be able to better utilize the on-board 

resources and deliver a solution that provides better performance than the heritage approach. 
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