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Abstract—The widespread adoption of AI-enabled systems
and their required continuous development and deployment
(MLOps) sparks research interest due to the added intricacy of
automatically handling data, code, and the model itself. A better
understanding of the stages for the continuous development of AI,
namely Data Handling, Model Learning, Software Development,
and System Operations, and the respective tasks can help to
optimize and improve their effectiveness.
Thus, this paper explores the degree of automation, development
effort, importance, utilization of computing resources, and factors
contributing to automation throughout these stages and tasks. We
conducted a questionnaire-based global survey to explore these
topics by analyzing 150 responses from experienced AI, data, and
MLOps engineers.
The results determined that the stage System Operations is
mainly automated. Whereas several tasks from the other three
stages (e.g., data cleaning, data quality assurance, model design,
model improvement, and system level quality assurance) are more
often partially automated than automated, and documentation-
related tasks are mostly not automated or developed. Participants
required the highest development effort for the stage Data
Handling. Furthermore, the study reveals a negative correla-
tion between automation and the perceived development effort,
whereas the importance of the tasks does not seem to affect
automation. 93% of participants consider the availability of
computing resources, with model training, data transformation,
and data cleaning ranked as the most resource-intensive tasks.

Index Terms—MLOps, automation of AI development, effort
of AI development, importance of tasks for AI development,
computing resource consumption, Machine Learning, Artificial
Intelligence, Deep Learning, CD4ML

I. INTRODUCTION

The advance of technology, including the availability of
more data and computing power, has opened up numerous
possibilities for the use of Artificial Intelligence (AI), along
with its subsets of Machine Learning (ML) and Deep Learning
(DL), across various industries [4]. To fully leverage the
capabilities of AI, it is essential to continuously and rapidly
integrate AI models into production systems and monitor them
while they are evolving and self-adapting [7], [29]. Thus, the
idea of Continuous Integration (CI)/Continuous Deployment
(CD) and DevOps (DevOps) is applied to AI to enhance
the speed, consistency, and reliability of the AI development
process. However, their transformation to AI models sparks
research interests due to the added intricacy of code combined
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with data, model, and a larger system-level complexity [2], [6],
[9]. The practices for the continuous development of AI are
known as DevOps for AI, CI/CD for AI, Machine Learning
Operations (MLOps), (End-to-End) Lifecycle Management, or
Continuous Delivery for Machine Learning (CD4ML) [27].
The continuous development pipeline is represented by key
stages consisting of Data Handling, Model Learning,
Software Development, System Operations, each
of which comprises a subsequent set of tasks for handling
critical steps from data to a deployed AI model [27]. By better
understanding these stages and respective tasks, we identify
opportunities to optimize them and ultimately improve the
efficiency, accuracy, and effectiveness of AI development.
One way to improve the continuous development of AI is
by examining the degree of automation present [14], [22].
In addition, the perceived development effort, importance,
and resource consumption of tasks throughout the continuous
development allow organizations to optimize the pipeline by
focusing on the areas with the highest impact and prioritizing
research and resources accordingly.
Nevertheless, what tasks are automated and how practitioners
perceive their required effort and importance remains uncer-
tain. Furthermore, several tasks, such as model training [31],
require many computing resources where automation may help
with effective resource management to avoid bottlenecks for
highly important tasks. Thus, it is essential to identify which
tasks practitioners deem most computing resource-intensive.

This paper elaborates on the following research questions
based on the identified research gaps:

RQ1 To what degree are the tasks automated in the pipeline
for the continuous development of AI?

RQ2 How much effort is required to develop a pipeline for the
continuous development of AI?

RQ3 How important is each task in the pipeline for the
continuous development of AI?

RQ4 What factors are linked to the adoption of automation?
RQ5 What tasks in the pipeline for the continuous development

of AI are considered by developers as the most and the
least computing resource-intensive?

To answer these questions, we conducted a questionnaire-
based survey among practitioners with expertise in the continu-
ous development of AI worldwide. We analyzed 150 complete
answers to understand the current state, interconnections, and



differences.
The remainder of the paper is structured as follows: Section

II reports the related work and introduces the main concepts
and definitions of the pipeline for the continuous development
of AI. Section III describes the methodology and survey
design. In Section IV, we answer the RQ by providing the
survey results. Section V interprets the results, highlights
future work, and identifies potential threats to validity. Finally,
Section VI summarizes the paper’s results.

II. BACKGROUND AND RELATED WORK

The following section discusses related work and essential
background knowledge. Firstly, we discuss the related work
and background information regarding the pipeline for the
continuous development of AI. Secondly, we focus on the
related work regarding adopting MLOps practices and their
implications.

Different publications have employed various methodolo-
gies to define and summarize the tasks involved in the
pipeline for the continuous development and deployment
of AI, including case studies conducted by Karlas et al. [15],
Amershi et al. [2], and John et al. [13]. As these case studies
focus on specific cases, literature reviews have begun to com-
bine available information, accumulating necessary tasks and
proposing a taxonomy for a continuous development pipeline
for AI, as demonstrated in Steidl et al. [27], John et al. [14],
Lwakatare et al. [18], Testi et al. [30], Kreuzberger et al. [17],
and Alves et al. [1]. The foundation of this survey relies on
Steidl et al.’s work [27], which offers an elaborate description
of the pipeline. Figure 1 illustrates the stages of the proposed
pipeline, namely Data Handling, Model Learning,
Software Development, and System Operations,
along with their respective tasks. Table I defines and describes
these tasks.

Five studies focus on the adoption of MLOps practices
and their implications. Serban et al. [26] surveyed the degree
of adoption of software engineering practices for AI and the re-
spective effects based on different demographic characteristics.
Makinen et al. [19] identified challenges for data scientists and
how they can profit from MLOps. Amershi et al. [2] executed
interviews and a survey at Microsoft to identify processes
and practices undertaken to develop AI models. Calefato et
al. [5] mined open-source projects on GitHub focusing on
GitHub Actions and CML1 to identify how common workflow
automation is in ML-enabled systems. Rahman et al. [21]
studied the usage of bots for the automation of development
tasks by mining three DL libraries (Keras, PyTorch, and
Tensorflow). Zhou et al. [31] executed an experiment where
they used CI/CD tools and Kubeflow to measure the time
and computing resource consumption of the AI platforms
during the pipeline’s execution. In contrast, this study looks
at the degree of automation, development effort, importance,
and computing resources of each specific task regarding the
pipeline for the continuous development of AI.

1Continuous Machine Learning:https://cml.dev/doc, accessed 03.02.2023

TABLE I
DEFINITION OF THE PIPELINE’S TASKS BASED ON [27]

Task Definition
Data Handling

Data
cleaning

Handling of missing values, outliers, data types, correct-
ing corrupted or inaccurate data

Data trans-
formation

Statistical analysis of the data, bringing it to the suitable
format for training, labeling, and feature extraction

Data Quality
Assurance
(QA)

Data and feature validation, data quality measurements,
unit tests

Versioning Storing data to guarantee traceability and compliance
with regulations, also versioning of dependencies, data
processing steps, and extracted features (feature stores)

Documentation Guidelines with concrete actions such as feature cleaning
or naming conventions applicable to data files or folders

Model Learning
Design Model purpose, selection of reusable model components,

best suitable algorithm, feature selection, data set to split
Training The process of training the model with the given data
Model QA Testing a model based on its quality to provide faultless,

reliable, and secure models (e.g., accuracy, precision,
recall, convergence, robustness, fairness, etc.)

Model
improvement

Context and model-specific improvement techniques
(e.g., hyper-parameter optimization, pruning, model hard-
ening)

Versioning
(& metadata
capture)

Storing version artifacts, code, dependencies, and meta-
data (e.g., provenance information, execution and deploy-
ment of the model, training, training date) to backtrack
or reproduce different model versions

Documentation Documenting a model’s purpose and technical decisions
(algorithm design and chosen model, achieved results)

Software Development
Packaging The build process packages the code and model logic into

build artifacts which are deployed in production
System-level
QA

Should identify the correct behavior of the whole system
landscape

Versioning Packaged models, respective QA results, the pipeline, and
its associated tasks are versioned

Documentation Documentation of necessary information for the software
release

System Operations
Deployment Deployment of a model on different environments based

on different deployment strategies (e.g., A/B test, shadow
deployment)

Monitoring Monitoring the AI model in production and collecting the
necessary information (data, model performance, tradi-
tional software monitoring aspects) to improve over time

Environment
and infras-
tructure

Handling of different environments or operational stages
where a model is deployed. Includes varying hardware,
operation systems, and software version dependencies

III. METHODOLOGY

We chose a descriptive survey design to address the research
questions and investigate the current state of AI develop-
ment following the guidelines of Runeson and Höst [25].
We launched an anonymous online questionnaire survey on
LimeSurvey to reach many participants. This section outlines
the survey design, participants’ selection strategy, and data
analysis procedures.

A. Survey design

The questionnaire underwent two stages of design. A sample
group completed a pilot study to avoid misinterpretations and
identify missing elements. Based on their feedback, we refined
the questionnaire. Table II presents the final survey questions



Model Learning

release

Software
Development

rollback
data

AI model feedback
rollback

System
Operations

data cleaning

versioningdocumentation

design

training

versioning (incl.
metadata capture)documentation

packaging
system level

quality
assurance

monitoring
(data, model &

system)

environment and
infrastructure

handling

deploy
(incl. deployment

strategies)

Data Handling

versioning

data quality
assurance

experimentation process

model
quality

assurance
model

improvement

documentation

data
transformation

Fig. 1. Pipeline for the continuous development of AI including four stages and respective tasks based on [27]

and refers to the papers from which some question types were
adapted.

TABLE II
THE SURVEY QUESTIONS

RQ Survey Question Question Type
RQ1 Do you automate a pipeline task? 4-point ordinal scale (au-

tomated, partially auto-
mated, not automated, no
answer) [14]

RQ2 Rate the development effort of each
task of an ML pipeline

4-point ordinal scale
(Low, medium, high
effort, no answer)

Assign 100 points according to the
time spent on the development of
each stage

assign 100 points to stages

RQ3 In your opinion, how important is
each task?

4-point ordinal scale (not
important, low, medium &
high importance)

RQ5 Do you consider computing
resources when automating ML
tasks?

yes/no

Choose and rank a maximum of
5 of the most resource-intensive
phases

ranking (if participant
considers resources)

RQ4 Experience in AI related field Single choice
Experience with MLOps yes/no
Type of data Multiple choice
Type of AI models Multiple choice
Domain Multiple choice
Tools, packages, and libraries used Multiple choice [24]
Company size Single choice
Development team size Free numerical input
Gender Single choice

To facilitate the comprehension and avoid the misinterpre-
tation of the various tasks, each page of the survey contained
a graphical representation of the pipeline for the continuous
development of AI, including its four stages and 18 tasks as
depicted in Figure 1. Additionally, we provided task definitions
(see Table I) that participants could access by clicking on the
corresponding task.

B. Participants selection
Due to the difficulties in estimating the total number of

the target group of AI, data, and MLOps engineers, we
used purposive non-probability sampling. Our sample group
comprised engineers with the necessary technical expertise
to work with and automate AI systems. We reached out to
them by publishing a voluntary questionnaire in an AI and
MLOps community 2. Additionally, we distributed the survey

2https://mlops.community/, accessed 04.07.2023

to individuals with relevant profiles through LinkedIn and to
companies worldwide that develop AI-based products.

Between March and April 2023, a total of 194 responses
were received. To proceed with the analysis, we focused on
survey participants with more than one year of experience in
the researched field who completed the survey. This narrowed
our pool to 150 participants with the following profiles.

Over 45% of the participants have 3-5 years of experience in
ML-related fields, followed by approx. 23% with 6-10 years of
experience and approx. 22% with 1-2 years of experience. 7%
of the participants have over ten years of experience. Half of
the participants work in large companies with more than 250
employees. The median team size is 10, with an interquartile
range of 5 to 30.

The following demographic descriptions are based on
multiple-choice questions where participants were allowed to
add more than one answer. Most of the participants work in
Finance (28%), Healthcare (24%), and E-Commerce (approx.
23%). The majority of the participants work with tabular
data (70%), text (60%), and images (55%). Regarding the
models they developed, Artificial Neural Network (ANN) were
used by approx. 77% of the participants, followed by 59%
tree-based models, 58% regression models, and 50% using
clustering. The top tool choices were Jupyter Lab, MLFlow,
Gitlab, Kubeflow, and AWS SageMaker.

C. Data analysis
To analyze the survey data, we used a combination of de-

scriptive statistics and statistical testing. We provide the survey
questions, raw survey data, and complete analysis online [28].
Firstly, we analyzed how participants perceive tasks and stages
in terms of automation, development effort, importance, and
computing resource consumption. Participants who completed
at least half of the questions were included in the analysis, but
those who skipped complete sections were excluded from the
analysis of these sections. Secondly, we explored the relation-
ships between automation, effort, and importance across tasks,
stages, and the overall pipeline. We aggregated responses for
each stage and calculated the overall pipeline correlation based
on 18 tasks. Missing values were eliminated, resulting in
varying numbers of observations. The number of observations
per task ranged from 73 to 108, from 258 to 594 per stage,
and overall 1600-1684 observations were analyzed. The data
and model stages had the most complete responses, while
development and operation had more incomplete answers. To
estimate the degree of correlation, we applied a non-parametric



Spearman’s correlation coefficient due to the ordinal scale of
the data. We only consider correlations with a significance
level better than 1%.

IV. RESULTS

In the following section, we present the most noteworthy
findings from the survey analysis and illustrate the takeaways
in grey boxes at the end of each section.

A. RQ1: Degree of tasks automation

Figure 2 presents the automation of tasks within each
stage. During the Data Handling stage, fewer participants
automate the data cleaning process than partially automate it.
We observed the same trend for data QA. Data versioning
is automatically handled in half of the participants’ answers,
while data documentation is not automatically handled by half
of the participants and is not answered (indicating that this task
is not developed) by 25%.

During the Model Learning stage, over half of the prac-
titioners do not automate the model design; only 9% automate,
and 27% partially automate this process. Model improvement
tasks are less often automated (19%) than partially automated
41%. Model versioning is automatically handled in over half
of the participants’ answers, while no automation of the model
documentation is prevalent, and 17% are not developing this
task at all.

In the Software Development stage, the system level
QA is mostly partially automated by 32%, whereas complete
automation is achieved by 26%. However, nearly the same
number of participants indicated that they did not develop this
task. Versioning is automatically handled in over half of the
participants’ answers. Documentation is again not automated
for 38% of the time and not developed for 20%.

During the System Operations stage, all three tasks
are mostly automated. However, these tasks are not devel-
oped/not answered in approx. 14% of the time.

• Data cleaning, data QA, model design, model im-
provement, system level QA are more often partially
automated rather than fully automated

• Tasks in the stage System Operations are mostly
automated

• Over half of the participants indicate automating ver-
sioning in every stage

• Documentation in all stages is mostly not automated or
developed

B. RQ2: Development effort

This section focuses on the perceived effort required to
develop each stage and the respective tasks as illustrated in
Figure 2. To assess the development effort per stage, partic-
ipants were asked to allocate 100 points to each stage based
on their development time. According to the median, Data
Handling requires the most development effort, with 35%
of the total effort invested. The dispersion of this stage ranges
from 20% to 50%, and 60% of the developers put it within the
most effort-intensive stage. The following two stages (Model

Learning and Software Development) each require
20% of the development effort. System Operations is
the stage with the lowest effort intensity, with a median of
15%.

The following paragraph describes the perceived effort
per tasks. During the Data Handling stage, the partic-
ipants mostly perceive data cleaning as a high-effort (42%)
to medium-effort (32%) task. Over half of the participants
perceive data versioning as a low-effort task.

In the Model Learning stage, the participants perceive
model design, model QA, and model improvement as a high to
medium effort task. Again, most participants perceive model
versioning as a low-effort task.

As for the Software Development and System
Operations stages, the participants agree that system-level
versioning is a low-effort task. In contrast, all the other tasks
in both stages require medium effort according to 30-36% of
the participants.

• The most development effort intensive stage is Data
Handling

• High to medium effort is required for data cleaning,
model design, model QA, and model improvement

• Participants perceive versioning as a low-effort task

C. RQ3: Importance of the tasks

Figure 2 presents the importance of the tasks within each
stage. Over 65% of the participants perceive data cleaning,
transformation, and QA in the Data Handling stage as
highly important. Whereas data versioning and documentation
are of medium and low importance.

A similar pattern is observed in the Model Learning
stage, where the first four tasks (design, training, model QA,
and model improvement) are of high importance, as stated by
more than half of the participants, whereas the majority of the
responses on versioning and documentation vary from medium
to low importance.

All tasks of the Software Development stage were
indicated as comparably important, with at least 40% of the
participants stating that they have high importance. Nearly
half of the participants categorized the documentation in this
stage as medium important. We also discovered that years of
experience positively correlate with the perceived importance
of system-level QA with a correlation coefficient of 0.25.

All respective tasks are considered highly important during
the System Operations stage. For instance, 58% perceive
data, model, and system monitoring as highly important.

• All tasks in the four stages, except for versioning and
documentation, are perceived as highly important

• Positive correlation for years of experience and per-
ceived importance of system-level QA

D. RQ4: Factors linked to the adoption of automation

To identify automation factors, we analyzed the correlation
between automation and effort at three levels: tasks, stages,
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Fig. 2. Automation, development effort, and importance per task

and overall pipeline (Figure 3). We further explored the rela-
tion between automation and importance as well as influencing
demographic information.

Automation and effort correlation analysis showed a sig-
nificant negative relationship for most tasks, stages, and the
overall pipeline. The detailed results are shown in Figure 3.
The effects are significant at level 0.001 or better, varying
from -0.29 for data transformation to -0.52 for packaging,
which suggests a medium to large effect size. The strongest
correlation was observed for the task packaging (-0.52), data
QA (-0.47), and software versioning (-0.36). Among stages,
the strongest negative correlation appears at the Software
Development stage (-0.46). Overall pipeline development
shows a medium negative correlation (-0.37). We discovered
that the healthcare domain has a high negative correlation
between automation and effort within all stages (-0.59), espe-
cially in the stages Software Development (-0.77) and
Model Learning (-0.59) with a significance level at 0.001.

Automation and importance did not show a significant
correlation except a medium positive correlation in the devel-
opment of the monitoring task (0.29, significant at 0.01) and
a slight positive correlation for the System Operations
stage (0.22). Nevertheless, there is strong evidence that there is
little to no relationship between the importance and automation

for the other stages and when developing the overall pipeline
with correlation coefficients of approximately 0.1.

Other factors - To identify if automation levels differ in dif-
ferent domains, we investigated the dependencies in the most
represented domains: finance, e-commerce, and healthcare.
The analysis showed that in e-commerce, model training and
monitoring are slightly more automated than in other domains
(correlations 0.2 and 0.3, respectively). Model improvement is
more automated in healthcare (0.2).

When automation is considered in different models, we
found an increase in automation by the developers who use
regression models (0.3), whereas developers who chose ANN
automate data documentation slightly more often (0.2).

In addition, we discovered several relations for tasks au-
tomation in different tools: Kuberflow users claimed higher
model documentation (0.27), developers using AWS Sage-
Maker indicated higher data cleaning (0.25), data QA (0.26),
and model improvement (0.25), developers using Apache
Airflow showed higher data QA automation (0.26).

No significant differences in automation were discovered
based on team and organization sizes, except for the increase
in software versioning and documentation automation in the
larger development teams (0.3).
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E. RQ5: Computing resource-intensive tasks
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Fig. 4. The ranking of the tasks based on their computing resource intensity

When automating tasks, the majority of participants (93%)
take into account the availability of computing resources.
Figure 4 shows the tasks ordered by perceived computing
resource intensity and their ranking by the participants. Model
training, data cleaning, and data transformation were the most
resource-intensive tasks. Overall, four out of six tasks from the
stage Model Learning and three tasks each from the stages
Data Handling and System Operations were placed
in the top 10 most resource-intensive tasks. Versioning and
documentation-related tasks were considered minor resource-
intensive tasks across all stages.

• 93% of participants consider the availability of comput-
ing resources

• The most computing resource-intensive tasks according
to the practitioners: model training, data transformation,
data cleaning, model improvement, and deployment

V. DISCUSSION AND FUTURE WORK

In this section, we interpret the evidence-based results and
link them to relevant literature while providing implications

for further research. In addition, we discuss future work and
threats to validity towards the end of this section.

Our key findings indicate that tasks in the stage System
Operations are mostly automated, such as monitoring,
as emphasized by Baier et al. [3]. One potential reason
may be that automation requires repetitive, deterministic, and
standardized tasks where limited creativity is involved [10].
This explains why versioning is mostly automated since prac-
titioners require low effort to develop this task.

This study, however, also identifies that several tasks are
mostly partially automated, such as data cleaning. Data is often
context-dependent from heterogeneous data sources, requiring
individual and domain-specific implementations resulting in a
high development effort [3], [19], [22]. Further investigation
is crucial to comprehend the reasons and characteristics of
partial automation. Once we understand why full automation is
impossible, we can develop universal solutions to minimize the
development effort in the most development effort-intensive
stage Data Handling.

Model design and model improvement are unique, high-
effort, and important tasks where complete automation is
hard to achieve as well. For instance, available data, selected
features, suitable algorithms, and hyperparameter optimization
highly influence the model design and improvement tasks.
Future research can leverage AutoML for identifying optimal
settings without human intervention [11].

Moreover, data QA and system level QA require high to
medium effort and are mostly partially automated because, ac-
cording to [12], [22], the benefits of automation do not exceed
the effort required for fully automating it. This implies that
these tasks require high expertise to develop individual solu-
tions. Notwithstanding, the importance of QA, more precisely
system level QA, increases with participant years of experi-
ence. We assume that this happens because experienced AI,
data, and MLOps engineers might have a deeper understanding
of software engineering tasks, the complexity of software
development, and the risks associated with inadequate QA [8],
[22]. Thus, automated and standardized data QA continuously
ensures that the input data is not flawed and bugs cannot be
propagated down to the model training to obtain an accurate
and reliable AI model [18]. The automation of QA may shift
to the highly automated stage System Operations, where
runtime verification methods assess model performance and
bias using production data and information from automated



data, model, and system monitoring tools.
High-effort tasks are less often automated than low-effort

tasks, as revealed by this survey’s negative correlation between
automation and development effort. Certain fields show greater
levels of automation. For instance, in the healthcare domain,
standardization and automation processes are more prevalent
due to stringent regulatory requirements. However, further
observations are needed for a comprehensive analysis of the
reasons and implications behind this correlation.

In resource-constrained situations, prioritizing the devel-
opment or improvement of automation for tasks should be
based on their importance to companies seeking the benefits
of automation. Thus, we suggest focusing on data clean-
ing, transformation, and QA, model design, training, QA,
and deployment first. However, over 20% of the participants
did not generate documentation throughout the stages. Thus,
participants might not have identified its importance. Docu-
mentation is essential to provide accountability, especially for
AI models [16]. To ease the process, we imply conducting
research on automated solutions that enhance and streamline
the documentation process. For instance, Baier et al. [3] and
Paleyes et al. [20] recommended documenting concrete actions
applied to the data, the model’s purpose, technical decisions,
and crucial information regarding the software release.

In summary, employing fully automated stages and tasks for
the continuous development of AI minimizes the effort during
task execution, accelerates model deployment in production,
and ensures consistency while improving reliability and quality
[14], [20]. Thus, the key implication is to reduce obstacles in
fully automating tasks that demand high development effort
and significant expertise while prioritizing the most important
tasks.

Once the pipeline is better automated, the stated most
computing resource-intensive tasks, such as model training,
data transformation, data cleaning, model improvement, and
deployment, future research can focus on computing resource
optimization. For instance, resource consumption can be pre-
dicted from previous executions, resources can be allocated
more efficiently, and resource-efficient scheduling may be
applied [2]. This becomes essential when AI is trained and
deployed on edge devices [23].

A. Future Work

This survey explicitly explores the degree of automation
and its influencing factors, such as the development effort,
importance, and demographic information. Further research
may identify other influencing factors via qualitative studies
(interviews, literature studies). This paper presents a few
domain-specific preliminary findings, but a bigger sample size
with sufficient participants within each demographic category
would provide deeper insights and further interpretation.

Furthermore, because 93% indicated that they consider com-
puting resources, further research could provide quantitative
and more specific insights into these resources for each task,
such as CPU or memory. This may help improve resource
allocations and the scheduling of automated tasks. Therefore,
a case study could measure the computing resources required

for available pipelines for the AI development and verify the
ranking of this survey.

B. Threats to Validity

This section discusses the four possible threats to validity
according to Runeson et al. [25] and how we mitigated them.
To improve internal validity, we included responses from
participants with at least one year of experience. We excluded
incomplete surveys to avoid attrition bias. However, we were
not able to identify the lack of correlation and low correlation
due to the insufficient number of observations. To validate
weak correlation associations at a significant level, a larger
sample size is required. To enhance external validity, we in-
cluded a diverse group of AI, data, and MLOps engineers from
various domains, using different data types, AI models, and
tools. We also varied company and team sizes and experience
to represent the population better. Threats regarding construct
validity may occur due to a lack of standardized language and
terminologies. To counteract this threat, we based the selected
stages and tasks on a literature review, provided clear descrip-
tions, and conducted a pilot study for feedback on wording and
response options. However, it is important to recognize that
ambiguity may persist regarding participants’ understanding
of task importance. It remains unclear whether their responses
reflect perspectives from the end-users, developers, or task
execution within the pipeline. Moreover, we used ordinal
scales because we wanted to include ”no-answer” options
for participants who did not develop a specific task or ”not
important” if they developed a task but found it unimportant.
However, it must be considered that the used scales lack
fixed intervals between answer options, which may make it
difficult for participants to determine the implied degree of
difference between answer choices. Regarding the reliability,
we published the analysis conducted by two researchers [28].
In addition, we only presented correlations when the signifi-
cance level was at 1% or better to avoid insignificant linear
relationships.

VI. CONCLUSION

To effectively manage the growing complexity of system-
level operations and efficiently integrate rapidly evolv-
ing AI models into production systems, automated stages
and tasks must be employed to ensure continuous devel-
opment and monitoring of AI models. These stages in-
clude Data Handling, Model Learning, Software
Development, and System Operations, with their re-
lated sets of tasks. This paper aims to gain descriptive insights
into practitioners’ perspectives on the degree of automation,
development effort, importance, and computing resource con-
sumption associated with these stages and tasks. We also
examined whether perceived development effort, importance,
or demographic information affects automation. Therefore, we
collected and analyzed 150 responses through a questionnaire.
The key findings indicate that tasks with high effort are
automated less frequently than low-effort tasks (e.g., the high-
effort tasks, data cleaning, model design, and model improve-
ment, are partially or not automated). Tasks in the stage



System Operations are primarily automated, whereas
documentation is rarely automated or developed. Perceived
importance does not influence the degree of automation (e.g.,
data cleaning, despite its importance, remains mostly partially
automated). 93% of participants consider the availability of
computing resources and perceive model training, data clean-
ing, and data transformation as the most resource-intensive
tasks. The discussed key implication is to facilitate automation
for development effort-intensive tasks while prioritizing essen-
tial tasks to accelerate model deployment and ensure quality.

REFERENCES

[1] Alves, I., Email, U.S.P., Leite, L., Email, S.: Practices for Managing
Machine Learning Products : a Multivocal Literature Review Practices
for Managing Machine Learning Products : a Multivocal Literature
Review pp. 0–23 (2023). https://doi.org/10.36227/techrxiv.21960170.v2

[2] Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., Nagap-
pan, N., Nushi, B., Zimmermann, T.: Software Engineering for Machine
Learning: A Case Study. In: 2019 IEEE/ACM 41st International Con-
ference on Software Engineering: Software engineering in practice. pp.
291–300. IEEE, Piscataway, NJ (2019). https://doi.org/10.1109/ICSE-
SEIP.2019.00042

[3] Baier, L., Seebacher, S., paper Baier, R.: Challenges in the Deployment
and Operation of Machine Learning in Practice (2019), https://www.
researchgate.net/publication/332996647

[4] Boucher, P.: Artificial intelligence: How does it work, why does it
matter,and what can we do about it? European Parliament, Brussels
(2020)

[5] Calefato, F., Lanubile, F., Quaranta, L.: A Preliminary Investigation
of MLOps Practices in GitHub. International Symposium on Empiri-
cal Software Engineering and Measurement pp. 283–288 (sep 2022).
https://doi.org/10.1145/3544902.3546636

[6] Fischer, L., Ehrlinger, L., Geist, V., Ramler, R., Sobiezky, F., Zellinger,
W., Brunner, D., Kumar, M., Moser, B.: Ai system engineering—key
challenges and lessons learned. Machine Learning and Knowledge
Extraction 3(1), 56–83 (2020)

[7] Fursin, G., Guillou, H., Essayan, N.: CodeReef: an open platform
for portable MLOps, reusable automation actions and reproducible
benchmarking, http://arxiv.org/pdf/2001.07935v2

[8] Golendukhina, V., Lenarduzzi, V., Felderer, M.: What is software quality
for ai engineers? towards a thinning of the fog. Proceedings - 1st Inter-
national Conference on AI Engineering - Software Engineering for AI,
CAIN 2022 pp. 1–9 (2022). https://doi.org/10.1145/3522664.3528599,
https://dl.acm.org/doi/10.1145/3522664.3528599

[9] Granlund, T., Kopponen, A., Stirbu, V., Myllyaho, L., Mikkonen, T.:
MLOps Challenges in Multi-Organization Setup: Experiences from Two
Real-World Cases, http://arxiv.org/pdf/2103.08937v1

[10] Hancock, P.A.: Imposing limits on autonomous systems. Ergonomics 60,
284–291 (2017). https://doi.org/10.1080/00140139.2016.1190035, http:
//dx.

[11] He, X., Zhao, K., Chu, X.: AutoML: A survey of the state-
of-the-art. Knowledge-Based Systems 212, 106622 (jan 2021).
https://doi.org/10.1016/j.knosys.2020.106622

[12] Hummer, W., Muthusamy, V., Rausch, T., Dube, P., El Maghraoui,
K., Murthi, A., Oum, P.: ModelOps: Cloud-based lifecycle manage-
ment for reliable and trusted AI. In: Proceedings - 2019 IEEE In-
ternational Conference on Cloud Engineering, IC2E 2019. pp. 113–
120. Institute of Electrical and Electronics Engineers Inc. (jun 2019).
https://doi.org/10.1109/IC2E.2019.00025

[13] John, M.M., Holmström Olsson, H., Bosch, J.: Architecting AI Deploy-
ment: A Systematic Review of State-of-the-Art and State-of-Practice
Literature. Lecture Notes in Business Information Processing 407, 14–
29 (2021). https://doi.org/10.1007/978-3-030-67292-8 2/COVER, https:
//link.springer.com/chapter/10.1007/978-3-030-67292-8 2

[14] John, M.M., Olsson, H.H., Bosch, J.: Towards MLOps: A Framework
and Maturity Model. Proceedings - 2021 47th Euromicro Conference
on Software Engineering and Advanced Applications, SEAA 2021 pp.
334–341 (sep 2021). https://doi.org/10.1109/SEAA53835.2021.00050
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