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Abstract
To provide a significant speedup in modeling rarefied gas flows, the collision oper-
ator in the Boltzmann equation is approximated by a Fokker-Planck operator in
velocity space. A polyatomic extension of the diatomic direct modeling approach in
the Fokker-Planck framework is carried out in this thesis. The model extension is
verified by a code to code comparison, using DSMC data of the SPARTA code and
PICLas code. Diatomic tests are performed using N2 and polyatomic tests using
CO2. Temperature relaxation tests also include CH4 tests to show the capability
of predicting the correct temperatures for degenerate energy modes, such as they
occur in vibrtional modes in CH4.
The model is verified by heat bath tests to show correct temporal relaxation into
equilibrium temperatures for diatomic and polyatomic species. Two dimensional
hypersonic flow tests around a cylinder investigate the particle number density as
well as thermal and internal temperatures of the flow field. The relaxation of the
energy for different timestep sizes and runtime efficiency for small Knudsen numbers
are investigated.
The diatomar relaxation process of translational and internal temperatures using N2
show very good agreement with the reference data and theoretical prediction. The
polyatomic relaxation processes of the temperatures are investigated using CO2 and
CH4. All relaxation tests predict the equilibrium temperature and temporal relax-
ations accurately.
Further tests investigate the flow fields of a hypersonic flow around a cylinder by
2D simulations. The direct Fokker-Planck modeling is compared with DSMC and a
FP master equation approach. The particle number density field and the tempera-
ture field is analyzed with investigations on translational, rotational and vibrational
energies. The diatomic flow fields show only small deviations. The polyatomic ex-
tension approximates the shock and the overall flow field well, but shows deviations
in the wake region, where the flow is rarefied. The FP direct model may be improved
for rarefied regions in future works but in the context of a hybrid coupling, these
regions may not use the FP direct model anyway. Finally, investigations of runtime
improvements of the new modeling are made by showing a computationally more
efficient model for smaller Knudsen numbers and the ability to resolve the temporal
relaxation with larger timestep sizes very accurately.
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1. Introduction

The modeling of gas flows around reentry vehicles or jet plume expansion into vac-
uum faces a large range of Knudsen numbers [13]. The Knudsen number Kn char-
acterizes rarefaction of a gas by the ratio of the mean free path λ of a particle to
the characteristic length scale l by Kn ≡ λ/l. For small Knudsen numbers, many
particle collisions occur so the velocities of the particles are in near thermal equilib-
rium and the gas can be modeled as a continuum using the Navier-Stokes equations.
Large Knudsen numbers lead to non-equilibrium and the evolution of the particles
velocity distribution needs to be modeled.
Rarefied flows can be described by the Boltzmann equation that determines the
dynamics of the system by the evolution of a probability density function in phase
space. With Birds DSMC method [5], the Boltzmann equation can be solved accu-
rately. However, the computational expenses become too large for small Knudsen
numbers due to the complexity of the Boltzmann collision operator which leads to
the necessity to model a large number of collisions. A coupling of a solver combining
the modeling of the Boltzmann equation by DSMC and the Navier-Stokes equation is
generally a difficult task. This is because of the fluctuating boundary conditions for
the Navier-Stokes solver, which is caused by the stochastic behaviour of the DSMC
method [11]. Therefore, the complex collision operator in the Boltzmann equation
is approximated by a Fokker-Planck (FP) operator in velocity space to reduce the
computational cost for small Knudsen numbers while maintaining the particle ap-
proach [11]. DSMC models pairwise collisions, whereas the FP operator models the
collisions by local drift and diffusion coefficients that are matched to reproduce the
production terms of the Boltzmann collision operator in the continuum limit [10].
Both methods use computational particles. This way, a hybrid modeling approach
can be set up where FP can be used in regions of high densities and small Knudsen
numbers, while DSMC is used for rarefied flow regions and large Knudsen numbers
[8]. DSMC requires to resolve the mean free path, which can be difficult for small
Knudsen numbers, as will be discussed in section 4.3.1. Besides the aim of an im-

1



1. Introduction

provement in runtime, the FP modeling also looses this spatial restriction. Further,
temporal restrictions are able to be loosened as well, as section 4.3.2 investigates.

Figure 1.1.: Temperature field of a
reentry vehicle in near
continuum-rarefied transi-
tion regime from Craft
Tech [21].

The goal of the FP modeling is the hy-
brid coupling with DSMC to switch be-
tween the different collision models within
a simulation to increase the runtime effi-
ciency and use less strict resolution cri-
teria. As can be seen in figure 1.1,
the flow field of, for example, a reen-
try vehicle may range from continuum
free stream flow to a rarefied region in
the wake. To avoid combining con-
tinuum Navier-Stokes solvers and par-
ticle methods, the FP method should
be used to efficiently model dense re-
gions even with a particle method and
model rarefied regions accurately using
DSMC.

This thesis will be focusing on the energy distribution of translational and internal
modes, i.e. rotational and vibrational modes, within a Fokker-Planck approxima-
tion of the collision term in the Boltzmann-equation. In contrast to monatomic gas
flows, polyatomic molecules can take up a significant amount of energy in internal
modes like rotation and vibration, which have a large influence on the entire flow
field [12]. The different energy modes generally show very different relaxation times
and may be modeled on continuous or discrete energy scales [12]. An extension of
the FP operator to a diatomic modeling has been proposed in the literature, e.g by
the Master-equation ansatz [12], a direct modeling approach [6] or by Mathiaud et
al. [16].
An extension of the direct modeling approach [6] to polyatomic gas is carried out
in this thesis, parts of which have already been published in the EUCASS paper
[18]. Improvements to these previously published results are archived, for example
by integrating a translational velocity scaling factor in section 3.8. This factor guar-
antees exact total energy conservation in each timestep instead of a fluctuating total
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energy that is only conserved on average. Following the theoretical setup in section
2 and modeling approach in section 3, the new model is investigated in section 4 to
validate the accuracy of correct relaxation, flow structures in hypersonic 2D flows
and its efficiency for small Knudsen numbers and larger timesteps.

Disclaimer: Additional publication

Parts of this Master’s thesis have already been published at the European Confer-
ence for Aerospace Sciences 2023 (EUCASS) in a conference paper by the author
[18], literally and figuratively. In particular, the modeling of kinetic gases within the
Fokker-Planck approach in section 3, including the results of the proposed extension
to the polyatomic model are published in the corresponding paper. The verification
chapter includes results that differ from the paper, due to improvements that have
been done in the meantime.
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2. Kinetic theory of gases

In aerothermodynamics, the modeling of rarefied gas flows is an important part of
the large range of different flow regimes that a spacecraft faces. For a decreasing
density, the average distance of a particle between two collisions with other particles
increases. Using the Variable Hard Sphere mode (VHS), this distance is defined as
the mean free path and given by [5]

λ = 1
√

2πd2
refn

(
Tref
T

)ω−1/2 , (2.1)

with the particles reference diameter dref, the particle number density n, temperature
T , reference temperature Tref and viscosity exponent ω. The mean free path becomes
large compared to the characteristic problem size l for very dilute gases. The relation
defines the Knudsen number

Kn = λ

l
, (2.2)

which can be used to characterize the flow regime. The continuum regime where
the Navier-Stokes equation hold is characterized by Kn ≲ 0.1 [1, 5], while the flow
for Knudsen numbers of Kn > 10 is typically considered as free molecular with no
collisions [1].
In a flow with a small Knudsen number, a small mean free path and a small collision
time, that is defined as the average time between two collisions, result in a large
number of collisions per time which keeps the distribution of the thermal velocities
close to a Maxwellian distribution [12]. For these flow regimes, equilibrium assump-
tions hold and the Navier-Stokes equations can be used. If on the other hand the
Knudsen number is large, collisions are rare and the velocity distribution remains
off the equilibrium for a significantly long time and continuum can not be assumed
anymore [12].

To model non-equilibrium flows where continuum can not be assumed anymore,
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2. Kinetic theory of gases

the flow needs to be modeled by studying the velocity distribution and its evolution
in time.
Considering a gas where each molecule has a velocity v(t) and a position x(t) at
time t, the statistics of particles in a gas is described by the probability velocity
density function f(v,x, t) [12]. Its evolution described by the Boltzmann equation
covered in section 2.1, has to be evaluated to model the dynamics of the system.
The Boltzmann equation is generally capable of describing the system over the whole
Knudsen range but its solution is computationally infeasible for particle methods
once the Knudsen number becomes small because too many collisions and too small
scales need to be resolved [8]. Thus one has to choose a suitable model for the prob-
lem of interest. An overview of the validity range of the different model approaches
is given in figure 2.1.

10−3 10−2 10−1 100 1010 ← Kn Kn → ∞

Free-molecularTransition flowSlip flowContinuum Flow

Discrete particle  
model

Continuum model

Flow regime

Boltzmann equation Collisionless 
Boltzmann eq.

Navier-Stokes 
equation

Euler 
eq.

Knudsen number Kn

Figure 2.1.: Overview of the validity range of the different models over the Knudsen
number range adopted from [1, 22].

2.1. Boltzmann equation
The evolution in time of the system is given by the motion of the velocity distribu-
tion function f in phase space H, which is a probability density function. To gain
the governing equation of the systems dynamic, the possible change of the function
of state on one side of the equation must balance with the cause of the change on
the other side of the equation.
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2.1. Boltzmann equation

On one side of the equation, the changes that can happen to the function f are
collected, which result from the total differential of the function f(v,x, t). These
can be explicit changes in time, convectional changes and changes due to a veloc-
ity change. On the other side of the equation, further causes of the changes are
collected. In the statistical description of a particle ensemble, changes of the veloc-
ity distribution function can also happen by collisions. This collision term is often
referenced as collision operator. Taking all together, the equation determining the
dynamics of the system is called Boltzmann equation and using Einstein’s index
summation notation, it reads

∂f

∂t
+ vi

∂f

∂xi

+ Fi
∂f

∂vi

=
(
∂f

∂t

)
coll︸ ︷︷ ︸

Scoll(f)

, (2.3)

where Fi is an external acceleration that is assumed to be independent of the velocity.
Finding an accurate and reasonable description of the particle collision term on the
right hand side is the challenge of modeling the dynamics. A precise collision term
for binary collisions is given by the Boltzmann collision operator [8]

(
∂f

∂t

)
Boltz

=
∫
R3

∫ 4π

0
(f(v′

A)f(v′
B)− f(vA)f(vB))gI(Ω, g)dΩdvB, (2.4)

where g = |vA − vB| is the relative velocity of the two colliding particles, I(Ω, g) is
the differential cross section, (v′

A,v′
B) are the post collisional velocities of the parti-

cle velocities (vA,vB), and the integrals are the solid angle integral
∫

dΩ around g

and the velocity integral. The collisions described by this collision operator so far
covers only elastic collision. Obviously, once there are inelastic collisions, the model
has to be extended by states that can take up the energy difference resulting from
inelastic collisions. For now, the system will be set up by elastic considerations and
an extension will be done in further sections.
The direct solution of this stochastic integro-differential equation is a computation-
ally expensive task [14]. Modeling the Boltzmann collision operator is generally de-
manding. Therefore, a more efficient approximation of the collision operator will be
set up by the Fokker-Planck (FP) operator in section 3.1 and the Direct-Simulation-
Monte-Carlo method (DSMC) in section 3.3 is used to model a discrete subset of
particles representing the distribution of the velocity distribution function.
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2. Kinetic theory of gases

2.2. Energy distribution of molecules in a gas

2.2.1. Phase space and degrees of freedom

This section briefly derives thermodynamic and statistical physics relations following
Balian [3], that are needed in further sections to formulate the modeling method.
The state of a particle typically is characterized by the d coordinates of its phase
space H ⊆ Rd. So the energy E of a particle generally may depend on its d de-
grees of freedom, each represented by one of the coordinates in phase space. Usually
these coordinates are the three spatial coordinates and three momentum coordinates
(x⃗, p⃗) ∈ R6, but in this work they will include also additional coordinates for rota-
tional and vibrational states (x⃗, p⃗, Ω⃗, Ξ⃗) ∈ Rdtot , with dtot = 6 +drot +dvib where drot

and dvib are discussed further down in this sections. If an ensemble of N particles
is considered, the phase space generally gets expanded to N · dtot dimensions, which
is worth mentioning but not needed at this point.
The number of translational degrees of freedom is given by the spacial dimensions
that the particle can move along. If particles can change their position in three
spacial dimensions, the translational degree of freedom is dtr = 3. If the particle can
move in only fewer dimensions, the translational degree of freedom adjusts accord-
ingly.
The number of rotational and vibrational degrees of freedom drot depends on the
shape of the molecule. Molecules generally can rotate around the three rotational
axis, where each of them may contain rotational energy. For linear molecules, only
two of the rotational axis contain rotational energy. So the number of rotational
degrees of freedom is drot = 3 for irregularly shaped molecules and drot = 2 for linear
molecules.
The number of vibrational degrees of freedom dvib depends on the number of atoms
in the molecule. Each vibrational mode j contributes to the total energy with two
degrees of freedom in phase space, namely kinetic and potential energy. So the
number of vibrational degrees of freedom is dvib = 2J . N individual pointlike atoms
generally have 3N degrees of freedom[3], or likewise 3N translational modes, that
contain the total energy. Therefore, the number of vibrational modes of a molecule
with N atoms is J = 3N − dtr − drot, which results in:

J =

3N − 5 linear molecule

3N − 6 non-linear molecule.
(2.5)

8



2.2. Energy distribution of molecules in a gas

The energy of the different modes may be treated differently, depending on their
distribution of the energy on continuous or discrete energy scales, which is discussed
in further sections.

2.2.2. Discrete and continuous energy scales

To calculate the energy E of a particle, the different possible energy states En

with probability Pn of the particle need to be covered. Assuming a Boltzmann
distribution, the probability of a particle being in state n is given by [3]

Pn(En) = 1
Q
e−βEn , (2.6)

where β = 1/(kBT ) with the Boltzmann constant kB = 1.38 · 10−23J/K and the
partition function Q. The partition function covers discrete energy levels En by [3]

Qdisc =
∞∑

n=0
e−βEn ⇔ En equidistant: Qdisc = 1

1− exp(−βE) . (2.7)

Thus, the average energy of the discrete energy states is given by [3]

⟨E⟩ =
∞∑

n=0
EnPn(En) = − 1

Q
∂Q
∂β

= −∂ ln(Q)
∂β

, (2.8)

which can be evaluated by the partition function directly. Similarly, on a continuous
energy scale, the probability is given by P (E) = exp(−βE)/Qconti with the partition
function of a continuous energy E, replacing the sum by an integral in equation (2.7)

Qconti =
∫ ∞

0
dE e−βE, (2.9)

and the average energy is given by ⟨E⟩ =
∫
E P (E)dE.

2.2.3. Equipartition theorem

Considering a specific energy on a continuous scale that depends on d of the total
number of dtot degrees of freedom, the dependencies read E = E(x1, ..., xd), where
the xi are arbitrary variables whose change contribute to a change of E. If we
further assume that each degree of freedom contributes independently of all other
degrees of freedom to the total energy, the energy can be written as the sum of the
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2. Kinetic theory of gases

individual energies Ei = Ei(xi)

E =
d∑

i=1
E(xi). (2.10)

To set up the continuous partition function, all possible energy states arising from
xi need to be considered. While the energy itself remains positive, its values may
come from variables xi that may be positive or negative, so the partition function
integral from equation (2.9) can be written as

Qconti =
∫ ∞

−∞
exp(−β

d∑
i=1

E(xi))dx1...dxd =
∫ ∞

−∞

d∏
i=1

exp(−βE(xi))dxi. (2.11)

Taking advantage that the energy by each degree of freedom is independent of all
other states xi ̸= xi(xi ̸=j), the integral of the product can be written as the product
of the integrals

Qconti =
d∏

i=1

∫ ∞

−∞
exp(−βE(xi))dxi =

(2.9)

d∏
i=1
Q(Ei), (2.12)

which means that the total partition function is the product of the partition function
of each individual degree of freedom.
If we can further assume that the energy scales quadratically with xi (assume Ei ∼
cx2

i ), the functions Q(Ei) can be evaluated using the Gaussian integral

Q(Ei) =
∫ ∞

−∞
e−βEidxi =

∫ ∞

−∞
e−βcx2

i dxi =
Gauss

(
π

βc

) 1
2

. (2.13)

This can be used to calculate the average energy resulting from xi, which due to
their independencies is the average energy per degree of freedom

⟨E⟩i = −∂ lnQ(xi)
∂β

= 1
2β = 1

2kBT. (2.14)

So the average of a continuous energy results in

⟨E⟩ = −∂ lnQ(x)
∂β

=
(2.12)

−∂ ln(∏d
i=1Q(Ei))
∂β

= − ∂

∂β

d∑
i=1

lnQ(xi)

=
d∑

i=1
− ∂

∂β
lnQ(xi) =

(2.14)

d∑
i=1
⟨E⟩i =

(2.14)

d∑
i=1

1
2kBT = d

2kBT.

(2.15)
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2.2. Energy distribution of molecules in a gas

2.2.4. Discrete equidistant energy levels

In the special case of discrete energy levels En with equidistant spacing ∆E =
En − Em = const, ∀m ̸= n, the partition function can be evaluated explicitly as
shown in equation (2.7). Assuming that each mode is independent and therefore
contributes to the overall energy independently, the partition function is the product
of each individual partition function of mode j (see p. 573 in [2]), while raising to
the power of degeneracy gj of the j’th mode to cover multiple occurrence of mode j

Qdisc =
J∏

j=1

(
1

1− exp(−βEj)

)gj

. (2.16)

Therefore, the average energy using Qdisc in (2.8) results in

⟨E⟩disc =
J∑

j=1

gj · Ej

exp(βEj)− 1 . (2.17)

2.2.5. Internal energies

To calculate the internal energy of polyatomic gases, the partition function for poly-
atomic energies needs to be evaluated and the average energy can be calculated.
Two special cases, that can be determined analytically, should be pointed out:

• Independent modes, quadratically continuously scaling:
if the energy of the degree of freedom distributes quadratically with the cor-
responding phase space coordinate Ei ∼ x2

i on a continuous energy scale, the
Equipartition theorem in section 2.2.3 can be used to determine the partition
function and the average energy to ⟨Econti⟩ = kBT/2.

• Independent modes, equidistant discrete scaling:
if the energy distributes with equidistant spacing on a discrete energy scale
En, the discrete partition function can be calculated explicitly as shown in
equation (2.7) and the average energy ⟨Edisc⟩ can be calculated by equation
(2.17).
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3. Modeling of kinetic gases

3.1. Fokker-Planck approximation

In this thesis, the modeling of kinetic gases will focus on the approach of the kinetic
Fokker-Planck ansatz. Its idea is to approximate the collision term in the Boltz-
mann equation (2.3) by a Fokker-Planck equation in velocity space [14]. The aim
of this ansatz is to provide an approximation of the Boltzmann collision operator
and a more efficient modeling. Also, restrictions due to the physical formulation
like resolving collisional scales can be formulated less strict, which again reduces the
computational cost of the simulations. Collisions can be considered as the change
of velocities of particles. Intuitively, this happens by transferring momentum of one
body to another, such as with point-like particles. A more precise look into the
differential cross section in the Boltzmann collision term reveals that a modeling
of intermolecular potential has to be formulated. Considering that, such a pairwise
collision is just the effect of a particles surrounding potential field acting on the other
particle changing each particles momentum. Instead of modeling only pairwise in-
teraction, where one particle only acts on one other particle, the interaction effect
caused by all particles in a local ensemble on all other particles can be collected in a
total local field. This effectively can be expressed by a local drift and diffusion field
acting to change local velocities and thus model the collisions of particles in a local
ensemble. Therefore, the collision term can be approximated by the Fokker-Planck
collision term by [14]

(
∂f

∂t

)
coll
≈
(
∂f

∂t

)
FP

= − ∂

∂vi

Aif + 1
2

∂2

∂vi∂vj

Dijf, (3.1)

with the drift coefficient Ai and diffusion coefficient Dij, which will be derived in
further sections. The Fokker-Planck collision term can be translated into a coupled
system of equations to determine the velocity change dv, which is presented in
section 3.2.
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3. Modeling of kinetic gases

3.2. Modeling of the Fokker-Planck collision term
To model the dynamics of the gas, the Boltzmann equation (2.3) with the Fokker-
Planck approximation (3.1) is used. To represent the stochastic particle motion, an
Ito-process can be used to translate the equation into the integration scheme [8]

dxi

dt = vi, (3.2)
dvi

dt = Ai +Dij
dWj

dt + Fi, (3.3)

where dWj denotes a Wiener process with zero mean and ⟨dWidWj⟩ = δij with the
Kronecker delta δij. Particles moving according to equations (3.2) and (3.3) repre-
sent the evolution of the distribution function in the Boltzmann equation (2.3) using
the Fokker-Planck collision term approximation. Their movement is determined all
by the same local drift and diffusion coefficient within the same simulation cell but
with an inbuilt added stochastic noise, to recover the statistical deviations. As will
be presented in section 3.4, the expression for the drift contains coefficients that
are made up of moments including all the particle velocities within the cell. The
diffusion coefficient has a temperature dependence, that is determined by moments
over all particles in the cell as well. The comparison of the Fokker-Planck collision
scheme compared to the Boltzmann collision scheme is shown in figure 3.1.

Boltzmann Fokker-Planck

pairwise 
collisions

new velocities 

move

Drift + Diffusion

new velocities 

move

DijAi

Figure 3.1.: Comparison of the Boltzmann collision and the Fokker-Planck collision
scheme.
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3.3. Direct Simulation Monte Carlo and Fokker-Planck

3.3. Direct Simulation Monte Carlo and
Fokker-Planck

To gain the dynamics of the system, the Boltzmann equation (2.3) has to be solved
by solving for the evolution of f . Due to the high dimensionality of f , a direct
solution approach is too computationally expensive [7]. Therefore, the Direct Simu-
lation Monte Carlo (DSMC) method pioneered by Bird [5] is used, which has been
shown to be mathematically consistent with the Boltzmann equation [7]. The DSMC
method discretizes the position space by a grid and approximates the state function
f in velocity space by a discrete set of simulation particles. The simulation particles
typically represent a large set of real molecules and statistics over their velocities
give rise to macroscopic quantities.
The schematic of the DSMC algorithm is shown in figure 3.2. The algorithm can be
summarized to a loop of a four step procedure: particles get generated at defined
inflow boundaries and in a following step get moved according to the integration
scheme. Here, the scheme is a simple Euler step as shown in equations (3.2). After
the particles got moved, their new velocities get determined by evaluating the colli-
sions. To model which particles are supposed to collide, the domain is divided into
grid cells of the size of the mean free path, which defines the spatial scale on which
collisions happen. By splitting the particle movement from the particle collision,
the timestep size also needs to be smaller than the mean collision time [12]. In the
original DSMC formulation by Bird, the Boltzmann collision operator in equation
(2.4) is used, while this work will use the Fokker-Planck approximation for the colli-
sions. Note that the FP collision modeling mathematically is not restricted to a cell
size of the mean free path, but physically need to be chosen carefully. In DSMC,
not all particles in a cell are chosen to collide. The “no time counter" (NTC) by
Bird randomly chooses a subset of particle pairs on which collisions are performed.
Finally, macroscopic quantities are calculated by collecting averages over particle
properties in one grid cell.

To include the influence of internal energy states on the collision process, two mod-
els are presented in section 3.5 and 3.6. The Master equation approach [12] models
the translational and internal energies independently. So when the collisions are
calculated from translational movement, the particles post-collision velocities get
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3. Modeling of kinetic gases

Generate particles

Inflow boundary surface apply boundary conditions

Move particles

Calculate collisionsCalculate averages

Figure 3.2.: Schematic of the DSMC algorithm adopted from [11].

adjusted by the internal energy change.
The other modeling approach is the Direct modeling approach [6] that includes the
internal energy states in the system of equations of the production terms that de-
termine the post-collision translational velocities directly.

3.3.1. On runtime efficiency and resolution criteria of DSMC

The main goal of the FP method is to provide an approximation of the Boltz-
mann collision term in equation (2.4) for computation time purposes. There are a
few things that make solving the Boltzmann collision term by DSMC simulations
computationally very difficult. In regions with decreasing Knudsen numbers, the
number of collisions that need to be model increase strongly. Therefore, the FP
model provides a method to calculate the velocity change which is independent of
the Knudsen number. It calculates model coefficients for a local ensemble of particles
and determines new velocities for each particle. DSMC on the other hand calculates
collisions for new velocities, where the number of collisions, and therefore the num-
ber of computations, depend on the Knudsen number. This problem gets amplified
by the fact, that a decreasing Knudsen number leads to a smaller mean-free path,
that DSMC requires to resolve and the requirement of the timestep size to resolve
the mean-collision time, which makes simulations much slower in sampling through
time. While the grid refinement itself is not difficult, the number of particles in a
cell obviously decreases, which makes it difficult to preserve enough information to
provide good statistics. A density increasement of factor two results in half of the
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3.4. Cubic Fokker-Planck

mean free path. To resolve that, DSMC requires to subdivide the simulation cell
into smaller cells with half the size. This splits the particles in 4 smaller grid cells for
a 2D simulation and into even 8 smaller cells for a 3D simulation respectively, while
there are only two times as many particles available due to the density increasement.
Eventually, not enough particle remain left in the smaller cells to perform proper
statistics and determine macroscopic quantities. Therefore, increasing the overall
number of simulation particles in the domain can solve the problem, but will addi-
tionally increase the computation time. There are methods that deal with particle
cloning to solve the latter problem but in this thesis, the FP modeling is the solution
approach that is pursued. The final goal is still a hybrid coupling that uses DSMC
in rarefied regions where the computation time is smaller than for the FP modeling,
due to a low number of collision modeling. There, DSMC provides accurate results
while FP should be used to deliver approximate results in regions where the DSMC
modeling become computationally too expensive.

3.4. Cubic Fokker-Planck

To set up a model that determines the new velocities by the Fokker-Planck collision
operator of section 3.1, the drift and diffusion coefficients need to be chosen. It is
worth mentioning that these coefficients do not model a drift and diffusion of the
position but of the velocities. The coefficients are chosen to fulfill certain properties
as discussed below.
For the drift coefficient, a polynomial approach of the fluctuating vector is proposed
in the literature [10] while the diffusion coefficient is build up from monatomic gases
at first and further generalized in section 3.6.3 and 3.7.3. In theory, higher order
polynomials can approximate the Boltzmann collision operator arbitrarily close [9].
Once the model is set up, the model parameters of the drift coefficient are chosen to
fulfill transport coefficient in continuum limit by lower order Boltzmann production
terms [11]. With a polynomial approximation of only linear order for the drift
coefficient, a wrong Prandtl number of Pr = 3/2 is obtained while a quadratic
model can lead to an unstable solution [10]. Therefore, a cubic ansatz is chosen which
recovers the correct Prandtl number from the kinetic Gas theory of PrBoltz = 2/3
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3. Modeling of kinetic gases

which in terms of the linear system in equation (3.2) and (3.3) reads [10]:

Ai = −1
τ
v′

i + cijv
′
j + γi(v′

jv
′
j − u′

ju
′
j) + Λ(v′

iv
′
jv

′
j − u′

iu
′
ju

′
j), i ∈ {1, 2, 3}, (3.4)

where τ = 2µ/p is a relaxation time with the dynamic viscosity µ and pressure p,
the thermal velocity v′ = V −U fluctuating around the bulk velocity U and u′ is
a realization from sample space v′ defined as Q(u′) =

∫
R3 Q(v′)fdv′ [10]. cij and

γi are the model parameters that will be determined by the system of equations set
up to fulfill production terms in the continuum limit [10]. Λ ensures stability and is
given by [10]:

Λ = − 1
αρ3 | det(πij)| (3.5)

with the determinant det(·) of the stress tensor πij, a scaling factor α = τ(u′
iu

′
i)4 and

the mass density ρ. The model for the drift coefficient is not restricted to monatomic
gases but instead generally valid for polyatomic gases. The coefficients will be
determined in a way, that internal energy states are contained in the coefficients cij

and γi. The internal states arise from the production terms and thus do not have to
be enforced explicitly in the drift coefficient [6]. By comparing the relaxation of the
translational heat flux with the heat flux derived by the 17-moment equation [17],
a system of equation arises, containing the internal energy states such as discussed
in section 2.2.5. Further, the linear terms in (3.4) already give rise to the correct
stress and energy relaxation, so all additional terms to the second order moments
need to vanish [6]. The system of equations is cited in the appendix in section A.1.

The diffusion coefficient is generally given by [10] D =
√

4es/(3τ) but the mass
specific energy es = E/m and its weighting with correct relaxation times has to be
determined correctly to cover translational and internal energy states, which is done
in section 3.6.3. This is not necessary for monatomic modeling, which can make use
of E = 3kBT/2 directly.

3.5. Master equation approach and rate coefficients
to model polyatomic gases

This section presents the Master equation approach for modeling internal energy
relaxation, proposed for diatomic molecules by Hepp et al. [12] and extended to
a polyatomic model by Basov et al. [4]. The calculations are performed for one
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3.5. Master equation approach and rate coefficients to model polyatomic gases

internal energy mode, which then can be applied for each arising energy mode of
rotation and vibration.
Collisions in this model are considered elastic or inelastic. An elastic collision is
an exchange of momentum, where only translational energy is exchanged. If the
translational energy balance after a collision is not zero, it is generally called an
inelastic collision and energy is transferred to some non-kinetic energy. Here, that
non-kinetic part is the internal energy of the molecules that take up the energy
difference. This inelastic collision terminology is kept within the master equation
approach. Therefore, the collision operator is divided into an elastic and inelastic
part [12] (

∂f

∂t

)
coll
≡ Scoll = Sel

coll + Sinel
coll . (3.6)

With the number of Zinel inelastic collisions from a total of Ztot total collisions, the
elastic collision operator Sel

coll is the fraction Zel/Ztot = (Ztot − Zinel)/Ztot of the
collision operator Scoll:

Sel
coll = Ztot − Zinel

Ztot
Scoll ≈

Ztot − Zinel

Ztot
SFP. (3.7)

The inelastic collision operator needs to contain the modeling of a reduced transla-
tional energy exchange and a take up of internal energy. Thus, it consist of the two
parts:

Sinel
coll = Sv + Se (3.8)

with the change of the number of particles in a phase space element due to an
inelastic collisional particle velocity change Sv and due to a change of internal energy
Se. They are modeled as:

Sv ≈
Zinel

Ztot

(
SFP +K ′ ∂

2fn

∂vi∂vi

)
(3.9)

Se = Zinel

Ztot

∑
j

(
R′

jnfj −R′
njfn

)
(3.10)

where K ′ takes into account the energy exchange between internal and translational
energy which effectively modifies the influence of the diffusion coefficient of the FP
operator. A detailed derivation is shown in the appendix of [12]. R′

jn is the rate
coefficient for the change of the internal state j to the state n in a timestep dt. Their
modeling is discussed in detail in [12].
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3. Modeling of kinetic gases

The key idea and a strong assumption of the master equation approach is the stochas-
tical independence of the evolution of translational velocities and internal energies:

fn(v,x, t) = f(v,x, t) · gn(x, t), (3.11)

so their evolution can be modeled independently. With a common separation ap-
proach, Hepp et al. [12] can separate the equations into two individual equations
resulting in:

∂f

∂t
+ vi

∂f

∂xi

= SFP(f) +K
∂2f

∂vi∂vi

≡ S̃FP(f) (3.12)

∂gn

∂t
+ vi

∂gn

∂xi

=
∑

j

(Rjngj −Rnjgn) , (3.13)

where external forces are neglected, K and Rjn are substituted to Zinel
Ztot

K ′ → K

and Zinel
Ztot

R′
jn → Rjn, and the diffusion coefficient is summarized in S̃FP(f) to D̃ =√

D2 + 2K. For equation (3.12), the solution algorithm as set up in equations
(3.2) and (3.3) can be used with the modified diffusion coefficient D̃ and a separate
modeling of translation and internal states is possible.

Rate coefficients

For the rate coefficients Rjn in the master equation (3.13), three different models
are suggested in [12]: the discrete Landau-Teller relaxation (DLT), the continu-
ous Landau-Teller relaxation (CLT) and the discrete Larsen-Borgnakke relaxation
(DLB).
DLT chooses a rate coefficient by modeling the energy levels by a quantum harmonic
oscillator as in section 2.2.5 that reproduces the Landau-Teller relaxation for inter-
nal energies in (3.20). This results in a discrete and equidistant energy distribution
ei = ϵ · i and leads to the rate coefficient that is independent of the initial state i:

Rij ≡ Rj ≡
1

τintQ
exp(−βϵj). (3.14)

CLT chooses an energy distribution on a continuous scale, where states change en-
ergy e→ e′ and the Landau-Teller relaxation in (3.20) is reproduced. The partition
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3.6. Direct modeling approach for polyatomic gases

function on a continuous scale reduces to Q = 1/β and the rate coefficient reads

R(e, e′) ≡ R(e′) ≡ β

τint
exp(−βϵ′). (3.15)

DLB distinguishes between the change of the states Rij and Rji to fulfill detailed
balance. With the probability of Pinel that one collision partner changes its in-
ternal state, the VHS gas collision frequency νVHS and with a weighting function
ψ(i, j, T/θ), the DLB rate coefficients are:

Rij = νVHS(T, n) · Pinel · ψ(i, j, T/θ) (3.16)
Rji = νVHS(T, n) · Pinel · ψ(i, j, T/θ) · exp(−β(ei − ej)), (3.17)

where ψ(i, j, T/θ) is a precalculated lookup table, only depending on the states i, j
and the ratio of translational temperature and characteristic temperature T/θ.

3.6. Direct modeling approach for polyatomic gases

3.6.1. Generalized kinetic model

In polyatomic flows, internal excitation energies like rotation and vibration need
to be considered. These internal excitations can take up a large amount of energy
which on its own has an individual relaxation behaviour that needs to be modeled.
The relaxation of the vibrational energy modes are slow compared to translational
energy relaxation, so the vibration is generally not in thermal equilibrium with the
translational energy [12]. To model the internal energies, the distribution function
and the phase space have to be extended containing rotational “velocities" Ω and
vibrational “velocities” Ξ:

f(v,x, t)→ f(v,Ω,Ξ,x, t), define: Ψ ≡ (v,Ω,Ξ) ∈ H, (3.18)

which still has to fulfill
∫

H fdΨ = 1. The Boltzmann equation with Fokker-Planck
collision approximation generalizes to:

∂f

∂t
+ vi

∂f

∂xi

+ Fi
∂f

∂vi

= − ∂

∂Ψi

Aif + 1
2

∂2

∂Ψi∂Ψj

Dijf. (3.19)
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3. Modeling of kinetic gases

The relaxation of the internal energies is assumed to fulfill the Landau-Teller relax-
ation:

dEint

dt = Eeq
int − Eint

τint
(3.20)

where the total internal energy Eint relaxes towards the total internal equilibrium
energy Eeq

int with relaxation time τint = Zint/νcoll, mean collision frequency νcoll and
relaxation number Zint, which is a species dependent number of collisions needed
to reach equilibrium [12]. Generally, there are also other models for the energy
relaxation in the literature such as Larsen-Borgnakke, e.g. in [12], which for example
recover detailed balance but are computationally more demanding. The amount of
energy in the internal states varies significantly with the change in temperature.
The average energies in these states are carefully derived on discrete and continuous
scales in sections 3.7, while general considerations are captured in section 2.2.2.

3.6.2. Direct relaxation of translational and internal modes

The direct modeling approach extends the integration scheme of the FP approxima-
tion in equations (3.2) and (3.3) of section 3.1 by the modeling of additional internal
modes. Instead of decoupling the modeling of translational and internal modes as
by the master equation approach in section 3.5, the relaxation of each degree of
freedom will be modeled directly. In the direct modeling approach, the states of
internal energies directly influence the translational velocity change. An extension
of the intergration scheme is gained from using the same integration scheme as in
equation (3.2) and (3.3) with the cubic FP model in section 3.4 for the transla-
tional drift coefficient Atr and the choice of linear internal drift coefficients and the
resulting diffusion coefficients for the internal states:

dvi = −1
τ
v′

i + cijv
′
j + γi(v′

jv
′
j − u′

ju
′
j) + Λ(v′

iv
′
jv

′
j − u′

iu
′
ju

′
j) +DtrdWi, i ∈ {1, 2, 3}

(3.21)

dωi = − 1
2τrot,i

ωidt+Drot,idWi, i ∈ {1, ..., drot} (3.22)

dξi = − 1
2τvib,i

ξidt+Dvib,idWi, i ∈ {1, ..., J}, (3.23)

which models the change of translatinal velocities dvi, rotational “velocities” dωi

and vibrational “velocities” dξi. The change of position remains an Euler-step
dxi = vidt.
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3.6. Direct modeling approach for polyatomic gases

3.6.3. Diatomic drift and diffusion coefficients

As described in section 3.4 of the cubic FP model, the coefficients cij and γi in
equation (3.21) are gained from matching the production terms of the Boltzmann-
and FP-collision operators. Matching these terms is done using the 17-moment ap-
proximation [17], which covers internal energy states by internal heat capacities at
constant volume cint = (∂⟨Eint⟩/∂T )V , as shown in the appendix of Gorji et al. [6].
The internal states arise from the production terms and thus do not have to be en-
forced explicitly in the drift coefficient [6]. Therefore, cij and γi directly contain the
influence of the internal states by cint. Also, the translational diffusion coefficient
Dtr explicitly contains the influence of internal energy states by Erot and Evib as in
equation (3.36).
The diffusion coefficient is generally given by [10] D =

√
4es/(3τ) but the mass

specific energy es = E/m and its weighting with correct relaxation times has to be
determined to cover translational and internal energy states.

The assumptions for the diffusion coefficient by Gorji et al. [6] for diatomic modeling
is used. Following their approach, the relaxation of each degree of freedom is mod-
eled directly. The diffusion coefficient is assumed to be a diagonal matrix D = δijDij

of the size d×d, where d is the sum of translational and rotational degrees of freedom
and vibrational modes. On the diagonal, the first three entries are the translational
diffusion coefficients for each spatial dimension, which are assumed to be isotropic
D11 = D22 = D33 ≡ D2

tr. The following diagonal entries are rotational and vibra-
tional diffusion coefficients, which other than in the diatomic model are assumed to
be generally not equal. Gorji et al. assume equal rotational diffusion coefficients for
both two rotational degrees of freedom in their diatomic model, which is reasonable
for equivalent moments of inertia in both rotational modes. In a general polyatomic
molecule, this can not be assumed anymore. The set of diagonal entries results to
be (D2

tr, D
2
tr, D

2
tr, D

2
rot,1, D

2
rot,2, D

2
rot,3, D

2
vib,1, ..., D

2
vib,J).

The translational and internal energies with corresponding choice of drift coefficients
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are assumed as [6]

Etr = 1
2mv

′
iv

′
i, Atr,i = − 1

τtr
v′

i, (3.24)

Erot = 1
2IΩ∗

i Ω∗
i , Arot,i = − 1

2τrot,i
Ωi, (3.25)

Evib = 1
2Ξ∗

i Ξ∗
i , Avib,i = − 1

2τvib,i
Ξi, (3.26)

with the molecules moment of inertia I. The relaxation times are given by [6]

τtr = 2µ
p
, (3.27)

τint = Zintτcoll, (3.28)

with the species dependent collision number Zint and the mean collision time [6]

τcoll = π

4
µ

p
. (3.29)

The translational and rotational relaxation times are assumed to be equal for each
of the modes, i.e. τtr = τtr,i and τrot = τrot,i, whereas the vibrational relaxation times
τvib,i will be modeled for each mode with individual collision numbers Zvib,i.
For the diatomic case, Gorji et al. [6] derived an expression for the internal diffusion
coefficients. Multiplying the FP equation (3.6.1) with an internal energy, Erot and
Evib respectively, an expression for the energy change in time can be gained. Com-
paring the result with the Landau-Teller relaxation in equation (3.20), the internal
diffusion coefficients Drot =

√
2Eeq

rot/(Iτrot) and Dvib =
√

2Eeq
vib/(τvib) are derived. A

detailed derivation of internal diffusion coefficients Dint has been carried out and is
shown in the appendix in section A.2.
A translational diffusion coefficient Dtr has been proposed by Gorji et al. [6] by

Dtr =
√

2
3m(αtrEtr + αrotErot + αvibEvib), (3.30)

with the weights αtr = 2/τtr − 2/(3τrot) − 2Z/(3τvib), αrot = 1/τrot, αvib = Z/τvib

with Z = Eeq
vib/(kBT ).
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3.7. Extension of the direct modeling approach to
polyatomic gas

3.7.1. Translational, rotational and vibrational energy
assumptions

In the presented model, the internal energies of a molecule are treated differently
depending on whether or not the energies are modeled continuous or discrete. Trans-
lational and rotational energy levels are assumed to be distributed on a continuous
scale and are defined as in equation (3.24) and (3.25). The rotational energy is given
by Erot = 1

2Iω
2 with its rotation frequency ω and the molecular shape dependent

moment of inertia I [2]. Vibrational energy states on the other hand are considered
on a discrete scale and are assumed to follow the dynamics of a quantum harmonic
oscillator. Thus, the spacing of the energy levels is equidistant [2] and the discrete
vibrational energy states can be evaluated by using Eint,n = nkBθint, measured from
the zero point energy [2], with the characteristic vibrational temperature θvib used
to calculate the n’th vibrational energy state.
This assumption of a harmonic potential should show deviations in theoretical pre-
diction to experimental measurements. However, the advantage of using a harmonic
potential is that the sum in the partition function can be evaluated analytically and
therefore allows for efficient calculation. The total energy Etot is defined as the sum
of the translational energy Etr and internal energies Eint, where internal energies
will be determined by rotation and vibration of the molecules only

Etot = Etr + Eint = Etr + Erot + Evib, (3.31)

hence we will neglect electron excitement energies. Electron excitement energies
may change not only by collisions but generally spontaneously. Therefore a different
model approach is necessary and not covered within the approach presented in this
work.

3.7.2. Polyatomic internal energies

Considering a specific energy on a continuous scale that depends on d of the total
number of dtot degrees of freedom, the dependencies read E = E(x1, ..., xd), where
the xi are arbitrary variables whose change contribute to a change of E. We further
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3. Modeling of kinetic gases

assume that each degree of freedom contributes independently of all other degrees
of freedom to the total energy and the energy can be written as the sum of the
individual energies Ei = Ei(xi) as E = ∑d

i=1 Ei(xi). If we can further assume that
the energy scales quadratically with xi (assume Ei ∼ cx2

i ), such as for the rotational
energy Erot ∼ ω2, the average energy ⟨E⟩i per degree of freedom can be determined[3]
to ⟨E⟩i = kBT/2. Determining the correct degrees of rotational freedom drot give
rise to the rotational energy:

⟨Erot⟩ = drot

2 kBT. (3.32)

The result is independent of the moment of inertia and thus of the molecular con-
struction. For the vibrational energy, the considered equidistant discrete energy lev-
els have multiple vibrational modes in a polyatomic molecule simultaneously. For a
molecule consisting of N atoms, the number of vibrational modes[2] are J̃ = 3N −5
for linear molecules and J̃ = 3N−6 for non-linear molecules. For degenerate modes,
fewer number of modes J can be modeled when covering its multiple occurrence by
the degeneracy factor gj. Assuming that each vibrational mode is independent and
therefore contributes to the overall vibrational energy independently, the partition
function is the product of each individual partition function of mode j, while raising
to the power of degeneracy gj of the j’th mode[2]. Therefore the average internal
vibrational energy results in

⟨Evib⟩ = kB

J∑
j=1

gj · θvib,j

exp(θvib,j/Tvib,j)− 1 . (3.33)

3.7.3. Polyatomic drift and diffusion of internal and translational
energy

The drift introduced with the generalized kinetic model in section 3.6.1 already
contains the influence of polyatomic energies in the system of equations arising from
the production terms. However, the diatomic expression for the diffusion coefficient
by Gorji et al.[6] has to be generalized. This is done with the assumptions of
independent modes and the total energy as the sum of all individual energies. This
decoupling of the internal modes lead to a Landau-Teller relaxation of each mode
in the total sum, resulting in a diffusion coefficient for each degree of freedom.
To derive the internal diffusion coefficients, an analytic derivation for each mode is
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3.8. Energy conservation

carried out and shown in detail in the appendix A.2. The thermal equilibrium energy
of rotational energy on a continuous scale is given by the equipartition theorem and
determines kBT/2 per rotational degree of freedom. The thermal equilibrium energy
of each vibrational mode on a discrete energy scale is given by equation (3.33) for
J = 1. Keeping in mind the different continuous and discrete energy assumptions
from section 3.7.1 when determining the equilibrium energy for the Landau-Teller
comparison, the internal diffusion coefficients generalize to

Drot,i =
√
kBT

Iiτrot
, i ∈ {1, ..., drot}, (3.34)

Dvib,i =

√√√√ 2
τvib,i

θvib,i/T

(exp(θvib,i/T )− 1) , i ∈ {1, ..., J}, (3.35)

where Ii are the three generally different moments of inertia of the molecule around
its three rotation axes and θvib,i is the vibrational temperature of the i’th vibrational
mode. The vibrational relaxation times might be modeled with equal values for equal
atomic bonds.

A translational diffusion coefficient Dtr has been proposed by Gorji et al. [6] and
will be extended to cover the influence of multiple vibrational modes by substituting
αvibEvib →

∑J
i αvib,iEvib,i

Dtr =

√√√√ 2
3m(αtrEtr + αrotErot +

J∑
i=1

αvib,iEvib,i), (3.36)

with the generalized weights αtr = 2/τtr − drot/(3τrot) −
∑J

i Zvib,i/(3τvib,i),
αrot = 1/τrot, αvib,i = Zvib,i/τvib,i with Zvib,i = giE

eq
vib,i/(kBT/2).

3.8. Energy conservation

The way the direct modeling method is formulated in section 3.6.2, it adds an in-
dependent stochastic noise on each degree of freedom. This recovers the natural
stochastic fluctuation on each energy state of the degree of freedom and will add
up to a fluctuation in the total energy. With this fluctuation, the total energy is
conserved on average, but not locally in time. And instead of compensating an
energy drop in translation by increasing internal energies, the internal states will
follow the fluctuation of the translation. Physically, the opposite is desired, and an
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3. Modeling of kinetic gases

exact energy conservation is needed.
To build energy conservation that still recovers the dynamics of the modeling method,
the change of translational energies will be determined as formulated by the direct
modeling method, but rescaled depending on the change of the internal energy states.
This scaling factor α is derived by following the idea of Hepp et al. [11]. The goal
is to scale the updated thermal velocities in timestep n + 1, i.e. v′n+1 → αv′n+1 ,
such that they preserve energy after the internal states have already been updated
from timestep n→ n+ 1

1
2mi(αv′n+1

i )2 + En+1
rot + En+1

vib = 1
2mi(v′n

i )2 + En
rot + En

vib, (3.37)

which leads to the scaling factor

α =

√√√√ 1
2mi(αv′n+1

i )2 + En+1
rot + En+1

vib − En
rot − En

vib
1
2mi(v′n+1

i )2 . (3.38)

With the energy conservation guaranteed by the scaling factor, even large timestep
sizes can be applied [12].

3.9. Numerical modeling

3.9.1. Integration scheme

To update the position, translational velocities and internal states, an intergration
scheme to solve the equations of motion (3.3) and (3.2) has to be derived. The
model uses the drift and diffusion coefficients as derived in previous sections. To
integrate the velocity changes, the drift term is separated into a linear part, that will
be integrated analytically and a non-linear part, that will be integrated by an Euler
step, following the derivation by Hepp et al. [12] and neglecting external forces Fi,
the velocity update reads

vn+1
i = 1

α

v′n
i exp

(
−∆t
τtr

)
+
(

1− exp
(
−∆t
τtr

))
τtrN

n
i

+Wi

√√√√D2
tr

2 τtr

(
1− exp

(
−2∆t

τtr

))+ vn
i − v′n

i ,

(3.39)
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3.9. Numerical modeling

which updates the thermal velocity v′ = v−u, where u is the bulk velocity, Wi are
independent standard normal variates and Nn

i is the non-linear term

Nn
i = cijv

′
j + γi(v′

jv
′
j − v′

jv
′
j) + Λ(v′

iv
′
jv

′
j − v′

iv
′
jv

′
j), (3.40)

with the energy conservation scaling factor α from section 3.8. To calculate the
velocity update, the system of equation as shown in the appendix A.1 has to be
solved in each timestep to determine the coefficients cij and γi.
Although both methods, the master equation approach in section 3.5 and the direct
modeling approach 3.6, integrate the same equations of motion, the translational
velocity update still differs by the different diffusion coefficients D.
The integration of each internal degree of freedom by the direct modeling approach
can be integrated analytically, as has been shown by Gorji et al. [6]. For the
rotational and vibrational relaxation, the following intergration scheme is adopted:

ωn+1
i = ωn

i exp(−∆t/2τrot) +Drot,i

√
τrot(1− exp(−∆t/τrot))Wrot,i, (3.41)

ξn+1
i = ξn

i exp(−∆t/2τvib,i) +Dvib,i

√
τvib,i(1− exp(−∆t/τvib,i))Wvib,i. (3.42)

This way, the polyatomic direct modeling method differs from the master equation
approach in explicitly relaxing each internal degree of freedom by an integration
scheme via an Euler step, whereas the master equation approach models an energy
exchange between internal and translational modes by directly generating energy
levels via rate coefficients.

3.9.2. Numerical routine

Translating the modeling and its integration schemes of equations (3.39), (3.41)
and (3.42) into code has been done as listed by the pseudocode routine in section
A.3 of the appendix. Within this Master’s thesis, the Fokker-Planck algorithm has
been implemented into the DSMC SPARTA code [20] following the structure of
algorithm 1 in the appendix.
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4. Verification and code-to-code
comparison

To verify and validate the polyatomic direct Fokker-Planck model as a working ap-
proximation of the collision operator, the model has been implemented and several
test cases are studied. With the focus on polyatomic modeling, the energy distri-
bution and temporal relaxation of their multiple internal degrees of freedom are
investigated in detail. The tests include comparison with analytical results if pos-
sible and comparison with the different validated models and validated reference
data. Test cases will be performed using the species N2, CO2 and CH4 using the
variable-hard-sphere (VHS) collision model and parameters as shown in table 4.1.
The direct model has been implemented into the open source DSMC solver SPARTA
[20] and comparisons will be done with analytic results if possible, with DSMC re-
sults using SPARTA, a FP-master equation implementation from section 3.5, that
has been implemented into SPARTA as well, and with reference date by the poly-
atomic Fokker-Planck model of Pfeiffer et al. that use the PICLas code of the
University of Stuttgart [19].
The test cases will increase in complexity, i.e. starting with heat bath simulations
that will simulate particles in a box, that are initialized with different temperatures
for translation, rotation and vibration. Therefore, by definition their correspond-
ing energies are not in equilibrium. With temporal integration of the system, the
relaxation of the different energies and temperatures are observed. The heat bath
simulations will be investigated for diatomic and polyatomic species. The diatomic
test case uses molecular nitrogen N2, while two different polyatomic test cases are
performed using CO2 to include investigations covering linear polyatomic molecules
and a test case with CH4 as an irregular polyatomic molecule including the testing
with degenerate vibrational modes. The results will take a look at temperature and
energy plots and are compared with reference data from SPARTA [20] and Pfeiffer
et al. [19].
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4. Verification and code-to-code comparison

Table 4.1.: VHS parameters of N2, CO2 and CH4 as given by SPARTA [20] and
Pfeiffer et al. [19]

Ref. vib. temp. θvib / K (degeneracy) ωVHS Tref / K dref / m
[20] N2 3371.0 0.74 273 4.07× 10−10

[19] CO2 1918.6, 3382.0, 959.7(2) 0.8 273 5.62× 10−10

[19] CH4 4194.9, 2206.0(2), 4341.6(3), 1878.1(3) 0.7 298 3.64× 10−10

In a second set of test cases, the model is tested to be capable of recovering full
flow field structures by hypersonic simulations around an object. 2D simulations of
hypersonic flow around a cylinder will be performed and the flow field will be inves-
tigated, looking at the particle density field and temperature field. The accuracy of
peak values and spacial deviations will be compared with the DSMC and FP-master
equation methods for diatomic and polyatomic species in flow field and line plots.
Beyond the validation of the model, the computational efficiency for decreasing par-
ticle densities and comparisons of the computation time with DSMC and with the
master equation approach of the Fokker-Planck modeling are shown in last section.

4.1. Relaxation of energies and temperatures

4.1.1. Simulation setups

The relaxation tests are separated into diatomic tests in section 4.1.2 comparing the
relaxation of the FP-direct model with SPARTA DSMC [20] and polyatomic tests in
section 4.1.3 comparing the relaxation of the FP-direct model with the FP model by
Pfeiffer et al. from their PICLas code [19]. The test cases are performed using the
variable-hard-sphere (VHS) model for particle collisions with parameters as shown
in table 4.1 for the different species. Note that for better visualization purposes, not
every data point from every timestep is marked in the plots, but instead only points
of every few timesteps. This does not mean that the points are average values but
really only a subset of the whole data to have a cleaner visualization.

In previously presented results at the Aerospace Europe Conference 2023 by Nagel et
al. [18], the relaxation of the model has been validated predicting correct limits but
with fluctuations in total energies, due to a previous version that did not include the
scaling factor α from equation (3.38) to recover exact energy conservation. This was
consistent with the formulation of the model and the results showed the expected
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4.1. Relaxation of energies and temperatures

behaviour, especially in terms of the overall energy fluctuation. The energy is then
only conserved on average and fluctuations in the total energy again influence the
direction of the change of all degrees of freedom all in the same direction, due to
the provided overall total energy and therefore the aimed limit of each degree of
freedom. With the improvement of the scaling factor, the translational and inter-
nal energies show contrary fluctuations to exactly match the energy exchange and
conserve energy, which is required by a physically accurate description.

4.1.2. Diatomic relaxation tests

The relaxation tests of translational and internal energies and temperatures for di-
atomic species using N2 are shown in figures 4.1 and 4.2, comparing the FP-direct
model with a DSMC reference solution using SPARTA. The test simulates a box of
volume V = (1 m)3 at a particle density of n = 1020 m−3, using 10 000 simulation
particles that are initialized with temperatures of Ttr = 9000 K, Trot = 3000 K and
Tvib = 4000 K. To resolve the mean collision time τcoll as required by the DSMC ref-
erence method, a timestep of ∆t = 10−6 s is used for both methods. For simplicity,
the collision relaxation numbers are chosen to be Zrot = 5 and Zvib = 10. The VHS
collision model parameters and characteristic vibrational temperatures are listed in
table 4.1.
The results are in very good agreement with the DSMC reference data. The FP
direct model shows small temporal deviations of translation and rotation compared
to the DSMC predictions of SPARTA, but fits the limits very well. Due to the
temporal deviations of the translational and rotational energies, the theoretical ex-
pectations of the Landau-Teller relaxation in equation (B.3) is used to calculate
theoretical predictions for a translational and rotational energy exchange. The re-
sults are plotted in figure 4.3 and show, that the FP direct model matches the
demanded Landau-Teller relaxation very accurately.
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Figure 4.1.: Relaxation of translational, rotational and vibrational energy initialized
at non-equilibrium temperature for N2.
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Figure 4.2.: Relaxation of translational, rotational and vibrational temperature ini-
tialized at non-equilibrium temperature for N2.
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Figure 4.3.: Relaxation of translational and rotational energies comparing the FP
direct model with the Landau-Teller (LT) relaxation of equation (B.3)
for N2.

4.1.3. Polyatomic relaxation tests

The relaxation tests of translational and internal energies and temperatures for
polyatomic species are investigated for CO2 and CH4 and are shown in figures 4.4
and 4.5. The plots show the results of the polyatomic FP-direct model with the
reference data from the polyatomic FP-model using PICLas of Pfeiffer et al. [19].
The volume of the heat bath simulation box is chosen as in the reference to V =
(4.6× 10−4)3m3, also using 200 000 simulation particles. A particle number density
of n = 2 × 1022m−3 is simulated with initialized temperatures of Ttr = 10000 K,
Trot = 7500 K and Tvib = 5000 K. The timestep size is set to ∆t = 10−8 s and 600
timesteps are simulated. The VHS collision model parameters and characteristic
vibrational temperatures are again listed in table 4.1 and the relaxation numbers
are chosen to be Zrot = 10 and Zvib = 50.
The results in figures 4.4 and 4.5 show that the polyatomic FP direct extension is
in very accurate agreement with the reference data of Pfeiffer et al., predicting the
correct temporal relaxation into the equilibrium.
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Figure 4.4.: Relaxation of translational, rotational and vibrational temperature ini-
tialized at non-equilibrium temperature for CO2.
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Figure 4.5.: Relaxation of translational, rotational and vibrational temperature ini-
tialized at non-equilibrium temperature for CH4.
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4.2. 2D hypersonic flow around a cylinder

4.2. 2D hypersonic flow around a cylinder

4.2.1. Simulation setup

The second set of test cases take a look at the well known flow field of a hypersonic
flow around a cylinder. The tests will be separated into diatomic and polyatomic
cases as in the relaxation tests, and use the DSMC implementation in SPARTA [20]
for the diatomic reference data and the polyatomic FP-master equation implemen-
tation [4] for the polyatomic reference. The VHS collision model is used and the
model parameters are shown in table 4.1.

The goal of the Fokker-Planck collision approximation by equation (3.1) is to have
a computationally more efficient collision modeling than DSMC at lower Knudsen
numbers. Therefore, the 2D flow test is performed in the lower range of the transition
flow regime as characterized by figure 2.1. The runtime efficiency for varying Knud-
sen numbers is then analyzed in a separate step in section 4.3. For the test of the 2D
hypdersonic flow field around a cylinder of length L = 1 m, a Knudsen number of
Kn = 0.25 at a Mach number of Ma = 10 is chosen and the inflow particle temper-
atures are equal to the wall temperature of the cylinder T∞ = Tw. This means that
the translational velocity corresponds to a velocity from Ma = 10 with an added
thermal velocity to the corresponding thermal temperature vtr = vMa + v′

th(T∞).
The simulations make use of the symmetry and simulate only one of the symmetry
halves. To gain comparable results, the DSMC simulations are performed first, with
the necessary grid and timestep size refinements as demanded by the DSMC reso-
lution criteria in section 3.3 and the same grid and adjusted timestep size is used
for the followed investigated FP-direct simulations, even though these restrictions
do not necessarily account for the FP model.
The results discussed in subsequent sections show the flow fields of the particle
number density and the temperature fields, where the convention of the flow al-
ways entering from the left boundary is used, streaming through the domain from
left-to-right. The reference solution is always displayed at the top and the FP mod-
eling at the bottom of the figures. Further, these investigated quantities are plotted
downstream through the stagnation point, to investigate peak values and spacial
deviations.
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4.2.2. Diatomic 2D flow around a cylinder

The results of the flow field and lineplot data for the diatomic 2D flow around a
cylinder are shown in figures 4.6 to 4.9, comparing the particle number density
and the thermal temperature gained from the DSMC solution and the FP-direct
modeling. Further details are shown in figures 4.10 and 4.11 with lineplots of the
translational and rotational energies separately. With a chosen free stream temper-
ature of T∞ = 300 K, vibrational energy is not excited for the N2 tests.
The flow field of the particle number density in figure 4.6 shows only small devia-
tions and recovers the density distribution of the shock structure very well. The flow
seems to reach a little bit further around the cylinder and into the wake region. The
corresponding lineplot in figure 4.8 shows very good agreement of the two methods,
while the FP-direct model slightly overestimates the maximum density increasement
in the stagnation point and close to the cylinder in the wake. The thermal tem-
perature field in figure 4.7 shows larger spacial deviations of the FP-direct model
compared to DSMC, overestimating the shock thickness and predicting the location
of the maximum temperature a little bit closer to the stagnation point. This also
can be seen in the corresponding lineplot in figure 4.9, showing that the FP-direct
temperature curve starts to increase with decreasing distance to the stagnation point
earlier than the DSMC curve. In the wake region behind the cylinder, also minor
spacial difference occur by the FP-direct model compared to the DSMC results.
However, besides these spacial deviations, the maximum values of the thermal tem-
perature are estimated very well by the FP-direct modeling in comparison with the
DSMC results. A study worth mentioning at this point has been done by Lofthouse
et al. in 2008 [15], comparing DSMC with CFD also using a flow around a cylinder
at Kn = 0.25 and Ma = 10. In their study they did not use equal free stream and
wall temperatures and did not focus on internal degrees of freedom, using Argon as
species. In their results, the shock thickness of the CFD results is smaller than the
DSMC results but the temperature maximum of the CFD simulation is also closer
to the body than for the DSMC result. This is consistent with the expectation due
to a matching of the FP production terms with the continuum limit. Their results
are shown in the appendix in section B.2.

A detailed look into thermal and internal temperatures reveals that the distribution
does not quite match the expectations by the reference. In equilibrium regions in the
flow field, the distribution of the energies match the expectations well, as validated
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4.2. 2D hypersonic flow around a cylinder

by the relaxation tests. Deviations occur in the shock regions, where the flow is in
high non-equilibrium and also in the wake region, where a low particle number may
effect the results lager statistical deviations. This leads to a slightly overestimated
rotational energy in these regions but approaches the reference solution again further
downstream in the wake.

Figure 4.6.: N2 particle density field of
a 2D flow around a cylinder
using DSMC (top) and the
FP-direct model (bottom) at
Kn = 0.25 and Ma = 10.

Figure 4.7.: N2 temperature field of a
2D flow around a cylinder
using DSMC (top) and the
FP-direct model (bottom) at
Kn = 0.25 and Ma = 10
with T∞ = Twall.
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Figure 4.8.: Normalized particle density plot of the flow field downstream through
the stagnation point in figure 4.6, normalized by characteristic length
given by the cylinder diameter L for N2.
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Figure 4.9.: Normalized temperature plot of the flow field downstream through the
stagnation point in figure 4.7, normalized by characteristic length given
by the cylinder diameter L for N2.
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Figure 4.10.: Normalized translational energy plot of the flow field downstream
through the stagnation point in figure 4.7, normalized by character-
istic length given by the cylinder diameter L for N2.
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Figure 4.11.: Normalized rotational energy plot of the flow field downstream through
the stagnation point in figure 4.7, normalized by characteristic length
given by the cylinder diameter L for N2.
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4.2.3. Polyatomic 2D flow around a cylinder

The results of the flow field and lineplot data for the polyatomic 2D flow around a
cylinder are shown in figures 4.12 to 4.18, comparing the particle number density
and the thermal temperature gained from the DSMC solution and the FP-direct
modeling for CO2, as well as the translational and internal energy along the sym-
metry line.
The results of the polyatomic particle number density shown in figure 4.12 are in
good agreement with the reference case. Small deviations can be seen in the wake
region, which predicts a smaller rarefied region in the flow field. In contrast to the
diatomic results, the peak value of the polyatomic particle number density in the
stagnation point in figure 4.14 are estimated very accurately, which is not surprising,
as both compared methods use the FP approximation. Besides a spacial shift of the
density increasement in the wake region, the overall lineplot curves of the reference
and the FP-direct model match well.
The results of the polyatomic thermal temperature field in figure 4.13 shows regions
of good agreement and regions of larger deviations. The temperature field in the free
stream flow all the way downstream to the stagnation point and the surrounding
overall shock structure is recovered quite well. However, deviations in the tempera-
ture field can be observed in the wake region.
The lineplot of the thermal temperature in figure 4.15 confirms the observation in
the temperature flow field. The temperature plot shows good agreement in front
of the cylinder through the shock to the stagnation point with only small spacial
deviations. Larger deviations of the temperature field occur in the wake region.
Taking a look at the lineplots in figures 4.15, 4.17 and 4.18 show that all three plots
show overall good agreement with the reference, but deviations are observed for the
rotational and vibrational energies in the wake region. This observation is consistent
with the overestimation of the temperature in the wake.
Careful reassurance of the correct vibrational energy has been done, including in-
vestigations on the degeneracy of CO2. As listed in table 4.1, CO2 has 4 modes,
two of which are degenerate. To make sure that the correct degeneracy is included,
two simulations have been compared, one performing 3 modes and counting the
degenerate modes twice in the total energy and another one performing 4 modes,
two of which have the same vibrational excitation energy defined by the vibrational
temperature θvib. Both simulation showed the same deviations of vibrational energy.
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4.2. 2D hypersonic flow around a cylinder

In the 2D tests, the overall structures and energy values are predicted well and de-
viations occur in rarfied regions, where internal energies are slightly overestimated.
The FP direct model appears to be more sensitive to deviations in rarefied regions
than the FP master approach.

Figure 4.12.: CO2 particle density field of
a 2D flow around a cylinder
using the FP-master (top)
and the FP-direct model
(bottom) at Kn = 0.25 and
Ma = 10.

Figure 4.13.: CO2 temperature field of a
2D flow around a cylinder
using the FP-master (top)
and the FP-direct model
(bottom) at Kn = 0.25 and
Ma = 10 with T∞ = Twall.
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Figure 4.14.: Normalized particle density plot of the flow field downstream through
the stagnation point in figure 4.12, normalized by characteristic length
given by the cylinder diameter L for CO2.
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Figure 4.15.: Normalized temperature plot of the flow field downstream through the
stagnation point in figure 4.13, normalized by characteristic length
given by the cylinder diameter L for CO2.
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Figure 4.16.: Normalized translational energy plot of the flow field through the stag-
nation point in figure 4.13, normalized by characteristic length given
by the cylinder diameter L for CO2.
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Figure 4.17.: Normalized rotational energy plot of the flow field through the stagna-
tion point in figure 4.13, normalized by characteristic length given by
the cylinder diameter L for CO2.
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Figure 4.18.: Normalized vibrational energy plot of the flow field downstream
through the stagnation point in figure 4.13, normalized by character-
istic length given by the cylinder diameter L for CO2.

4.3. Runtime efficiency

This section focuses on an investigation of the computation time of DSMC and FP
modeling. As discussed in the section 3.3.1, the DSMC method becomes compu-
tationally very expensive for decreasing Knudsen numbers, due to the resolution
criteria. These restrictions do not account for the FP modeling, which therefore
provides an efficient modeling method for these crucial regions. Depending on a
very hard to define switching criteria, either of the two methods is used to evaluate
the new velocities in the simulation cell. The main goal will be a hybrid coupling
of the DSMC with the FP method within a single simulation, which is beyond the
scope of this thesis and left for future work.
The subsequent sections will take a look at the runtime of DSMC and FP for vary-
ing Knudsen numbers in section 4.3.1 and investigates how FP can also recover the
temporal relaxation for larger timestep sizes in section 4.3.2 than the man collision
time.
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4.3.1. Varying Knudsen numbers

This section compares the runtime of DSMC with the FP direct modeling approach
extended in this thesis and the FP master equation approach for varying Knudsen
numbers. For both methods, DSMC and FP, simulations of smaller Knudsen num-
bers do not need to simulate more particles. Instead, smaller Knudsen numbers are
modeled by DSMC with performing more collisions, whereas FP adjusts its model
parameters. So for smaller Knudsen numbers, the number of calculations of pair-
wise collisions by DSMC increase dramatically. The FP model performs a constant
number of computations for varying Knudsen numbers and it assigns new velocities
to each particle in every timestep independently of the Knudsen number.
The runtime of the models will be compared by simulating particles in a box at dif-
ferent Knudsen numbers, using the length of the simulation box l as characteristic
length of the Knudsen number Kn = λ/l. The weighting factor will be adjusted
for the different Knudsen numbers, such that a constant number of 5000 particles
is maintained. The particles are initialized in equilibrium with a temperature of
T = 300 K. The results are averaged over 50 runs for each method at each Knudsen
number and are shown in figures 4.19 and 4.20. The average runtimes are normal-
ized with the averaged runtime of the FP direct modeling runs at Kn = 0.1. Note
that this investigation only compares the runtime of the collision modeling, while
molecular scales are not resolved as would be required by the DSMC resolution
criteria. But a comparison with resolved resolution would be difficult to compare,
since these restrictions do to account for FP [11]. The timestep size is chosen to
resolve the reference Knudsen number of Kn = 0.1, but it is not adjusted for the
different Knudsen numbers. The number of computations within a single timestep
remain constant for different timestep sizes by the FP modeling. Therefor, a larger
timestep requires fewer timestep samples for a fixed physical simulation time, which
results in fewer total calculations. The accuracy of a timestep variation in the FP
model is inverstigated in section 4.3.2.
For DSMC on the other hand, more collisions occur physically for smaller Knudsen
numbers, but fewer collisions within a single timestep, if the timestep is adjusted
to be smaller. So with a smaller timestep size, the number of collisions within a
single timestep decreases, but more sample through time need to be performed to
model the same simulation time, which obviously physically necessary leads to the
same number of calculations of collisions, that are performed and timed in the end
anyway. Therefore, also the timestep size remains constant for the different Knud-
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sen numbers and only the computation time of the collision modeling is compared.
Choosing the reference timestep size is done arbitrarily and the choice of a different
timestep sizes for all simulations will shift the curves along the Knudsen number
axis. This effectively influences only the DSMC curve and will shift the intersection
point of the DSMC curve with the FP curves. Therefore, the results have to be
considered carefully and may not be used to determine a switching criteria for the
hybrid DSMC-FP coupling.
The runtime for the DSMC and the two FP methods as shown in figures 4.19 and
4.20 fulfill the expectation. They show a vastly increasing simulation time for the
DSMC method with decreasing Knudsen numbers, whereas the computation times
for the two FP methods remain approximately constant. It also reveals, that the
FP modeling using the master equation approach from section 3.5 is almost twice
as fast for N2 and even a little bit more than twice as fast for CO2 than using the
direct modeling approach of the FP method. This is due to the fact that the direct
modeling explicitly models the relaxation of each degree of freedom by an additional
integration step, whereas the master equation approach directly generates the new
particle energy from the rate coefficients.
For the specific test cases, the results show that for N2 the FP direct modeling be-
comes more efficient than DSMC for Knudsen numbers smaller than
Kn < Kncrit ≈ 0.02. The FP master equation modeling becomes already more effi-
cient than DSMC for Knudsen numbers smaller than Kn < Kncrit ≈ 0.05. For CO2,
the critical Knudsen numbers shift and the FP methods become more efficient than
DSMC for Kn < Kncrit ≈ 0.01 for the FP direct modeling and Kn < Kncrit ≈ 0.02
for the FP master equation modeling.
This critical Knudsen number depends on many parameters, like for example on the
species and varying temperatures, which influence differential cross sections and the
collision frequency.

4.3.2. Varying timestep sizes

This section recaps the temporal relaxation tests of the direct FP model for timestep
sizes larger than the mean collision time. As already mentioned in previous sections,
DSMC requires to resolve the mean collision time, which does not account for the
FP modeling [12]. Therefore, FP can use larger timesteps to sample through the
simulations, which provides a speed up in computation time. To perform the in-
vestigation, the relaxation of translational and internal energies of N2 and CO2 are
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Figure 4.19.: Normalized relative run-
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investigated again, but with timestep sizes of ∆t = 0.3τcoll, 1τcoll, 2τcoll, 4τcoll. For
both species, the energies are initialized with energy values corresponding to tem-
peratures of Ttr = 9000 K, Trot = 3000 K and Tvib = 4000 K. The results are shown
in figure 4.21 and 4.22. The results show, that the relaxation of the energies with
larger timestep sizes than the mean collision time are recovered very well. Even a
timestep size of ∆t = 4τcoll recovers the relaxation quite well, besides that it re-
laxes the energies a litte bit too fast. Larger timestep sizes, including ∆t = 4τcoll,
generally may not be able to resolve the temporal relaxation properly, because too
few points are sampled anyway. The results also show large improvements to the
corresponding previously published paper [18], by including the exact energy con-
servation factor in section 3.8 from further development between the time the paper
has been published and this thesis was written.
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Figure 4.21.: Relaxation of translational, rotational and vibrational energy initial-
ized at non-equilibrium energies for different timestep sizes ∆t for N2.
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5. Conclusion and outlook

The direct model approach of the diatomic model by Gorji et al. [6] has been ex-
tended to a polyatomic model in this Master’s thesis. The model equations have been
extended and build into a Fokker-Planck (FP) approximation of the collision term in
the Boltzmann-equation. The energies are restricted to distribute on translational,
rotational and vibrational modes and therefore do not include electron excitation
energy, which requires a separate modeling method. The model is implemented as
an additional collision model into the open source DSMC solver SPARTA [20]. The
model can be used to perform full simulations but primarily may be used in a hybrid
coupling with other particle simulation methods.
The goal of the FP model was to provide a model for regions of large densities
where DSMC becomes computationally too expensive and unfeasible. To model the
change of positions and velocities in time, DSMC calculates pairwise collisions which
at larger densities results in more computational operations per timestep, due to a
larger number of collisions in dense regions. The FP model computes the velocity
change by local quantities like drift and diffusion where the computational effort is
independent of the density and a constant number of velocity change calculations
are performed. Therefore, it has been shown that there is a critical particle density
at which the FP approximation becomes computationally more efficient than DSMC
for larger densities.

The model is validated in accuracy and efficiency. In a first study, the relaxation
of the model from non-equilibrium into equilibrium is investigated. A box with
particles initialized with non-equilibrium energies of translational, rotational and
vibrational modes and its relaxation in time is simulated. Here, the translational
energy is only given by the thermal temperature of the particles and no additional
velocity is added. A diatomic species of N2 and polyatomic species of CO2 and
CH4 are used. Energies and temperatures are plotted and compared to results from
already validated reference data of DSMC and FP methods. All relaxation results
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show good agreements with the corresponding reference data, estimating the equi-
librium values very well and showing correct temporal relaxation.

A second study is performed for a hypersonic two dimensional flow around a cylin-
der at Kn = 0.25 and Ma = 10 where translational energy includes additional
translational velocities to the thermal velocities. Two tests are performed, the first
with a diatomic species of N2 and the second one with a polyatomic species of CO2.
Both use equal wall temperature and free stream temperatures for all modes. The
diatomic results show only small deviations and the model can be validated. The
particle density is estimated very accurately and only a small overestimation in the
stagnation point is observed. The peak value of the thermal temperature is esti-
mated very well, while small spacial deviations can be observed. The shock thickness
is a little bit larger and the maximum temperature value is a little bit closer to the
body than predicted by the DSMC results. A study by Lofthouse et al. in 2008
[15] compared DSMC with CFD which also estimated the temperature maximum
of the CFD results closer to the body than the DSMC results. This appears to be
consistent with the expectation by fitting the FP model to the continuum limit. The
small temporal deviations in the relaxation tests lead to a slight overestimation of
the peak in rotational temperature in the shock. Vibrational energy is not excited
in this test.
The polyatomic 2D tests show overall good agreement of the particle number den-
sity in the flow field and lineplots with small deviations in the wake region. The
temperature field also shows good agreement from the free stream throughout the
shock region but shows deviations in the wake regions. In the wake, the internal
energies are overestimated which results in a too large temperature.

The last set of tests validate the efficiency of computation time of the FP approx-
imation. It compares the runtime of the FP direct modeling approach and the FP
master equation approach with the DSMC modeling. In a first study, a heat bath
is simulated at different Knudsen numbers and the runtime is tracked and averaged
over multiple runs for N2 and CO2. The results fully validate the expectations and
show that both FP models remain a constant simulation time for varying Knudsen
numbers while the DSMC runtime increases for smaller Knudsen numbers. Overall,
the FP master equation approach is computationally about twice as fast as the FP
direct modeling. As expected, the DSMC runtime changes from being more efficient
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than both FP models for large Knudsen numbers to less efficient than both FP
models for small Knudsen numbers. The second study of the last tests validate that
additional computational efficiency can be gained by the FP direct modeling by re-
maining very accurate results even for larger timestep sizes than the mean collision
time.

To sum it up, the test cases validate the extension for the FP direct modeling
as a good model in terms of an accurately and efficiently approximating model. The
model correctly relaxes the energies in polyatomic gases and the overall flow field
is recovered well with only small deviations in free stream throughout the shock
region. Larger deviations occur in the wake, where the gas is rarefied. With fitting
the FP direct model to the continuum limit increasing deviations in rarefied regions
are expected and observed in the tests. In a hybrid coupling approach, these rarefied
regions may be modeled by an accurate DSMC model more efficiently anyway.
Further work may improve the spacial deviations of the energy for rarefied regions.
Despite the deviations, the FP direct model can be used in a hybrid coupling to
perform accurate and efficient reentry or jet plume simulations. So the main goal
of providing a suitable polyatomic method for proper hybrid coupling with DSMC
is fulfilled.
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A. Model appendix

A.1. System of equations for the polyatomic cubic
drift coefficient

As derived in [10], the model coefficients of the cubic drift coefficients cij and γi are
determined by two considerations. The terms adding to a linear drift coefficients
need to vanish to the second order moment:
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and the translational heat flux need to match the heat flux of the 17-moment equa-
tion [17]:
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with the mass density ρ, the particle density n and the Boltzmann constant kB,
while the right hand side revels the influence of the internal states like the internal
heat capacities of rotation crot and vibration cvib and internal heat fluxes qrot,i and
qvib,i, respectively. There, J1 and J5 are defined by
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A.2. Derivation of internal diffusion coefficient

This section summarizes the calculation of the internal diffusion coefficients for rota-
tion and vibration as needed by the FP model in section 3.6.3, following a suggested
procedure proposed in [6]. The calculation is exemplary performed for rotation and
can be transferred analogously to the derivation of the vibrational diffusion coeffi-
cient.

To model the internal states like rotation by the Fokker-Planck equation in the
same way as translational velocities are modeled, rotational velocities Ωi will be
defined with the energy of the rotational mode i defined as Erot,i = IiΩiΩi/2 with
(·) =

∫
H(·)fdΨ using the moment of inertia of Ii around a rotational axis and the

Einstein’s index summation notation.
With the generalized model from section 3.6.1, the probability density function f is
extended to f(v,Ω,Ξ,x, t) and the generalized FP equation can be written as

(
D
Dt + Fi

∂

∂vi

+ ∂

∂Ψi

(
Ai −

1
2
∂

∂Ψi

Dij

))
f = 0. (A.5)

The tensor Dij has as defined in section 3.6.3 only diagonal entries and takes the
form (D2

tr, D
2
tr, D

2
tr, D

2
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2
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2
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2
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2
vib,J).

In a first step, equation (A.5) is multiplied by the internal energy, so
Erot,i = IiΩiΩi/2 (
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The rotational velocity is independent of the translational and vibrational veloc-
ity, i.e. Ωi ̸= Ωi(vi) and Ωi ̸= Ωi(ξi), so the second term and the non-rotational
derivatives in the third and fourth term vanish. This shortens the equation to

D
DtIiΩiΩif + ∂

∂Ωi

Arot,iIiΩiΩif −
1
2
∂2

∂2Ωi

Drot,ij︸ ︷︷ ︸
=D2

rot,i

IiΩiΩif = 0. (A.8)

Assuming that the rotational diffusion coefficient may depend on the total tem-
perature but not on the rotational velocity explicitly, i.e. Drot,i ̸= Drot,i(Ωi), the
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rotational diffusion coefficient can be considered as a constant factor when applying
the derivatives. This leads to the second term ∂

∂Ωi
Arot,iIiΩiΩif = 2IiArot,iΩif and

the third term can be calculated to 1
2

∂2

∂2Ωi
D2

rot,iIiΩiΩif = IiD
2
rot,if .

In a next step, the equation will be integrated over its phase space
∫

H dΨ and it will
be further assumed that the rotational diffusion generally does not depend on any
phase space coordinates Drot,i ̸= Drot,i(Ψi)

∫
H

D
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2
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The rotational drift coefficient will be proposed to be linear in the rotational velocity
Ωi but independent of translational and vibrational velocities. So the integrals in
the second term can be split up into:

2Ii

∫
H
Arot,iΩifdΨ = 2Ii

∫
R3

∫
Rdrot

∫
Rdvib

Arot,iΩifdvdΩdΞ (A.11)

= 2Ii

∫
Rdrot

Arot,iΩi

∫
R3
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fdvdΞ︸ ︷︷ ︸
=
∫

f(Ψ;x,t)dvdΞ≡f(Ω;x,t)

dΩ (A.12)

with the marginal probability function f(Ω; x, t) and using that Arot,i ̸= Arot,i(v,Ξ)
and Ωi ̸= Ωi(v, ξ). Revisiting equation (A.10) using equation (A.12) for the second
term, multiplying by a factor of 1

2 , and balancing the temporal change of dErot,i

with the second and third term, leads to

dErot,i

dt = −Ii

∫
Rdrot

Arot,iΩif(Ω; x, t)dΩ + 1
2IiD

2
rot,i. (A.13)
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Choosing a rotational drift coefficient of Arot,i = 1
2τrot,i

Ωi, the eqution can be further
calculated to
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1
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2
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which comparing to the demanded Landau-Teller relaxations determines the equi-
librium energy
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Erot,i + τrot,i
1
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2
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!=Eeq
rot,i

 . (A.19)

The equilibrium energy for a given temperature generally can be calculated as shown
in section 2.2.5 and therefore can be used to determine the diffusion coefficient for
each independent rotational degree of freedom
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rot,i = τrot,i

1
2IiD

2
rot,i (A.20)

⇔ Drot,i =

√√√√2Eeq
rot,i

Iiτrot,i
. (A.21)

Performing the same calculation by replacing the rotational energy Erot,i by a vibra-
tional energy defined as Evib,i = ΞiΞi/2 dropping the moment of inertia Ii and with
the exchange of Ωi → Ξi, will lead to the diffusion coefficient for each independent
vibrational mode depending on the vibrational equilibrium energy by

Eeq
vib,i = τvib,i

1
2D

2
vib,i ⇔ Dvib,i =

√√√√2Eeq
vib,i

τvib,i

. (A.22)
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A.3. Numerical routine
Translating the modeling and its integration schemes of equations (3.39), (3.41)
and (3.42) into code has been done as briefly shown by the pseudocode routine in
algorithm 1. The implementation of the Fokker-Planck algorithm has been done into
the DSMC SPARTA code [20]. Attention has to be payed to the correct ordering of
the functions. It is important to fully relax all internal states and update the internal
energies before updating the translational energies, to get the correct scaling for the
energy conservation factor by equation (3.8). Therefore, values of old and updated
states need to be kept, in order to properly rescale the tranlsational velocity change.
There are a variety of implementation details that had to be taken care of, but will
not be further discussed at this point.

Algorithm 1 Summarized routine of Fokker-Planck collision operation
1: vrot,i, vvib,i ← Initialize(Erot,i, Evib,i)
2:
3: for k = 1, ..., Ncell do
4: ρk ← calculate density
5: pk ← calculate pressure
6: νk ← calculate viscosity
7:
8: En

rot, E
n
vib ← calculate old average internal energies(En

rot,i, E
n
vib,i)

9: calculate all tau(τcoll, τtr, τrot, τvib,i)
10:
11: calculate internal diffusion coefficients(Drot,i, Dvib,i)
12: vn+1

rot,i, vn+1
vib,i ← Propagate internal velocities(vn

rot,i, vn
vib,i)

13: En+1
rot,i , E

n+1
vib,i ← calculate new internal energies(vn+1

rot,i, vn+1
vib,i)

14: En+1
rot , E

n+1
vib ← calculate new ave int energies(En+1

rot,i , E
n+1
vib,i)

15:
16: calculate translational diffusion coefficients(Dtr,i)
17: cij, γi ← Solve linear system of equations(...)
18: vn+1

i ← Propagate translational velocities(vn
i )

19: α← Calculate scaling factor(vn
i , v

n+1
i , En

rot, E
n
vib, E

n+1
rot,i , E

n+1
vib,i)

20: Rescale translational velocities(vn+1
i , α)

21:
22: end for
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B.1. Theoretic prediction of rotational relaxation
To investigate if the model fulfills the Landau-Teller relaxation, the differential
equation of the change of rotational energy in time is derived. Assuming a given
constant total energy Etot from translational and rotational energy with drot degrees
of freedom, the total energy is given by Etot = Etr + Erot = 3kBT/2 + drotkBT/2
and equal temperature defines the equilibrium energy Eeq = Erot(T ). Therefore, the
temperature is

T = 2
3kB

(Etot − Erot) , (B.1)

which leads to the equilibrium energy

Eeq = Erot(T ) = drot

2 kB
2

3kB

= drot

3 (Etot − Erot). (B.2)

With the Landau-Teller relaxation as defined by equation (3.20), the change of
rotational energy is given by

∂Erot

∂t
= Eeq − Erot

τ
= 1
τ

(
drot

3 Etot − Erot
drot + 3

3

)
. (B.3)

The change of translational energy is given by the balance to the total energy and
can be calculated with a changing rotational energy by Etr = Etot − Erot.
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B.2. A study of Lofthouse et al. comparing CFD and
DSMC around a cylinder

Figure B.1.: Temperature field comparing
DSMC and CFD at Kn = 0.25
and Ma = 10 by Lofthouse et
al. 2008 [15] using Argon.

A study of Lofthouse et al. in 2008
[15] compared DSMC with compu-
tational fluid dynamics (CFD) also
with a flow around a cylinder at
Kn = 0.25 and Ma = 10. They
did not use equal free stream and wall
temperature as in the tests in section
4.2.2 and used a monatomic gas of
Argon. The comparison of the tem-
perature field using DSMC and CFD
is shown in figure B.1.
Their results show, that the location
of the maximum of the temperature
field in the CFD solution is closer to
the body than for the DSMC result.
The FP solution in figure 4.7 also es-
timates the location of the maximum
temperature closer to the body than DSMC. This fulfills well the expectation due to
a matching of the FP production terms with the continuum limit. The shock thick-
ness on the other hand is underestimated by CFD compared to DSMC, whereas FP
overestimates the shock thickness.
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