
Applicability of Model Checking for Verifying
Spacecraft Operational Designs

Philipp Chrszon∗§ , Paulina Maurer∗§ , George Saleip∗§ , Sascha Müller∗§ ,
Philipp M. Fischer∗§ , Andreas Gerndt∗†§ , and Michael Felderer∗‡§

∗Institute for Software Technology
German Aerospace Center (DLR)

Braunschweig, Germany

†University of Bremen
Bremen, Germany

‡University of Cologne
Cologne, Germany

§Email: philipp.chrszon@dlr.de, paulina.maurer@dlr.de, george.nasralla@dlr.de, sa.mueller@dlr.de,
philipp.fischer@dlr.de, andreas.gerndt@dlr.de, michael.felderer@dlr.de

Abstract—Guaranteeing safety and correctness is one of the
main objectives during the development of space systems. This is
a challenging task, since many different engineering disciplines
are involved in the development and the constituent parts
of a spacecraft are highly interconnected and interdependent.
Increasingly, formal methods such as model checking are applied
to verify safety-critical parts of spacecraft designs and also
implementation, since they may prove the absence of design
errors. Generally, a major challenge for adopting model checking
into the design process is its scalability. Usually, the whole state
space of a system, which grows exponentially with, e.g., the
number of parallel processes, must be explored.

In this paper, we consider operational designs of spacecraft
as they may occur during early development phases and
systematically evaluate the scalability of model checking for
verifying such models. For this, we created an arbitrarily scalable
operational design describing the mode management of a satellite.
Transformations of the models into the modeling languages of
different model-checking tools enables a comparative scalability
study of various model-checking algorithms. The evaluation shows
promising results for symbolic model-checking approaches. A
comparatively low analysis time and memory usage suggest that
model checking for early operational designs can be incorporated
into existing design processes.

Index Terms—Aerospace, Formal Models, Formal Methods,
Model Checking

I. INTRODUCTION

Space systems are widely considered as safety-critical. Not
only are failures expensive, they often jeopardize the mission
objectives, and in the worst case may even endanger human
lives. However, ensuring that such systems work correctly
becomes increasingly difficult. Today’s spacecraft are complex
autonomous systems controlled by sophisticated on-board
computer systems. Furthermore, spacecraft consist of many
highly interconnected parts, most of which are developed
in collaboration by scientists and engineers from different

©2023 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

The published version of the article is available at https://doi.org/10.1109/
MODELS58315.2023.00011.

disciplines. This interdependence makes the correction of
design errors in later development phases costly. After launch,
correcting hardware faults is seldom possible and fixing
software issues often comes with a considerable risk. Therefore,
it is highly desirable to find design errors as soon as possible.

In order to detect errors in the design and to ensure the
correctness of the system, verification and validation efforts
traditionally employ testing and simulation. Here, the system,
a model of the system, or a combination of both, is executed
and observed for unintended behaviors. As full coverage of all
possible executions is never achieved in practice, this can only
show the presence of errors. Especially for critical systems
or subsystems, simulation can be complemented by formal
verification, which can provide proof that the system or system
model satisfies certain properties over all possible executions.
Thus, it can also show the absence of errors.

Model checking is a formal verification approach where a
systematic exploration of a system’s state space is performed
fully automatically. It is particularly well-suited for analyzing
highly concurrent systems and can uncover errors that are
caused by very specific orderings of task execution. Such
concurrency-related errors are usually hard to detect using
simulation alone, as they might occur only rarely and often
nondeterministically.

A major challenge for the practical application of model
checking is its scalability, since potentially the whole state
space of the system must be represented and explored. Many
approaches and techniques have been developed to mitigate
this issue, which can make the verification of large-scale
systems tractable. However, the application of these techniques
often requires expert knowledge in formal modeling and
verification. This severely hinders the widespread application
of model checking in industry, and the aerospace domain is
no exception [1], [2].

In this paper, we investigate the applicability of model
checking within early spacecraft design phases. In particular,
we examine up to which model size and complexity model
checking is still tractable and fast enough to be incorporated
into the design process. For that, we

https://orcid.org/0000-0002-8785-0272
https://orcid.org/0000-0002-3954-6137
https://orcid.org/0000-0003-2123-3412
https://orcid.org/0000-0002-1913-1719
https://orcid.org/0000-0003-2918-5195
https://orcid.org/0000-0002-0409-8573
https://orcid.org/0000-0003-3818-4442
https://doi.org/10.1109/MODELS58315.2023.00011
https://doi.org/10.1109/MODELS58315.2023.00011

1) created a representative model for mode management of
a spacecraft which can be scaled arbitrarily,

2) implemented transformations of the model into the input
languages of various model-checking tools, and

3) systematically examined the analysis durations for de-
tecting deadlocks and livelocks using different model
checkers.

For modeling the mode management, we utilize a simple
state-machine formalism, where transitions between modes may
be triggered using commands and additional mode constraints
can be formulated. The goal of our verification approach is
that the model-checking process can be integrated transparently
into the design process and may be used by non-experts
in formal verification. Thus, we only consider automated
optimizations and state-space explosion mitigation techniques
that are provided by the model-checking tools and exclude
hand-crafted optimizations or abstractions. In order to achieve
a wide coverage of different state-space explosion mitigation
techniques, we selected one or more representative model
checkers for each technique, which allows us to compare their
effectiveness for our specific application.

II. RELATED WORK

This section gives an overview of spacecraft systems
engineering, model checking, and previous works on the formal
verification of space systems using model checking.

A. Spacecraft Systems Engineering

The European Cooperation for Space Standardization (ECSS)
divides the life-cycle of a space system into seven phases,
starting with phase 0, followed by phases A to F. Within
phases 0 to D, the design, development, and manufacturing
of spacecraft takes place [3]. The early design phase 0/A can
be (partially) carried out in Concurrent Engineering Centers
(CEC). Concurrent Engineering (CE) is an approach for
design and development that emphasizes teamwork, discussion,
and rapid iteration. Here, the development tasks from the
different engineering disciplines are conducted in parallel and
collaboratively. The goal is to quickly establish a consistent
system design incorporating the subsystems, equipment, and
satellite configuration. The involved engineers exchange and
store information using a common system model [4]. This
model is created and manipulated using a CE software, such
as Virtual Satellite [5].

The Concurrent Engineering Facility (CEF) is the CEC of
the German Aerospace Center (DLR). A CE study in the CEF
usually takes between one to three weeks and consists of
several sessions. A session, generally lasting for ca. 4 hours, is
divided into moderated and unmoderated work. The sessions are
interrupted by breaks of up to one hour [4], [6]. A typical CE
schedule can be found in [7]. During a CE study, the engineers
contribute to the system model. First, a decomposition of the
system is established, e.g., by modeling the components that
constitute the different subsystems. Then, various parameters,
including masses and average power usage, are assigned to the

components in order to enable system-level budget calculations.
These are then analyzed for various system modes [6].

Verification activities throughout the life cycle of a space
system are defined within the technical memorandum ECSS-E-
TM-10-21A [8]. It covers requirement and design verification
from phase 0 to B. Different types of simulators are introduced
to verify mission, system, and performance requirements.
Several approaches for verification, analysis, and simulation that
can be run during or between CE sessions have been presented.
Fischer et al. show a formal approach for checking whether an
early design is feasible for reaching the mission goals [9].
Here, a verification time of several minutes is considered
practical and allows for checking mission feasibility under
certain restrictions. The approach has been optimized in [10]
and extended to allow for the inclusion simulation models.
In [11], it is shown how this approach can be automated
and used for continuous verification during early design. A
CE process tailored to launcher design is presented in [12].
Here, simulations are integrated into the design evaluation and
are executed in parallel to unmoderated sessions. Then, the
simulation results are ready for the next moderated session.
For verification in phase B, a process for generating simulator
configurations for a functional engineering simulator as well
as a software validation facility is presented in [13].

B. Model Checking

Model checking [14], [15] is a fully automatic verification
technique. The system under consideration is classically
represented using an automata-based formalism, e.g., labeled
transition systems [16] or Kripke structures. The operational
behavior of the system is expressed by transitions between
states. Transition labels may represent, e.g, actions, commands,
messages, or function calls. The system requirements are given
as a formal specification expressed in a temporal logic, such
as Linear Temporal Logic (LTL) [17] or Computation Tree
Logic (CTL) [14]. Given both a model and a specification, a
model-checking tool automatically checks whether the model
satisfies the specification. In case there is a violation, a
counterexample is produced. Commonly, the counterexample
is a trace, i.e., a sequence of states and transitions, that shows
how a state violating the specification can be reached. Using
this information, either the model or the specification can be
adjusted. For an in-depth introduction to model checking, we
refer to [18], [19].

In order to reason about quantitative system properties, more
expressive modeling formalisms are applied. Systems that
exhibit both nondeterministic as well as probabilistic behaviors
can be described by Markov Decision Processes and analyzed
using probabilistic model checking [20]. If not only discrete
system dynamics but also continuous dynamics need to be
considered, hybrid model checking [21]–[23] is commonly
utilized.

When model checking is applied to analyze complex systems,
the corresponding models may become prohibitively large. The
model size generally grows exponentially in, e.g., the number
of concurrent processes. This issue is known as the state-space

explosion problem. Several approaches have been developed
to mitigate this problem, including, for instance, partial-order
reduction [24], [25], assume-guarantee reasoning [26], [27],
symmetry reduction [28], and SAT-based model checking [29],
[30]. Furthermore, symbolic approaches may be utilized [31],
[32]. Here, whole sets of states are represented symbolically
using Binary Decision Diagrams (BDDs) [33], rather than
representing each state explicitly. With this technique, even the
verification of large-scale systems becomes tractable [31].

C. Applications of Model Checking in Spacecraft Engineering

Several successful applications of model checking in the
aerospace domain have been reported in the literature. The
SPIN model checker [34] has been utilized to verify a dually
redundant spacecraft controller [35], the downlink module,
sequencing module [36] as well as the multi-threaded plan
execution module of the Deep Space One’s flight software [37],
critical parts of the Mars Science Laboratory’s software [38],
and parts of a launch vehicle’s on-board computer software [39].
Brat et al. analyzed an autonomous docking system [40] using
the LTSA model checker [41]. In [42], an Attitude and Orbit
Control System (AOCS) is verified using the symbolic model
checker NUSMV [43] to show the applicability of model
checking for this use case. Esteve et al. demonstrate a formal
modeling and analysis approach accompanying the development
of a modern satellite platform [44]. They apply the COMPASS
tool set [45] for various analyses. In [46], the control software
of the CubETH nanosatellite is verified using NUXMV [47], an
extended version of NUSMV featuring SAT-based and SMT-
based model checking. Nardone et al. propose an approach
for verifying the autonomous reconfiguration functionality of
a satellite system [48] using the probabilistic model checker
PRISM [49]. PRISM is also utilized in [50] to analyze the
reliability, availability, and maintainability of a satellite system.
The approach presented in [51] focuses on the concurrency and
interactions of components in a satellite’s mode management.
Here, the CAAL [52] tool is utilized for the verification. An
application of hybrid model checking is presented by Chan
and Mitra [53]. Here, the safety of an autonomous spacecraft
rendezvous is analyzed using SPACEEX [23] and their own
hybrid model-checking approach.

While model checking can help to detect errors which
are hard to find using testing and simulation, its limited
scalability is still perceived as a major hurdle for widespread
adoption [2], [54]. Several of the above mentioned works ([35],
[39], [46], [48], [51]) state that they either faced or expected
scalability issues of their chosen approach. However, none
actually quantified or systematically evaluated the scalability
of the utilized model-checking tools.

The mentioned case studies and approaches can be divided
by the project phase they target. While [36]–[39], [42], [44]
focus on the verification of flight software which is typically
developed during phases C and D, the approaches in [35], [46],
[48], [51], [53] are applicable during earlier project phases.
Only few of the cited works state that the verification activities
were actually performed alongside the development [38], [44]

rather than after the fact. Furthermore, the formal modeling and
analysis were carried out by experts in formal verification and
thus were not transparently integrated into the design process.

III. MODELING OF OPERATIONAL BEHAVIOR

For describing an operational design, we employ a simplified
variant of UML state machines, since they are sufficient to
describe the mode management of satellites in early design [55].
A design may consist of multiple state machines, where
interactions and dependencies are expressed using constraints
between individual states. Typically, such constraints are
derived from mode tables [55] which specify the corresponding
subsystem and equipment modes for a given system mode
or mission phase. Further constraints may be derived from
dependencies between the subsystems or physical constraints.
In the following, the syntax, graphical notation, and semantics
of the modeling formalism is presented. We begin with the
definition of a state machine.

Definition 1 (state machine). A state machine is a tuple M =
(L, C,−→, sinit) where L is a finite set of states, C is a finite
set of commands, −→ ⊆ L× C × L is the transition relation,
and sinit ∈ L is the initial state. For a given command c ∈ C
and state s ∈ L, the successor state of s must be unique, i.e.,
if (s, c, s1) ∈ −→ and (s, c, s2) ∈ −→, then s1 = s2.

Intuitively, the operational behavior of a state machine
is represented by the transitions between its states, i.e., if
(s, c, s′) ∈−→ then the state machine moves from state s to
state s′ upon receiving the command c. We write s

c−→ s′ for
(s, c, s′) ∈ −→. The finiteness of L and C ensures that the
state machine can be explored exhaustively and that model
checking is decidable.

The overall system may consist of multiple state machines
Mi = (Li, Ci,−→i, s

init
i) for i ∈ {1, 2, . . . , n} which are

executed concurrently. A system state g ∈ L1 ×L2 × . . .×Ln

comprises the local states for each state machine. We write
g[si/s

′
i] to denote the system state that arises from g by

replacing the local state of the ith state machine with s′i, i.e.,
⟨s1, s2, . . . , si, . . . , sn⟩[si/s′i] = ⟨s1, s2, . . . , s′i, . . . , sn⟩. Fur-
thermore, we define the set L = L1∪L2∪ . . .∪Ln of all local
states. To streamline the notations, we additionally define the
function local : L1×. . .×Ln → ℘(L) (where ℘(X) denotes the
powerset of X) that returns the set of local states constituting
a system state, i.e., local(⟨s1, s2 . . . sn⟩) = {s1, s2, . . . , sn}.

In order to describe the allowed states of the system and the
interactions between state machines, constraints can be added
between states of different state machines, as shown in the
example in Fig. 1. A forbid constraint (s, t), which is denoted
as , expresses that the states s and t must not be active at
the same time. For instance, the state where the Spacecraft
is in the Operate state but the Payload is turned Off is not a
valid system state. A required constraint (s, {t1, t2, . . . , tk}),
which is denoted as , indicates that state s can only be
active if at least one of the states t1, t2, . . . , tk is active as well.
In the example, the required constraint (Idle, {Off}) expresses
that the Spacecraft state machine can only be in the Idle

Idle Prepare Operate

Spacecraft

prepare operate

idle

Off On

Payload

pl on

pl off

Fig. 1. Two state machines with constraints between them. States are denoted
rounded boxes and are connected by transitions.

state if the Payload state machine is in the Off state. Note
that a single required constraint (s, {t1, . . . , tk}) expresses a
disjunction over the states t1, . . . , tk. This is useful if these
states belong to the same state machine (since only ever one
can be active at the same time). To express a conjunction,
multiple required constraints can be used. For instance, the
constraints (s, {t1}) and (s, {t2}) together require that both t1
and t2 must be active if s is active. Based on these notions,
we formally define the valid states of a system.

Definition 2 (valid system state). A system state g ∈ L1 ×
L2 × . . .× Ln is called valid w.r.t. a set of forbid constraints
F ⊆ L × L, where F is a symmetric relation, and a set of
required constraints R ⊆ L×℘(L), if the following conditions
hold:

1) ∀(s, t) ∈ F .¬
(
s ∈ local(g) ∧ t ∈ local(g)

)
2) ∀(s, T) ∈ R. s ∈ local(g) =⇒ ∃t ∈ T. t ∈ local(g)

The semantics of a set of state machines running concur-
rently is defined in terms of a transition system, a standard
formalism for describing operational behavior. First, we recall
the definition of a transition system.

Definition 3 (transition system). A transition system is a tuple
T = (S,Act, trans,S init) where S is a finite set of states, Act is
a set of actions, trans ⊆ S × Act×S is the transition relation,
and S init ⊆ S is the set of initial states.

We rely on a standard interleaving semantics to represent
the concurrent execution of the state machines. In each system
state g = ⟨s1, s2, . . . , sn⟩, the outgoing transitions of g consist
of the outgoing transitions of s1, s2, . . . , and sn. That means
there is a nondeterministic choice between the transitions of the
local states. Intuitively, this nondeterminism may correspond,
for instance, to external control inputs, environment changes,
or different task scheduling. The constraints are resolved by
only allowing transitions to valid system states.

Definition 4 (transition system semantics). The behavior of a
set of concurrently running state machines Mi = (Li, Ci,−→i

, sinit
i) with i ∈ {1, . . . , n} under a set of forbid constraints F

Idle, Off Prepare, Off

Prepare, OnOperate, On

prepare

pl onpl off

operate

Fig. 2. Transition system semantics of the example in Fig. 1

and a set of required constraints R, where the initial system
state (sinit

1 , . . . , sinit
n) is a valid system state, is defined as a

transition system

T =
(
L1 × . . .×Ln, C1 ∪ . . .∪ Cn, trans,

{
⟨sinit

1 , . . . , sinit
n ⟩

})
where
trans =

{
(g, c, g′) : g′ = g[si/s

′
i], si

c−→i s
′
i, g

′ is valid
}

.

Consider again the example in Fig. 1. Its transition-system
semantics is presented in Fig. 2. In the Prepare, On state, both
the Spacecraft state machine and the Payload state machine
may execute a transition, thus this state has two outgoing
transitions. Furthermore, resolving the constraints reveals that
the example system actually contains a deadlock state, namely
Operate, On, that has no outgoing transition. The Spacecraft
cannot move to the Idle state, since the Payload is not in its
Off state and thus the required constraint would be violated.
Similarly, the Payload cannot be turned Off, as this is prevented
by the forbid constraint.

Using a standard operational formalism as semantics enables
us to employ a wide range of existing model-checking tools
for the analysis of operational designs.

IV. TRANSFORMATION-BASED ANALYSIS APPROACH

To enable the formal verification of the state-machine
models described in Section III, we have implemented a
transformation from state machines into the modeling languages
of selected modeling-checking tools. In particular, the tools
SPIN, NUSMV, PRISM, and STORM were chosen for this work
in order to cover different model-checking approaches and state-
space explosion mitigation techniques. An overview of these
tools is provided in Table I. Both PRISM and STORM support
multiple so-called engines, e.g., mtbdd and sparse, which
differ in the underlying internal model representation as well
as the analysis approach. The tools SPIN, PRISM, and STORM
support explicit model checking, where each state and transition
of the system is represented individually. SPIN utilizes partial-
order reduction to reduce redundancies caused by equivalent
interleavings due to concurrent execution of state machines. Fur-
thermore, NUSMV, PRISM, and STORM implement symbolic
model checking where the model is represented using BDDs.
Although the systems we consider in this paper are purely
nondeterministic, we included the probabilistic model checkers
PRISM and STORM, since they are still actively developed and
include state-of-the-art optimizations for state-space explosion
mitigation. Additionally, their quantitative analysis capabilities

1 module sc
2 // Idle: 0, Prepare: 1, Operate: 2
3 state_sc : [0 .. 2] init 0;
4

5 [prepare] state_sc = 0
6 -> (state_sc’ = 1);
7 [operate] state_sc = 1 & state_pl != 0
8 -> (state_sc’ = 2);
9 [idle] state_sc = 2 & state_pl = 0

10 -> (state_sc’ = 0);
11 endmodule
12

13 module pl
14 // Off: 0, On: 1
15 state_pl : [0 .. 1] init 0;
16

17 [pl_on] state_pl = 0 & state_sc != 0
18 -> (state_pl’ = 1);
19 [pl_off] state_pl = 1 & state_sc != 2
20 -> (state_pl’ = 0);
21 endmodule

Listing 1. Corresponding PRISM model for the system shown in Fig. 1

are required in case the state machine formalism is extended
with quantitative properties. Since Markov Decision Processes
(MDPs) subsume transition systems (by setting all transition
probabilities to 1.0), probabilistic model checkers can also be
applied to verify purely nondeterministic models. Note that
neither partial-order reduction nor symbolic model checking
require any additional information or annotations and can be
used as-is on the transformed models.

In the following, the approach for transforming a state-
machine model into the modeling language of a model checker
is illustrated. For that, we consider again the example in Fig. 1.
Its transformation into the PRISM modeling language is shown
in Listing 1. Each state machine corresponds to a module
in the PRISM model (lines 1 and 13). Within a module, a
bounded integer variable ranging over the local states of the
state machine is created (lines 3 and 15). Finally, each state
machine transition is transformed into a guarded command. A
command has the form [command] guard -> update,
where the guard specifies the source state and the update
assigns the successor state to the local variable. For instance,
the transformation of the System state machine from Idle
to Prepare is described by the command in lines 5–6. The
modules in a PRISM model are executed concurrently, thus
the only thing left to be transformed are the constraints. These
are encoded into the transition guards such that moving to an
invalid system state is prevented. For example, moving from
Prepare to Operate is forbidden in case the Payload is Off,
which is captured by the condition state_pl != 0 in line 7
(the symmetric guard is in line 19). The required constraint is
encoded analogously (lines 9 and 17). The state space of this
PRISM model corresponds exactly to the one shown in Fig. 2.

The STORM model checker supports PRISM models as input
and the transformation into PROMELA (the input language
of SPIN) is, besides syntactical differences, very similar to

1 label "SC_Idle" = (state_sc = 0);
2 label "SC_Prepare" = (state_sc = 1);
3 label "SC_Operate" = (state_sc = 2);
4

5 // state Spacecraft.Prepare is reachable
6 E [F "SC_Prepare"];
7

8 // state Spacecraft.Operate is reachable
9 E [F "SC_Operate"];

10

11 // ...
12

13 // from Idle, Prepare is reachable
14 A [G "SC_Idle" => E [F "SC_Prepare"]];
15

16 // from Operate, Idle is reachable
17 A [G "SC_Operate" => E [F "SC_Idle"]];
18

19 // ...

Listing 2. Snippet of CTL properties corresponding to the system shown in
Fig. 1

the transformation into the PRISM language. Thus, we only
consider the transformation into SMV (the input language of
NUSMV) next, which is shown in Listing 3 for the example
system. In contrast to the other model checkers, NUSMV does
not provide a built-in mechanism for concurrently executing
modules that is compatible with our semantics. Therefore,
all state machines are combined into a single MODULE. The
transition relation is described by a single Boolean expression
over the variables of the model and the updated variables
of the successor (next) state. The interleaving of the state
machines’ execution is achieved by only ever updating the state
of exactly one state machine and fixing all others. For instance,
lines 8–9 describe a transition of the System state machine and
thus the state of the Payload state machine remains the same
(next(pl) = pl). Since the state-machine formalism does
not allow for the synchronization of state machines, the case
where multiple local transitions are executed within the same
system transition does not need to be handled. Thus, there is no
combinatorial blow-up when combining the state machines into
a single module. The transformation of the constraints proceeds
in the same fashion as described for the PRISM language.

In addition to the behavioral model, a specification in the
form of temporal properties is automatically generated from
the state-machine model. Thus, the user does not need to
be familiar with temporal logics to check basic properties.
Intuitively, the first part of the generated specification requires
that every local state of each state machine is actually reachable.
More specifically, for each local state s in the model there
should be a reachable system state g that contains the local
state s, i.e., s ∈ local(g). Furthermore, the second part of the
specification requires that a local state can eventually be left
by transitioning to any of its successor states. This ensures
that every state machine can eventually make progress and
does not get stuck within a state indefinitely. In the context of
commanding a spacecraft, this ensures that all components of

TABLE I
OVERVIEW OF THE SELECTED MODEL-CHECKING TOOLS

Model Checker Model Types Model Representation and Analysis Modeling Language

SPIN [34] transition systems explicit, partial-order reduction PROMELA
NUSMV [43] transition systems symbolic using BDDs SMV
PRISM [49] Markov chains, Markov Decision Processes PRISM language

explicit explicit
mtbdd symbolic using multi-terminal BDDs
sparse MTBDDs, sparse matrices
hybrid MTBDDs, sparse matrices

STORM [56] MCs, MDPs, Markov Automata PRISM language, JANI, other
sparse explicit, sparse matrices
dd MTBDDs
hybrid MTBDDs, sparse matrices

1 MODULE main
2 VAR
3 sc : {Idle, Prepare, Operate};
4 pl : {Off, On};
5 INIT
6 sc = Idle & pl = Off;
7 TRANS
8 (sc = Idle &
9 next(sc) = Prepare & next(pl) = pl) |

10 (sc = Prepare & pl != Off &
11 next(sc) = Operate & next(pl) = pl) |
12 (sc = Operate & pl = Off &
13 next(sc) = Idle & next(pl) = pl) |
14 (pl = Off & sc != Idle &
15 next(pl) = On & next(sc) = sc) |
16 (pl = On & sc != Operate &
17 next(pl) = Off & next(sc) = sc);
18 CTLSPEC EF sc = Prepare;
19 CTLSPEC EF sc = Operate;
20 CTLSPEC EF pl = On;
21 CTLSPEC AG (sc = Idle -> EF sc = Prepare);
22 CTLSPEC AG (sc = Prepare -> EF sc = Operate);
23 CTLSPEC AG (sc = Operate -> EF sc = Idle);
24 CTLSPEC AG (pl = Off -> EF pl = On);
25 CTLSPEC AG (pl = On -> EF pl = Off);

Listing 3. Corresponding SMV model for the system shown in Fig. 1

the system remain controllable. Additionally, the satisfaction
of these properties guarantees that the system does not contain
local deadlocks, i.e., situations where only a subset of the state
machines are in deadlock but the remaining state machines can
still make progress.

The temporal properties derived from the state-machine
model are formulated in CTL. Consider again the example in
Listing 3. In the SMV language, the properties are defined
as part of the module description. The first three properties
(lines 18–20) correspond to the first part of the specification.
The EF operator intuitively means that there Exists a path
(from the initial system state), where Finally (i.e., eventually,
after some finite amount of steps) the condition given after
the operator holds. Thus, line 18 specifies that there is a path,
such that the Spacecraft state machine is in the Prepare
state. This property is satisfied, since there is such a path
(see the first transition in Fig. 2). The remaining properties

formalize the second part of the specification (lines 21–25).
An AG formula is satisfied if for All paths it holds that the
condition after the operator is true Globally (in every state of
the path). Thus, the property in line 23 expresses that from
every state, where the Spacecraft is in its Operate state, a
state where the Spacecraft is Idle can be reached eventually.
Since the system state that contains the local Operate state has
no outgoing transitions (see Fig. 2), this property is violated.
For PRISM and STORM, the properties are put in a separate
file. An excerpt of the PRISM properties is shown in Listing 2.
Apart from syntactical differences, the properties are equivalent
to the ones described for the SMV model.

The modeling of state machines as well as their transfor-
mation into the model checker input languages have been
implemented into the tool Virtual Satellite [5].

V. EVALUATION

In this section, we present the experimental evaluation of
model-checking performance for spacecraft operational designs.
In particular, the following research questions are addressed to
determine whether the analysis of large-scale early operational
designs using model checking is feasible.
(RQ1) How much time is required for the analysis, depending

on the system size (in the number of states and state
machines)?

(RQ2) How much memory does the analysis of an operational
design require?

In order to answer these research questions, we have created
a representative operational design that may arise within an
early design phase of a satellite. The corresponding model can
be scaled by increasing the number of state machines which,
in turn, also increases the number of states. Note that the
number of states grows roughly exponentially with the number
of state machines. The largest operational designs we consider
consist of up to 252 state machines, as, from our experience,
a design with more components is highly unlikely to arise
during early design phases. The generated operational designs
have been transformed into the input languages of selected
model-checking tools and were finally verified, measuring both
time and memory consumption.

The evaluation follows the guidelines for performing empir-
ical studies on formal methods [57] where appropriate. The

generated models, scripts for running the experiments, and the
measurement data is available online [58].

A. Analyzed Operational Design

To provide more context to the experiments, this section
gives a brief overview of the analyzed operational design. The
model is inspired by the state-machine models discussed in [42],
[51], an internal reference model, and our own experience in
satellite system design. The different system, subsystem, and
equipment modes may be switched via commands from the
ground segment or due to autonomous reconfigurations. The
exact mechanism for mode switching is abstracted away and not
part of the model. Furthermore, the model is time-abstract. The
design comprises a system state machine with 5 local states
capturing the top-level mode, an attitude and orbit control
system (AOCS) state machine with 6 states (see Fig. 3) as
well as several ancillary state machines for thrusters, reaction
wheels, batteries, sensors, payloads, and other equipment with
two or three local states each. The states of the state machines
are connected with various constraints stating which modes
must and must not be active at the same time. For instance, the
On state of the payload requires that the Fine Pointing mode
of the AOCS is active and in the Station Keeping AOCS mode
the reaction wheels must not be turned Off, expressed using
a forbid constraint. Generally, the states of the ancillary state
machines are constrained by the top-level mode as well as the
AOCS state. However, there are no constraints between the
ancillary state machines. The smallest instance of the design
comprises 8 state machines and its corresponding transition
system has 468 states.

During the creation of the operational design, we detected
and fixed multiple unintended and unexpected deadlocks using
the implementation described in Section IV. The found defects
were not immediately apparent in a visual inspection of
the state-machine diagrams and finding the deadlocks using
simulation alone would have been difficult, since they were only
triggered by a very specific scheduling of the state machine
execution. While the evaluation of the approach’s practicability
was not the focus of the evaluation, this experience indicates
that the formal verification of early operational designs is
indeed useful in practice.

Scaling of the operational design to larger instances with
more state machines is accomplished by cloning the ancillary
state machines. For generating a design with n + 1 state
machines from a design with n state machines, one of the
ancillary state machines with the least number of copies is
selected. Then, a copy of this state machine, including all
connected forbid and required constraints, is created and added
to the design. The selection of the next state machine proceeds
in a round-robin fashion, i.e., the least recently cloned state
machine is selected next. The round-robin strategy guarantees
a deterministic scaling of the model and also ensures an even
distribution of the different types of ancillary state machines.
We have also experimented with a randomized selection of the
next state machine to clone. However, this had no significant
influence on the measurements. Note that the general structure

of the model, i.e., several equipment state machines constrained
by a central system state machine and an AOCS state machine,
is preserved by the described scaling approach. Thus, even
the scaled-up models provide a reasonable approximation of
real-world models. Alternatively, the model size could also be
increased by adding new states to the existing state machines.
We did not pursue this option since equipment with tens or
hundreds of modes are highly unlikely to occur in early design
phases. All instances of the operational design, that have been
generated as described, are free of deadlocks to ensure that
the whole state space is explored during model checking.

B. Data Collection Procedure

The model has been instantiated for a number of state
machines ranging from 8 to 252, where the corresponding
transition system of the largest instance has 4 × 1070 states.
Note that in the model-checking community, even models with
more than 108 states are considered as large-scale [31]. Each
generated instance has then been automatically transformed
into the modeling languages Promela (for SPIN), SMV (for
NUSMV), and the PRISM language (for PRISM and STORM).
All mentioned model checkers with the exception of SPIN
support symbolic model checking which uses binary decision
diagrams (BDDs) for the model representation. The size of
these BDDs, and with it the verification time, crucially depends
on the ordering of the variables that span the model’s state space.
To avoid scalability issues due to a “bad” variable ordering,
reordering was applied to the generated models. For the SMV
models, the built-in reordering support of NUSMV has been
utilized. At the time of writing, the standard version of PRISM
did not support automated variable reordering. Therefore, we
used an extended version of PRISM [59] to perform the BDD
optimization.

We conducted two sets of experiments for measuring the time
and memory requirements for verification using the selected
model checkers. In the first set, the generated model instances
were checked for global deadlocks, i.e., system states that
have no outgoing transition, meaning that none of the state
machines can progress. Since none of the models actually
contains a deadlock, the whole reachable state space of each
instance is explored completely. This is the worst-case for
deadlock checking and thus the measurements provide an upper
bound for the analysis time and memory consumption. In the
second set of experiments, the satisfaction of the generated
temporal properties (see Section IV) is checked. For the
time measurements, we rely on the built-in diagnostics of
the model-checking tools. In what follows, we consider the
analysis time as the combined time needed for model parsing,
construction, and analysis. The peak memory consumption
was measured using the time command as supplied by most
Linux distributions. We additionally used the elapsed-time
measurement of the time command to cross-check the analysis
time reported by the model checkers. The experiments were
executed sequentially, from the smallest to the largest instance.
A series of runs for a single model checker was aborted once
a timeout of 30 minutes or a memory consumption of 16 GB

Launch Safe

SunAcquisition Nominal

YawFlip

Spacecraft

SunAcquisition GuidedAttitude

Standby OrbitTransfer

FinePointing StationKeeping

AOCS

Fig. 3. The spacecraft and AOCS state machines of the analyzed design. The command labels have been omitted for better readability.

was reached. Both PRISM and STORM implement multiple
engines, which use different internal model representations
and model-checking algorithms. We have utilized all engines
as far as they were supported for the given model size and
set of properties. All experiments have been conducted on a
workstation with an Intel Core i7-4790 CPU (3.6 GHz) and
32 GB RAM running Ubuntu 20.04 LTS.

C. Results
In the following, the experiments are evaluated with respect

to the research questions.
1) Analysis Time: We first consider the required time

for deadlock checking of increasingly large models using
different model checkers. The measurement results are shown
in Fig. 4. The model-checking engines relying on an explicit
representation of the state space, where every individual state
is stored separately, are most susceptible to the state-space
explosion problem and scale only to 19 (PRISM explicit) or
22 (STORM sparse) state machines before reaching a timeout.
The SPIN model checker is also based on explicit model
checking, but additionally uses partial-order reduction and
thus reached a size of 27 state machines. All other used model
checkers and engines which are based on a symbolic state space
representation with BDDs allowed us to check for deadlocks
even for the largest system instance without hitting a timeout,
with NUSMV being the fastest. Even though the analysis time
grows exponentially for all approaches, the growth for symbolic
approaches is much slower than for explicit. The measurements
for verifying temporal properties show similar results (see
Fig. 5). These results indicate that the model’s structure, i.e.,
concurrent state machines constrained by a small set of central
state machines, admits a compact symbolic representation. Note
that the symbolic engines of STORM currently do not support
the analysis of all considered temporal properties and thus their
run times were omitted from the plot.

Given these results, we can answer RQ1, concluding that
an analysis of the operational design using symbolic model

50 100 150 200 250
0

20

40

60

80

100

number of state machines

tim
e

(s
)

NuSMV
PRISM (hybrid)
PRISM (mtbdd)
PRISM (sparse)
PRISM (explicit)
SPIN
Storm (sparse)
Storm (dd)
Storm (hybrid)

Fig. 4. Time needed for deadlock checking

checking requires only minutes or tens of minutes even for
the largest instances.

2) Memory Usage: Figure 6 shows the peak memory usage
for verifying the temporal properties depending on the state
space size. The symbolic engines of PRISM (mtbdd, sparse,
hybrid) and STORM (dd, hybrid) use roughly equal amounts of
memory, respectively, thus only one representative is shown in
the plot. For explicit model checking (SPIN, PRISM explicit,
STORM sparse) the memory usage grows exponentially. The
same is true for NUSMV, although the growth is much slower.
For STORM and PRISM, the memory usage is capped at just
below 4 GB and between 1 GB and 2 GB, respectively. In case
of PRISM, the available memory for the BDD representation
is limited to 1 GB by default. However, increasing this limit
did neither incur a higher memory usage nor did it reduce the
analysis time.

50 100 150 200 250
0

200

400

600

number of state machines

tim
e

(s
)

NuSMV
PRISM (hybrid)
PRISM (mtbdd)
PRISM (sparse)
PRISM (explicit)
SPIN
Storm (sparse)

Fig. 5. Time needed for checking temporal properties

50 100 150 200 250
0

1

2

3

4

number of state machines

m
em

or
y

(G
B

)

NuSMV
PRISM (mtbdd)
PRISM (explicit)
SPIN
Storm (sparse)
Storm (dd)

Fig. 6. Peak memory usage for checking temporal properties

These results provide an answer for RQ2. For the considered
operational design, 4 GB of memory are sufficient for all
model sizes and all considered model-checking tools.

D. Threats to Validity

The operating system and the hardware may cause variations
in the time measurements, which threatens internal validity.
This has been accounted for by using three runs for each
analysis with a warm-up run beforehand. The maximum relative
standard deviation between runs was 13%, but for almost all
analysis runs the deviation was below 5%, showing minimal, or
at least consistent, outside influences. Internal validity is further
threatened by the fact that the considered model checkers use
different input languages, which may introduce subtle semantic
differences in the generated models. In order to make sure all

model checkers operate on the same state spaces, the number
of states and transitions as reported by the model checkers have
been compared for all generated instances. For any given model
instance, the number of states and transitions of the SMV,
PRISM, and PROMELA models were identical. Additionally, the
state-space structure of the smallest generated models has been
investigated using the simulation facilities of the respective
model-checking tools. No differences between the generated
models have been found.

Using a single operational design for the experiments
threatens external validity. However, the considered operational
model was specifically designed to be representative and
structurally close to the designs that may arise within real
projects. Therefore, the results should be applicable to similar
models. External validity is further threatened by the chosen
modeling formalism, where interactions and dependencies be-
tween state machines may only be expressed using constraints.
It is to be expected that using a more sophisticated formalism,
which also allows for communication via message passing,
synchronization, or shared variables, will increase the time and
memory requirements.

E. Discussion

The experiment results indicate that even for large-scale early
operational designs, the verification using model checking is
feasible. This has an important consequence: Formal modeling
and verification can already be performed in the earliest space
system engineering phases, even before the implementation
of the on-board software. Thus, design errors can potentially
be detected much earlier in the design process. Since fixing
design errors generally becomes more expensive the longer they
remain undetected [60], this can significantly lower the project
costs and duration. In our experience, another advantage of
early modeling activities is that they can uncover ambiguities
and inconsistencies in the design. Furthermore, having a model
with a known and fixed semantics can facilitate a common
understanding of all involved engineers.

Given the comparatively low time requirements of the
model-checking process, the verification can be potentially
conducted even alongside concurrent engineering sessions
(cf. Section II-A). Since the presented transformation approach
is fully automated and requires no hand-crafted abstractions or
optimizations of the generated models, the verification can be
transparently integrated into existing modeling and engineering
software. Also, while having an expert in formal verification in
the engineering team certainly is advantageous, it is not strictly
required for applying the presented approach. The memory
requirements of the verification can easily be met by today’s
commodity hardware. Thus, the analysis can potentially be
executed on the engineers’ local workstations.

VI. CONCLUSION

We have investigated the scalability of model checking for
verifying spacecraft operational designs within early space
system design phases. For this, a model of a satellite’s mode
management has been investigated. Its behavior is expressed

in a state-machine formalism that allows for the concurrent
execution of state machines and the formulation of constraints
between states. The goal of the verification was to show that
the model contains no deadlocks and that all system modes,
subsystem modes, and equipment modes can eventually be
activated or deactivated. The model was built to be easily
scalable by increasing the number of concurrent state machines.
We have implemented transformations of the state-machine
model as well as the specification into the input modeling
languages of various model-checking tools. This enabled us to
compare different state-space explosion mitigation techniques
w.r.t. analysis time and memory consumption. The results
show that model-checking tools that utilize symbolic model
representations using binary decision diagrams scale very well
for the type of model we have considered. Even for large-scale
models with over 250 state machines, the verification could be
performed in under one minute while requiring only up to 4 GB
of memory. These results could be achieved without requiring
hand-crafted model optimizations or abstraction, only relying
on the automated built-in optimizations of the model checkers.
This means that the verification approach using model checking
can be transparently integrated into early design processes
without requiring the support of experts in formal verification.

The work presented here can be extended in several
directions. The utilized modeling formalism mainly targets
early design phases where many implementation details are
not yet available and thus only allows for the modeling of
abstract behavior. To enable modeling and verification also
for later project phases, the modeling formalism needs to be
extended for increased expressiveness. For instance, facilities
for modeling message passing and communication between
state machines could be added. Furthermore, extensions for
modeling and reasoning about quantitative properties, e.g.,
energy consumption and reliability, could be added. While these
extensions would allow for a more sophisticated verification, it
is to be expected that this will decrease the scalability of the
approach. Further investigation for automated optimizations
are required in this case. The current implementation of the
approach utilizes the tool Virtual Satellite [5] for creating and
transforming the state-machine models. This implementation
could be fully integrated into the tool, which would enable a
more streamlined integration into the design process.

REFERENCES

[1] J. A. Davis, M. A. Clark, D. D. Cofer, A. Fifarek, J. Hinchman, J. A.
Hoffman, B. W. Hulbert, S. P. Miller, and L. G. Wagner, “Study on
the barriers to the industrial adoption of formal methods,” in Formal
Methods for Industrial Critical Systems - 18th International Workshop,
FMICS 2013, Madrid, Spain, September 23-24, 2013. Proceedings, ser.
Lecture Notes in Computer Science, C. Pecheur and M. Dierkes, Eds.,
vol. 8187. Springer, 2013, pp. 63–77.

[2] S. A. Chien, “Formal methods for trusted space autonomy: Boon or
bane?” in NASA Formal Methods - 14th International Symposium, NFM
2022, Pasadena, CA, USA, May 24-27, 2022, Proceedings, ser. Lecture
Notes in Computer Science, J. V. Deshmukh, K. Havelund, and I. Perez,
Eds., vol. 13260. Springer, 2022, pp. 3–13.

[3] ECSS Secretariat, “ECSS-M-ST-10C: Space project management –
project planning and implementation,” ESA-ESTEC Requirements &
Standards Division, Noordwijk, Netherlands, Standard, 2009.

[4] P. M. Fischer, M. Deshmukh, V. Maiwald, D. Quantius, A. M. Gomez,
and A. Gerndt, “Conceptual data model: A foundation for successful
concurrent engineering,” Concurr. Eng. Res. Appl., vol. 26, no. 1, pp.
55–76, 2018.

[5] DLR. (2023) Virtual Satellite. [Online]. Available: https://github.com/
virtualsatellite/VirtualSatellite4-Core

[6] S. S. Jahnke, A. M. Gomez, P. M. Fischer, and C. Lange, “Concurrent
engineering in later project phases: current methods and future demands,”
in 69th International Astronautical Congress (IAC), 10 2018. [Online].
Available: https://elib.dlr.de/121731/

[7] D. Quantius, H. Wessel, P. M. Fischer, and D. Peters, “Progression
visualisation of mass parameters during a concurrent engineering
study,” in Cooperative Design, Visualization, and Engineering - 19th
International Conference, CDVE 2022, Virtual Event, September 25-28,
2022, Proceedings, ser. Lecture Notes in Computer Science, Y. Luo, Ed.,
vol. 13492. Springer, 2022, pp. 13–20.

[8] ECSS Secretariat, “ECSS-E-TM-10-21A: Space engineering – system
modeling and simulation,” ESA-ESTEC Requirements & Standards
Division, Noordwijk, Netherlands, Tech. Rep., 2010.

[9] P. M. Fischer, D. Lüdtke, V. Schaus, O. Maibaum, and A. Gerndt,
“Formal verification in early mission planning,” in Simulation and
EGSE facilities for Space Programmes, 9 2012. [Online]. Available:
https://elib.dlr.de/119907/

[10] P. M. Fischer, D. Lüdtke, V. Schaus, and A. Gerndt, “A formal method for
early spacecraft design verification,” in 2013 IEEE Aerospace Conference,
2013, pp. 1–8.

[11] V. Schaus, P. M. Fischer, D. Lüdtke, M. Tiede, and A. Gerndt, A
Continuous Verification Process in Concurrent Engineering, 2013.

[12] P. M. Fischer, M. Deshmukh, A. Koch, R. Mischke, A. M. Gomez,
A. Schreiber, and A. Gerndt, “Enabling a conceptual data model and
workflow integration environment for concurrent launch vehicle analysis,”
in 69th International Astronautical Congress (IAC), 10 2018. [Online].
Available: https://elib.dlr.de/122158/

[13] P. Fischer, H. Eisenmann, and J. Fuchs, “Functional verification by
simulation based on preliminary system design data,” in 6th International
Workshop on Systems and Concurrent Engineering for Space Applications
(SECESA), 2014, pp. 8–10.

[14] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchro-
nization skeletons using branching-time temporal logic,” in Logics of
Programs, Workshop, Yorktown Heights, New York, USA, May 1981, ser.
Lecture Notes in Computer Science, D. Kozen, Ed., vol. 131. Springer,
1981, pp. 52–71.

[15] J. Queille and J. Sifakis, “Specification and verification of concurrent
systems in CESAR,” in International Symposium on Programming, 5th
Colloquium, Torino, Italy, April 6-8, 1982, Proceedings, ser. Lecture
Notes in Computer Science, M. Dezani-Ciancaglini and U. Montanari,
Eds., vol. 137. Springer, 1982, pp. 337–351.

[16] R. M. Keller, “Formal verification of parallel programs,” Communications
of the ACM, vol. 19, no. 7, pp. 371–384, 1976.

[17] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA,
31 October - 1 November 1977. IEEE Computer Society, 1977, pp.
46–57.

[18] C. Baier and J. Katoen, Principles of model checking. MIT Press, 2008.
[19] E. M. Clarke, O. Grumberg, D. Kroening, D. A. Peled, and H. Veith,

Model checking, 2nd Edition. MIT Press, 2018. [Online]. Available:
https://mitpress.mit.edu/books/model-checking-second-edition

[20] M. Y. Vardi, “Automatic verification of probabilistic concurrent finite-
state programs,” in 26th Annual Symposium on Foundations of Computer
Science, Portland, Oregon, USA, 21-23 October 1985. IEEE Computer
Society, 1985, pp. 327–338.

[21] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,” Theor. Comput. Sci., vol. 138, no. 1, pp.
3–34, 1995.

[22] T. A. Henzinger, P. Ho, and H. Wong-Toi, “HYTECH: A
model checker for hybrid systems,” Int. J. Softw. Tools Technol.
Transf., vol. 1, no. 1-2, pp. 110–122, 1997. [Online]. Available:
https://doi.org/10.1007/s100090050008

[23] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “Spaceex: Scalable
verification of hybrid systems,” in Computer Aided Verification -
23rd International Conference, CAV 2011, Snowbird, UT, USA, July
14-20, 2011. Proceedings, ser. Lecture Notes in Computer Science,

https://github.com/virtualsatellite/VirtualSatellite4-Core
https://github.com/virtualsatellite/VirtualSatellite4-Core
https://elib.dlr.de/121731/
https://elib.dlr.de/119907/
https://elib.dlr.de/122158/
https://mitpress.mit.edu/books/model-checking-second-edition
https://doi.org/10.1007/s100090050008

G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806. Springer, 2011, pp.
379–395.

[24] A. Valmari, “A stubborn attack on state explosion,” Formal Methods Syst.
Des., vol. 1, no. 4, pp. 297–322, 1992.

[25] D. A. Peled, “All from one, one for all: on model checking using repre-
sentatives,” in Computer Aided Verification, 5th International Conference,
CAV ’93, Elounda, Greece, June 28 - July 1, 1993, Proceedings, ser.
Lecture Notes in Computer Science, C. Courcoubetis, Ed., vol. 697.
Springer, 1993, pp. 409–423.

[26] A. Pnueli, “In transition from global to modular temporal reasoning about
programs,” in Logics and Models of Concurrent Systems - Conference
proceedings, Colle-sur-Loup (near Nice), France, 8-19 October 1984,
ser. NATO ASI Series, K. R. Apt, Ed., vol. 13. Springer, 1984, pp.
123–144.

[27] T. A. Henzinger, S. Qadeer, and S. K. Rajamani, “You assume, we
guarantee: Methodology and case studies,” in Computer Aided Verification,
10th International Conference, CAV ’98, Vancouver, BC, Canada, June
28 - July 2, 1998, Proceedings, ser. Lecture Notes in Computer Science,
A. J. Hu and M. Y. Vardi, Eds., vol. 1427. Springer, 1998, pp. 440–451.

[28] E. M. Clarke, S. Jha, R. Enders, and T. Filkorn, “Exploiting symmetry
in temporal logic model checking,” Formal Methods Syst. Des., vol. 9,
no. 1/2, pp. 77–104, 1996.

[29] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model
checking without bdds,” in Tools and Algorithms for Construction and
Analysis of Systems, 5th International Conference, TACAS ’99, Held as
Part of the European Joint Conferences on the Theory and Practice of
Software, ETAPS’99, Amsterdam, The Netherlands, March 22-28, 1999,
Proceedings, ser. Lecture Notes in Computer Science, R. Cleaveland,
Ed., vol. 1579. Springer, 1999, pp. 193–207.

[30] P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta, “Combining decision
diagrams and SAT procedures for efficient symbolic model checking,” in
Computer Aided Verification, 12th International Conference, CAV 2000,
Chicago, IL, USA, July 15-19, 2000, Proceedings, ser. Lecture Notes
in Computer Science, E. A. Emerson and A. P. Sistla, Eds., vol. 1855.
Springer, 2000, pp. 124–138.

[31] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang,
“Symbolic model checking: 1020 states and beyond,” Inf. Comput., vol. 98,
no. 2, pp. 142–170, 1992.

[32] K. L. McMillan, Symbolic model checking. Kluwer, 1993.
[33] R. E. Bryant, “Graph-based algorithms for boolean function manipulation,”

IEEE Trans. Computers, vol. 35, no. 8, pp. 677–691, 1986.
[34] G. J. Holzmann, “The model checker SPIN,” IEEE Trans. Software Eng.,

vol. 23, no. 5, pp. 279–295, 1997.
[35] F. Schneider, S. M. Easterbrook, J. R. Callahan, and G. J. Holzmann,

“Validating requirements for fault tolerant systems using model checking,”
in 3rd International Conference on Requirements Engineering (ICRE

’98), Putting Requirements Engineering to Practice, April 6-10, 1998,
Colorado Springs, CO, USA, Proceedings. IEEE Computer Society,
1998, pp. 4–13.

[36] P. Gluck and G. Holzmann, “Using spin model checking for flight
software verification,” in Proceedings, IEEE Aerospace Conference, vol. 1,
2002, pp. 1–1.

[37] K. Havelund, M. R. Lowry, and J. Penix, “Formal analysis of a space-
craft controller using SPIN,” IEEE Trans. Software Eng., vol. 27, no. 8,
pp. 749–765, 2001.

[38] G. J. Holzmann, “Mars code,” Commun. ACM, vol. 57, no. 2, pp. 64–73,
2014.

[39] R. Krishnan and V. R. Lalithambika, “Modeling and validating launch
vehicle onboard software using the spin model checker,” Journal of
Aerospace Information Systems, vol. 17, no. 12, pp. 695–699, 2020.
[Online]. Available: https://doi.org/10.2514/1.I010876

[40] G. Brat, E. Denney, D. Giannakopoulou, J. Frank, and A. Jonsson,
“Verification of autonomous systems for space applications,” in 2006
IEEE Aerospace Conference, 2006, pp. 11 pp.–.

[41] J. Magee and J. Kramer, State models and java programs. wiley
Hoboken, 1999.

[42] X. Gan, J. Dubrovin, and K. Heljanko, “A symbolic model checking
approach to verifying satellite onboard software,” Electron. Commun.
Eur. Assoc. Softw. Sci. Technol., vol. 46, 2011.

[43] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV 2: An opensource
tool for symbolic model checking,” in Computer Aided Verification, 14th
International Conference, CAV 2002,Copenhagen, Denmark, July 27-31,

2002, Proceedings, ser. Lecture Notes in Computer Science, E. Brinksma
and K. G. Larsen, Eds., vol. 2404. Springer, 2002, pp. 359–364.

[44] M. Esteve, J. Katoen, V. Y. Nguyen, B. Postma, and Y. Yushtein, “Formal
correctness, safety, dependability, and performance analysis of a satellite,”
in 34th International Conference on Software Engineering, ICSE 2012,
June 2-9, 2012, Zurich, Switzerland, M. Glinz, G. C. Murphy, and
M. Pezzè, Eds. IEEE Computer Society, 2012, pp. 1022–1031.

[45] M. Bozzano, A. Cimatti, J. Katoen, V. Y. Nguyen, T. Noll, and M. Roveri,
“The COMPASS approach: Correctness, modelling and performability
of aerospace systems,” in Computer Safety, Reliability, and Security,
28th International Conference, SAFECOMP 2009, Hamburg, Germany,
September 15-18, 2009. Proceedings, ser. Lecture Notes in Computer
Science, B. Buth, G. Rabe, and T. Seyfarth, Eds., vol. 5775. Springer,
2009, pp. 173–186.

[46] E. Stachtiari, A. Mavridou, P. Katsaros, S. Bliudze, and J. Sifakis, “Early
validation of system requirements and design through correctness-by-
construction,” J. Syst. Softw., vol. 145, pp. 52–78, 2018.

[47] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, and S. Tonetta, “The nuxmv symbolic model
checker,” in Computer Aided Verification - 26th International Conference,
CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 18-22, 2014. Proceedings, ser. Lecture Notes in
Computer Science, A. Biere and R. Bloem, Eds., vol. 8559. Springer,
2014, pp. 334–342.

[48] V. Nardone, A. Santone, M. Tipaldi, and L. Glielmo, “Probabilistic model
checking applied to autonomous spacecraft reconfiguration,” in 2016
IEEE Metrology for Aerospace (MetroAeroSpace), 2016, pp. 556–560.

[49] M. Z. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0:
Verification of probabilistic real-time systems,” in Computer Aided
Verification - 23rd International Conference, CAV 2011, Snowbird,
UT, USA, July 14-20, 2011. Proceedings, ser. Lecture Notes
in Computer Science, G. Gopalakrishnan and S. Qadeer, Eds.,
vol. 6806. Springer, 2011, pp. 585–591. [Online]. Available:
https://doi.org/10.1007/978-3-642-22110-1 47

[50] Z. Peng, Y. Lu, A. Miller, C. W. Johnson, and T. Zhao, “A probabilistic
model checking approach to analysing reliability, availability, and
maintainability of a single satellite system,” in Seventh UKSim/AMSS
European Modelling Symposium, EMS 2013, 20-22 November, 2013,
Manchester UK, D. Al-Dabass, A. Orsoni, and Z. Xie, Eds. IEEE, 2013,
pp. 611–616.

[51] V. Nardone, A. Santone, M. Tipaldi, D. Liuzza, and L. Glielmo, “Model
checking techniques applied to satellite operational mode management,”
IEEE Syst. J., vol. 13, no. 1, pp. 1018–1029, 2019.

[52] J. R. Andersen, N. Andersen, S. Enevoldsen, M. M. Hansen, K. G.
Larsen, S. R. Olesen, J. Srba, and J. K. Wortmann, “CAAL: concurrency
workbench, aalborg edition,” in Theoretical Aspects of Computing -
ICTAC 2015 - 12th International Colloquium Cali, Colombia, October
29-31, 2015, Proceedings, ser. Lecture Notes in Computer Science,
M. Leucker, C. Rueda, and F. D. Valencia, Eds., vol. 9399. Springer,
2015, pp. 573–582.

[53] N. Chan and S. Mitra, “Verifying safety of an autonomous spacecraft
rendezvous mission,” in ARCH17. 4th International Workshop on Applied
Verification of Continuous and Hybrid Systems, collocated with Cyber-
Physical Systems Week (CPSWeek) on April 17, 2017 in Pittsburgh, PA,
USA, ser. EPiC Series in Computing, G. Frehse and M. Althoff, Eds.,
vol. 48. EasyChair, 2017, pp. 20–32.

[54] S. A. Jacklin, “Survey of verification and validation techniques for small
satellite software development,” Tech. Rep., 2015.

[55] J. Eickhoff, Onboard computers, onboard software and satellite opera-
tions: an introduction. Springer Science & Business Media, 2011.

[56] C. Hensel, S. Junges, J. Katoen, T. Quatmann, and M. Volk, “The
probabilistic model checker storm,” Int. J. Softw. Tools Technol. Transf.,
vol. 24, no. 4, pp. 589–610, 2022.

[57] M. H. ter Beek and A. Ferrari, “Empirical formal methods: Guidelines
for performing empirical studies on formal methods,” Software, vol. 1,
no. 4, pp. 381–416, 2022.

[58] P. Chrszon, “Applicability of Model Checking for Verifying Spacecraft
Operational Designs - Artifact,” Apr. 2023. [Online]. Available:
https://doi.org/10.5281/zenodo.8186567

[59] J. Klein, C. Baier, P. Chrszon, M. Daum, C. Dubslaff, S. Klüppelholz,
S. Märcker, and D. Müller, “Advances in probabilistic model checking
with PRISM: variable reordering, quantiles and weak deterministic büchi
automata,” Int. J. Softw. Tools Technol. Transf., vol. 20, no. 2, pp. 179–
194, 2018.

https://doi.org/10.2514/1.I010876
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.5281/zenodo.8186567

[60] P. Liggesmeyer, M. Rothfelder, M. Rettelbach, and T. Ackermann,
“Qualitätssicherung Software-basierter technischer Systeme – Problem-
bereiche und Lösungsansätze,” Inform. Spektrum, vol. 21, no. 5, pp.
249–258, 1998.

	Introduction
	Related Work
	Spacecraft Systems Engineering
	Model Checking
	Applications of Model Checking in Spacecraft Engineering

	Modeling of Operational Behavior
	Transformation-based Analysis Approach
	Evaluation
	Analyzed Operational Design
	Data Collection Procedure
	Results
	Analysis Time
	Memory Usage

	Threats to Validity
	Discussion

	Conclusion
	References

