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Abstract
Digital image correlation (DIC) has become a valuable tool to monitor and evaluate mechanical
experiments of cracked specimen, but the automatic detection of cracks is often difficult due to
inherent noise and artefacts. Machine learning models have been extremely successful in detecting
crack paths and crack tips using DIC-measured, interpolated full-field displacements as input to a
convolution-based segmentation model. Still, big data is needed to train such models. However,
scientific data is often scarce as experiments are expensive and time-consuming. In this work, we
present a method to directly generate large amounts of artificial displacement data of cracked
specimen resembling real interpolated DIC displacements. The approach is based on generative
adversarial networks (GANs). During training, the discriminator receives physical domain
knowledge in the form of the derived von Mises equivalent strain. We show that this
physics-guided approach leads to improved results in terms of visual quality of samples, sliced
Wasserstein distance, and geometry score when compared to a classical unguided GAN approach.

1. Introduction

Fatigue crack growth (FCG) experiments are of significant importance to determine the lifetime and damage
tolerance of critical engineering structures and components that are subjected to non-constant loads [1]. In
recent years, digital image correlation (DIC) has been used to accompany and evaluate such mechanical
experiments [2]. The DIC data serves as the basis for subsequent mechanical evaluation of fracture
mechanical quantities like the stress intensity factors (SIFs) [3] and J-integral [4]. For this evaluation, the
spatial location of the crack and especially the exact crack tip position is crucial. However, DIC data is subject
to inherent noise and artefacts due to influences such as pattern quality, sensor noise, air movement, etc [5]
which makes this information difficult to obtain. To improve upon these issues, extensive work was done
optimizing the pattern quality [6] as well as the DIC algorithm in order to obtain reliable measurements in
case of inferior patterns [7] or under special external conditions [8]. In the context of fracture mechanics,
convolutional neural networks have been successfully applied to solve the crack detection problem fully
automatically [9, 10]. These networks can deal with DIC noise and take the interpolated DIC-measured
displacement fields as input to predict the crack paths and tips. However, for these powerful data-driven
models to work reliably, they need a diverse set of training data. At the same time, experimental training data
is scarce, since experiments are expensive, and manual labelling is extremely tedious and time-consuming. To
address this issue, Strohmann et al [9] added artificial training data in the form of finite element (FE)
simulations. Nevertheless, simulations are idealized and lack the characteristic DIC noise.

Classically, synthetic DIC data can be generated by first creating an artificial speckle pattern on a digital
image of the desired specimen. Then, an FE simulation is used to virtually deform the image. Finally, the
deformed (speckle) image can be evaluated using a DIC algorithm (see, e.g. [11] and more recently [12]).
This synthetic DIC data can for instance be used to assess systematic errors arising from different DIC
techniques [11] or to understand calibration uncertainty [13]. In contrast to these approaches, our goal is to
bypass this multi-step procedure altogether and directly generate large amounts of artificial interpolated
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DIC-like training data in a fast, simple, data-centric manner using machine-learned generative models. For
instance, this interpolated DIC data can be used to improve the training of automatic crack detection models
(see [9, 10]) by delivering an advanced data augmentation method.

In the field of data-driven modelling, generative adversarial networks (GANs) have proven to be powerful
data generators. GANs are a generative, unsupervised approach to machine learning based on deep neural
networks trained using an adversarial process. Deep convolutional GANs (DC-GANs) produced
state-of-the-art results in many generative and translative computer vision tasks such as image generation
and style transfer [14–16]. However, training GANs typically requires large amounts of data, which are often
not available in the scientific domain. For example, it is not possible to mechanically test an entire aircraft to
generate training data. But without sufficient data, deep learning models are often unreliable and poorly
generalize to domains not covered by the training data. To overcome this problem, efforts have been made to
integrate fundamental physical laws and domain knowledge into machine learning models. Karpatne et al
[17] describe theory-guided data science as an emerging paradigm aiming to use scientific knowledge to
improve the effectiveness of data science models. They presented several approaches for integrating domain
knowledge in data science. Daw et al [18] proposed a physics-guided neural network by adding a
physics-based term to the loss function of a neural network to encourage physically consistent results.
Karniadakis et al [19] coined the term physics-informed neural networks—a deep learning framework which
enables the combination of data-driven and mathematical models described by partial differential equations.
Yang et al [20] combined this approach with GANs by adding a physics-based loss to the generator and,
recently, Daw et al [21] introduced a physics-informed discriminator GAN, which physically supervises the
discriminator instead.

In this work, we generate artificial displacement data of cracked specimen using GANs. Our framework is
based on the classical DC-GAN architecture. We incorporate mechanical knowledge by using a
physics-guided discriminator. In addition to the generated displacement data, this discriminator receives the
equivalent strain according to Mises [22] derived from the real or fake (generated) displacements as an
additional input feature, see section 2 and figure 1. This mechanically motivated physical feature guides the
adversarial training process and leads to physically consistent generated data. The generated data samples can
be used to increase data variation of given training datasets consisting of interpolated DIC displacements.
Although this synthetic data is not labelled, it has the potential to improve supervised machine learning
tasks, e.g. by using unsupervised pre-training [23] or label propagation [24]. In general, our method can be
applied to generate interpolated DIC-like displacement fields of cracked specimen. In this paper, we focus on
FCG experiments of a middle tension (MT) specimen manufactured from an aluminium-based alloy (see
section 2.2) and train several GANs. To demonstrate the merits of the physics-guided method, we compare
the results of the physics-guided GAN to a classical GAN approach in terms of visual quality of generated
samples (see section 3.2) and distance of fake data distributions to the real training data. The latter is
quantified using the sliced Wasserstein distance (SWD) [25] and the geometry score (GS) [26] (see
section 2.4). We show that the physics-guided approach accelerates the training and leads to physically more
consistent results.

2. Methodology

GANs are generative machine learning models learned using an adversarial training process [27]. In this
framework, two neural networks—the generator G and the discriminator D—contest against each other in a
zero-sum game. Given a training dataset characterized by a distribution pdata, the generator aims to produce
new data following pdata while the task of the discriminator is to distinguish generated data samples from
actual training data samples.

Given a noise vector z sampled from a prior, e.g. the standard normal distribution, the generator outputs
data samples G(z), called fake samples, trying to follow the training data distribution pdata. Given a real or
fake sample, the discriminator is supposed to decide whether it is real or fake by predicting the probability of
it belonging to the training dataset.

Both models G and D are trained simultaneously contesting against each other in a two-player zero-sum
minimax game with the value function V(G,D):

min
G

max
D

V(G,D) := Ex∼pdata [log(D(x))]+Ez [log(1−D(G(z)))] . (1)

This means D is trained to minimize the discriminator loss

LD =− log(D(x))− log(1−D(G(z))) , (2)
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whereas G is trained to minimize the generator loss

LG = log(1−D(G(z))) . (3)

As the discriminator gets better at identifying fake samples G(z), the generator has to improve on
generating samples which are more similar to the real training samples x∼ pdata. We refer to [27] for further
details of the training algorithm.

2.1. DIC
DIC is a contact-less, optical method to obtain full-field displacements and strains. It is widely applied in
science and engineering to quantify deformation processes. In experimental mechanics, it is used to monitor
and evaluate FCG experiments [28] by determining fracture mechanical parameters like SIFs [3] or the
J-integral [4]. Essentially, DIC measurements are based on the comparison of a current image with a
reference image using tracking and image registration techniques. The cross correlation method requires a
random speckle pattern on the sample surface. Various external and internal influences such as illumination,
air movement, vibrations, facet size and spacing, camera settings, sensor noise, pattern quality, etc lead to
inherent noise in the DIC data. Our goal is to generate artificial interpolated DIC-like displacement data
using GANs. Since this data incorporates characteristic DIC noise, it can subsequently be used to improve
the training of machine learning models such as crack detection [9, 10].

2.2. Training data
To create a dataset for the training of our GANs, we use planar displacement fields u= (ux,uy) obtained
during FCG experiments of the aluminium alloy AA2024-T3 using a commercial GOM Aramis 12M 3D-DIC
system. Details on the general experimental setup can be found in [9]. For the dataset, we use one FCG
experiment performed on an MT specimen (width w= 160mm, thickness t= 2mm). While the specimen is
clamped at the bottom, a load is applied from the top with a maximal force of Fmax = 15 kN (corresponding
to σmax = 47MPa) and ratio R= 0.3 with 20 load cycles per second. Every 0.5mm of crack growth
(measured by direct current potential drop), three images (at minimal load Fmin = R · Fmax, mean load
Fmin +(Fmax− Fmin)/2 and maximum load Fmax) were acquired. From the resulting DIC dataset, we take the
planar displacements ux and uy of the specimen and linearly interpolate them from an area of 70× 70mm2

of the right-hand side of the specimen on an equidistant 256× 256 pixel grid. This procedure results in 838
data samples of shape 2× 256× 256, where the first dimension stands for the x- and y-displacements. Each
of the two channels is normalized to [−1,1] by the min-max-scaling and shift

uscaled = 2 · u− umin

umax − umin
− 1 (4)

such that the minimum and maximum are mapped to−1 and 1, respectively.

2.3. Physics-guided GAN
We aim to generate artificial interpolated DIC displacement data using DC-GANs. For this, we mainly follow
the architectural guidelines from [29]. However, in order to reduce checkerboard artefacts, we choose
nearest-neighbour upsampling instead of transposed convolutions in the generator [30]. We remark that
GANs cannot be expected to generalize beyond the training data. The reason for this is that the generator
learns to produce fake samples that approximate the distribution of the training data. To cover a different
type of experiment or material, the training data set must be extended.

Generator. The input of the generator network is a n-dimensional vector z randomly sampled from a
standard normal distribution. For definiteness, we choose n= 5 throughout all our training experiments.
First, the random vector z passes a fully-connected layer with 8× 8× 512= 32768 neurons,
batch-normalization [31], and rectified linear unit (ReLU) activation [32]. The output of this layer is then
reshaped into 512 features of size 8× 8. After that, these features are successively doubled in size using the
base block (upsampling→ batch normalization→ ReLU→ convolution) four times. The final block ends
with a tanh activation instead of ReLU. Therefore, in accordance with the training data, the generator
outputs fake samples with pixel values between−1 and 1.

Discriminator. For the discriminator, we implemented the following two approaches:

1. Classical: The discriminator gets real and fake pairs of interpolated x- and y-displacement fields (ux,uy)
and predicts a (pseudo-)probability of the sample being real. We refer to this approach as classical GAN.

2. Physics-guided: In addition to the interpolated displacement fields, the corresponding von Mises
equivalent strain εvm is calculated based on the generated and real interpolated displacement fields and
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Figure 1. Physics-guided GAN framework: A deep convolutional generator G creates fake interpolated DIC displacement data
samples from noise z. These samples (ufx,u

f
y) are used to calculate the corresponding von Mises equivalent strain εfvm. All these

three features are handed to the discriminator D, which has to decide whether samples are real or fake.

the discriminator gets the triple (ux,uy,εvm) as input in order to decide whether it is fake or real. For
small strains, the von Mises equivalent strain is defined as the scalar quantity

εvm =

√
2

3
εdev : εdev, where εdev = ε− 1

3
tr(ε) (5)

denotes the deviatoric part of the three-dimensional strain tensor

ε=

εxx εxy εxz
εxy εyy εyz
εxz εyz εzz

 . (6)

In case of plane stress, εxz = εyz = 0 and εzz =−ν(εxx − εyy). Assuming volume constancy with a Poisson
ratio of ν = 1/2, formula (5) simplifies to

εvm =
2√
3

√
ε2xx + ε2yy + ε2xy + εxxεyy. (7)

We use formula (7) for the physics-guided discriminator. Therefore, we numerically approximate the
strains using finite differences, e.g.

εxy (x,y) =
∂

∂y
ux (x,y) =

ux (x,y+ h)− ux (x,y)

h
+O (h) . (8)

To guarantee differentiability, the square-root function is smoothed by using
√
·+ δ with δ ≪ 1. We refer

to this approach as physics-guided GAN (see figure 1). The discriminator, which drives the training of the
generator, has additional physical information, namely the equivalent strain, that the generator can only
influence indirectly by producing physically consistent displacement fields. Certainly, other quantities,
which can be derived from the displacement fields, such as strains εxx, εxy, or εyy can be used to guide the
discriminator. However, we decide on using the equivalent strains, since the crack path and crack tip field
is well-visible in them.

In both cases, we choose the same model architecture for the discriminator. The input of size
2× 256× 256, or 3× 256× 256 in case of the physics-guided discriminator, is successively downsampled to
the size 1× 32× 32 using three blocks of strided convolutions, batch normalization, and LeakyReLU
activation [33], where LeakyReLU(t) =max(αt, t) with α= 0.2. The extracted features are then flattened and
pass the last fully-connected layer with one output neuron and sigmoid activation. The output is a number
between 0 and 1 and is interpreted as the probability of the sample being real.
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2.4. Evaluation of GANs
In classical supervised learning, a model is trained by minimizing a specific loss (e.g. mean squared error),
which quantitatively compares model predictions with the expected target. After training, models can be
evaluated and compared by calculating the loss (and accuracy) for independent labelled test data. GAN
generators, however, are trained in an adversarial fashion using a second model (the discriminator) to classify
generated data as real or fake. Both models are trained simultaneously to maintain an equilibrium.
Therefore, there is no natural objective measure to evaluate GANs, quantitatively. Instead they are evaluated
by assessing the quality and variation of generated data. This is typically achieved by visual inspection of
generated samples or by calculating the inception score (IS) [34] and Fréchet inception distance (FID) [35].
However, in case of interpolated DIC data, several domain experts would be needed to objectively grade the
visual quality of generated samples. Moreover, quantitative metrics like IS or FID can only be employed for
natural images since they use image classification networks like Inception [36], which are pre-trained on
ImageNet [37]. Therefore, in addition to a visual examination of generated samples in section 3.2, we use
metrics which are independent of the data type and do not use any pre-trained models. More precisely, we
use the following two metrics:

Sliced Wasserstein distance. In mathematics, the Wasserstein distance is a natural distance function
between two distributions. Intuitively, it can be viewed as the minimal cost of transforming one of the
distributions into the other. In case of image-like datasets X= {Xn}n=1,...N and Y= {Yn}n=1,...N with same
number of samples N and image sizes c× h×w, where c is the number of channels and h and w denote the
height and width of images, respectively, the (quadratic) Wasserstein distance is given by,

W(X,Y)2 =min
π

∑
i,j,k,n

|Xn (i, j,k)−Yπ(n) (i, j,k) |2, (9)

where the minimum is taken over all permutations π of the set {1, . . .N} [25]. Due to the high
dimensionality of images and the large number of samples, the exact computation of the Wasserstein
distance is computationally infeasible. This is because the number of permutations scales exponentially with
the number of samples N. Therefore, instead of (9), we use the SWD introduced in [25] as an approximation,
which is amendable for efficient numerical computation. The main idea of slicing is to map the high
dimensional image data from Rc×h×w onto one-dimensional slices. On these slices, the Wasserstein distance
can be calculated in loglinear time by using the ordered structure of one-dimensional Euclidean space. The
SWD is defined as,

W̃(X,Y)2 =

ˆ
θ∈Ω

min
πθ

N∑
n=1

|⟨Xn −Yπθ(n),θ⟩|
2dθ, (10)

where Ω= {θ ∈ Rc×h×w : ∥θ∥= 1} denotes the unit sphere. We refer to [14, 25] and section 3.3 below for
further details.

Geometry score. Introduced by Khrulkov and Oseledets [26], the GS allows to quantify the performance
of GANs trained on datasets of arbitrary nature. It measures the similarity between the real dataset Xreal and a
generated one Xfake by comparing topological properties of the underlying low-dimensional manifolds [38].
The detailed quantitative characterization of the underlying manifold of a given dataset X is usually very
hard. The core idea of [26] is to choose random subsets L⊂ X called landmarks and to build a family of
simplicial complexes, parametrized by a non-negative, time-like persistence parameter α. For small α, the
complexes consist of a disjoint union of points. Increasing α adds more and more simplices finally leading to
one single connected blob. For each value of α, topological properties of the corresponding simplicial
complex, namely the number of one-dimensional holes in terms of homology, β1(α), are calculated (see, e.g.
[39]). From this, the authors propose to compute relative living times (RLTs) for every number of holes that
was observed [26]. For each non-negative number i, the RLT is the amount of the time when exactly i holes
were present relative to the overall time αmax after which everything is connected. More precisely,

RLT(i,X,L) =
µ({α ∈ [0,αmax] : β1 (α) = i})

αmax
, (11)

where µ denotes the standard Lebesgue measure. Since the RLTs depend on the choice of landmarks L, we
choose a collection of n random sets of landmarks Lj and define the mean relative living times (MRLTs) as

MRLT(i,X) =
1

n

n∑
j=1

RLT
(
i,X,Lj

)
. (12)
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The MRLT is a discrete probability distribution over the non-negative integers. It can be interpreted as the
probability of the manifold having exactly i one-dimensional holes (on average). The L2-distance between
the MRLT distributions of Xreal and Xfake defines a measure of topological similarity between the real dataset
and the generated one, called GS:

GS(Xfake,Xreal) =

imax−1∑
i=0

|MRLT(i,Xfake)−MRLT(i,Xreal)|2 , (13)

where imax is an upper bound on the number of holes. We refer to [26] for further theoretical details and to
section 3.4 for the choice of hyperparameters and results in our case.

3. Results and discussion

In order to demonstrate the effectiveness of the method and to compare the classical with the physics-guided
discriminator approach, we trained 10 randomly initialized classical and physics-guided GANs each for 100
epochs. Moreover, we trained two classical and physics-guided GANs each for 1000 epochs in order to
compare both architectures after long training runs. The training setup is described in section 3.1 below. The
trained models are evaluated qualitatively and quantitatively by using the following criteria:

• Visual inspection of randomly generated samples (section 3.2)
• Sliced Wasserstein distances (section 3.3)
• Geometry scores (section 3.4)

A summary of the results can be seen in table 1. In short, the physics-guided GAN approach leads to visually
better results after 100 epochs and overall to measurably better results. For a detailed discussion, we refer to
the sections below.

3.1. Training procedure
Before training, the filters of the convolution layers in both generator and discriminator network are
initialized randomly from a normal distribution with zero mean and a standard deviation 0.02. In contrast,
the weights of the batch normalization layers are initialized from mean 1 and standard deviation of 0.02,
whereas the biases are initialized with zeros.

For training, we choose the Adam optimizer [40] with a learning rate of 0.002, momentum parameters of
β1 = 0.5, β2 = 0.999, and a batch size of 8. We noticed that occasionally models suffer from mode collapse
during training. This means that the generator always outputs the same or visibly similar fake data samples
and stops to learn. This problem is well-known and still part of active research. Popular strategies to
overcome convergence issues of GANs regularize or perturb the discriminator [41, 42] or by using a more
sophisticated loss function [43]. In our case, if mode collapse happened, we restarted the training and
discarded the collapsed model. All neural networks and training loops were implemented using PyTorch
[44]. The hardware for the training was an NVIDIA RTX8000 graphics card.

3.2. Visual evaluation
We begin with a visual inspection of the generated data and compare real training data to representative
samples generated by the classical GAN and the physics-guided GAN. We refer to fake samples generated by
the classical or physics-guided GAN generators as classical or physics-guided GAN samples, respectively.

Figure 2 shows real interpolated DIC data samples obtained during FCG experiments as described in
section 2.2. The figure contains planar displacements and von Mises equivalent strains of nine randomly
selected data samples. Images belong together in the sense that the x-displacement of the first sample is
located at the top left of the left column. The corresponding y-displacement is located at the same position in
the middle column, and the corresponding calculated equivalent strain is located at the same position in the
right column. Here, the crack path as well as the characteristic crack tip field is clearly visible.

In figure 3, we see random fake samples after 100 epochs of GAN training. We can often identify the
initial crack on the left edge and the crack path. Whereas most generated displacements are visually close to
real displacements, significant differences are revealed in the von Mises strains, which are calculated
afterwards. Especially classical GAN samples contain inconsistencies between x- and y-displacements and
visual artefacts. This leads to large-scale vortexes and small-scale noise in the von Mises strains À. Although
far from being perfect, physics-guided GAN samples contain significantly less of these artefacts and
inconsistencies and visually capture the inherent noise of the DIC system much better than classical GAN

6
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Table 1. Subjective visual quality, calculated geometry score (GS), and sliced Wasserstein distance (SWD) (lower is better) for different
GAN model architectures and training lengths. (∗) apart from garbage samples (see figure 4). The best results are highlighted in bold.

Model Epoch Visual quality GS×103 SWD×103

Classical 100 Low 183.49 151.70
Physics-guided 100 Medium 157.58 82.96
Classical 1000 High∗ 23.83 83.19
Physics-guided 1000 High∗ 1.93 61.61

Figure 2. Random samples from the training dataset. Left: x-displacements. Middle: y-displacements. Right: von Mises equivalent
strains. The corresponding grid elements belong to the same data point.

Figure 3. Visual comparison of randomly generated classical and physics-guided GAN samples after 100 epochs of training.
Classical GAN samples show a larger noise level in the von Mises strains compared to physics-guided GAN samples À.

samples. Nevertheless, most fake samples are still visually distinguishable from real samples. In order to make
sure the models are fully converged, we also performed some longer training runs.

Figure 4 shows random fake samples after 1000 epochs. At this stage, the models are well converged and
the visual difference between classical and physics-guided GAN samples has mainly disappeared. In general,
the fake samples of both models show much better visual quality and less artefacts and inconsistencies
compared to fake samples of generators trained for only 100 epochs Â. However, few samples suffer from
severe inconsistencies and are qualitatively inferior Á. We refer to these failures as garbage samples. Garbage
samples may arise from difficulties in the training process of GANs and problems of non-convergence like
mode collapse, which is an open research problem [34]. Although we do not observe mode collapse for the
results shown here, the occurrence of garbage samples is a sign of local non-convergence, i.e. some noise
inputs are mapped to garbage samples. Since the models are converged after 1000 epochs w.r.t. the difference
in output between two epochs, the garbage samples seem to originate from intrinsic difficulties in the
training process and are not related to the number of training epochs. Apart from these outliers, the vast
majority of samples (of both models) are visually indistinguishable from real samples. Nevertheless, domain
experts may notice that the characteristic crack tip field still seems unphysical in the fake samples especially
when compared to real samples with long cracks.

7
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Figure 4. Visual comparison of randomly generated classical and physics-guided GAN samples after 1000 epochs of training. Both
models seem to produce mostly good samples Â but also few garbage samples Á.

3.3. SWDs
For a thorough comparison of GANs, one needs to inspect a large number of fake samples. Doing this
manually, would be very tedious and subjective. Instead, one should compare the results using meaningful,
quantitative metrics.

For this, we follow [14] and calculate the SWDs introduced in section 2.4 between fake data samples and
real data samples on various scales. These scales are introduced by building a five-level Laplacian pyramid
[45] with resolutions 16× 16, 32× 32, 64× 64, 128× 128, 256× 256. Each pyramid level corresponds to a
specific spatial resolution. For each level, we compute the SWD between the training dataset and a generated
fake dataset of the same size. More precisely, the SWDs are calculated between datasets of random 7× 7
patches of the pyramid samples. The patches are pre-processed by normalizing each channel (i.e. x and y
displacement) to mean 0 and standard deviation 1. To reduce uncertainty, we average the SWDs of ten runs
with randomly sampled fake data. Since there are less unique patches for low resolutions, we adapt the
number of random patches depending on the pyramid level. For the five resolutions, 16× 16, 32× 32,
64× 64, 128× 128, and 256× 256, we use 128, 256, 512, 1024, 2048 patches, respectively. The integral in
equation (10) is approximated by choosing 512 random slices and averaging the results. We implemented a
GPU-enabled version of the code from [14] using the PyTorch [44] framework.

At least intuitively, a small SWD shows that the fake and real samples are similar. At low resolution (e.g.
16× 16) only large-scale features like the crack length are visible and a small SWD would indicate that the
variation of crack lengths in the fake dataset is similar to the training dataset. At high resolution (e.g.
256× 256) very fine-grained structures like the inherent DIC noise is encoded in the patches.

Figure 5 shows the calculated SWDs of classical and physics-guided GAN samples after 100 epochs of
training. In order to estimate uncertainty, we trained ten randomly initialized models each with the classical
and the physics-guided GAN architecture. The main observation is that for all resolutions, physics-guided
samples are closer to the training data than classical GAN samples. This indicates that physics-guided GAN
samples are better in quality and variation. Especially for the high resolution 256× 256, the SWDs show a
large gap and confirm our visual observation of artefacts and unphysical noise as seen in the classical GAN
samples in figure 3. Nevertheless, the results can be significantly different for each trained generator. This fact
is reflected in the large error bars of the SWDs.

The results after 1000 training epochs are displayed in figure 6. Here, we used two training runs for each
GAN architecture. As expected, the distances are all smaller than after 100 epochs. In contrast to the results
after 100 epochs (cf figure 5), both GAN architectures are closer together. However, the physics-guided GAN
samples have significantly smaller SWDs for the fine resolution 256× 256 and the low resolutions 16× 16
and 32× 32. This suggests that after 1000 epochs of training the physics-guided samples are still closer to the
real samples in terms of quality and variation. Nevertheless, the few garbage samples seen in figure 4 Á could
influence the SWDs especially at larger pyramid levels, e.g. 256× 256.

3.4. GSs
To compare the GS introduced in section 2.4 of different trained GANs, we generated fake datasets with the
same number of samplesN = 838 as the training dataset. To calculate the MRLTs of the real and fake datasets,
we mainly follow the recommendations in [26]. We set imax = 100 and use n= 1000 random landmarks. The
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Figure 5. Comparison of SWDs between classical GAN (left) and physics-guided GAN (right) trained for 100 epochs. The boxplot
intervals range from the minimal to the maximal SWDs. The box includes ranges from the 25% to the 75% quantile and shows
the median.

Figure 6. Comparison of SWDs between classical GAN (left) and physics-guided GAN (right) trained for 1000 epochs. The
boxplot intervals range from the minimal to the maximal SWDs. The box includes ranges from the 25% to the 75% quantile and
shows the median.

Figure 7. Comparison of MRLT distributions between the real dataset and fake datasets generated by classical and physics-guided
GAN after 100 epochs of training.

number of samples in each landmark is 64. The maximal persistence time αmax is proportional to the
maximal pairwise Euclidean distance between samples in each landmark, i.e. for j = 1, . . . ,n:

αj
max = γmax

(
dist

(
Lj,Lj

))
, γ =

1

128
/

N

5000
. (14)

We used the implementation from [26] to calculate the MRLTs.
Figure 7 shows the distributions of MRLTs after 100 epochs of training. The error band originates from

the uncertainty induced by the random landmarks and, even more so, from the ten different models trained
for each GAN architecture. This results in large variations of calculated MRLTs. Nevertheless, on average the
physics-guided GAN distribution is closer to the MRLTs of the real data distribution than the classical GAN
distribution. This observation is quantitatively reflected in a smaller mean GS of the physics-guided models
(see table 1). However, both fake data distributions are still far away from the real data distribution and the
GSs are large.
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Figure 8. Comparison of MRLT distributions between the real dataset and fake datasets generated by classical and physics-guided
GAN after 1000 epochs of training.

In figure 8, we see the MRLT distributions after 1000 epochs of training. Both GAN results are much
closer to the real data than after 100 epochs and the physics-guided GANMRLTs almost coincide with the
real data MRLTs. This accordance is shown in the calculated GSs in table 1 as well.

4. Conclusion

We introduced a machine learning framework to generate artificial full-field displacements of cracked
specimen by learning the underlying data distribution from a sufficiently large DIC dataset. The training data
was obtained during FCG experiments of the aluminium alloy AA2024-T3. In contrast to FE simulations,
our method is able to produce large amounts of interpolated DIC-like displacement data in a fast and easy
way but is limited in the sense that boundary conditions and crack configurations cannot be controlled.

Our approach is based on DC-GANs. The main novelty compared to the classical DC-GAN framework is
a physics-guided discriminator. This discriminator, in addition to the generated x- and y-displacement fields,
gets also the derived von Mises equivalent strain as input. This enables the discriminator to detect physical
inconsistencies in the generated fake samples more easily, thus enhancing the training process.

In order to evaluate trained generator models on an objective basis, we used two quantitative metrics.
First, the SWD between real and fake samples and, secondly, the GS approximating the topological distance
between a generated data manifold and the training data manifold.

We observed superior performance of the physics-guided GAN compared to the classical GAN approach.
This result was observed by visual evaluation of generated samples and confirmed by lower SWDs and GSs of
the physics-guided models. Both, SWD and GS, proved themselves to be valuable evaluation metrics. They
are useful to identify mode collapse and to select the best trained models. Nevertheless, it is important to
note that there is no natural metric to evaluate the performance of GANs. In the absence of powerful
pre-trained models like Inception for DIC-like data, we had to stick to GAN metrics that are independent of
these benchmark models. Our findings support the claim that hybrid models, which combine data-driven
methods with physical domain knowledge, can lead to more powerful models and faster training.

The visual inspection revealed a varying sample quality. Especially the converged models after 1000
epochs of training, apart from mostly good samples, produce few garbage samples. Although the number of
these garbage samples is model-dependent, we were not able to avoid their occurrence completely. Moreover,
we still face the issue of (local) non-convergence and mode collapse. To overcome these issues, one could try
to stabilize training using suitable regularization techniques [42, 46].

The main open problem concerns the control of boundary conditions like the crack path and external
force. In contrast to FE-based data generation, with our approach it is not possible to control them. This
challenge could be tackled by using a conditional GAN framework [47] and is part of current research.
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