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Abstract 

Land degradation can be defined as a persistent reduction or loss of the biological 
and economic productivity resulting from climatic variations and human activi-
ties. To quantify relevant surface changes with Earth observation sensors requires 
a rigorous definition of the observables and an understanding of their seasonal 
and inter-annual temporal dynamics as well as of the respective spatial character-
istics. This chapter starts with brief overviews of suitable remote sensing sources 
and a short history of degradation mapping. Focus is on arising possibilities with 
the new European Sentinel satellite fleet, which ensures unprecedented spatial, 
spectral, and temporal monitoring capabilities. Synergistic retrieval of innovative 
degradation indices is illustrated with mapping examples from the SPACES II 
(Science Partnerships for the Adaptation/Adjustment to Complex Earth System 
Processes) SALDi (South Africa Land Degradation Monitor) and EMSAfrica 
projects plus South African contributions. Big data approaches require adapted 
exploration techniques and infrastructures—both aspects conclude this chapter. 

24.1 Introduction 

Land degradation (LD) is a global problem affecting approximately 70% of drylands 
with 73% of Africa’s agricultural lands already degraded (DFFE 2018). The 
narrative of land degradation, its location and causes are evolving over time (Scholes 
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2009; von Maltitz et al. 2019). From a government perspective, concerns such as soil 
erosion are being viewed as less important in the immediate time frame, compared 
to issues such as bush encroachment and the invasion of alien plants, which are 
becoming the most prominent current degradation concerns (von Maltitz et al. 2019; 
O’Connor et al. 2014). Since the middle of the twentieth century, the term land 
degradation in South Africa had been linked to veld and soil degradation and has 
been addressed by numerous measures (Hoffman and Todd 2000; Hoffman and 
Ashwell 2001). 

Target 15.3 of the Sustainable Development Goals (SDG) aims to achieve 
Land Degradation Neutrality (LDN) worldwide by 2030. Three global indicators 
for assessing land degradation are suggested in the LDN Scientific Conceptual 
Framework: land cover (physical land cover class), land productivity (net primary 
productivity, NPP), and carbon stocks [soil organic carbon (SOC) stocks] (Orr 
et al. 2017; Cowie et al. 2018). The South African LDN target setting process 
during 2017/2018 showed that these global indicators are not appropriate to fully 
describe the nature, extent, and location of degradation in South Africa (von 
Maltitz et al. 2019, see also Chap. 3). Global satellite-based NPP time series, for 
example, indicate areas of negative trends that clearly differ from perception-based 
assessments of land degradation. Reasons might be that some degradation aspects 
such as bush encroachment and invasive alien species can result in increased plant 
cover and NPP; also, high inter-season variability of rainfall and its impact on plant 
productivity impedes identifying management-related land degradation (Wessels 
et al. 2012). Thus, it is rather suggested to locate land degradation hotspots and 
respective target intervention areas based on the results of the perception-based 
assessments such as the Land Degradation Assessment in Drylands (LADA) Project 
(Lindeque and Koegelenberg 2015), in combination with issue-specific maps, even 
though currently such maps are hardly available (von Maltitz et al. 2019). 

Land degradation processes in South Africa are as complex as the country’s 
ecosystems and are intricately linked to food security, poverty, urbanization, 
climate change, and biodiversity. Therefore, South African authors contribute 
their experience and emerging tools. The chapter starts with a brief overview of 
Earth observation (EO) sensors suitable for degradation monitoring, followed by 
historic and emerging EO strategies for the following six LD topics: vegetation 
development and cover change, woody cover trends, bush encroachment, invasive 
species, drought and soil moisture assessments, and overall degradation. A sum-
marizing table to highlight the achievements and perspectives from the Copernicus 
programme and other international emerging technologies concludes the chapter. 
The SPACES II SALDi-project’s methodological implementations are described for 
representative regions in Chap. 29.

http://doi.org/10.1007/978-3-031-10948-5_3
http://doi.org/10.1007/978-3-031-10948-5_29
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24.2 Overview of Satellite Earth Observation Data Sources 
Suitable for Degradation Monitoring 

Until the mid-2010s, the most common satellite datasets used for degradation map-
ping were time series of Moderate Resolution Imaging Spectroradiometer (MODIS) 
(250–500 m−1 km), Satellite Pour l’Observation de la Terre-VEGETATION (SPOT-
VGT) (1 km), and Advanced Very High Resolution Radiometer (AVHRR) (1–8 km), 
as well as Landsat and aerial images which were usually not available in the form 
of time series but rather as mono- or irregular multi-temporal acquisitions. Even 
though important and highly valuable Earth-observation based analyses have been 
conducted based on these datasets, one major challenge remained: The relatively 
coarse spatial resolution of these time-series data and the irregular temporal 
availability of higher spatial resolution imagery resulted in general difficulties to 
assess degradation processes where small-scale landscape elements and patterns 
show distinct seasonal or multi-annual dynamic behaviour. 
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Fig. 24.1 Overview of EO-satellites with potential for degradation assessment. Satellites are 
shown which allow time-series assessments at medium to high spatial resolution (<=300 m) and 
where data can (partly) be accessed free of charge
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With the launch of the Copernicus Sentinel satellite fleet in 2015 freely available 
radar and since 2017 optical Earth observation data can be used (Aschbacher 2017), 
which fulfil the requirements of a reliable observation system as proposed by Main 
et al. (2016), e.g. Woody Cover mapping based on the data’s high geometric (10 m 
and 20 m) and temporal (5–12 days) resolutions, plus the guarantee of decades 
of data consistency due to the commitment of the European Commission to the 
Copernicus Programme (Article 4(1) of Regulation (EU) No 377/2014). As can be 
seen in Fig. 24.1, the increasing availability of free Earth observation data during 
recent years introduces new challenges and opportunities in the development of 
synergistic approaches combining optical and microwave information, e.g. Sentinel-
1/-2 and NASA’s Landsat-8. 

New lidar sensors, specifically NASA’s Global Ecosystem Dynamics Investi-
gation (GEDI), complement surface monitoring capabilities by adding a vertical 
component, thus making 3-dimensional monitoring of vegetation structure feasible. 
Figure 24.1 also illustrates the rich heritage of radar sensors in space, which are 
being continued and extended by an increasing number of space agencies. The 
Sentinel-1 fleet constitutes the break-through to operationalizing microwave remote 
sensing, known to deliver information about vegetation volume and soil moisture 
estimates. New hyperspectral sensors in space (the German EnMAP was launched 
on 1 April 2022) deliver a wealth of spectral signatures to support degradation 
monitoring as described, e.g., by Oldeland et al. (2010) or assembled by Cawse-
Nicholson et al. (2021). 

The need for analysis-ready data (ARD) in the optical and especially radar 
domain has been recognized and formerly complex information is increasingly easy 
to be used and applied (e.g. through companies such as SINERGISE and Google 
Earth Engine). Various processing tools are accessible without cost for large datasets 
(e.g. PyroSAR, SNAP). 

24.3 History, Opportunities, and Challenges for Degradation 
Monitoring in South Africa 

Von Maltitz et al. (2019) developed five major assessment goals for land degradation 
monitoring strategies: rangeland degradation, bush encroachment, degradation of 
croplands, vegetation cover change, and alien species. Accordingly, the SPACES II 
project SALDi defined a workflow to generate the necessary indicators by exploiting 
Sentinel-1 and -2 time series as well as additional products, e.g. rainfall estimates 
from rain gauge and satellite observations [i.e. Climate Hazards Group InfraRed 
Precipitation with Station data (CHIRPS)] (Fig. 24.2). 

The following sections explain the retrieval of EO products with further con-
tributions from South African authors leading to (1) vegetational development, 
(2) woody cover trends, (3) bush encroachment, (4) invasive species, (5) drought 
and soil moisture assessments, and (6) overall degradation, thus covering the 
degradation aspects exemplified in Sect. 24.1 and summarized in Sect. 24.5.
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Fig. 24.2 Workflow of deriving land degradation indicators from Sentinel-1 and Sentinel-2 time 
series with additional products to deliver maps of four major degradation aspects. How these maps 
contribute to von Maltitz’s assessment goals is indicated by coloured asterisks 

24.3.1 Vegetational Development 

Degradation processes related to vegetation development and productivity have 
been analysed in different studies based on EO data. A common way is the multi-
temporal analysis of vegetation index data as derived from multispectral sensors 
which can measure aspects of ecosystem health and changes (e.g. Higginbottom 
and Symeonakis 2014; Wessels et al. 2004). Multi-annual analyses usually include 
the identification of trends and/or of abrupt changes in a given temporal behaviour. 
Up to the release of NASA’s Landsat archive in 2008 and the computational 
advancements required to process it, the key optical sensor used for such analyses 
was AVHRR, due to its long temporal coverage and short repeat cycles, but also 
MODIS, SPOT-VGT, and Proba-V were used. These datasets allow for a large 
spatial and temporal coverage, but have clear limitations with respect to their 
spatial resolution of 250–1000 m. Early analyses though with 1 km AVHRR data 
from South Africa showed that Normalized Difference Vegetation Index (NDVI) 
growing season sums are in many cases lower than in non-degraded areas (Wessels 
et al. 2004). For Kruger National Park, these growing season sums were related to 
herbaceous biomass and its inter-annual variations, but sub-pixel heterogeneity of 
the coarse data as well as considerable scale differences to in situ data hindered the 
production of reliable biomass estimates (Wessels et al. 2006). 

In South Africa, large portions of rangelands have seen extensive modifications 
from centuries of livestock farming (Hoffman and Ashwell 2001), alien plant 
species have invaded extensively in mountainous, riparian, and coastal regions (Van 
Wilgen and Wilson 2018), and natural fire regimes have seen major disruptions in 
grassy biomes and the Fynbos (Slingsby et al. 2020a, b). The ecological condition 
in these modified areas ranges from near natural to heavily modified depending



24 A New Era of Earth Observation for the Environment: Spatio-Temporal. . . 695

on the degree to which ecosystem structure, function, and composition have been 
altered. Unfortunately, mapping these degrees of degradation is not easy, because 
one is dealing with continuous variation in the degree of modification rather than 
relatively distinct classes. These difficulties have led to some distinction between 
land cover mapping and degradation mapping in southern Africa. 

A critical aspect when interpreting temporal changes of remotely sensed vegeta-
tion development with regard to human-induced degradation in arid and semi-arid 
areas is considering the influence of precipitation on observed vegetation trends 
and changes. This is particularly relevant for those large areas where rainfall is 
both highly variable and significantly influences vegetation productivity. The effect 
of precipitation can, for example, be considered in multiple regression analyses 
(e.g. Wessels et al. 2007a) or by comparing trends in time series of vegetation 
data and climate variables (e.g. Niklaus et al. 2015). Further prominent approaches 
are RUE (Rain-Use Efficiency) or RESTREND (Residual Trends). Using 1 km 
AVHRR-NDVI data and modelled 8 km NPP data, Wessels et al. (2007b) found 
RESTREND being better suited than RUE for the assessment of degradation in 
South Africa. However, several years later, Wessels et al. (2012) conducted a 
detailed study on the sensitivity of AVHRR-based trend and RESTREND analyses 
for degradation assessment and found these methods not capable of indicating land 
degradation with 1 km resolution NDVI data for a north-eastern study region in 
South Africa. Higginbottom and Symeonakis (2020) analysed changes in NASA’s 
Goddard Space Flight Center (NASA/GSFC) Global Inventory and Modelling 
Studies (GIMMS) NDVI and RUE time series for break points and trends using 
Breaks for Additive Season and Trend (BFAST). They concluded that in southern 
Africa, constant positive trends in RUE combined with varying trend types of 
NDVI may be indicative of shrub encroachment, but they likewise highlighted 
difficulties in correct interpretation of drivers and processes. High-resolution trend 
analyses for South Africa were conducted using a 30 m Landsat EVI (Enhanced 
Vegetation Index) time series (Venter et al. 2020). The authors revealed patterns of 
degradation (e.g. bush encroachment) and restoration for some landscapes and thus 
demonstrated the high potential of such trend analyses with higher spatial detail. 
But at the same time, they underlined that Landsat data scarcity in the 1980s is a 
potential source of error. 

Many approaches to time series analysis were developed in economics, social 
sciences, and engineering, and later found their way into phenology and thus remote 
sensing. While most models in the aforementioned disciplines try to come up with 
a prediction, many applications in remote sensing look for times when a break 
and change in a cycle (breakpoints) has occurred. The basic assumption of many 
methods is the notion that time series can be decomposed into three components: a 
seasonal, trend, and residual component. For land degradation issues, it is the trend 
component that provides information on whether fluctuations or even changes in 
the seasonal component are associated with a long-term change, or are just a one-
time event that settles back to the old cycle after a certain time. Such analyses can 
be performed using the BFAST (Breaks for Additive Season and Trend) algorithm 
(Verbesselt et al. 2010), a well-established method for characterizing break points
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Fig. 24.3 BEAST-based breakpoint determination of Sentinel-2 NDVI time series. The area 
displayed is characterized by intensive forestry and located near the southern border of Kruger 
National Park. Left: Google Maps Overview. Centre: BEAST classification with year of major 
breakpoints. Right: Location map, white square indicating position of sub-scene 

and associated trends. Considerations to reduce the computational effort led to the 
evaluation of a method capable of processing no-data values (reduction of pre-
processing) and a faster determination of breakpoints using a different approach. 
For the map displayed in Fig. 24.3, the Bayesian ensemble algorithm of Zhao 
et al. (2019) called Bayesian Estimator of Abrupt change, Seasonality, and Trend 
(BEAST) was chosen to establish break points in a Sentinel-2 NDVI and Bare Soil 
Index (BSI) time series. Evaluation of the BEAST products show that the accuracy 
of the results varies with land cover type. Changes in forestry or fire scars are picked 
up as homogenous areas, whereas patterns over open grassland with shrubs are 
irregular. This kind of analysis also requires very good data preparation, because 
results are sensitive to outliers (e.g. undetected clouds) leading to negative spikes in 
time series, which might be mistaken for real events. 

To evaluate Sentinel-1 time series to detect surface changes, irregularities in 
the radar backscatter and coherence time series were analysed. The processing 
procedure is based on the recurrence plot analysis (Marwan et al. 2007) followed by 
the detection of breakpoints using a Sobel filter. The aim is to identify regions where 
possible degradation processes take place, such as land-use changes susceptible 
for erosion (e.g. clearings for macadamia plantations), fallow farmland or shrub 
encroachment (compare Chap. 29 for slangbos mapping). The method for detecting 
breakpoints is initially based on a pixel-based smoothing procedure using a median 
filter over the period under investigation, here March 2015 to March 2020, followed 
by the identification of breakpoints in the time series using the Sobel filter. Figure 
24.4 shows examples of Sentinel-1 breakpoint maps for the SALDi project regions 
Ehlanzeni and Sol Plaatje illustrating the detection of surface changes. 

In addition to spatial and temporal resolution issues, several authors underlined, 
that degradation identified by EO-based vegetation products—even though cor-
rected for rainfall influences—can likewise result from other processes. Southern 
Africa is comprised of largely open vegetation with low tree cover, often a high

http://doi.org/10.1007/978-3-031-10948-5_29
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fraction of bare soil and complex natural dynamics due to fire, rainfall sensitivity, 
and seasonality (Bond 2019). Local investigations and expert knowledge are thus an 
indispensable complement to EO time-series analyses for correctly distinguishing 
degradation from other processes (e.g. Wessels et al. 2007b; Prince et al. 2009). 

Recently, Slingsby et al. (2020b) developed an approach that identifies degra-
dation processes in the Fynbos biome of South Africa by identifying anomalies in 
observed MODIS NDVI relative to the expected NDVI produced by a hierarchical 
Bayesian time-series model. The model predicts the natural dynamics (postfire 
recovery rate, seasonality, maximum NDVI) based on abiotic environmental data 
(climate, soils, topography) and fire history, allowing identification of alien species 
invasions, drought or pathogen driven mortality, vegetation cover loss or fire. Their 
proof of concept including Landsat and high-resolution satellite data leading to an 
operational near-real-time change detection system for land managers and policy 
makers is being implemented as “Ecosystem Monitoring for Management Applica-
tion” (http://emma.eco/). The same approach can be applied to other ecosystems if 
their natural dynamics can be suitably characterized with a time-series model. It is 
of great importance, that the dynamical features are based on factors such as fire and 
postfire recovery, a greater contribution of bare soil to observed vegetation indices, 
as well as high sensitivity to rainfall and a strong seasonality. This allows to monitor 
and detect abrupt or gradual changes in the state of an ecosystem in near-real time 
by identifying areas where the observed vegetation signal has deviated from the 
expected natural variation. 

Moncrieff (2022) focusses on a different degradation process: the complex 
landscape changes of the Renosterveld. This is a hyperdiverse, critically endangered 
shrubland ecosystem in South Africa with less than 5–10% of its original extent 
remaining in small, highly fragmented patches. His work demonstrates that direct 
classification of satellite image time series using neural networks can accurately 
detect the transformation of Renosterveld within a few days of its occurrence, and 
that trained models are suitable for operational continuous monitoring if based on 
daily, high-resolution Planet satellite data. The convolutional neural network was 
applied to Sentinel 2 data and indices and resulted in correct identifications of up 
to 89% of land cover change events. There is thus a great potential for supervised 
approaches to continuous monitoring of habitat loss in ecosystems with complex 
natural dynamics. 

24.3.2 Woody Cover 

Woody cover encroachment has increased throughout southern Africa, which led 
to substantial environmental, land cover as well as land-use changes (Eldridge et 
al. 2011; O’Connor et al. 2014; Stevens et al. 2016). Woody cover intensification in 
rangelands by slangbos (Seriphium plumosum), black wattle (Acacia mearnsii), etc., 
will result in enlarged pressure on open grassland areas, which become vulnerable 
to overgrazing thus increasing the potential of land degradation (Snyman 2012; 
Oelofse et al. 2016). In protected areas and national parks, the knowledge of woody 
plants abundance and change are essential information for park management and

http://emma.eco/
http://emma.eco/
http://emma.eco/
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conservation efforts. An intensification of woody plants will likely cause a reduction 
in grass and herbaceous biomass (Berger et al. 2019), which has direct influence 
on grazing animals, their territories, and migration as well as predators seeking 
herbivores (Munyati and Sinthumule 2016). 

The high potential of combining multispectral and radar data for woody cover 
assessments has been illustrated in several studies. As an often-referenced example, 
Bucini et al. (2010) utilized Landsat Enhanced Thematic Mapper (ETM)+ (2000– 
2001) and radar data Japanese Earth Resources Satellite (JERS-1, 1995–1996) 
jointly with field measurements to map woody cover for Kruger National Park at 
90 m spatial resolution. Skowno et al. (2017) combined Advanced Land Observing 
Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) data 
with national, Landsat-derived land cover maps to quantify changes in woodlands 
and grasslands of South Africa between 1990 and 2013. 

Another example of synergistic radar/multispectral analyses is the work of 
Higginbottom et al. (2018) who predicted woody cover at 30–120 m spatial 
resolution for the South African province Limpopo by fusing Landsat Thematic 
Mapper (TM)/ETM+ and ALOS-PALSAR data and aerial imagery. Urban et al. 
(2020) generated a woody vegetation cover map at four different spatial resolutions 
(10 m, 30 m, 50 m, 100 m) for Kruger National Park based on Sentinel-1 data 
in combination with airborne lidar measurements. Holden et al. (2021) mapped 
invasive alien trees in the Boland mountains of the Fynbos biome, a key driver of 
biodiversity loss and run-off reduction in the region, at 10 m using a combination of 
Sentinel-1 and Sentinel-2 data. Multispectral time series from multiple resolution 
sensors were used, e.g., in a multi-scale analyses of woody vegetation cover in 
Namibian savannas by Gessner et al. (2013), including MODIS, Landsat, and 
very high-resolution satellite data. As woody cover is considered as an essential 
biodiversity variable (EBV) (Pettorelli et al. 2016), EO time series are key to 
develop wall-to-wall monitoring strategies (Urban et al. 2020). However, current 
remote sensing techniques are not likely to replace field measurements completely, 
as sustainable validation strategies for EO-derived woody vegetation composition 
with in situ data is still of very high importance (Kiker et al. 2014). 

SALDI’s woody cover retrieval for Kruger National Park used an airborne Light 
Detection and Ranging (LiDAR) strip from 2014 with a 2 m spatial resolution, made  
available through SANParks Scientific Services. These LIDAR data were converted 
to a woody cover percentage map with 10 m resolution to match Sentinel-1 and
-2 pixel sizes and were then used in a random forest, machine learning (RF-ML) 
approach as training input. The resulting map products are shown in Figs. 24.5 and 
24.6, illustrating the advantage of joint radar-optical analyses and additionally— 
with the new Copernicus satellites—achieving at the same time greatly improved 
spatio-temporal resolutions. In order to compare different sites in the future and over 
time, a uniform training data set is necessary, as now being available with NASA’s 
Global Ecosystem Dynamics Investigation Lidar (GEDI), launched in 2018. This 
latter procedure has been applied to map woody cover changes illustrated in Fig. 
24.7. 

The woody cover estimates based on Sentinel-1 (radar) and Sentinel-2 (optical) 
data show generally similar patterns and overall agreement in Fig. 24.5. The radar
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Fig. 24.5 Woody cover for the southern Kruger National Park region derived from a single 
airborne Lidar strip (small stripe in centre) and (upper map) Sentinel-1 time series 2016–2019 
and (lower map) Sentinel-2 time series 2016–2017. The two products show complementarities 
and thus the need for radar-optical synergy. Waterbodies, built-up areas, and cultivated areas were 
masked using the National Land Cover 2017/2018 product (LRI 2018)
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Fig. 24.6 Detailed view of Sentinel-1 vs. -2 woody cover estimates (green maps on left) and 
very high-resolution images (Google Earth Pro [GU1]) for the red-framed subset in Fig. 24.5, 
exemplifying advantages and disadvantages of either method. See text for further information 
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Fig. 24.7 Deriving woody cover change between 2016 and 2019 of the southern Kruger National 
Park and surrounding areas using Copernicus Sentinel-1 data and NASA’s GEDI LiDAR at 50 m 
spatial resolution. Left side: box 1—woody cover decline due to harvested forest plantations, 
subimages: Google Earth (Maxar Technologies), right side: box 2—woody cover regrowth after 
fire, subimages: NASA Landsat-8, RGB = Bands 5-4-3 (EO Browser/Sinergise Ltd.) 

product, though, exhibits more contrast between areas of high and low woody 
cover in flat terrain, but is still more affected by topography despite radiometric 
corrections. This finding is exemplified in Fig. 24.6: Sentinel-1 shows more contrast 
in flat areas, where areas of high and low woody cover are better discernable 
than in the optical dataset (framed box on the right). Sentinel-2 better detects
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differences in mountainous areas (framed box on the left). Here, the Sentinel-1 map 
contains uniformly high woody cover, whereas in reality denser woody coverages 
are only found on slopes oriented towards west and south. This spatial pattern is 
well represented in the Sentinel-2-derived map. This example underlines the high 
synergistic potential of using optical and radar sensors jointly for taking advantage 
of the respective strengths of each EO method. 

When looking at change, it is feasible to explore either radar or optical products 
to not merge error sources and to rather cross-compare each change map to 
distinguish between consistent change areas and sensor-specific detections. Figure 
24.7 illustrates a Sentinel-1 SALDi change product. 

24.3.3 Bush Encroachment 

There have been a number of studies on bush encroachment in southern Africa based 
on Earth observation data. Aerial images have been employed for mapping bush 
encroachment in several projects (e.g. Hudak and Wessman 1998, 2001; Stevens 
et al. 2016; Ward et al. 2014; Wigley et al. 2010), sometimes also in combination 
with very high-resolution (<2 m) satellite data (e.g. Shekede et al. 2015). These 
datasets have the advantage of allowing detection of individual bushes (compare 
also Sect. 24.3.7), and aerial images often date back to decades where space-borne 
EO data were not available yet. At the same time, their analysis is hindered by 
the enormous efforts for data pre-processing and because quantitative inter-image 
comparisons are hardly possible or extremely time-consuming for large areas due 
to missing radiometric comparability (Hudak and Wessman 2001). Furthermore, 
the low temporal frequency of multiple years between airborne campaigns does not 
allow the needed temporal monitoring of bush encroachment processes. 

With respect to multispectral remote sensing analyses at spatial resolutions of 
30 m or less, usually selected radiometrically optimal acquisitions were analysed 
prior to the availability of dense satellite time series such as now being recorded by 
the two Copernicus Sentinel-2 satellites A and B since 2016 resp. 2018. Earlier 
examples are studies using SPOT (e.g. Munyati et al. 2011) and Landsat (e.g. 
Symeonakis and Higginbottom 2014; Ng et al.  2016) to identify spreading bush 
areas or for mapping the distribution of encroaching bush species in southern Africa. 
Cho and Ramoelo (2019) have developed a methodology for detecting increasing 
tree and bush cover in the grassland and savanna biomes of South Africa using 
MODIS data despite its coarser geometric resolution. The methodology is based on 
asynchronous NDVI phenologies of grasses and trees in these semi-arid systems. 
Using a 16-day NDVI time series generated from MODIS NDVI data between 
2001 and 2018, the authors first determined the best time for mapping tree cover 
in the region, which turned out to be a narrow period from Julian day 161–177 
(June 10–26). This is the period of maximum contrast between grasses and trees. 
Eight tree-cover maps (2001–2018) were generated using linear regression models 
derived from Julian day 161 for each year. 

In rarer cases, radar satellite data were applied: Main et al. (2016) combined 
time series of the European Space Agency’s (ESA’s) Envisat Advanced Synthetic
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Aperture Radar (ASAR) and airborne LiDAR data for 2006–2009 to analyse woody 
cover in Kruger National Park and surrounding areas with a spatial resolution of 
75 m, Urban et al. (2021) synergistically combined Sentinel-1 radar and optical 
Sentinel-2 time-series data to monitor slangbos encroachment, a woody shrub, on 
arable land (see Chap. 29). 

24.3.4 Invasive Species (Acaciamearnsii) 

The invasion of productive lands by alien plants is an important contribution to 
land degradation. Large monocultures of alien species have a negative impact on 
water resources, pasture and crop production and biodiversity. This is the case with 
Black Wattle, Acacia mearnsii, a prominent invasive alien species in South Africa. 
Remote sensing of invasive species is mainly aimed at mapping the extent of the 
invasion, quantifying their biomass, and highlighting invasion hotspots. Masemola 
et al. (2019, 2020a, b) conducted numerous studies to: (1) explore the utility of 
hyperspectral data to discriminate A. mearnsii from native species, (2) determine 
the optimal period to spectrally distinguish A. mearnsii from native plants, (3) 
determine if vegetation indices related to the unique biological traits of A. mearnsii 
have the potential to distinguish it from native species, (4) assess the potential 
of multispectral Sentinel-2 data to map the distribution at the landscape level, 
and (5) explore the applicability of radiative transfer model (RTM) simulations to 
characterize the differences between A. mearnsii and native species. Through this 
multi-step approach, Acacia mearnsii could be distinguished from native species 
with overall accuracies ranging from 75% to 90%. 

24.3.5 Drought and Soil Moisture 

Southern African biomes are particularly prone to drought because more than 65% 
of the area is semi-arid and thus environmental conditions alternate strongly in 
space and time. Monitoring and spatio-temporal assessment of drought impacts 
is a challenge due to a limited number of weather stations. In addition, drought 
monitoring is difficult, since effects can accumulate over time. Droughts have 
major impact on ecosystems, such as fire severity (Mukheibir and Ziervogel 2007), 
biodiversity and ecosystem functioning (Masih et al. 2014; Graw et al.  2017), and 
economy, e.g. food production (Verschuur et al. 2021). Therefore, analysing surface 
moisture dynamics is of high importance, as it is also highly correlated to vegetation 
and soil respiration, which represents both root and microbial respiration, and is one 
of the main ecosystem fluxes of carbon (Makhado and Scholes 2011). 

Various studies focus on the development of drought monitoring concepts using 
EO data from different sources (AghaKouchak et al. 2015) and for different 
applications—agriculture (Bijaber et al. 2018; Zeng et al. 2014; Winkler et al. 2017), 
grasslands (He et al. 2015; Villarreal et al. 2016), savanna ecosystems (Graw et 
al. 2017; Western et al. 2015). The majority of these applications utilized optical 
information with coarse spatial resolution (MODIS and AVHRR). Surface moisture

http://doi.org/10.1007/978-3-031-10948-5_29
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parameters and drought conditions were analysed using different ratios, e.g. NDVI 
(Normalized Difference Vegetation Index), EVI (Enhanced Vegetation Index), VCI 
(Vegetation Condition Index) as well as SPI (Standard Precipitation Index) (Graw 
et al. 2017). 

Marumbwa et al. (2019, 2020, 2021) conducted several studies to assess the 
impact of meteorological drought on southern African biomes. To achieve this 
objective, the authors first analysed spatio-temporal rainfall trends to establish 
trends at pixel-level and then assessed drought impact on biomes using VCI 
products. Further, they analysed drought and land cover interactions using land 
cover data and a novel land cover “village pixel” developed from livestock density 
data as a proxy for the type of rural community. Based on the 2015–2016 season 
analysis, the Kruskal–Wallis test showed significant difference in drought impact 
(mean VCI) among different land cover types. This study provided information 
to adapt usage to different ecosystems to enable communities to better cope with 
droughts. 

Recent microwave satellite missions for operational soil moisture retrieval are 
ESA’s SMOS (Soil Moisture and Ocean Salinity) and NASA’s SMAP (Soil 
Moisture Active Passive) sensors, which utilize L-Band passive radar data to 
estimate global soil moisture with coarse spatial resolution (10–25 km) (Entekhabi 
et al. 2010; Kerr et al. 2012). The most recent global dataset is ESA’s Climate 
Change Initiative (ESA-CCI) soil moisture product at 25 km pixel spacing (Dorigo 
et al. 2017), for which Khosa et al. (2020) found a correlation greater than 0.6 
with in situ measurements for two sites in Kruger National Park. Soil moisture 
applications with higher spatial resolution have been carried out since the launches 
of ESA’s radar sensors on-board the European Remote Sensing (ERS-1/-2) satellites 
(e.g. Bourgeau-Chavez et al. 2007; Haider et al. 2004) and ENVISAT ASAR 
(e.g. Paloscia et al. 2008; Zribi et al. 2005), Canada’s commercial RADARSAT 
(e.g. Glenn and Carr 2004; Leconte et al. 2004), and are continued with the 
recent Copernicus Sentinel-1 data (e.g. Alexakis et al. 2017; Lievens et al. 2017). 
The potential of a synergetic combination of Sentinel-1 and Sentinel-2 has been 
addressed by only a few studies so far (e.g. Gangat et al. 2020; Gao et al. 2017; 
Urban et al. 2018), indicating that the high repetition rates of the Sentinel-scenes 
offer good determination rates for surface moisture estimates. 

The open SPACES II SALDi-project data cube offers—amongst many other 
data sets and products (see Chap. 29)—analysis-ready Sentinel-1 radar time series, 
which allow application of multi-temporal change detection methods for surface 
moisture retrieval. A sample sequence of six such surface moisture maps derived 
for December 2020 are shown in Fig. 24.8. The maps begin with dry surface 
conditions indicated by reddish tones. After December 14, surface moisture gen-
erally increases, as indicated by yellow to blue tones. These model results illustrate 
the heterogeneity of surface conditions (vegetation structure, soil features) and 
precipitation effects over time and space. The model is briefly explained in Chap. 29. 

To validate Sentinel-1 radar-retrieved products, it is essential to consider type and 
status of vegetation and relate to moisture conditions either through information 
about precipitation or in situ soil moisture measurements. Therefore, the SALDi-

http://doi.org/10.1007/978-3-031-10948-5_29
http://doi.org/10.1007/978-3-031-10948-5_29
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Fig. 24.8 Relative surface moisture derived from Copernicus Sentinel-1 radar data for December 
2020 for the south-east corner of Kruger National Park (KNP) (black line indicates park-border). 
The Surface Moisture Index is sensitive to water content of vegetation and the underlying soil 
surface. It therefore highlights structural differences (e.g. fire scars with in KNP), land-use 
practices (agricultural patterns in southern territories), and effects of precipitation. The cross 
indicates the location of SALDi’s surface moisture in situ instrument. Times are in UCT 

project deployed one SMT100 Time Domain Transmission instrument, which 
measures volumetric soil moisture, in each of the six project areas. At each site, 
a total of eight sensors take continuously every 5 min measurements in a depth of 
6–10 cm. Figure 24.9 gives geographic information and illustrates the harsh surface 
conditions. 

Figure 24.10 illustrates the temporal behaviour of Sentinel-2 NDVI and the two 
complex retrievals ESA CCI Soil Moisture and SALDi Sentinel-1 Surface Moisture 
(SurfMi) product. Precipitation data combined with local knowledge and in situ 
soil moisture is the key for interpretation: the NDVI-lag in October and November 
2020 was caused by a severe fire; thus the smooth surface (see photo in Fig. 24.9) 
results in specular scattering of the Sentinel-1 signals, keeping SurfMi to Zero 
(except during rain) although the in situ moisture is increasing. These important 
insights are needed for a synergistic savanna monitoring tool to map simultaneously 
vegetation status, realistic surface moisture conditions and even time and location 
of local precipitation events.
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Fig. 24.9 Left: Map of SALDi’s project area Ehlanzeni stretching 100 × 100 km2 south from 
Skukuza and west from Komatipoort. Green line: southern border of Kruger National Park, black 
cross: location of SALDi’s soil moisture instrument near Lower Sabie. Instrument site after 
flooding in February 2022 (upper right) and fire in September 2020 (lower right) (Photographs: 
Tercia Strydom, KNP) 

24.3.6 Nation-Wide Assessments 

The first national survey, conducted by Hoffman et al. (1999) and based on expert 
interviews at the district level, concluded that about 26% of the surface of South 
Africa was heavily degraded (own calculations). Fairbanks et al. (2000) calculated 
on the basis of Landsat satellite images for the years 1994 to 1996, that 80% of 
the country is covered by “natural” tree and grassland vegetation and only 20% 
were transformed by humans. Using a similar approach, Schoeman et al. (2013) 
identified for the year 2005, 16% as being transformed and corrected the value for 
the year 1994 to 14.5%. For the period from 1981 to 2003, Bai and Dent (2007) 
identified a degradation process for nearly 30% of the country using NASA/GSFC 
GIMMS NDVI remote sensing time series. 

The first national-scale, remote-sensing based land cover map was produced in 
the late 1990s using 1994–1995 Landsat 5 data (Fairbanks et al. 2000). Thirty-one 
classes were mapped manually on hardcopy space maps at approximately 1:250,000 
scale. In the early 2000s, a semi-automated land cover classification was produced 
using Landsat 5/7 imagery based on 2000–2001 data (van den Berg et al. 2008). 
Both datasets were widely used in research and conservation planning. In 2013, the 
national government began a programme to regularly produce national-scale land 
cover maps using a standardized classification scheme.
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The company GeoTerra Image, on behalf of the national government, produced 
a 1990 national land cover map retrospectively (using Landsat 5 data) and a 
2014 national land cover map (using 2013–2014 Landsat 8 data) (GeoTerraImage 
2015). A process then began to automate the production of a national land cover 
and bring the capacity to undertake the work into the government (Department 
of Forestry Fisheries and the Environment). The new system, referred to as the 
Computer Aided Land Cover (CALC) uses Sentinel-2 data and the same nationally 
accepted classification scheme as the 2013 map. A 2018 and 2020 CALC based 
national land cover product has been produced subsequently (available at https:// 
egis.environment.gov.za/). These land cover maps have allowed for more robust 
time series analysis of land cover change (Musetsho et al. 2021) and habitat loss 
(Skowno et al. 2021). Skowno et al. (2021) estimated that 22% of South Africa 
has been transformed by humans, and 78% is natural or degraded. Natural and 
degraded areas could not be reliably separated using the NLC 2018 methods. The 
uncertainties are thus still large due to a missing systematic definition of the term 
land degradation considering land cover categories and validated assessment. 

24.3.7 Integrated Modelling 

The ARC developed a Land Degradation Index (LDI) to guide the SA govern-
ment with setting up priorities for remedial action (DEA 2016). This index was 
generated by exploiting Landsat time-series and integrating water erosion, wind 
erosion, aridity index, salinity, and soil pH data. The findings showed that: (a) 
most parts of the country experiences low to moderate degradation, whereas large 
parts of Northern Cape, Western Cape, Eastern Cape, and North West province 
experience high degradation levels; (b) parts of Northern Cape experience very 
high degradation of which the drivers are wind erosion and soil pH; (c) areas of 
severe degradation and desertification correspond closely with the distribution of 
communal rangelands, specifically in the steeply sloping environments adjacent to 
the escarpment in Limpopo, KwaZulu-Natal, and the Eastern Cape provinces (DFFE 
2018). 

In a case study of the Greater Sekhukhune Municipality, Limpopo Province, 
Nzuza et al. (2020) focused on various mechanisms to assess and map land 
degradation using in situ, ancillary, and remote sensing data. The first component 
was the use of an integrated modelling approach that combines environmental 
and remote sensing variables (Sentinel-2 bands and vegetation indices) through 
machine learning techniques. Leaf Area Index (LAI), Soil Adjusted Vegetation 
Index (SAVI), Normalized Difference Vegetation Index (NDVI), and rainfall were 
significant variables to predict potential land degradation risk, explaining over 80% 
of the variation.

https://egis.environment.gov.za/
https://egis.environment.gov.za/
https://egis.environment.gov.za/
https://egis.environment.gov.za/
https://egis.environment.gov.za/
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The second component (Nzuza et al. 2021) was to evaluate a triangulation 
approach consisting of remote sensing products, Sustainable Land Management 
(SLM) practices [using the World Overview Conservation Approaches and Tech-
nology (WOCAT) mapping questionnaire (Gonzalez-Roglich et al. 2019)], and a 
participatory expert assessment. The climatic variability, overgrazing, poor gover-
nance, and unsustainable land management practices were cited as major causes of 
land degradation. Perceived types of land degradation were soil erosion and loss 
of vegetation cover. The study demonstrated that complementary information from 
various sources is crucial for monitoring and assessing land degradation (see Fig. 
24.11). 

24.3.8 High-Resolution Validation 

Land degradation monitoring relies on precise in situ information. Reference data 
to be used to estimate parameters linked to degradation status need to follow 
specific requirements in terms of temporal and spatial precision. In order to map 
the extent of, e.g., erosion patterns or woody plants, greater spatial resolution is 
essential. Here, a product is presented, that has been generated in the context of 
the SPACES II Ecosystem Management Support for Climate Change in Southern 
Africa (EMSAfrica)-project to support research and management in SANParks’ 
Kruger National Park and serves as a reference data set for validation of EO-
retrieved surface products (Heckel et al. 2021). The necessary aerial imagery 
is freely available from the archives of the Chief Directorate, National Geo-
spatial Information (CDNGI), Department of Agriculture, Land Reform and Rural 
Development (DALRRD). The derivation of the surface models was accomplished 
by (a) metadata preparation (definition of flight parameters and input of camera 
specific information), (b) ingestion of data to the bulk processor, (c) selection of 
tie points (epipolar pairing of stereoscopic imagery), (d) semi-global matching to 
derive the Digital Surface Model (DSM), (e) surface height removal to retrieve the 
Digital Terrain Model (DTM), and (f) orthorectification of the initial aerial imagery 
using the derived DSM. Processing of the extensive data set was carried out using 
the CATALYST Enterprise software environment. The data sets were modelled 
with a ground sampling distance of 0.25 m, 1 m, and 5 m and tiled according to 
CDNGI standards. Free download of the wall-to-wall terrain data coverage (large 
map in centre of Fig. 24.12) is possible through the Centre for Environmental Data 
Analysis (CEDA) platform of the British National Centre for Atmospheric Science. 
For challenges and limitations, see Table 24.1.
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Fig. 24.11 Spatial distribution of land degradation severity based on (a) a remote sensing derived 
map, (b) participatory assessment workshop, and (c) triangulation approach severity map (Nzuza et 
al. 2021). Map c illustrates how observations and social aspects diversify degradation classification 
and thus remedial needs
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Fig. 24.12 Centre: First wall-to-wall, 25 cm posting terrain model of Kruger National Park. 
Numbers indicate the locations of the four subsets 1 (upper left), 2 (lower left), 3 (upper right), 
4 (lower right). Each subset contains the orthomosaicked airphotos (top), digital surface model 
(middle), and digital terrain model (bottom). The subsets illustrate the great detail of cover types 
and subtle topographies: single trees and larger bushes can clearly be recognized, dry riverbeds and 
channels are reconstructed including run-off features (Background data: Environmental Systems 
Research Institute (ESRI), Maxar, GeoEye, Earthstar Geographics, Centre National d’Etudes 
Spatiales (CNES)/Airbus Defence and Space, United States Department of Agriculture (USDA), 
United States Geological Survey (USGS), AeroGRID, Institut Geographique National, and the 
Geo-Information Systems user community)
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24.4 Big Data Challenges and Insight into SALDi Process Flow 

Remote sensing data as provided by various satellites has proven as a useful tool 
to monitor the environment and its changing land use and cover through time (e.g. 
Wulder et al. 2008). It provides the potential of a synoptic view of an explicit spatial 
extent. 

Since the launch of the Sentinel-1 and Sentinel-2 satellites in 2015, the tem-
poral and spatial resolution of freely and open available earth observation data 
has significantly increased (Gómez et al. 2016). The volume of data is quickly 
growing especially in the earth observation domain. Multiple scientific projects 
have produced an exorbitant amount of data in recent years. In the era of big data, 
information retrieval is increasingly gaining importance. There is an emerging need 
for developing tools that are able to face the challenge of big data. The methods 
are expected to be precise and tolerant to noise. The results are expected to be 
interpretable in order to provide a better understanding of data structures (Giuliani 
et al. 2019). 

One of the areas of research in which great progress has been made in recent 
years to address the aforementioned big data challenges are earth observation data 
cubes. Earth Observation Data Cubes (EODC) are known as a promising solution 
to efficiently and effectively handle big Earth Observation (EO) data generated 
by satellites and made freely and openly available from different data repositories 
(Giuliani et al. 2019). So far various EODC implementations throughout the globe 
are currently operational: (1) Digital Earth Africa and Digital Earth Australia (Dhu 
et al. 2017), (2) the Swiss Data Cube (Giuliani et al. 2017a, b), (3) the EarthServer 
(Baumann et al. 2016), (4) the E-sensing platform (Camara et al. 2017), (5) the 
Copernicus Data and Information Access Services (DIAS) (European Commission 
2018), or (6) the Google Earth Engine (Gorelick et al. 2017). These initiatives 
are paving the way for broadening the use of EO data to larger communities of 
users, thereby supporting decision-makers with timely information converted into 
meaningful geophysical variables and ultimately unlocking the information power 
of EO data (Giuliani et al. 2019). 

24.4.1 General Big Data Situation 

Since the start of continuous satellite observations in 1972, EO data exceeded the 
petabyte-scale and has been made available to a broad audience by increasingly 
open access options from different platforms. Big data analysis challenges besides 
data storage include searching for the data, downloading it, data pre-processing, 
conducting data analysis, and finally decision-making based on the data analysis. 
Nevertheless, the full potential of EO data is still not exploited due to the lack of 
(1) scientific knowledge, (2) difficult to access, (3) lack of expertise, (4) particular 
structure, and the (5) effort and storage costs. As Laney stated (2001), in the 
future, there will be no greater barrier to effective data management than the
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variety of incompatible data formats, non-aligned data structures, and inconsistent 
data semantics. Surely, one of the most demanding aspects is the need to develop 
cross and multidisciplinary applications and integrating heterogeneous data sources 
(Nativi et al.  2015). Therefore, the big five of the big data challenges could be named 
as (1) volume, (2) variety, (3) velocity, (4) veracity, value, and validity as well as (5) 
visualization. To address these challenges within the SALDi project, the SALDi 
data cube was established. Digital Earth Africa and Digital Earth South Africa were 
established by national entities to address the above challenges on a national level. 

24.4.2 Necessary Big Data Exploration Methodologies 

Conventional technologies in the EO context have limited storage capacity, rigid 
management tools and are cost expensive. Besides, they often lack scalability, 
flexibility, and performance which are urgently needed in the context of big data. 
Therefore, big data management requires new methods and powerful technologies. 
Local processing of big data will be limited due to the steadily growing amount 
of data. The solution to overcome these problems is cloud computing, especially 
in terms of data processing and usage. It can provide the possibility to make large 
volume of EO data available to a wide range of users, as it provides an environment 
which is designed for easy EO data handling and visualizing without a need of 
downloading and pre-processing them beforehand, but with a strong focus on 
data analyses and decision-making based on large spatio-temporal datasets in an 
analysis-ready format. 

This is especially handy when it comes to time series analysis. As remote sensing 
satellites revisit a given location on the earth’s surface in regular time steps, image 
sequences of the same areas over time are generated (Ferreira et al. 2020). Time 
series derived from these sequences can be utilized for analysing land cover change 
and soil degradation. 

To simplify the workflow of time series analysis which have been derived from 
satellite images, analysis-ready data (ARD) can be produced and organized in 
multidimensional earth observation data cubes (EODC). ARD can be defined as 
“satellite data processed to a minimum set of requirements and organized into 
a form that allows immediate analysis with a minimum of additional user effort 
and interoperability both through time and with other data sets” (Siqueira et al. 
2019). Thus, ARD implicates processing satellite imagery from data acquisition to 
radiometric calibration, and through additional conversions, to top-of-atmosphere 
(TOA) reflectance, and finally surface reflectance (Giuliani et al. 2017a, b). 

The term data cube refers to a set of image time series associated with spatially 
aligned pixels (Appel and Pebesma 2019). Each element of an Earth observation 
(EO) data cube has two spatial dimensions and one temporal dimension, and 
is associated with a set of values (Giuliani et al. 2019). The SALDi data cube 
from optical and radar satellite data includes all necessary pre-processing steps 
and is generated to monitor vegetation dynamics of 5 years for six focus areas 
within South Africa. Intra- and inter-annual variability in both, a high spatial and
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temporal resolution will be accounted for to monitor land degradation. Therefore, 
spatial high-resolution Earth observation data from 2016 to 2021 from Sentinel-
1 (C-Band radar) and Sentinel-2 (optical) are integrated in the SALDi data cube. 
Additionally, a number of vegetation indices as well as the Bare Soil Index (BSI) are 
implemented to account for explicit land degradation and vegetation monitoring. A 
national land cover classification (South African Department of Forestry, Fisheries 
and Environment) with 72 various land cover classes as well as a digital elevation 
model in a spatial resolution of 30 m (based on Copernicus DEM with global 30 
m resolution (GLO-30) is available. Thus, the SALDi data cube builds a platform 
which can be utilized for an efficient data analysis of various multi-temporal land 
surface products (cf. Fig. 24.13). 

All current developments in the context of big (EO) data would not have been 
possible without Free and Open Data policies to facilitate access to data and open 
source code to efficiently develop software solutions (Ferrari et al. 2018). Open 
Science is not only a new approach to research but also to educational processes, 
which seeks to make scientific research more collaborative and transparent. It makes 
knowledge accessible by using digital technologies and new collaborative tools 
(European Commission 2016). The open data practice enables scientific research 
to be reused, redistributed, and reproducible. 

24.4.3 Available Infrastructures 

To ensure the long-lasting availability and permanent access to EO data and results 
including the ability to continuously develop and adapt data processing chains 
a so-called EO-Data-Repository was established for the six research sites within 
the SALDi project. It allows flexible data management and furthermore provides 
an analysis environment for earth observation data. Through an interactive user 
interface all partners are empowered to actively participate in data handling. 

Therefore, an Earth Observation Data Cube (ODC) was set up for the six research 
sites within the SALDi project (SALDi data cube). It allows the handling of large 
data amounts from various data sources and different data types. The SALDi data 
cube is used for data download, storage, and pre-processing of the Sentinel-1 and 
Sentinel-2 satellite data which can be used for further remote sensing products and 
methods. The users can access the data cube through an interactive user interface. 
The SALDi data cube serves as a central infrastructure for geospatial data and thus 
forms the interface between remote sensing data-based data provision and method 
development. 

The added value of the SALDi data cube is making earth observation data easily 
accessible to end-users who do not have in-depth expertise in the evaluation of 
remote sensing data. The data cube considerably simplifies the access and use of 
satellite data, since complex and time-consuming steps such as (1) the download, 
(2) the storage, and (3) the pre-processing are already implemented in the SALDi
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Fig. 24.14 Simplified basic remote sensing workflow. The SALDi data cube is capable of easing 
this workflow by automating the first three to four processing steps 

data cube1 and the user (via an interactive user interface) has direct access to gridded 
data sets ready for analysis and decision-making (Fig. 24.14). 

24.4.4 Digital Earth Africa 

There are various initiatives in Africa and South Africa that have been estab-
lished. The Digital Earth Platform provides access to near real-time analysis-ready 
medium- to high-resolution data and products for various applications derived from 
the USGS datasets such as Landsat and Copernicus Sentinel-1 and -2 for the 
entire African continent. The production of analysis-ready data (ARD) derived from 
Sentinel-1 is currently underway. The South African National Space Agency hosts 
the programme management office (PMO) for Digital Earth Africa. The PMO will 
ensure that various users in the continent have access to earth observation data and 
products that address their needs. 

The development of the Digital Earth South Africa (DESA) platform is a 
collaboration between South African National Space Agency (SANSA) and the 
South African Radio Astronomy Observatory (SARAO). DESA will provide users 
with access to very high-resolution analysis-ready data (ARD) and products derived 
from Satellite Pour l’Observation de la Terre (SPOT) 1–7. It will also provide a 
common and consistent platform for data and product access, and sharing which 
will enable users to focus on application-driven algorithms. This reduces the burden 
of downloading and pre-processing data for the end-users. The ARD is developed 
according to Committee on Earth Observation Satellites (CEOS) definition. DESA 
uses the Open Data Cube architecture and utilizes a variety of open source tools 
such as the Jupyter Notebooks, Python libraries, Open Data Cube Stats, PostgreSQL 
database, Open Data Cube Explorer, Command Line Tools, and Open Geospatial

1 https://datacube.remote-sensing.org/projects/saldi/. 

https://datacube.remote-sensing.org/projects/saldi/
https://datacube.remote-sensing.org/projects/saldi/
https://datacube.remote-sensing.org/projects/saldi/
https://datacube.remote-sensing.org/projects/saldi/
https://datacube.remote-sensing.org/projects/saldi/
https://datacube.remote-sensing.org/projects/saldi/
https://datacube.remote-sensing.org/projects/saldi/
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Fig. 24.15 Overview of the Digital Earth South Africa Platform 

Consortium (OGC) web services (Mhangara and Mapurisa 2019). The tools allow 
users to access and analyse big datasets and products in a cloud environment. The 
overview of the DESA platform is shown in Fig. 24.15. 

24.4.5 International Cooperation and Knowledge Exchange 

Regional-scale data cubes like the SALDI data cube and the data within this 
cube are easier to handle—compared to conventional earth observation data— 
especially for those users who are not explicit remote sensing specialists. To ensure 
both, a successful international cooperation and efficient knowledge exchange, it 
is essential that data and processes within the data cube are consistent and well 
documented. 

In addition, to realize the full potential of the ODC products to address local 
and regional decision-making and policies, it is important to increase research and 
gather in situ ground data for proper algorithm and product validation. Over time, it 
is expected that open data products will increase, their accuracy will improve, and 
data access and usage will become easier and more efficient for everyone.
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24.5 Moving Forward 

Land degradation, as defined by the Intergovernmental Science-Policy Platform on 
Biodiversity and Ecosystem Services (IPBES) Global Assessment of Land Degrada-
tion and Restoration (2018) includes both habitat loss and varying degrees of decline 
or loss of biodiversity and ecosystem function and services, thus encompassing the 
full range of ecological conditions. Degradation is slight to severe modification 
of natural ecosystems due to factors like overgrazing, erosion, inappropriate fire 
regimes, invasive species, etc., but some vestige of the natural ecosystem remains 
(see also Chap. 3). Hence, EO monitoring tools have to suit very heterogeneous 
thematic, spatial, and temporal requirements. A single sensor, a single methodology, 
a “mono”-approach will not suffice. This chapter gave an insight of what can be 
achieved with state-of-the-art procedures based on the new wealth of space- and 
airborne observational data. It has to be acknowledged, however, that we are only at 
the start of data exploration and what we can learn about spatio-temporal dynamics 
of our precious land surfaces. Table 24.1 is an attempt to summarize achievements, 
constraints, and emerging technologies as a quick reference for further scientific and 
programmatic actions. 

Figure 24.2 depicts which optical and radar EO products can lead to surface 
parameters aiding in degradation monitoring. This chapter contains a selection 
of derivables, such as woody cover and surface moisture, to support monitoring. 
But the examples also illustrate limitations, if only one data set or one approach 
is applied or if in situ data is missing. The presented key EO indicators, which 
are treated as correspondent to relevant degradation processes, consist of poorly 
validated surface products with respect to savanna vegetation state, structure, 
dynamics, and surface moisture conditions. They are, e.g., called “woody cover”, 
but they strictly rather represent a “spectral product”, not an “information product” 
(analogue to unsupervised and supervised classification). The most promising meth-
ods therefore are based on a better physical understanding of spectral responses, thus 
enabling a knowledge-based interpretation of annual and inter-annual variations. 
Understanding spatio-temporal patterns lead to meaningful machine learning (ML) 
approaches—or vice versa, ML-retrieved results can then be associated with either 
experience or with discoveries. Having the Copernicus Sentinel-fleet and Landsat 
time-series for the future decade(s) available and thus an unprecedented wealth 
of spectral and spatial data sets, multi-temporal characteristics on the pixel-level 
(statistics, trends, break points, etc.) are assets, which still need to be associated 
with relevant surface features. Possibly, a new product nomenclature can be drafted, 
which is closer to spectral characteristics, including radar, and thus to the true 
nature of EO observations: e.g. radar water clouds and their relevance for structural 
changes, spectral indices and their significance for pixel-unmixing strategies for 
complex savanna biomes. 

To accomplish break-throughs in the exploitation of EO big data sets, it needs 
the respective technical infrastructure as described in Sect. 24.4, and it needs 
experienced natural scientists from the regions. The methods and EO products
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developed during the SPACES 2 projects were only accomplished based on the 
strong cooperation that grew between the South African and German team partners 
and colleagues. Regular conferences, such as SANParks’ Savanna Science Network 
Meeting, where interaction is yearly greatly fostered, have tremendously improved 
mutual methodological understanding beyond project concepts. Dedicated Summer 
Schools are a further important asset to develop strong scientific grounds for 
implementation of the achieved procedures and to educate the next generation of 
responsible Earth observation experts. 
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