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We built a physically explainable multiscale
machine-learning convection parameterization1

Interpretable multiscale Machine Learning-Based Parameterizations of Convection

github.com/ automatic1111/
stable-diffusion-webui

• Model predictions can be explained by using the SHapley Additive exPlanations
(SHAP) framework3 and taking weighted averages.1,4

Figure 1: The high-resolution dataset (Δ𝑥 ≈ 2.5 km) 
is coming from the tropical Atlantic (NARVAL 
campaign2). Only radiation, cloud microphysics, and 
turbulence where parameterized.

Figure 2: Summary of preprocessing steps. Starting from the 
original data, we computed the output fields, applied coarse-
graining operators, filtered the data, and rescaled the resulting 
dataset.
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Figure 5: The ensemble mean of 
weighted SHAP values for the 
ablated U-Net is visualized. 
Aggregated feature importance 
is shown in lowermost row.

Figure 8: The ensemble mean of weighted SHAP values for a) 
the full U-Net and b) the GBT model is shown. For a) the full U-
Net a focus on precipitating tracers is found to be non-causal. 
For b) the GBT the found patterns are non-local and non-
regular / “noise-like”.

Figure 3: The used U-Net 
architecture is visualized 
schematically.

Figure 4: The median and 
quartiles of the validation 
error for four different NN 
architectures is shown.

a) U-Net b) GBT

We calculate the subgrid fluxes without using the Boussinesq
approximation from the processed data.
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This flux is then converted to tendencies by taking the vertical 
divergence.

Outlook
• Online coupling
• Transition to global training dataset

Figure 7: Precipitation 
distribution comparison 
btw. NARVAL data, U-
Net and data from an 
untuned ICON 
simulation over a 
different time period 
(years 1980 & 1989).

𝑅2(U−Net) ≈ 0.897
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a) U-Net b) GBT
Figure 6: Height 
dependent 
performance 
comparison 
between a) U-
Net and b) 
gradient boosted 
trees (GBT) 
model.
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positive super- and negative sub-diagonal →
high vertical velocities increase subgrid flux 
above, reduction below
• Impact of large scale ascent and 

mesoscale convergence on convection

Negative impact of 𝑞𝑣 → local drying effect 
(entrainment of water vapor into the plume6)
• Slight positive influence for lower levels on 

higher levels → decreased density as water 
evaporates and decreased lapse rate for buoyant 
air parcels (as they are closer to saturation)

Negative local impact of 𝑢/𝑣 on 

𝐹𝑢/𝑣
𝑠𝑔

→ transport of convective 

plume to adjacent columns
• Positive influence above and 

below diagonal → signs of 
forced convection and impact 
of shear on mesoscale 
convective systems5

• In lower levels some 
consistent (over different data 
sets 𝑋) non-local patterns

Positive influence of 𝑞𝑙 on 𝐹𝑞𝑙
𝑠𝑔

and 

𝐹𝑞𝑣
𝑠𝑔

→ increased buoyancy in a cell 

because of latent heat release due 
to condensation


