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Abstract: Electric space propulsion is a technology that is used in a continuously increasing number
of spacecrafts. The qualification of these propulsion systems has to run in ground-based test facilities
which requires long testing times and powerful pumping systems. In these usually large test facilities,
high pumping speeds are achieved with cryopumps. Cryopump operation is very expensive with
respect to electrical energy and cooling water consumption. Therefore, being able to optimize pump
shape, cold plate material, and pump placement in a chamber is beneficial. Pump design and tuned
operating strategies can reduce costs and increase intervals between regeneration. Testing different
pump configuration setups in a large facility is mostly prohibitive due to high costs and long testing
times. Optimization via modelling is a better choice for design and also, later, for operation. Therefore,
having a numerical model and proven guidelines at hand for optimization is very helpful. This paper
describes a new model developed at DLR for the optimization of cryopump layout and operation.
Model results are compared with cryopump operational and warm-up data. This validation is
the basis for further optimization actions like multi-layer insulation layouts and pump cold plate
upgrades, and helps in understanding and mitigating the detrimental effect of water condensates on
the cryopump cold plates.

Keywords: electric space propulsion; cryopumps; pumping speed; vacuum chamber

1. Introduction

Electric propulsion is currently used routinely for satellite station keeping, and R&D
developments and qualification are pointing towards full electric orbit transfer [1]. Electric
propulsion is also gaining more interest in the sector as future science missions request
very low thrust in conjunction with low thrust noise and accurate thrust level control [1–3].
Today, the satellite onboard electrical power is of the order of several kW for a somewhat
larger telecom satellite. With this, the maximum EP thrust is in the range of a fraction of a
Newton, based on a thrust to power ratio of 40–70 mN/kW [2,3]. Mission requirements
like orbit raising or maneuvering therefore require longer accumulated thruster runtimes
of many days or months. These runtimes lead to EP qualification on-ground test programs
lasting thousands of hours, and vacuum facilities have to run reliably for these long
times [4]. This includes powerful pumping systems, mostly equipped with cryopumps that
freeze propellant gases on cold surfaces and are able to reach very high pumping speeds.
Therefore, cryopumps are a crucial part of large EP test facilities.

2. DLR Electric Propulsion Test Facility Göttingen

Since 2011, DLR has operated an electric space propulsion test facility, the STG-ET
(Simulationsanlage Treibstahlen Göttingen—Elektrische Triebwerke). A central element of
this facility is a 12.2 m long and 5 m diameter vacuum chamber (Figure 1) [5]. The chamber
is mounted on sliding bearings which reduce mechanical stresses in case of pump-down and
temperature changes. The device under test and main diagnostics equipment are positioned
on a 2.5 m high stand which is decoupled from the metal chamber wall and directly
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connected to the concrete foundation of the building. This decoupling ensures less vibration
for accurate thrust measurement, and a stable and well-defined space coordinate system.
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Figure 1. DLR STG-ET facility with view onto cryopump cold plates with MLI foil on their backside,
and beam dump targets at the end of the chamber.

Rough pumping is achieved by a rotating vane plus a Roots pump stand, and high
vacuum is achieved via four turbo pumps. The operation of thrusters with a high gas
mass flow requires a high pumping speed, and, in this case, up to 18 cryopumps can be
activated. With this arrangement, it is possible to reach a standby background pressure of
around 10−7 mbar. The required vacuum chamber pressure during thruster operation is
usually around 10−5–10−4 mbar, which is a typical requirement for EP thrusters [6–8]. This
range is also confirmed by our test campaigns, performed over the last decade [9].

EP thrusters and especially ion thrusters generate beams of fast ions that interact with
the facility walls and equipment. These high velocity ions cause sputtering when hitting
the walls of the chamber or all other components located inside the chamber. In general,
facility contaminating and other unwanted sputtering effects occur with all typical electric
space propulsion systems, and mainly, in ground test chambers for long term qualification,
dedicated beam dump targets are used for the reduction of sputtering effects. The STG-ET
has two beam dump targets, one at the chamber end consisting of water-cooled stainless-
steel plates coated with graphite sheets, and similar graphite sheets protect part of the
chamber cylinder mantle (Figure 1). These graphite liners have a low sputtering coefficient
compared with stainless steel (section on ion thruster grids in [10–13]).

3. Cryopump Basics

The pumping systems of a ground-based facility must be able to cope with thruster
gas flow, which is of the order of 5–20 mg/s for a typical thruster of 5 kW, depending on
the thruster technology (Hall effect [6], RIT, other gridded ion thruster, or others [7]).

Currently, xenon is the preferred propellant for the mentioned thrusters. Under
high vacuum conditions with molecular flow, pumping speed scales with pump aperture
area and the preferred way of trapping gas is to use cryo-trapping on cold surfaces. The
pumping speed for xenon is of the order of a few l·s−1 cm−2 for cryopumps, which is similar
to turbo molecular pumps [14]. Normally, it is much simpler to install a large cold surface
plate of m2 size, instead of having a large 1 m2 entry area turbo pump with fast rotating
components. This explains why cryopumps are usually the preferred method if high gas
loads are present. Commercially available cryopumps come in different configurations [14].
The standard type has a two-stage head contained in a vessel of standard diameters
(e.g., up to 500 mm) which is equipped with baffles. These pumps are meant primarily for
processes under high vacuum and air pumping (oxygen, nitrogen), e.g., material processing,
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particle physics, etc. The pumping speed of such a design is much lower for xenon than
for air.

For EP applications that use thrusters with a gas throughput running in a vacuum
using xenon as propellant, single-stage open cryopanel pumps are one option that may also
be more economic than baffled one- or two-stage pumps [13]. In the open configuration,
a copper plate (sometimes nickel-plated) is directly attached to the cold head, and this
assembly protrudes into the vacuum chamber without housing or baffles, as can be seen in
Figure 1. The use of open single-stage cryopumps is also in the portfolio of manufacturers,
e.g., [14]. If the plate temperature is below 55–60 K in the typical EP operating pressure
range of 10−4–10−5 mbar, see phase diagram in Figure 2, xenon freezes and the pumping
process takes place. It should be noted that if the plate temperature stays above approxi-
mately 35 K, the cryopump will not pump air constituents (oxygen, nitrogen, argon, see
Figure 2).

Another advantage of single cryopump plates without baffles or shrouds is the easier
cleaning process. Electric space propulsion long duration tests produce a lot of sputter
debris in the chamber. This sputtered material is deposited everywhere in the chamber, and
removing it is work intensive. Therefore, single-plate open pumps are much easier to clean.

A general issue for cryopumping is water, as this starts to freeze at temperatures
below 200 K. This is especially true when using the open single-stage design. Baffles are
often cooled with liquid nitrogen (LN2) and act as condensation surfaces for water. This
partly protects the cryopump cold plates from water ice [14–16]. The issue with water ice
on open cold plates is the following. The absorption of thermal radiation on pump cold
plates, e.g., from chamber walls, is governed by the emissivity ε. For water condensate
(ice), its emissivity is high compared with xenon, around 0.8–0.95 (see Section 7.3). As a
consequence, the heat load on a pumping surface covered with a water ice layer is very
high and deteriorates the pump performance causing a faster warm-up.
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Figure 2. Saturation pressures of several gases important to vacuum technology and electric space
propulsion. The shaded area highlights xenon (adapted from [16]). The shades parts show the
pressure and temperature operation ranges for xenon in thruster application.

When designing the DLR vacuum facility, we originally planned the pumping system
based on baffled cryopumps. But after reviewing the issues with mounting, cleaning,
LN2-cooled baffles, more complex process controls, and potentially more leaking points,
the baffled design was abandoned (Figure 1).
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4. DLR STG-ET Pumping System

Figure 3 shows a schematic of the pumping system in DLR’s facility. A dedicated
roughing pump system (rotating vane and Roots pump 2), directly attached to the vacuum
chamber, generates the necessary vacuum level for a switch-on of the turbomolecular
pumps, which have their own backing pump stand. Under thruster operation, up to
18 cryogenic pumps remove the propellant gas [10,17].
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Since the cryopumps were installed at different times and in three lots, they have
differently sized cold plates. The actual configuration is as follows:

• Pumps 1–6: 6 round plates of 0.5 m diameter
• Pumps 8–10: 3 square plates of 0.5 m × 0.5 m (pumps in place since chamber built)
• Pumps 7, 11–18: 9 round plates of 0.6 m diameter

The initially used 0.5 m round plates have the smallest area and should show the
best behavior with respect to cool-down. The large round plates have unprotected copper
surfaces, and the others are nickel plated.

The next section shows the results of pumping speed tests for noble gases xenon, krypton,
and argon. These gases may be used as propellants for space electric propulsion [8,11].

5. Pumping Speed Measurement

In order to characterize the performance of the facility, a pumping speed measurement
campaign was performed. The measurements were carried out with freshly regenerated
cryopumps, e.g., after having performed a complete warm-up cycle to room temperature for
all cryopumps, while removing all evaporated gases with the mechanical pumps running.
Following this step, after cool-down, the cold plates have the lowest possible temperatures
that can be reached with the installed cold heads. Their temperatures went down into the
range of 17–23 K. At these temperatures, the trapping of krypton and argon is possible.
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If temperatures increase above about 30 K, argon will not be trapped anymore, and the
same applies to krypton above 40 K (see Figure 2).

This should be kept in mind when interpreting the pumping results shown in the next
sections. As soon as gas is adsorbed, the plate emissivity will increase, which leads to an
increase in temperature due to higher radiation loads.

The gas inlet simulating a running thruster for the pumping tests was a single pipe
supplying cold gas into the vacuum chamber. Using a real EP thruster may give somewhat
different results because the energy of the gas flow and its spatial distribution are different.

Determining a pumping speed S requires accurate flow measurement qL and pressure
measurement p:

S(gas, e.g.Xe) =
qL

p − pbase
in

l
s

(1)

pbase is the background pressure without propellant flow [18].

Pumping Speed Measurement for Xenon, Krypton, and Argon

The most relevant gas for electric propulsion today is xenon [7,8]. Therefore, the first
pumping speed measurement presented here is for xenon. Figure 4 shows the chamber
pressure development for xenon cold gas flows of 10, 30, 50, and 100 sccm. The pressure
shown is nitrogen-calibrated, i.e., not corrected for xenon. Using a nitrogen pressure
measurement is our practice and is accepted or even insisted on by facility users. The risk
of confusion in data records is less, and pressure sensors have to work with propellant gas
and without propellant during pump-down.
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xenon (see text).

Additionally, one of the cryopump cold plate temperatures is shown in the diagram.
During the measurement, its temperature stayed in the band of 18–19 K. In order to obtain
stable conditions, the gas flow at each step was left on for about 30 min. The pumping speed
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was calculated using Equation (1) and the calibration factor was applied to the pressure
measurement at gas flow. The resulting xenon pumping speed was as follows:

SXe = 276, 000
l
s

Figure 5 shows the pumping test with krypton cold gas feeding (gas flow: 10, 30, 50,
and 100 sccm). With the same process as shown above for xenon, the krypton pumping
speed was as follows:

SKr = 360, 000
l
s
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Figure 5. Cold gas pumping test for krypton (not gas-corrected, see text).

Argon has the lowest condensation temperature of the above-mentioned gases, and
the cryopumps are at their limit when pumping argon. Figure 6 shows the pumping test
with argon cold gas feeding (gas flow: 10, 30, 50, and 100 sccm). With the same process as
shown above for xenon, the argon pumping speed can be deduced as follows:

SAr = 452, 000
l
s

Of course, the lower the condensation temperature of a gas, the shorter the time span
of the given pumping speed. This is due to the fact that the pumping cold surface will
warm up during operation and the condensation of the working gas will come to an end.
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6. Cryopump Operation Analysis

At DLR’s facility, the cryopumps have cold plates of different sizes and shapes. This
leads to different temperatures and a non-uniform behavior over longer pumping times.
Figure 7 shows a typical cryopumping operation period of 12 days. After an initial cool-
down, the cold plates reach 17–23 K. The plates slowly warm up during operation, which
is due to gas adsorption and changes in emissivity. It can be seen that the small round
plates have the lowest temperatures, and the largest plates show the highest temperatures.
Between them, there are the square plates. There is an overlapping, and the temperatures
are quite scattered.

Regarding temperature measurement accuracy, the sensors are of the PT1000 type,
class B. This gives an error of <±0.5% at room temperature and about of <±5% at 30 K.
Therefore, the temperature scattering may not be attributed to erroneous temperature
measurement but to the spread of pump specifications, to different initial emissivities,
to dirt and differences in polishing, and to differences in orientation and location in the
chamber. In this figure, all the temperatures are still in the xenon pumping regime.

After the end of an operational phase, the cryopumps are switched off and the trapped
gases are released. Such a warm-up cycle is shown in Figure 8. On average, the largest
plates show the slowest warm-up. The square plates show the fastest warm-up, although
there is an overlapping. A cryopump model should be able to model the temperature
features present during operation and warm-up.
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7. Cryopump Modelling

Cryopump operation is very expensive with respect to electrical energy and cooling
water consumption. Therefore, being able to optimize pump shape, cold plate material,
and pump placement in a chamber is crucial for cost optimization. Furthermore, a good
operating strategy can reduce costs and increase intervals between regeneration. Testing
different setups in a large facility is often prohibitive due to high costs and long testing
times. Optimization via modelling is a better choice for design and also, later, for operation.

The physics of condensation processes at the cold plate surface of a cryopump is
complex and depends on many parameters. The condensation includes different gases
at the same time, may generate various ice lattice structures, and may depend upon the
surface microstructure and cleanliness of the cold plate as well. Cryopumping is a typical
subject for several areas in science, e.g., particle physics or very low temperature or fusion
research, and references can be found [19–22].

The literature about typical issues when performing electric space propulsion test-
ing and good and proven practices on system design is less abundant, e.g., pages 18 ff
in [14,15,23,24]. Therefore, designing or optimizing a pump system is not straightforward;
additionally, all facilities are unique.

In order to compile input for an EP pumping system, the following sections elaborate
parameters like pump cooling capacity, and material and gas properties.

7.1. Cryopump Head Cooling Capacity

Firstly, a dynamic model of cryopumps must include the amount of heat that the
pump device can remove. This capability strongly depends on its operating temperature.
As an example, the cooling power of a cryopump cold head type CoolVac CP140T, powered
by a compressor Coolpak 6000H (both from Leybold GmbH, Koeln, Germany) can be
schematically seen in Figure 9. This graph is based on manufacturer-given data in its
datasheet. The cold head of the pump system can dump about 220–230 W of heat at room
temperature, and can remove about 45–50 W at 25 K. The pump can cool down to about
15–20 K. By reducing to such a low temperature, this type of pump is able to adsorb/pump
gases like nitrogen, oxygen, and argon. One should mention that these are only sample
data, and the real cooling capacity may vary, e.g., depending on cold head orientation or
cooling water temperature.
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7.2. Cold Plate Material Properties

As shown in Section 3, a single stage cryopump has a large metal plate attached to
its cold head. This plate is cooled down to cryogenic temperatures, and condenses and
adsorbs gases. The material of such a plate is typically copper. The material properties of
copper and its definitions were extracted from [25–27]. For the highest thermal conductivity,
the copper used must be very pure and oxygen-free. This purity can be characterized by
the Residual Resistivity Ratio (RRR), which is defined as the ratio of the resistivity of the
material at room temperature compared with the resistivity close to 0 K.

Figure 10 shows the thermal conductivity of copper with various purity grades. One
can see that using very pure copper (RRR = 2000) can increase thermal conductivity by a
factor of 1.5 at 60 K, 2 at 40 K, and even 15 at 20 K. High RRR values are the best choice for
cryogenic pumping tasks.
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Besides thermal conductivity, specific heat is important when it comes to the cooling
behavior and cool-down times of pumps. Reference [26] was used to create a simplified
model for the specific heat cp of copper for temperatures between 10 K and 400 K, which
is the region of interest for this application. In the reference, cp is given in J

mol·K , and
Table 1 lists the complete set of approximations. These formulae were used to calculate the
specific heat of copper between 10 and 400 K. By using the molecular weight of copper
of 63.546 g/mol for conversion to J

kg·K , the result is plotted in Figure 11. The shape
shows the large difference between specific heat at cryogenic temperatures and its room
temperature value. Lower specific heat capacity means that less energy is needed for
changing temperature.
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Table 1. Approximation functions for copper specific heat.

Temperature Range (K) cp

(
J

mol×K

)
4.2–30

cp(T) = 6.94 × 10−4T + 4.76249 × 10−5T3 + 1.05866 × 10−9T5 + 1.0287 × 10−10T7 − 1.68191 ×
10−13T9 + 9.0127 × 10−17T11 − 1.13003 × 10−20T13

30–50 cp(T) = 4.13788 − 0.457798T + 1.73771 × 10−2T2 − 1.81035 × 10−4T3 + 6.57663 × 10−7T4

50–70 cp(T) = −3.44481 + 2.71874 × 10−2T + 5.82694 × 10−3T2 − 5.9299 × 10−5T3 + 1.76354 × 10−7T4

70–100 cp(T) = −11.5255 + 0.41885T − 1.13549 × 10−3T2 − 5.92034 × 10−6T3 + 2.93875 × 10−8T4

100–200 cp(T) = −15.14608 + 0.577212T − 3.639869 × 10−3T2 + 1.12101 × 10−5T3 − 1.363615 × 10−8T4

200–298 cp(T) = 6.33481 + 0.162424T − 5.78862 × 10−4T2 + 9.95052 × 10−7T3 − 6.62868 × 10−10T4

298–1358 cp(T) = 23.55055 + 6.89498 × 10−3T − 2.95229 × 10−6T2 + 1.78088 × 10−9T3 − 84616.4
T2
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7.3. Water Ice Properties

The pumping process is based on the cryo-adsorption of gases and therefore the
properties of relevant gases at their frozen state are important. Water ice, water vapor, and
air constituent properties can be found in the standard literature, e.g., [28,29].

Concerning water ice, one very important property is its emissivity. Figure 12 displays
data for water ice-layer emissivity versus layer thickness (see [30]). Even for a layer in the
sub-mm range, the emissivity or radiation absorption approaches 1, which, in the case of
our cryopump application, leads to high heat loads from a warm environment transferring
onto a cyro-cooled surface with some ice layer on it.

Therefore, water vapor in the vacuum chamber, which is easily frozen onto cryopump
surfaces, may cause issues with respect to radiation absorption. Cryopump layout and
operational strategies should account for that. Furthermore, such effects should be kept in
mind when thinking about thruster technologies based on water as a green propellant.
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7.4. Ice Absorptance Profile Similarity Analysis

In general, the increasing radiation absorptivity profiles shown in most literature, such
as Refs. [31,32], follow a rather smooth curve, which can also be seen in Figure 13 if the
interference features are ignored. It can be observed that the profiles behave similarly, so
that if the height of the deposit and its absorptance are normalized by their maximum
values, alpha_max and h_max—i.e., the value of the deposit height where optical thickness is
achieved and the value of absorptance which is asymptotic—the profiles have a similarity.
This can be clearly observed when comparing the profiles of water ice deposit absorptance
and CO2 ice deposit absorptance. Even though these two deposits display very different
profiles in terms of critical thickness and maximum absorptance, when normalized, the
profiles are similar, as seen in Figure 14. Indeed, the profiles shown in Figure 14 can be fitted
using a two-component function, with a power profile in the first half and a logarithmic
profile in the second.

The function components were generated in such a way that the resulting function
would be exact at the edges (∝= 0 and 1 at h = 0 and h = 1, respectively) and so that it would
be continuous and smooth in its first derivative. The following expression was found:

∝(h) =

{
h

0.48
+ 0.86585 h − 1.15414 h

2
i f h ≤ 0.5

0.2ln(h) + 1 otherwise

The relative error of the above function when evaluating for both water and CO2 ice is
less than 15%, even <3% for relative thickness levels greater than 0.75. This is a good fit
considering that even the input data from water and CO2 ice have this level of uncertainty.
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7.5. Xenon Ice Properties

The literature data for a noble gas like xenon at cryogenic temperatures are not very
abundant. The following gas property plots were generated based on data published
in [32–34]. Figure 15 shows the density of xenon ice. This parameter is of importance
for the estimation of weight on a cold plate after longer operation. This is required for
not exceeding the maximum mechanical load capacity of the pump cold head. It is also
important for determining the total heat capacity of the xenon layer.

Figure 16, the xenon ice-specific heat at low temperatures, shows that adding a certain
ice mass onto the copper cold plate changes the temperature–time response because the
xenon ice-specific heat is of the same order of magnitude as the copper, or even higher.
Figure 17 displays xenon ice thermal conductivity, which is low compared with the copper.
Therefore, a certain ice thickness will limit the heat transmission capability and, with that,
the pumping speed of the cold surface. One may think that the deposition or de-sublimation
of xenon gas on a cold surface will add a noticeable amount of energy to the energy budget.
Looking a Figure 18, we see that xenon has a sublimation enthalpy of about 1.14 × 105 J/kg
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for low temperatures. With a mass flow in the order mg/s the heat flow power is about
3 mW. This figure is negligible at 30 K, where the pump can dump about 50 W.
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7.6. Model for Operation Simulation

The basic thermodynamic processes around a cryopump can be seen in Figure 19. The
radiation exchange between the pump plate, the chamber wall, and the inner components
is defined by the emissivities of the cold plate, the condensate layer, and the chamber
wall properties.

During operation modelling, the thruster is running and may constitute an additional
heat source. Usually, the temperature distribution on a thruster enclosing surface is very
type-dependent, and is known only to manufacturers (intellectual property). But if we
assume a reasonable homogeneous thruster temperature of, e.g., 300 ◦C, we obtain about
kW/m2 blackbody radiation compared with the 400 W/m2 from the chamber walls at
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room temperature. The thruster heat source may have an area of 0.1 m2 (0.3 × 0.3 m2), and
is located at distances of 2.5–4 m from the cryopump cold plates. This geometry provides
a hot body with a radiation contribution coming from a solid angle fraction of <0.0014,
which increases the total heat radiation by a few percent (assuming a chamber at room
temperature). Therefore, in this approach, we omitted the thruster as a heat source, and it
is modelled only as a cold gas source releasing xenon into the chamber.
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Figure 19. Basic processes of cryopump attached to a vacuum chamber. The cold plate freezes and
traps the gases, and is exposed to thermal radiation from chamber walls and inner components (red
arrows indicate energy flow into cryopump, blue arrows indicate energy loss from cryopump).

A model must take into account that the emissivities of cold plates and ice layers
change during cryo-trapping or evaporation. For the DLR model, a full 3D, time-dependent
numerical simulation was set up to properly resolve the instantaneous heat balance for
each pump and therefore its resulting temperature, including the zonal method to properly
account for the radiative heat transfer. The zonal method is an intermediate simulation
method between a single zone model, which is far too coarse for modelling chambers and
cryopumps, and a fine mesh finite element method, which splits the space of interest into
millions of small grid elements. The latter would require computational resources not avail-
able for this investigation. Zonal methods are often used in computational fluid dynamics.

The geometry of the chamber was represented by a cylindrical body enclosed by two
spherical caps, discretized to consist of very small planar elements for the zonal method
calculation. The pumps were modelled as 2D surfaces oriented such that their normal
pointed towards the centerline of the chamber. The heat flow at the contact between the
cryopump cold head and the cold plate was set as ideal, as we observed that cold head and
plate temperatures are usually very close.

For each pump, the calculations were carried out separately to track the instantaneous
pump heat balance, temperature, and thickness of the ice layers. The temperature was set
either to room temperature for the cool-down simulation or the final measured temperature
before the shut down for the heat-up cycles.

The numerical simulation modelled the following energy balance:

Q = Qrad + Qcond + QXe + QH2O = Qcool + QdT pump, (2)

where the first term is the heat transfer due to radiation, the second due to conduction, the
third due to cryo-deposition and the warming of the xenon, and the fourth term due to the
cryo-deposition and the warming of the water vapour (if applicable). On the righthand
side, this is balanced by the cooling power of the pump and the heat capacity of the pump.
Since this is dictated by the new pump temperature, the pump temperature at the next time
step was derived from this value. The contributions will now be described in further detail.
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Firstly, the cooling capacity is known from the specification provided by the manu-
facturer. While the specification gives the ideal cooling capacity, this does not apply for
pumps that have been in operation for months or several years. A lesson that we learned
during years of facility operation is that a cryopump might work reliably over years, while
others may rapidly loose cooling capacity after a few months. This also happened after
fresh refurbishments carried out by the manufacturer. One mechanism for this is the wear
of valves and pump pistons inside the cold head.

As these effects are not easy to quantify or predict, using the manufacturer data
must suffice as an indication of the expected performance. Dedicated tests could be
conducted in a controlled environment to measure this deteriorated capacity for each
pump separately. However, such tests would be very time consuming and would demand
significant financial resources.

The heat capacity of a pump is simply given by the following:

QdT pump = mpumpcp,pumpdT (3)

where mpump refers to the mass of the pump, cp, pump refers to the specific heat capacity of
the pump material, and dT to the temperature difference in the pump between the two
consecutive time steps. In this context, the pump refers to the pump head only (as due to
heat conductivity and a relatively narrow throat, it is assumed that heat is not conducted to
the rest of the pump effectively).

The radiative heating term was determined from a separate numerical radiation
simulation using the zonal method. For two surfaces of radiosities, J1 and J2, the radiative
heat transfer from 1 to 2 is given by the following:

Qrad,12 = A1F12(J1 − J2) (4)

in which F12 is the view factor from surface 1 of area A1 to surface 2 of area A2. The
radiosities can be determined from the Oppenhaim’s electric circuit analogy for heat
exchange between two bodies with the consideration of space and surface resistances,
giving the following:

σT1
4 − J1

R1
− J2 − J1

R12
= 0 (5)

σT2
4 − J2

R2
− J1 − J2

R21
= 0 (6)

where the space and surface resistances are given as follows:

R12 =
1

A1F12
, R21 =

1
A2F21

, R1 =
1 − ϵ1

A1ϵ1
, R2 =

1 − ϵ2

A2ϵ2
(7)

This results in a system that can solve for J1 and J2, once the view factors are properly
calculated. The calculation of the view factors is performed in a differential fashion. As
mentioned above, the walls of the chamber, as well as the surface of the pumps, are split
into small planar mesh areas, while the surface normal vectors are calculated a priori. Then,
for each combination of these planar cells, the mutual view factor is computed through
the following:

F12 =
1

A1

x cosθ2cosθ1

π|r12|
2 dA1dA2 (8)

The angles θ1 and θ2 , which are the viewing angles, can be readily calculated from the
vector between the two areas, r12, and the surface normals as follows:

θ1 = arccos
(

r12n1
|r12||n1|

)
, θ2 = arccos

(
r12n2

|r21||n2|

)
(9)
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Next, the conductive heating term would be defined according to the temperature
gradient along the pump with some proportionality constant λ, depending on geometry
and material characteristics:

Qcond = λdT/dx (10)

but since insufficient information was available to estimate the magnitude of this constant,
conductive heat flux was neglected. It is expected that it would be by an order of magnitude
smaller than that of, for example, the radiative heat flux in almost any conditions.

Finally, the heating due to xenon cryo-deposition and sublimation can be expressed
as follows:

QXe = Cs

[
mXe,gascp,Xe,gas

(
Tgas − Tsubl

)
+ dHsubl + mXe,solidcp,Xe,solid

(
Tsubl − Tpump

)]
, (11)

where Cs refers to the capture coefficient indicating how much of the incoming xenon is
captured on the pump. The same formula can also be used to calculate QH2O. The capture
coefficient was treated to be 1 in this work, until the xenon ice layer thickness was large
enough to prevent any further cryo-adsorption due to the poor thermal conductivity of the
xenon ice. Then, no further ice attachment was possible, effectively setting Cs to 0.

The largest source of uncertainties in the calculations above, next to the cooling
capacity of the pumps, are the initial and final optical properties of the pumps. The optical
properties are not accurately known in the “clean pump state” nor after the water and
xenon ice has deposited on them.

The emissivity of the “clean” pump surface differs per pump due to surface material,
degradation and contamination. This emissivity can be, in theory, estimated during the heat-
up process of the pumps (when the chamber is still closed) at high enough temperatures
when the water vapour is released.

The optical thin film properties of water ice are relatively well known ([29,30]). These
properties are needed in the infrared portion of the spectrum, where the chamber radiates
predominantly. What is required for this numerical simulation is the surface emissivity
of the water ice thin film as a function of the film thickness. The data from Ref. [28] were
used, and a power/logarithmic fit was made to simplify modelling. This fit was based on
combined data for CO2 and H2O ice through similarity analysis. The fit reads as follows:

a
amax

=

(
h

hmax

)0.48
+ 0.86585

(
h

hmax

)
− 1.15414

(
h

hmax
)2 for h

hmax
< 0.5

a
amax

= 0.2ln
(

h
hmax

)
+ 1 otherwise,

(12)

in which the values with the subscript “max” correspond to the maximum expected height
and absorption coefficient value that can be achieved.

A mesh convergence study was performed on the number of mesh elements of both
the chamber walls as well as the pumps. It was observed that in order to stay within 5–10%
errors, approximately 105 chamber wall elements were required. The reason why such
a large number of elements is needed is the fact that the chamber wall also contains the
simulated MLI surfaces. The MLI surfaces have different properties than the chamber wall
and significantly reduce the heat flux towards the pump. Thus, a coarse discretisation
means that the MLI surfaces, which are relatively small compared with the entire chamber
and which play a major role in radiative heat transfer, are not accurately represented. In
addition, for each pump, 50 planar elements were considered on both sides to achieve accu-
rate values. In summary, Figure 20 shows the block diagram of the model. It includes the
two branches, one for the pump operation, and one for the regeneration/warm-up phase.
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The following model versus data comparison was undertaken for a facility operation 

with a thruster running at 50 sccm xenon mass flow, and the respective xenon deposition 
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Figure 20. Flow chart of the numerical cryopump model, with the following: OPER = model of
cryopumps in operation. HEAT = model of pumps warming up. t = time since beginning of pumping.
tmax = maximum simulation time. T_cryo = temperature of a given cryopump. Eps_cryo = emissivity
of a given cryopump. Xe_thickness = thickness of xenon layer. H2O_thickness = thickness of water
ice layer. Q_rad = radiative heat flux. Xe_mdot = massflow of xenon onto pumps. Q_Xe = heat flux
due to Xe adsorption/sublimation.

8. Comparison of Data and Model
8.1. Data Set

The data used in the following section for comparison with the simulation model
stem from a facility operation interval in March–May 2019. This data set contains several
operational periods with consecutive cryopump warm-ups. One operational period of
about 10 days, starting 11 March, with thruster gas flow, and the following pump warm-up,
starting 28 March, were extracted.

Regarding temperature measurement accuracy, the above-mentioned errors of <±0.5%
at room temperature, and about of <±5% at 30 K are valid. The mass flow of the thruster is
known, with an accuracy of ±3%, and it is assumed to be constant during an operational cycle.

8.2. Modelling Operation

The following model versus data comparison was undertaken for a facility operation
with a thruster running at 50 sccm xenon mass flow, and the respective xenon deposition
on each pump. Concerning data, the viewing factors of each pump were not the most
dominant effect causing the spread of the temperature data of the pumps (see Figure 7).
Instead of showing temperature measurements of every single pump (two temperature
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sensors per pump), averages were taken over each of the three plate size groups. The same
is valid for the simulation results, where the averages for each pump type group (plate
size) are shown.

The results are displayed in Figure 21 (small plates), Figure 22 (rectangular plates),
and Figure 23 (large round plates). The error bands are attached to the simulation curves
(shaded areas) and stem from errors in plate emissivities, background temperature errors,
and xenon mass flow measurement error, adding up to about 10%. Since the water content
and degradation level were not known, the simulations were initiated using the roughly
known initial (average) operating temperatures for each pump type. From the results,
it can be seen that for most pumps, the results fall within the error limits due to input
uncertainties. Only the small plate pump data leave the error band after about 100 h
of simulated time (see Figure 21). It can be observed that in the experimental data, the
minimum to maximum temperature order of the pump types also changes. In the majority
of these cases, the largest pumps are the warmest, followed by the slightly smaller square
pumps, which corresponds to the physics of increased radiative heat exchange in a warm
environment. The basic curvature can be reproduced by the model.
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Figure 21. Comparison of data and simulation model for the cryopumps with small plates (pumps 1–6)
during operation after cool-down during 10 operational days with applied xenon mass flow (see
Section 4 for pump specifications). The shaded area is the simulation error, see text.
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Figure 22. Comparison of data and simulation model for the cryopumps with rectangular plates
(pumps 8–10, see Section 4 for pump specifications). The shaded area is the simulation error, see text.
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Figure 23. Comparison of data and simulation model for the cryopumps with large round plates
(pumps 7, and 11–18, see Section 4 for pump specifications). The shaded area is the simulation error,
see text.

8.3. Modelling Warm-Up

The investigation of warm-up behavior uses the regeneration/warm-up cycle data
shown in Figure 8, also as averages for each plate size (small round, medium square, large
round), and the results are plotted in Figure 24 (small), Figure 25 (square), and Figure 26
(large). Again, the error bands are attached as shaded areas to the simulation curves.
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Figure 24. Comparison of warm-up data and model for the small cryopumps after pump switch-off
on 28 March 2019. Warming up releases xenon and produces the inflection point in the 60–110 K
range. The second inflection point, more pronounced in the simulation curve, comes from water
sublimation. The shaded area is the simulation error, see text.
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Figure 25. Comparison of warm-up data and model for the cryopumps with square plates after pump
switch-off (see legend of Figure 24).
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Figure 26. Comparison of warm-up data and model for the large plate cryopumps after pump
switch-off (see legend of Figure 24).

Firstly, the modelling of the xenon sublimation inflection point is discussed. The
optical model was applied to determine approximate infrared emissivity from the known
approximate initial xenon layer thickness, as estimated from the thruster firing time and
total xenon mass flow. The thermal part of the model was used to model the thermal
gradient through the ice layer. This was necessary, since at high temperatures, due to
low thermal conductivity, surface temperatures could differ from the base temperatures
of the pumps. Since sublimation is determined by the ice surface temperature and is very
sensitive to differences of even only a few K, the approximate surface temperature cannot
just be approximated as pump temperature.
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If the xenon temperature gradient data are fed into the pump heating model, the xenon
peak can be well reproduced for a thickness of about 0.5mm, as shown in Figures 24–26
at around 80–90 K. This corresponds to 50 sccm xenon mass flow over the course of the
previously completed thruster firing. It can be seen that there are still remaining deviations,
likely due to the very simplistic sublimation and thermal models, and due to the uncertainty
in the initial xenon thickness.

The main observation is that this predicts a bend occurring at around 175 K, which
slows down the warm-up compared with real data. This feature is present for all plate sizes.

For a more accurate shape resolution, a finite difference scheme should be used instead
to properly determine the surface temperature. This will, however, cause a significant
increase in the resources required for the run.

8.4. Modelling the Impact of Water on Warm-Up Behaviour

The same logic can be applied to modelling the impact of water during warm-up. Since
the thickness feature of any xenon effect is not present in the curve bend caused by water, it
is likely that the initial size of the water ice layer is much smaller. However, since this layer
still deteriorates the optical properties of the pump (which can be noticed by observing
the much smaller heating rates after water sublimation due to lowered emissivity), the
minimum thickness of the water ice layer must be in the order of 1–20 µm. Thus, 10 µm was
used as an initial estimate on water ice thickness. In Figures 24–26, the water impact region
is visible. The model predicts the water to evaporate completely at approximately 185 K,
while the experiment shows the knee to occur at 195 K. This error in timing is observed in
most of the results. It could be caused by either inaccurate water sublimation data or by
other factors not corrected for in the simulation. The latter is likely the main reason since,
as observed in the experimental data, the water sublimation region occurs each time at a
different temperature (ranging from 150 K to 220 K). However, the change in emissivity is
modelled well regardless of the sublimation timing.

8.5. MLI Size Recommendations

Apart from the modelling of the experimental data, the software as a whole or its
functions can be used to predict how design or operational parameters such as MLI size
and time of water pumping (resulting in an initial water content) affect the performance of
the pumps and the power budget.

As has already been shown in the section on the modelling of radiative heat trans-
fer, the majority of the radiative heat exchange occurs due to the wall area around the
underlying MLI shown in Figure 19. A cold plate of a pump has an offset of a few cm
from the chamber wall, and an MLI blanket attached to the chamber screens its backside.
Thus, in general, increasing this MLI area is the single most effective technique to reduce
the incident heat flux. In this analysis, it is assumed that only the MLI under the pump
increases in size while the sizes of the other MLIs remain the same. This assumption was
made to separate the effects of these two contributions. Currently, the viewing factors of
the MLI on the bottom side of the pump add up to approximately 0.94, which could be
increased up to around 0.99 if a blanket of 1 m side length is used. The dependency of
the heat flux on the MLI size below the pump is shown in Figure 27, which shows that
choosing sizes larger than 1 m does not give better results. Furthermore, an improvement
can be achieved by reducing the offset between the pump and the MLI underneath, as
can be seen by comparing the offsets of 5 cm instead of 10 cm. It should be noted that
these results are more of a qualitative nature and more accurate optical data and pump
performance specifications would be helpful.
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Figure 27. Effect of MLI area on received heat of the pump above it, for 10 cm and 5 cm distance
offset between cold plate and chamber wall.

9. Conclusions and Outlook

Cryopumps are essential for electric space propulsion testing in ground-based facilities.
The pump system of DLR’s EP Test Facility, STG-ET, with its 18 open plate cryopumps
is shown in detail. These pumps provide, for the commonly used xenon gas, a pumping
speed of 276 m3/s. Cryopump operation for high power thrusters is expensive, and an
optimization of size and geometry is needed for the actual system and for future upgrades.
For such optimizations or upgrades, a model was built in order to be able to simulate
the process of cool-down, warm-up, condensation, and sublimation, with its coupled
changes in surface emissivity. The model was able to reproduce fairly well the operational
temperature rise due to emissivity change and the cold plate warm-up with its typical
inflection regions caused by sublimation.

The deposits on the pump surfaces may contain water, and this can cause issues with
respect to radiation absorption. This effect should be kept in mind when thinking about
thruster technologies based on water as a green propellant.

The presented model includes MLI foils underneath the cold plate and calculates view
factors. The sizes of these MLI sheets have a noticeable impact on the collected heat flux,
and therefore larger sheets up to a side length of about 1 m improve performance.

Further applications of the model will help in upgrading the facility pumping system,
e.g., pump location with respect to chamber inventory, like thruster and sources of sputter
material, and cold plate size.
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Nomenclature

EP Electric Propulsion
LN2 Liquid Nitrogen
MLI Multi-layer Insulation
RIT Radiofrequency Ion Thruster
sccm standard cubic centimeters per second
STG-ET Simulationsanlage Treibstahlen Göttingen—Elektrische Triebwerke

(High Vacuum Plume Test Facility Göttingen—Electric Thrusters)
THR Thruster
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