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Abstract— Detection and exclusion can be achieved using
Solution Separation (SS), for example, in civilian aviation
applications using Advanced Receiver Autonomous Integrity
Monitoring (ARAIM). Global Navigation Satellite Systems
(GNSS) fault modes, which are well defined with predictable
probabilities of occurrence, can be efficiently and exhaustively
accounted for by grouping. However, other navigation appli-
cations emerge that require multi-sensor fusion in varying
operational environments. Both the total number of measure-
ments and the number of potentially faulty measurements
can increase significantly. For such applications, an exhaustive
account of all modes can be challenging and can become
computationally intractable. These challenges can be addressed
using greedy-search-based fault exclusion. However, methods
are lacking to quantify the navigation integrity performance
of such approaches. In this research, we perform a theoretical
analysis of the integrity of greedy-search-based fault exclusion
approach. The methods to calculate the minimal detectable bias
and the worst case fault direction are discussed.

I. INTRODUCTION

The emergence of new applications such as vertical take-
off and landing (VTOL) of unmanned air vehicle (UAV) set
increasingly stringent requirements on navigation systems.
Future safety-of-life applications, such as urban air mobility
(air-taxis) or self-driving cars, require both high-accuracy and
high-integrity solutions.Global Navigation Satellite Systems
(GNSS) are instrumental in such applications.Tracking mul-
tiple constellations provides advanced GNSS receivers with
sufficient satellites to estimate the position accurately, but
it may also bring more challenges to monitor the integrity
in real time due to higher computational complexity. In
addition, the satellite-only solutions face performance degra-
dations in urban environments due to shadowing from tall
buildings, strong multipath signals and radio interference. In
many cases, multi-sensor solutions are applied to achieve
better performance. However, integrity monitoring of multi-
sensor navigation solutions is not as mature as for GNSS in-
tegrity and faces new challenges, especially when perception
sensors such as lidar or cameras are also used for navigation
purposes [1], [2]. Monitoring the integrity of the output of
navigation systems is therefore more challenging for these
new applications. Fig. 1 shows a UAV landing scenario as
example. The vehicle positions itself using both the satellite
signals and visual features from a georeferenced landing pad.

Fig. 1: Simulation scenario of UAV landing

The GNSS integrity monitoring techniques have been
developed over the past decades, and play an important role
in safety-critical civil aviation applications. Multiple Hy-
potheses Solution Separation (MHSS) [3], [4] based method
is proposed to exclude the faulty measurements and calculate
the protection level with convenience. It becomes a state-of-
the-art approach for fault detection and integrity monitoring
and is applied in advanced Receiver Autonomous Integrity
Monitoring (ARAIM) services [5]. The method decomposes
the possible combinations of faulty measurements into dif-
ferent hypotheses, and builds a test statistic using the full
set of measurements and the fault-tolerant subset for each
hypothesis. As a result, the faulty measurements can be
detected and isolated according to the statistical test results.
The computational complexity of the fault detection and
exclusion (FDE) depends on the number of fault modes
to be monitored. For multiple faults, the number of fault
modes is determined by the prior error rate and the total
number of measurements, which can be significantly higher
for multi-sensor solutions than for GNSS-only solutions.
Consequently, an exhaustive search over all the possible fault
modes may become infeasible for real-time monitoring if the
computational power does not allow it in some use cases.

To reduce the computational complexity, suboptimal meth-



ods such as greedy search based fault exclusion are proposed
[6][7]. The method has been shown to be fast and functional
in practice [7]. However, to the best of our knowledge,
there is very limited number of literature focusing on the
integrity performance of the suboptimal methods. There is
some discussion of the integrity for the greedy search based
approach in our previous work [8], but only on a preliminary
level. In this work, we perform a more extensive theoretical
analysis of the integrity aspects of the greedy search based
fault exclusion method (referred to as Greedy-FDE in the
following sections for convenience).

The paper is organized as follows: in Section II, a general
system model is described, and the motivation for using
Greedy-FDE for multi-sensor applications is stated. In Sec-
tion III, the Greedy-FDE method is reviewed and its integrity
aspects are analyzed. A numerical problem in multi-sensor
navigation and its impact on Greedy-FDE are discussed
in Section IV. The analysis is followed by preliminary
simulations in Section V to validate the theoretical analysis
of the integrity aspects.

II. SYSTEM MODEL AND COMPLEXITY ISSUE

A. Generalized System Model

In this work, we use bold letters to denote matrices
(uppercase) and vectors (lowercase). ∥·∥2 denotes the 2-norm
(Euclidean norm) of a vector, and ∥ · ∥0 is used to describe
the number of non-zero entries of a vector.

Without loss of generality, the measurement equation of a
navigation system can be written as

ρ = h(x)+n+b, (1)

where ρ ∈ RN is the raw measurement vector from the
sensors, x ∈RM is the state vector (including position, clock
offset, etc.), n is the stochastic noise with covariance Σn, and
b is the bias vector induced by faults, which is defined as
outliers with unpredictable large errors. The main focus of
this paper is on fault detection, not nominal bias, so for the
rest of the paper, it is assumed that the integrity problems
caused by nominal biases are handled by other methods
and b contains only measurement faults. In the multi-sensor
context, the vector function between the position and the
measurements h(·) is generally nonlinear. Here it is assumed
that the position is estimated in a snapshot-based manner
using the Gauss-Newton iterative optimization algorithm (or
similarly the Levenberg-Marquardt algorithm [9]), and the
convergence of the iterative algorithm is beyond the scope
of this work.

Consequently, the measurement equation can be approx-
imated by first-order linearization close to the convergence
point:

ρ ≈ h(xl)+
∂h(x)

∂x

∣∣∣∣
x=xl

(x−xl)+n+b. (2)

The linearized measurement equation at point xl can be

written as

z = Hx+n+b =

Js1
...

Jsk

x+n+b, (3)

where z = ρ −h(xl)+Hxl . H is the observation matrix (also
known as geometry matrix in satellite navigation), which is
the stack of Jacobian matrices from all the k sensors.

For GNSS pseudorange measurements, the state vector x=
[p,c], which consists of the receiver position and the clock
offset. For simplicity, we assume a single constellation here,
so that the clock is a scalar. The Jacobian matrix can be
calculated by

JGNSS =


p−p1

sat )
T

∥p−p1
sat∥

1
...

p−pK
sat )

T

∥p−pK
sat∥

1

 , (4)

where pi
sat denotes the position of the i-th satellite.

The measurement equation of a camera for the m-th
landmark point is

zm
cam = πm(p)+nm

cam +bm
cam

=

[
1 0 0
0 1 0

]
KRT (pm

map −p)[
0 0 1

]
KRT (pm

map −p)
+nm

cam +bm
cam, (5)

where pm
map denotes the landmark position and the camera

attitude is expressed by R ∈ SO(3). K is the intrinsic matrix
which transforms the position information in the camera local
frame to pixel location in the image.

The least squares solution from the iterative optimization
is denoted as

x̂ = Sz =
(
HT WH

)−1 HT Wz (6)

with W = Σ−1
n assuming that n ∼ N(0,Σn).

B. Maximum Number of Faults

For solution separation based integrity monitoring using
multiple hypotheses statistical test, the null hypothesis H0
assumes that all the N measurements are bias-free. Alterna-
tive hypotheses correspond to all the possible combinations
of the faulty measurement indices. For exactly N f faulty
measurements, there are C

N f
Np

(choose N f from Np) alternative
hypotheses. Therefore, if there are at most N f ,max faults to
monitor, the total number of alternative hypotheses is

Nmode =

N f ,max

∑
N f =1

C
N f
Np

=

N f ,max

∑
N f =1

Np!
(Np −N f )!N f !

. (7)

It should be noted that redundancy-based fault detection can
detect a maximum of N f ,max ≤ N −M faults with integrity.
N f ,max can be computed according to the integrity require-
ments and the a priori probability of faults as shown by
[10]. Hypothesis grouping methods leverage the fact that the
probability of occurrence of a fault mode upper-bounds its
integrity risk contribution. Thus, in satellite navigation, the



probability of occurrence of a large number of simultaneous
faults (e.g., three or more simultaneous failures) is so tiny
that it can directly be subtracted from the total integrity
budget. An exhaustive account of all fault modes is there-
fore achievable. However, in multi-sensor fusion, the total
number of measurements N is much larger. In addition, the
rate of occurrence of outliers for some sensors and sensor
algorithm is significantly higher than in satellite navigation.
Moreover, operation environment of applications in urban
areas increases the chance of outlier occurrence. As a result,
the maximum number of faults to be monitored and the
value of Nmode increases. Table I shows the change of N f ,max
and Nmode as the integrity requirements vary. In the table,
the total number of measurements is N = 30 and the prior
probability of a single measurement is set to 0.01, which
can be a realistic assumption for measurements from sensors
such as a camera. It is shown that the total number of fault
modes increases significantly as the prior outlier probability
becomes higher.

TABLE I: Number of Faults to Monitor and Total Fault
Modes for N = 30, pprior = 0.01

IRmax 10−5 10−6 10−7 10−8

N f ,max 5 5 6 7
Nmode 174436 174436 768211 2804011

It can be seen from this simple example that the explosion
in complexity has limited the usage of the state-of-the-art
MHSS based integrity monitoring algorithm in some multi-
sensor navigation scenarios.

III. INTEGRITY ANALYSIS OF GREEDY-FDE FOR
MULTI-SENSOR NAVIGATION

A. Background on Greedy-FDE

In order to monitor the integrity with limited computa-
tional power, Blanch et al. proposed a greedy search based
fast FDE method in [6] for GNSS integrity monitoring. The
Greedy-FDE method applies residual based test statistic:

γ = zT Az (8)

with
A = W(I−HS) . (9)

The test threshold is first calculated using all measurements
as

T0 = χ
2
N−M(1− pFA), (10)

where the false alert probability pFA is calculated according
to the continuity requirement.

If the statistical test is passed, then no detection is found.
Otherwise, the measurement i that has the largest contribu-
tion to the test statistic is excluded by selecting

zi = argmax
i

ri =
Wi,i(zi −gT

i x̂)2

1−gT
i Wi,i (HT WH)−1 gi

(11)

with gT
i the i-th row of H, and a new threshold is calculated

with reduced number of measurements as

T1 = χ
2
N−M−1(1− pFA). (12)

Such greedy search stops until the statistical test is passed
or there is no more redundancy in the system.

B. Integrity Analysis of Greedy-FDE

Without loss of generality, assuming that the statistic
test has been passed after removing t measurements, the
probability of hazardous misleading information (HMI) is

pHMI = p(|x̂t − x|> AL,γt < Tt), (13)

where AL is the alert limit for the states. The greedy search
continues only if the fault-free hypothesis has been rejected
in all past iterations. The system continuity is affected if the
greedy search terminates due to insufficient redundancy.

The Greedy-FDE method exploits measurement residuals
as test statistic, so the integrity analysis at the termination
step is not much different from residual based integrity
monitoring for multiple faults [11]. With the following
hypotheses:

1) H0: The current set of measurements are fault-free, so
that γt ∼ χ2(N −M− t,0)

2) HA: The current set of measurements contains fault, so
that γt ∼ χ2(N −M− t,λ ),

the residual test statistic γt is compared with the test threshold
Tt = χ2

N−M−t(1− pFA) according to the continuity require-
ment. λ is the critical non-centrality parameter calculated
from the given continuity requirement CR and a maximum
integrity budget for the FDE process IR.

The minimal detectable bias (MDB) is the magnitude of
the bias vector b corresponding to λ , so that the residual
follows the non-central χ2 distribution. The MDB can be
calculated as

bmin =

√
λ

uT
mAum

=

√
λ

uT
mW(I−HS)um

, (14)

um ∈ RN is a unit vector, the direction of which minimizes
the impact of the bias vector on the residuals, i.e., the most
challenging distribution of the measurement biases for the
detector. For a general bias vector b ∈ RN with maximum
N−M non-zero elements, the faults in it can be detected with
guaranteed maximum type I and type II error in the statistical
test, if and only if ∥b∥2 ≥ bmin. The most challenging
direction for the detector um can be found by searching for
the minimum eigenvalue of

Ak = DT
k ADk, (15)

where Dk ∈ RN×N f ,k is the selection matrix corresponding
to the fault mode k that selects the N f ,k non-zero entries
of the bias vector (∥uk∥0 = N f ,k). Ak is full-rank since the
matrix A has rank N−M ≥N f ,k for all fault modes. um is the
eigenvector corresponding to the minimum eigenvalue for all
k.

The least detectable bias direction does not necessarily
lead to largest errors in estimated states. The estimate error
induced by undetected bias can be overbounded by

∥eb,i∥2
2 = bT sisT

i b ≤ λ
uT sisT

i u
uT Au

, (16)



where sT
i is the i-the row of S in Eqn. (6). As shown in

earlier works [11], [12], the worst fault direction that causes
largest integrity risk uw is the bias direction that maximizes
the failure mode slope, i.e.,

uw = argmax
u

uT sisT
i u

uT Au
. (17)

Joerger et al. proposed in [12] an analytical way of calculat-
ing the worst bias direction uw,k as well as the failure mode
slope under fault mode hypotheses k as

uw,k = DkA−1
k DT

k si, (18)

g2
k = sT

i DkA−1
k DT

k si = sT
i uw,k. (19)

Then uw can be selected as the direction corresponding to
the largest g2

k as

uw = argmax
uw,k

sT
i uw,k. (20)

With the worst bias direction, the maximum position error
induced by the undetected bias can be calculated as

ēb,i =
√

λ sT
i uw, (21)

which should be considered when calculating protection level
of the navigation system.

It should be mentioned that in order to calculate the worst
slope and the corresponding error bound, Greedy-FDE still
need to search over all the fault modes. Developing methods
to reduce its computational cost is an important work to
investigate in future.

IV. POTENTIAL NUMERICAL ISSUE FOR GREEDY-FDE IN
MULTI-SENSOR NAVIGATION

In multi-sensor navigation context, the structure and the
numerical values of the Jacobian matrices from different
sensors Jsk can be significantly different. For GNSS measure-
ments, each row of the Jacobian matrix has the structure like[
(x−xi

sat )
T

∥x−xi
sat∥2

,1
]
. The first three columns is the direction vector

pointing from the satellite to the receiver, and the last column
corresponds to the receiver clock offset (here only the four
basic states for single constellation GNSS are mentioned for
simplicity). For camera measurements, some values in the
intrinsic matrix K in Eqn. (5) are in unit of pixel, and the
values can be large for high-resolution cameras. As a result,
such variety in Jacobians from different sensors leads to
specific structure of the integrated geometry matrix H. More
specifically, some columns of H may contain large values
from the camera Jacobian that are two or three orders of
magnitude greater than the values from the GNSS Jacobian.
As a result, that column will have a quasi-sparse structure
with a few large entries and other tiny elements (relative to
the large-valued entries).

After a few measurements are excluded as potential faults
by multi-sensor Greedy-FDE, there may be some particular
state corresponding to the column h j with the aforemen-
tioned quasi-sparse structure. If the number of large values
in h j equals to maximum number of monitored faults N f ,max,

Fig. 2: Skyplot of the satellites used in simulation

Fig. 3: Simulated image. Red dots denotes the corner points
of the marker.

the geometry becomes ill-conditioned for the fault detector.
In such cases, there is actually no redundancy to further de-
tect faults. Although the tightly coupled sensor fusion should
provide sufficient redundancy in that state in theory, the
variety in the magnitude of numerical values from different
sensors reduces the significance of such redundancy. As a
result, the detector will have a large MDB which degrades
the availability, or the greedy search will be terminated due
to insufficient degrees of redundancy so that the continuity
is affected. An example of such numeric effects is shown
in simulation in Section V. The solution to the issue may
require reparameterizing some sensors’ measurement equa-
tion to reduce the magnitude difference in the multi-sensor
Jacobian matrix.

V. SIMULATION RESULTS

In this section, a simulation scenario is set up to validate
the performance of Greedy-FDE and its integrity aspects.
Fig. 1 shows the simulated unmanned aerial vehicle (UAV)
landing scenario. The UAV is assumed to be equipped with
a GNSS receiver and a calibrated camera. The camera is
downward-facing and a georeferenced visual marker on the
ground is detected for visual positioning. In the simulation,
it is assumed that the 16 reference corners of the markers
are used as 2D feature points for the camera (in total 32
visual measurements) and 13 pseudorange measurements
are generated using realistic geometry extracted from real
measurement data. The skyplot of the satellite geometry is
shown in Fig. 2. The relative pose between the camera and
the visual marker is shown in Fig. 1.

In total there are N = 45 measurements (32 marker co-
ordinates and 13 GNSS pseudoranges), and the state space
has M = 4 dimensions (single constellation), which consists



Fig. 4: Root Mean Square Error (RMSE) of Greedy-FDE for
different numbers of faults

of 3D position in local reference frame and a clock offset
of the GNSS receiver. The fault detector is able to detect
up to N − M = 41 single-measurement outliers in theory.
The UAV is set to be 10 meters above the ground. The
noise standard deviation is assumed to be 1 [m] for GNSS
and 5 [pixel] for simplicity. With the simulation set-up, the
geometry matrix of the multi-sensor system can be expressed

as H =

[
JGNSS
Jcam

]
∈ RN , which includes Jacobian matrices

from both sensors.
Fig. 4 shows the performance improvement by applying

Greedy-FDE. In this example, the norm of the bias vector
is set as 200. The biases are added in the direction that at
most 1 satellite (PRN1) is faulty and all the other faulty
measurements are from the camera (exact direction depen-
dent varies with the numbers of fault). It can be seen that
with the FDE process, faulty measurements are removed even
with a large number of faults. Consequently, the position
estimation error is significantly reduced compared to no
FDE case. Fig. 5 illustrates the average number of excluded
measurements using Greedy-FDE in the simulation runs.
It can be seen that the algorithm excludes almost exact
number of faulty measurements. The number of mistakenly
excluded measurements is so low that it is not easy to observe
from the curve. As a quantitative example, wrong exclusion
only happened 28 times in 104 runs for N f = 10, and the
continuity was never lost in the simulation. The comparison
of the nominal performance between Greedy-FDE and other
FDE methods can be found in the original paper from
Blanch et al. [6]. It should be noted that the Greedy-FDE
cannot outperform the MHSS in terms of RMSE due to
its suboptimal nature. However, the computational cost of
MHSS based methods will be too high for most onboard
computers to afford as N f grows. A runtime comparison can
be found in [8].

Fig. 6 shows the impacts of bias magnitude on positioning
performance. Larger bias values facilitate FDE and therefore
cause smaller positioning errors as compared to smaller
fault magnitudes. Smaller faults cannot always be detected
if the bias magnitude is lower than the minimal detectable

Fig. 5: Average number of exclusion using Greedy-FDE for
different numbers of faults

Fig. 6: Impact of bias magnitude on RMSE. bmin=97.8621,
N f =7.

bias. This result consolidates the MDB calculation. For
such geometry in the example scenario, the MDB value
is MDB=97.8621. Simulated biases are added to 7 mea-
surements with the worst distributed direction um. As the
magnitude of the bias changes from below the MDB to
larger than MDB, the detectability of the faults changes
significantly. This can also be seen from the average number
of excluded measurements in Fig. 7 and from the miss
detection rate curve in Fig. 8.

Additionally, an example of the numerical issue discussed
in Section IV is provided. The system setup contains a
total of 21 measurements including 6 feature points (12
measurements) and 9 satellites. The magnitude value of H
is illustrated in Fig. 9. In the plot, the x and y axes indicate
the column and row indices of elements of the H matrix.
The color of each cell reflects the magnitude of the numeric
value of the corresponding matrix element. Here, the values
are normalized using the maximum number in the H matrix
so that the values are in the range [0,1]. It can be seen that
in the first two columns, there are 6 elements with large
value (with value around 139 before normalization) and the
other values are very small (for the first columns all below 1
even without normalization). This shows that the first column



Fig. 7: Average number of exclusion using Greedy-FDE for
different magnitude of bias

Fig. 8: Miss detection rate for different bias magnitude. IR=
10−8,CR = 1%

of the geometry matrix has a quasi-sparse structure due to
numerical effects from different sensors. The reason for the
significant difference in the values is that the intrinsic matrix
K in Eqn. (5) contains values as large as a few hundreds that
propagates to the Jacobian Jcam and other values in the same
column of the Jacobian are zero or small numbers below one.
In such case, the system losses redundancy and the Greedy-
FDE will be interrupted.

VI. CONCLUSION AND OUTLOOK

In the context of multi-sensor navigation, greedy search
based FDE needs to be used in the scenarios when the
computational complexity of solution separation method is
too high. The Greedy-FDE relies on the residual based
statistical test to detect outliers. The integrity of the method
is analyzed, with a focus point on the minimal detectable bias
and worst case slope calculation. It has been validated that
Greedy-FDE is efficient and effective for integrity monitoring
with a large number of faults. Nevertheless, the calculation
of the worst case slope still require to search over all fault
modes. Innovative methods to reduce its computational com-
plexity is demanded in future developments. There are also
potential corner cases due to numerical issues from multi-
sensor fusion. The appearance possibility of such events in

Fig. 9: Illustration of the magnitude of H

real life is yet to be further investigated in future work.
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