
SoHist: A Tool for Managing Technical Debt through Retro
Perspective Code Analysis

Benedikt Dornauer∗
Michael Felderer†‡

benedikt.dornauer@uibk.ac.at
michael.felderer@uibk.ac.at
University of Innsbruck

Innsbruck, Austria

Johannes Weinzerl
Mircea-Cristian Racasan

jweinzerl@cccom.at
mracasan@cccom.at
c.c.com Moser GmbH

Graz, Austria

Martin Hess
martin.hess@softwareag.com

Software AG
Darmstadt, Germany

ABSTRACT
Technical debt is often the result of Short Run decisions made
during code development, which can lead to long-termmaintenance
costs and risks. Hence, evaluating the progression of a project and
understanding related code quality aspects is essential.

Fortunately, the prioritization process for addressing technical
debt can be expedited with code analysis tools like the established
SonarQube. Unfortunately, we experienced some limitations with
this tool and have had some requirements from the industry that
were not yet addressed.

Through this experience report and the analysis of scientific
papers, this work contributes: (1) a reassessment of technical debt
within the industry, (2) considers the benefits of employing Sonar-
Qube as well as its limitations when evaluating and prioritizing
technical debt, (3) introduces a novel tool named SoHist which
addresses these limitations and offers additional features for the
assessment and prioritization of technical debt, and (4) exempli-
fies the usage of this tool in two industrial settings in the ITEA3
SmartDelta project.

CCS CONCEPTS
• Software and its engineering → Software evolution; Soft-
waremaintenance tools; •General and reference→ Evaluation.

KEYWORDS
SoHist, technical debt, software quality evolution, SonarQube

ACM Reference Format:
Benedikt Dornauer, Michael Felderer, Johannes Weinzerl, Mircea-Cristian
Racasan, and Martin Hess. 2023. SoHist: A Tool for Managing Technical Debt
through Retro Perspective Code Analysis. In Proceedings of the International
Conference on Evaluation and Assessment in Software Engineering (EASE
’23), June 14–16, 2023, Oulu, Finland. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3593434.3593460

∗Also with University of Cologne.
†Also with German Aerospace Center (DLR), Institute for Software Technology.
‡Also with University of Cologne.

This work is licensed under a Creative Commons Attribution International
4.0 License.

EASE ’23, June 14–16, 2023, Oulu, Finland
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0044-6/23/06.
https://doi.org/10.1145/3593434.3593460

1 INTRODUCTION
Nowadays, software development projects tend to focusmore on the
quick delivery of new features to compete in the highly competitive
software market rather than on delivering high-quality code. While
this approach may yield increased revenue in the Short Run, it often
results in high maintenance costs in the Long Run. These costs are
known as Technical Debt (TD) and are a severe problem in software
development projects, as exemplified in Figure 1. Numerous studies
have substantiated these trends in several years of research [2, 8,
13], highlighting the detrimental impact of such circumstances on
quality assurance.

Project Duration

C
om

pl
ex

ity
 /

D
ev

el
op

m
en

t E
xp

en
se

s

Long Run
Short Run

Sustainainable
code quality effort

Fast development
with compromises

Quality efforts get
profitable

Figure 1: In a Short Run, more features of software systems
can emerge and lead to a better turnover. But if the code
quality approaches are not “sustainable”, it may result in
extra effort and overhead in the Long Run, which could lead
to total project failure.

To counteract this trend, various factors have to be taken into
account when evaluating, measuring, and finally addressing TD,
which depend on the individual requirements and priorities of the
project. Some projects may prioritize security, while others focus
on performance scalability or test coverage to catch potential bugs
and errors before they are deployed to production. Unfortunately,
research on prioritizing TD is still in an early stage and lacks con-
sensus on identifying important factors of TD and determining
appropriate measurement methods [1].

In the ITEA3 project SmartDelta1, e.g., we observed that some
use case providers require a deeper understanding of how their
projects have evolved over time in order to analyze and understand
TD. Among those are c.c.comMoser GmbH and Software AG. For this
reason, we were looking for a tool that is capable to analyze code
quality but also supports the historical analysis of code commits
1www.smartdelta.org with partners www.softwareag.com and www.cccom.at

184

https://orcid.org/0000-0002-7713-4686
https://orcid.org/0000-0003-3818-4442
https://orcid.org/0009-0009-2016-8584
https://orcid.org/0009-0008-7938-3126
https://orcid.org/0000-0001-5827-2736
https://doi.org/10.1145/3593434.3593460
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3593434.3593460
www.smartdelta.org
www.softwareag.com
www.cccom.at
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3593434.3593460&domain=pdf&date_stamp=2023-06-14

EASE ’23, June 14–16, 2023, Oulu, Finland Dornauer, et al.

and deltas to investigate the code quality trend over time and to
identify those code parts requiring the most maintenance effort.

2 SONARQUBE: ADVANTAGES AND
LIMITATIONS FOR ANALYZING CODE
EVOLUTION

Various code quality analysis tools have been developed to support
the improvement of reliability and quality in software systems. In
2018 Lenarduzzi et al. [7] compiled a list of the most popular code
analysis tools. Based on their findings, we adopted their methodol-
ogy and investigated the current popularity of those tools in 2023.
Our analysis [6] shows that SonarQube2 is the most popular among
those (see Figure 2).

SonarQube ConQAT Source meter Imagix code Polyspace Coverity code
CAST code PMD Codacy Jarchitect Structure101 Klocwork Parasoft Jtest

CodeSonar JLint Lattix Findbugs Checkstyle Fortify Static Code Analyzer

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

100

75

50

25

0

Figure 2: Google Search interest level in percent measured
for popular code analysis tools since 2004. SonarQube shows
the highest Google Search interest level since 2016 [6].

With more than 200 000 companies, as claimed by Sonar Source
[11], the SonarQube Community Edition is widely established in the
industry [Adv.1]. SonarQube gives companies, such as Software AG
and c.c.com Moser GmbH, the opportunity to inspect code quality
and code security in their software engineering pipeline, supporting
over 19 programming languages in the free version and further 5
in the developer edition [Adv.2][10].

The classification system for issues used by SonarQube can be
grouped into three main types. The first category is Code Smells,
which are issues that can increase change-proneness and mainte-
nance efforts. The second category is Bugs, which are issues that
could result in an error or unexpected behaviour. The third category
is Vulnerabilities, which identifies problems that can compromise
the security of the software [9]. All these issues compiled into one
tool are a convenient and time-saving solution for industry [Adv.3].

However, SonarQube also has some limitations, which we will
discuss further:
[Lim.1] Focus on the latest project version
SonarQube analyses the modifications made to a project from the
point of its initial integration. Consequently, the previous project’s
evolutionmight not be accessible, preventing the user from analysing
the project’s quality trend over time [12]. Specifically, this could
be of interest if someone is tasked with taking over a new project.
Notably, there is a workaround, but it is complicated to implement,
requires detailed knowledge, and is far from being fully automated.
2www.sonarsource.com/products/sonarqube

[Lim.2] Limited analysis options
Another limitation of SonarQube Community Edition is the need
for additional filtering options for more detailed assessments. For
instance, it is not possible to analyze a different branch than the
main branch or to focus the analysis on specific developers.
[Lim.3] Lacking comparability between SonarQube versions
Quality metrics and rules may change between different versions
of SonarQube [3]. Consequently, such discrepancies can result in
different outcomes and a distorted picture of the TD evolution
depending on the SonarQube versions used during the project’s
lifetime.
[Lim.4] Reduced visualization capabilities
SonarQube offers some basic visualizations supporting three met-
rics to be shown at the same time. This requires, however, that
the values of the selected metrics are in the same range because
otherwise, smaller distinctions are no longer visible. Another as-
pect to consider is the need for a single metric for interpreting
TD, which may vary depending on a case-by-case basis (see Sec-
tion 1). Unfortunately, SonarQube does not currently offer such a
visualization.

3 SOHIST
Considering the industrial relevance of SonarQube in 2023 and the
demand for extended (historical) analysis functionality, we decided
to develop a new code analytics tool called SoHist that addresses
the limitations of SonarQube and provides extended historical code
analysis capabilities such as the evolution of TD over time. SoHist
is open-source and available on GitHub bdornauer/sohist3.

3.1 The Concept of SoHist
SoHist is a toolset available in a containerized format and can be
deployed using Docker. The system’s architectural design encom-
passes a SonarQube instance along with a database, the SonarScan-
ner to trigger the code analysis, an interface to Git, as well as a
web service hosting SoHist’s user interface. Figure 3 illustrates the
automated procedure for conducting a historical analysis of a Git
repository history [Lim.1].

1

3

4

2

S IST

SonarScanner

Commits /
Branches

GIT

API

REST
Calls

API

Checkout specific commits

Figure 3: Conceptual structure of SoHist.

3https://github.com/bdornauer/sohist

185

www.sonarsource.com/products/sonarqube
https://github.com/bdornauer/sohist

SoHist: A Tool for Managing Technical Deb EASE ’23, June 14–16, 2023, Oulu, Finland

1○ In the first step, the user must enter some required parameters
to connect SoHist to the version control system. This includes, e.g.,
the URL of the target GitLab instance, the target project name, and
the user’s access token. 2○ After connecting SoHist to the specified
GitLab, the user can define the parameters for the historical code
analysis of the selected project. This includes the time range of the
analysis, the desired committers (and their corresponding commits),
and a Git branch of their choice [Lim.2]. 3○ Subsequently, SoHist
analysis can be triggered by the user, which automatically executes
individual SonarQube analysis runs for each change. By using the
same SonarQube versions and thus identical metrics and rules
for each run, SoHist ensures that the results for the changes are
comparable [Lim.3]. If a newer SonarQube version is available,
the retro perspective analysis with SoHist can be executed again,
which could be cumbersome, but ensures comparability. 4○ After
the execution of SonarQube analysis, the user can access the code
quality history and use the two available SoHist visualizations4
– Code Evolution and Weighted Code Evolution Significance. This
enables the user to track the evolution of the code quality over time
and evaluate the impact of individual changes.

3.2 Outcomes and Visualization [Lim. 4]
SoHist provides the userwith the capability to viewmultiplemetrics4
simultaneously (Visualization 1: Code Evolution). When the user
moves the cursor over a specific time, the corresponding timestamp
is highlighted across all metric charts. This allows the user to com-
pare the various metrics against each other.

Figure 4: The user can prioritize specificmetrics of interest in
assigning weights. In this particular scenario of a university
teaching project, Security issues were assumed to be critical
(50%), followed by Bugs (30%) and Code Smells (20%). Through
this visualization, it can be observed that during the initial
phase, when only experienced researchers were involved in
setting up the repository (skeleton), there were fewer issues.
Later on, as students joined, the number of issues focusing
on security increased comparatively.

The second visualization called Weighted Code Evolution Signifi-
cance4 introduces a novel approach to address the challenge of
individual project demands and prioritization of specific Sonar-
Qube’s main metrics, as outlined in Section 2. This approach al-
lows users to focus their analysis on multiple specific main metrics

4Videos for demonstration: https://doi.org/10.5281/zenodo.7713782

of their choice (Reliability, Security, Maintainability, Test Cover-
age and Duplicated Lines) by assigning individual metric weights.
Based on this weighting and the data obtained from the individ-
ual SonarQube runs, a visual representation of the project’s life
cycle is shown, as demonstrated in Figure 4, highlighting those
changes that have had the greatest impact according to the chosen
weights. The higher theWeighted Code Evolution Significance, the
more significant the change related to the weighted category is. For
a detailed description of the calculations, take a look at [5]. Further,
a detailed analysis can be conducted using the first visualization.

4 INDUSTRIAL CHALLENGES AND USAGE OF
SOHIST

4.1 c.c.com Moser GmbH - Logistics and
Personal Mobility

Background: One of the solutions provided by c.c.com Moser
GmbH are their BLIDS sensors, which enable the measurement of
traffic flow on the street using Bluetooth, WiFi and Bluetooth Low
Energy data. In temporary deployment scenarios, these sensors
typically rely on battery power and require periodic replacement.
Consequently, c.c.com Moser GmbH aims to reduce the energy
drain of the sensors.
Scope: Given the high cost associated with hardware exchange,
c.c.com Moser GmbH has undertaken efforts to address energy con-
sumption at the software level (design decisions, data compression,
etc.). The company has sought to establish potential correlations
between software quality metrics and physical properties, such
as specific energy consumption. Over the years, c.c.com Moser
GmbH has amassed a wealth of physical measurements that will be
used in the upcoming analysis tasks. On the software level, c.c.com
Moser GmbH still needs to collect software quality metrics over
time and has needed a tool that facilitates historical code analysis
with support for multiple programming languages.
Usage of SoHist: Therefore, c.c.com has initiated an analysis of
the firmware repository. For every historical update of the sensor
software, c.c.com collects energy-related code metrics via the Sonar-
Qube API. This is only feasible with SoHist’s retrospective analysis,
as no previous measurements are available. Metrics of particular
interest include, for instance, theMcCabe Cyclomatic Complexity or
Lines of Code as prior research by Corrêa et al. [4] has demonstrated
their potential impact on the energy consumption of embedded
systems. In the ongoing activities of SmartDelta, c.c.com has the
historical energy-related code metrics available and can investigate
if specific changes (related to the code metrics) impacted the energy
consumption. With SoHist, c.c.com Moser GmbH can now address
its correlation efforts.

4.2 Software AG – Enterprise Software
Background: Enterprises are highly dependent on the availability
and reliability of their software in today’s world. Any malfunction
resulting in unavailable or severely slowed down software systems
may severely impact their business. Continuously improving the
codebase is thus critical for Software AG as a leading supplier of
enterprise software to deliver high-quality products and increase
customer satisfaction.

186

https://doi.org/10.5281/zenodo.7713782

EASE ’23, June 14–16, 2023, Oulu, Finland Dornauer, et al.

Scope: The more complex a software product gets, the more time
and effort must be invested in code maintenance, leaving less time
for feature development. Thus, identifying which parts of the code
are causing problems – such as security or performance issues –
or require increased maintenance is critical to efficiently solving
issues and managing efforts and costs. Software AG Research uses
SonarQube for the detection of common bugs, security issues and
for analyzing the overall code quality. However, SonarQube does
not give direct insights into the historical evolution of the code-
base. This information would enable the analysis of TD and could
lead to a better understanding of a software development project’s
progression over time.
Usage of SoHist: Software AG Research used SoHist to assess
the code quality trend within one of their research projects. The
SoHist analysis and especially the novelWeighted Code Evolution
Significance view, focusing on Bugs and Code Smells, revealed some
interesting insights. Figure 5 presents the analysis results of the
Master branch. The increased number of Bugs and Code Smells
shown for the Master branch in the project’s early to mid-stage
(1) are indicators for technical debt. Further analysis revealed that
during this time frame, the team focused on developing new features
rather than improving the code quality on the Master branch. In
the middle of March, the team incorporated a new process for
addressing code quality issues. This led to a substantial reduction
in code quality issues. Thanks to the new process, the code quality
issues observed at the end of May (2) have been addressed and
solved faster this time. Through SoHist, Software AG Research was
able to reproduce this time frame and assess the actual benefits of
the new quality assurance process.

0.78

0.72

0.66

0.59

0.53

0.470.47 0.47 0.47

0.63

0.47 0.47 0.47 0.47 0.47

0.78

0.47

Dec '21 2022 Feb '22 Mar '22 Apr '22 May '22

1

2

Figure 5: Software AG Use Case: Historical analysis of the
master branch of a project, focusing on bugs and code smells.

5 CONCLUSION
Maintaining a balance between developing new features and ensur-
ing software quality is essential for the success of software develop-
ment projects. Achieving this balance requires precise monitoring
and management of TD overtime. To support this effort, automated
tools are necessary to analyse changes and identify areas requiring
high maintenance. One of these widely used tools in the industry
is SonarQube.

In this paper, we highlighted some limitations of SonarQube and
proposed a new tool, named SoHist, to address these limitations
and perform historical code quality analysis. In addition, SoHist in-
troduces a new visualization approach, which allows the weighting
of code quality aspects according to individual project needs.

The tool has demonstrated its benefits in two industrial settings,
making it a good candidate for implementation in other industrial

projects. Nevertheless, SoHist is still a prototype and thus has some
limitations. At present, SoHist only shows the timestamp of the
commits, but further details, such as the committer, still need to be
included. Similarly, it is currently not possible to directly open the
corresponding commit in GitLab or issue description in SonarQube.
These usability issues may limit the overall root cause analysis of a
project. Besides that, a potential risk to the long-term viability of
SoHist is the possibility of restrictions imposed by SonarQube.

In future work, we will conduct further assessments to evaluate
the usability, including performance and comprehensibility issues,
in the industry domain. Furthermore, we plan to make improve-
ments, such as automated plugin integration or disposal of current
limitations.

ACKNOWLEDGMENTS
This work has been supported by and done in the scope of the
ITEA3 SmartDelta project, which has been funded by the Austrian
Research Promotion Agency (Grant No. 890417) and the German
Federal Ministry of Education and Research (Grant No. 01IS21083A).

REFERENCES
[1] Maria Teresa Baldassarre, Valentina Lenarduzzi, Simone Romano, and Nyyti

Saarimäki. 2020. On the Diffuseness of Technical Debt Items and Accuracy of
Remediation Time When Using SonarQube. Information and Software Technology
128 (Dec. 2020), 106377. https://doi.org/10.1016/j.infsof.2020.106377

[2] R. Baskerville, L. Levine, J. Pries-Heje, and S. Slaughter. 2001. How Internet
Software Companies Negotiate Quality. Computer 34, 5 (May 2001), 51–57.
https://doi.org/10.1109/2.920612

[3] Hendrik Buchwald. 2022. How Often Are Builtin Rules Updated in
SQ. https://community.sonarsource.com/t/how-often-are-builtin-rules-
updated-in-sq/69493

[4] Ulisses Brisolara Corrêa, Luis Lamb, Luigi Carro, Lisane Brisolara, and Júlio
Mattos. 2010. Towards Estimating Physical Properties of Embedded Systems
using Software Quality Metrics. In 2010 10th IEEE International Conference on
Computer and Information Technology. IEEE, Marrakech, 2381–2386. https:
//doi.org/10.1109/CIT.2010.409

[5] Benedikt Dornauer. 2023. Computations behind the Weighted Code Evolution
Significance. https://doi.org/10.5281/ZENODO.7713698

[6] Benedikt Dornauer. 2023. Trend of Code Analysis Tools 2004 -2023. https:
//doi.org/10.5281/ZENODO.7713953

[7] Valentina Lenarduzzi, Alberto Sillitti, and Davide Taibi. 2020. A Survey on
Code Analysis Tools for Software Maintenance Prediction. In Proceedings of 6th
International Conference in Software Engineering for Defence Applications, Paolo
Ciancarini, Manuel Mazzara, Angelo Messina, Alberto Sillitti, and Giancarlo
Succi (Eds.). Vol. 925. Springer International Publishing, Cham, 165–175. https:
//doi.org/10.1007/978-3-030-14687-0_15

[8] Robert Ramač, Vladimir Mandić, Nebojša Taušan, Nicolli Rios, Sávio Freire,
Boris Pérez, Camilo Castellanos, Darío Correal, Alexia Pacheco, Gustavo Lopez,
Clemente Izurieta, Carolyn Seaman, and Rodrigo Spinola. 2022. Prevalence,
Common Causes and Effects of Technical Debt: Results from a Family of Surveys
with the IT Industry. Journal of Systems and Software 184 (Feb. 2022), 111114.
https://doi.org/10.1016/j.jss.2021.111114

[9] SonarSource. 2023. Metric Definition. https://docs.sonarqube.org/latest/user-
guide/metric-definitions/

[10] SonarSource. 2023. SonarQube. https://www.sonarsource.com/products/
sonarqube/

[11] SonarSource. 2023. SonarQube - Downloads. https://www.sonarsource.com/
products/sonarqube/downloads/

[12] Paul Spencer. 2022. Have SonarQube Create Historical Data. https://community.
sonarsource.com/t/have-sonarqube-create-historical-data/60492

[13] June Verner, Jennifer Sampson, and Narciso Cerpa. 2008. What Factors Lead to
Software Project Failure?. In 2008 Second International Conference on Research
Challenges in Information Science. IEEE, Marrakech, 71–80. https://doi.org/10.
1109/RCIS.2008.4632095

187

https://doi.org/10.1016/j.infsof.2020.106377
https://doi.org/10.1109/2.920612
https://community.sonarsource.com/t/how-often-are-builtin-rules-updated-in-sq/69493
https://community.sonarsource.com/t/how-often-are-builtin-rules-updated-in-sq/69493
https://doi.org/10.1109/CIT.2010.409
https://doi.org/10.1109/CIT.2010.409
https://doi.org/10.5281/ZENODO.7713698
https://doi.org/10.5281/ZENODO.7713953
https://doi.org/10.5281/ZENODO.7713953
https://doi.org/10.1007/978-3-030-14687-0_15
https://doi.org/10.1007/978-3-030-14687-0_15
https://doi.org/10.1016/j.jss.2021.111114
https://docs.sonarqube.org/latest/user-guide/metric-definitions/
https://docs.sonarqube.org/latest/user-guide/metric-definitions/
https://www.sonarsource.com/products/sonarqube/
https://www.sonarsource.com/products/sonarqube/
https://www.sonarsource.com/products/sonarqube/downloads/
https://www.sonarsource.com/products/sonarqube/downloads/
https://community.sonarsource.com/t/have-sonarqube-create-historical-data/60492
https://community.sonarsource.com/t/have-sonarqube-create-historical-data/60492
https://doi.org/10.1109/RCIS.2008.4632095
https://doi.org/10.1109/RCIS.2008.4632095

	Abstract
	1 Introduction
	2 SonarQube: Advantages and Limitations for Analyzing Code Evolution
	3 SoHist
	3.1 The Concept of SoHist
	3.2 Outcomes and Visualization [Lim. 4]

	4 Industrial Challenges and Usage of SoHist
	4.1 c.c.com Moser GmbH - Logistics and Personal Mobility
	4.2 Software AG – Enterprise Software

	5 Conclusion
	Acknowledgments
	References

