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Abstract—Machine Learning (ML)-enabled systems that run
in safety-critical settings expose humans to risks. Hence, it
is important to build such systems with strong assurances
for domain-specific safety requirements. Simulation as well as
metaheuristic optimizing search have proven to be valuable tools
for online testing of ML-enabled systems for early detection of
hazards. However, the efficient generation of effective test cases
remains a challenging issue. In particular, the testing process
shall produce as many failures as possible but also unveil diverse
sets of failure scenarios.

To study this phenomenon, we introduce a risk-driven test
case generation and diversity analysis method tailored to ML-
enabled systems. Our approach uses an online testing technique
based on metaheuristic optimizing search to falsify domain-
specific safety requirements. All test cases leading to hazards are
then analyzed to assess their diversity by using clustering and
interpretable ML. We evaluated our approach in a collaborative
robotics case study showing that generating tests considering
risk metrics represents an effective strategy. Furthermore, we
compare alternative optimizing search algorithms and rank them
based on the overall diversity of the test cases, ultimately showing
that selecting the testing strategy based on the number of failures
only may be misleading.

Index Terms—Search-based testing, ML-enabled systems, Risk,
Diversity analysis, Simulation

I. INTRODUCTION

Autonomous systems running in safety-critical settings (e.g.,
collaborative robots, autonomous vehicles) increasingly rely
on machine learning (ML) components (e.g., Deep Neural Net-
works) to mimic aspects of human intelligence, such as vision-
related tasks (e.g., image classification, and object detection).
Collaborative robots, sometimes referred to as Collaborative
Artificial Intelligence Systems (CAISs) [1], [2], belong to this
class. The core functions of these systems are enabled by ML
components to work together with humans in a shared physical
space and achieve a common goal. Indeed, the internal logic
of ML components is not rigorously specified and is not

captured by a piece of code but is rather determined by
a training process involving positive and negative examples
(i.e., pre-labeled data points). The critical setting of CAISs
yields hazardous circumstances that could harm human beings
necessitating the need for strong assurances of compliance
with domain-specific requirements.

Recent empirical studies found offline testing is less effec-
tive in uncovering safety violations compared to online test-
ing [3]. Clearly, even if the ML components are reliable, they
are embedded in complex and dynamic operational ecosystems
affected by sources of uncertainty that may lead to unsafe
component interactions and, therefore, to accidents [4], [5].
Online testing methods for ML-enabled systems deal with
these issues by considering the ML components in a closed
loop with the other parts and the surrounding environment.
However, there are still open challenges in cost-effective iden-
tification of safety hazards. The input space of ML components
is very large and high-dimensional. Thus, testing effort should
be carefully directed toward those semantically meaningful
scenarios that increase the likelihood of observing diverse
sets of hazards (i.e., violation of safety requirements). In
reality, failure diversity in ML-enabled systems is less studied
compared to the ability to produce a lot of failures [6].

To address the aforementioned challenges, we propose a
risk-driven online testing method and test case diversity analy-
sis for ML-enabled systems running in safety-critical domains.
Our method extracts safety requirements from domain-specific
standards regulating the risk management process. Then, we
recast the problem of online testing as a single-objective
optimization problem that drives the generation of test cases
to falsify a given safety requirement. To study the diversity of
the generated test cases, our method combines unsupervised
clustering [7] and model-agnostic interpretable ML [8]. The
idea is to group together test cases with small distance and



then validate whether such test cases are similar in a relevant
way, that is, they yield the same hazard(s) for the same root
cause(s), according to local explanations.

We conducted an empirical evaluation of our approach
by using a CAIS case study simulated using the industry-
strength robot simulator COPPELIASIM [9]. Our experiments
aim at studying: (1) the effectiveness of the risk-driven test
case generation across different search strategies and the
statistical significance of the results; (2) the diversity of the
generated test cases causing hazards. We found that selecting
a particular testing strategy based on failure-revealing ability
only may be misleading. Furthermore, discarding similar test
cases may lead to overlooking significant differences in the
testing outcome due to the non-linear, non-convex behavior of
ML components.

The main contributions of this work are summarized as
follows:

• a novel risk-driven online testing method that falsi-
fies domain-specific safety requirements for collaborative
robots;

• a novel test case diversity analysis method based on
clustering and interpretable ML;

• the application of our methods to a CAIS case study
involving an industry-strength simulator (the implemen-
tation of the methods as well as the case study artefacts
are provided in our replication package);

• an empirical evaluation focusing on effectiveness, statis-
tical significance, and test case diversity.

The remainder of the paper is as follows. In Sec. II,
we introduce relevant background concepts. In Sec. III, we
introduce our case study in the CAIS class of systems. In
Sec. IV, we describe our novel risk-driven online testing and
test case diversity analysis method, while we discuss the
empirical evaluation in Sec. V. In Sec. VI, we summarize
related work and we draw our conclusion in Sec. VII.

II. PRELIMINARIES

A. Search-based Testing
Search-based testing (SBT) is an automated testing tech-

nique that formulates the testing problem as an optimization
challenge by defining a proper fitness function according to an
objective of the problem at hand. SBT adopts metaheuristic
optimizing search algorithms [10](either single-objective or
multi-objective) to automatically generate large amounts of
inputs with the aim of steering the search process towards
better test cases, where “better” is defined by the fitness
function. According to the application domain and the testing
objective, the fitness function used to evaluate the quality of
the test cases must be carefully designed, as it can greatly
impact the cost-effectiveness of the search process. Since SBT
can be computationally expensive for large systems having
many input parameters, the fitness should steer the generation
toward those semantically meaningful scenarios that increase
the likelihood of hazards, especially in safety critical settings.

In this latter case, field testing is usually expensive and
dangerous. Hence, simulation provides a means to control

virtual environments and safely test the target system relying
on simulators. Even though this latter approach can raise
concerns regarding the fidelity of the simulations, it has clear
advantages. It allows the virtual environments to be controlled
systematically, thus increasing internal validity in establishing
cause-effect relationship during the testing process. Further-
more, shared phenomena between the system and the virtual
environments can be directly measured from the simulations.
This represents a ground truth that can be used to deal
with the well-known oracle problem in testing ML-enabled
systems [11]. Such a ground truth enables the adoption of SBT
solutions to perform safe and automated testing for safety-
critical systems.

B. Clustering

Clustering [12] refers to an unsupervised learning task in
which data points are grouped into sets such that data points in
the same set (i.e., cluster) are more similar to each other (based
on the notion of distance) compared to data points in other
clusters. Popular cluster models are, for instance, centroid
models (e.g., k-means) that represent each cluster by a single
mean point, connectivity models (e.g., hierarchical clustering)
that builds clusters based on distance connectivity defined on
hierarchical structures, and density models (e.g., DBSCAN)
that define clusters as connected dense regions in the data
space. For some algorithms, such as k-means, the total number
of clusters must be specified beforehand. Other algorithms,
such as DBSCAN [7], do not require this prior knowledge and
automatically determine the optimal number of clusters. If the
data space is high dimensional, clustering (or more in general
data analysis) may be computationally intractable [13]. Here,
dimension reduction can be beneficial. Dimension reduction
refers to the transformation of data points from a source high-
dimensional space to a target low-dimensional space. The
transformation retains meaningful properties of the original
data points but it reduces the number of variables. Dimension
reduction methods are commonly divided into linear and non-
linear approaches. Principal Component Analysis [14] (PCA)
is a popular linear technique used to increase interpretability of
the data while preserving the maximum amount of information
of the source high-dimensional space.

C. Interpretable Machine Learning

Interpretable (or explainable) ML [8] refers to the extraction
of relevant knowledge from an ML model concerning existing
relations contained in the data or learned predictive models.
Model-agnostic techniques are particularly useful for black
box models that do not explain their predictions (e.g., Neural
Networks). The scope of interpretability is either global (i.e.,
holistic model interpretability) or local (i.e., interpretability for
a single prediction). Global explanations describe the average
behavior of a given model. They give a holistic view of the
distribution of the target outcome (e.g., class labels) based on
the features.

Local explanations, such as those produced by Local In-
terpretable Model-agnostic Explanation [8] (LIME), take into



account an instance of interest and examine the prediction
to explain possible reasons based on an interpretable surro-
gate model. The LIME method starts from a data point xi

and generates a new dataset consisting of perturbed samples
mapping to the corresponding predictions of the original
model. LIME uses the new dataset to train an interpretable
model, which is weighted by the proximity of the samples
to xi. having the local fidelity property (i.e., it is a good
approximation of local predictions, but not necessarily a good
global approximation). LIME explains a given prediction in
terms of values assumed by the most relevant features for
a given instance. The relevance of features is expressed by
LIMES through a mapping from features to weights in [0, 1].
This information is used to rank the features and explain
the extent to which they influence the predicted outcome.
Notice that LIME explanations of different instances yield
different rankings since weights depend on feature values of
the instances.

III. COLLABORATIVE AI SYSTEM CASE STUDY

Here, we introduce our case study used to illustrate the
main steps of our approach, but also as a system subject
in our empirical evaluation. The case study is an industrial
CAIS used to carry out a production-relevant collaborative
“pick and place” task along with a human operator [1], [15].
Figure 1a illustrates a high-level schema of the collaborative
task, whereas Fig. 1b shows a translation of the schema to our
simulated case study. In this example, an automated controller
of a robotic arm attempts to detect and classify objects (e.g.,
by color and shape) on a conveyor belt and actuates the proper
movements to pick and move the object into the right bucket.
The sorting skill is acquired by the robot automatically, based
on human demonstrations. The system includes a controller,
an actuated mechanical system (i.e., robotic arm), and a
camera sensor along with a visual perception ML component
for classification. This ML component learns on structured
heterogeneous data sources associated with features (e.g.,
shape and color of an object) and yields category labels as
output, where labels identify the buckets where the objects
must be placed. The operator collaborates with the robot in
order to supervise the correct transfer of the desired sorting
skill to the robot and can intervene through gestures when
corrections are required.

Risk management processes in the development of these
industrial robots are regulated by existing standard documents
(i.e., ISO 10218-11 and ISO 10218-22). In particular the
ISO/TS 150663 for collaborative robotics define risk miti-
gation procedures involving the assurance of relevant safety
requirements depending on the adopted operating mode as
reported in Table I. The safety control approach in our case
study is implemented as described in [16], by considering
the SRMS operating mode according to Table I. Here, a
protective separation distance between the human and the

1https://www.iso.org/obp/ui/#iso:std:iso:10218:-1:ed-2:v1:en
2https://www.iso.org/obp/ui/#iso:std:iso:10218:-2:ed-1:v1:en
3https://www.iso.org/obp/ui/#iso:std:iso:ts:15066:ed-1:v1:en

TABLE I: Operating modes defined by ISO/TS 15066.

Mode Description

Power and Force Lim-
iting (PFL)

Humans and robots can act simultaneously within the
shared space and, even if they come into contact the hu-
man is unharmed since the robot is designed with rounded
edges and limited force to soften potential impacts.

Safety-rated Monitored
Stop (SRMS)

Robots shall always keep a protective distance (i.e., the
safety zone) and interrupt any ongoing motion in case
humans are too close (i.e., the human brakes the safety
zone) since the robots can potentially harm them.

Hand Guidance (HG) Contacts in collaborative tasks may occur since humans
have an active role in monitoring, supervising, and con-
trolling the robots. In this case, the robots shall dynami-
cally activate and deactivate autonomous behaviors.

ML
visual perception

component
controller

sensors
input

actuators
output

shared space

safety
zone

(a) Collaborative task schema.

(b) Case study simulation in COPPELIASIM.

Fig. 1: Illustrative examples of our CAIS case study.

robot is checked online using safety zones [16]. The dimension
of such zones is dynamically adapted based on the robot
motion. Fast motions of the robot can generate large safety
zones which may negatively affect the collaboration.

Figure 2 illustrates a UML Activity Diagram describing the
scenario of interest of our case study. The scenario includes
two agents, human and robot, described in Fig. 2 using two
swim lanes. The agents collaborate in the aforementioned
“pick and place” task. The scenario starts with an object (a
small box) placed onto the conveyor belt placed in the shared
physical space. Both the human and the robot can move to pick
the object up and place it into a bucket. The two agents decide
when they start moving (after a certain waiting time). We

https://www.iso.org/obp/ui/#iso:std:iso:10218:-1:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:10218:-2:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:ts:15066:ed-1:v1:en
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Fig. 2: UML Activity Diagram of the simulated scenario.

assume that the human does not care about possible hazards
and, once started he/she tries to complete the task, no matter
what is the behavior of the robotic arm. On the contrary, the
robotic arm has a controller that shall trigger an emergency
stop according to the SRMS operating mode. The system is
equipped with a point-of-view vision sensor that feeds the pre-
trained ML component in charge of detecting possible foreign
objects (in this case, parts of the human agent, such as arms
and hands) to trigger an emergency stop action and keep the
protective distance. The scenario terminates either when: one
of the two agents safely completes the task (i.e., the object
has been placed into the bucket); or a hazard occurs (i.e., the
protective distance is violated and the robot is moving).

The simulation of our case study is implemented using
COPPELIASIM [9] (formerly known as V-REP), a high-fidelity
robot simulator. Figure 1b shows a screenshot of our simulated
case study running onto COPPELIASIM. The simulator is
connected to an external controller implemented in PYTHON
that receives a stream of images from the vision sensor and it
triggers the emergency stop actions based on the outcome of
a pre-trained ML visual perception component implemented
using the OPENCV vision library [17].

IV. TESTING AND DIVERSITY ANALYSIS

In this section, we first define our problem statement and
then we present our approach based on risk-driven online
testing and test case diversity analysis.

A. Problem Statement

In the following, we provide the reader with a general
treatment of the problem regarding test case generation, test
case execution, and test case diversity analysis for ML-enabled

critical systems. Even though we use a specific case study in
the CAISs class, in this description, we try to be as general as
possible to potentially include other categories of ML-enabled
critical systems that embed ML visual perception components,
such as autonomous vehicles.

In our scenario of interest, the ML component takes as
input a point-of-view image of the shared space (from the
perspective of the robot agent) and triggers an emergency stop
as soon as foreign objects are detected. The ML component
is trained considering a low-level feature space (i.e., pixels
sensed by the vision sensor). These features can be manip-
ulated in a semantically meaningful way (i.e., in a realistic
way avoiding adversarial perturbations) by considering higher
level (and human interpretable) factors of interest, such as the
position and other physical properties of the human operator,
the position of the vision and other relevant factors affecting
the field of view, thus impacting the quality of the data
sensed from the environment. By monitoring the running
scenario, we can detect hazards according to the violation of
safety requirements extracted from relevant domain-specific
regulatory documents. In our case, we consider the ISO TS
15066, and in particular the SRMS operating mode. Given the
function S that computes the boundary of the safety zone [16]
according to robot location and speed, our oracle is defined as
follows:

∀t ∈ T, ∀p ∈ S(rt, st), ∥ht − p∥ > 0 (1)

with T observation period, ∥·∥ magnitude of the distance be-
tween locations in the (three-dimensional) collaborative space,
rt, ht location at time t of the robot and the human agents,
respectively, and st speed of the robot at time t. We let the
reader refer to Di Cosmo et al. [16] for further details about
the function S that calculates the safety zone.

The goal of testing process is to generate realistic scenarios
that cause the system under test to violate the requirement
in Eq. 1, thus affecting the safety of the human agent. More
precisely, given a parametric scenario such as the collaborative
task described in Sec. III, we define a test case as a value
assignment:

Ai = {f1 = a1, ..., fn = an} (2)

where f1, ..., fn is a set of domain-relevant and human-
interpretable factors that control the scenario itself (e.g., light
intensity, initial position of the human, speed of the robot,
etc.). These factors are henceforth referred to as domain
features. If the execution of the parametric scenario under
the assignment Ai satisfies Eq. 1, the execution succeeds, it
fails otherwise. When the execution fails, we say that a safety
hazard is detected.

In addition to the aforementioned testing goal, we also want
to understand the extent to which generated test cases are
diverse. Indeed, diversifying the regions where the domain
features are sampled has advantages. This ensures a more
effective exploration of alternative (i.e., diverse) circumstances
leading to safety hazards. Diversity is especially beneficial
to fault detection and debugging purposes. If the degree of
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Fig. 3: Overview of our approach.

diversity is low, inputs are sampled from contiguous regions
of the domain features and they are likely to trigger the same
behavior. This means that most of the testing effort is wasted in
generating very similar cases. More precisely, after generating
and executing the test cases, we want to collect all the failure-
revealing test cases {A1, ..., An} and study the degree of
diversity of the dataset to select testing strategies that promote
higher diversity.

B. Risk-driven Online Testing

Here we describe our current solution to the problem of
failure-revealing test case generation by discussing our testing
process and the specific search algorithms adopted by it.

We address the problem of failure-revealing test case gen-
eration using single-objective metaheuristic optimizing search
algorithms. Our approach pushes the metaheuristic search
toward test cases that are likely to increase the risk according
to the SRMS operating mode, thus increasing the likelihood
of breaking the requirement in Eq. 1.

Figure 3 shows an overview of our approach. The relevant
parts for test case generation and execution are the search
engine, the simulator, the ML visual perception component and
emergency stop mechanism under test, and finally the fitness
calculation. The process starts with the tester defining the
domain features, the oracle, and the fitness function. Then, the
search engine generates a set of new test cases {A1, ..., An}
each one of them representing a different assignment to
domain features. Each test case is used as input to run the
parametric scenario in the simulator. The simulator feeds the
ML component with a stream of images generated by the
vision sensor. The ML component may trigger the emergency
stop that instructs in turn the simulated physical elements of
the robot. The simulation is monitored to check the oracle
condition in Eq. 1 and then determine the outcome. The fitness
is calculated from the status ω of the simulation by using the
following function:

f(ω) = min
t∈T,p∈S(ω.rt)

∥ω.ht − p∥ (3)

TABLE II: Domain features in our case study.

domain feature type lower bound upper bound

diffuse light (R) float 0.0 1.0
diffuse light (G) float 0.0 1.0
diffuse light (B) float 0.0 1.0
human speed (m/s) float 0.1 0.5
robot speed (m/s) float 0.05 0.5
wait time human (s) integer 1 50
wait time robot (s) integer 1 50

TABLE III: Test case example in our case study.

domain feature value

diffuse light 1 (0.1, 0.2, 0.3) RGB
human speed 0.33 m/s
robot speed 0.25 m/s
wait time human 2 s
wait time robot 5 s

where ω.rt and ω.ht represent the location of the robot and
the human agents, respectively. The status ω records, for a
given execution, the time series of the agents’ location (i.e.,
the location of the agents for all t in the observation window
T ). Thus, the minimum distance observed during a simulation
is used as fitness score (i.e., the closer the collaboration, the
higher the risk). The fitness is fed back to the search engine
that generates new test cases minimizing the score according
to the adopted search algorithm. The optimization process
terminates when the testing budget is finished. The budget
is defined here in terms of generated test cases with an upper
bound for the execution time.

Table II lists the domain features we defined in our case
study. Each domain feature has its own type as well as its
range of values defined by the tester according to his/her own
domain knowledge. As an example, the parametric scenario
has three diffuse light parameters defined by RGB float values
(each one ranging in [0, 1]). As listed in Table II, we defined 7
domain features in total generating a nontrivial space mixing
both discrete and dense domains. Table III shows an example
of test case that can be executed by the simulator. In this
example, the robot moves faster than the human, and the
human starts the task before the robot.

Even though the SRMS operating mode imposes continuous
satisfaction of the protective distance, there are some specific
corner cases that we consider less dangerous, or alternatively,
the system under test is not directly accountable for such
hazards. In particular, according to our scenario description in
Sec. III, the human agent is designed to ignore the behavior of
the robot and possible hazardous moves. Therefore, the human
may hit the robot even when the robot stands still after a
successful emergency stop. Thus, we designed our oracle in
a way it can easily detect these cases by taking into account
the speed of the robot when a violation of Eq. 1 occurs. If
the speed of the robot is equal to zero, it means the robot
stands still and, therefore, the system is not accountable for
the hazard. We classify this corner case as false failure.



C. Test Case Diversity Analysis

In the following, we discuss our test case diversity analysis
approach including the main elements: diversity clustering and
diversity validation.

1) Analysis Process: Studying the diversity is motivated
by the practical need of investigating whether, in the context
of ML-enabled systems, metaheuristic optimizing search can
unveil diverse sets of failing scenarios or they steer the gener-
ation toward similar ones only. Indeed, testing approaches are
often evaluated using traditional effectiveness mainly based
on the number of detected failures [18]. However, identifying
the best testing algorithm based on such effectiveness metrics
may be misleading since the search process may generate
lot of inputs sampled from contiguous regions of the search
space triggering (almost) the same behavior. In such a case,
substantial testing effort may be used to generate redundant
cases (i.e., already seen during the search process).

For this reason, the adoption of search algorithms able to
balance (1) quick convergence towards global optima, and (2)
further search towards unexplored regions is crucial to ensure
high effectiveness and high degree of diversity.

Figure 3 shows that our approach collects all failure-
revealing test cases and then analyzes them by using clus-
tering and intepretable ML. This latter step validates whether
different clusters capture sets of test cases that are different
in a relevant way, that is, different failure explanations. In-
deed, similarity metrics that are purely based on the distance
between test cases may hide important information [19]. Con-
siderable distance does not always ensure relevant difference,
while small distance may yield very diverse behavior due to
non-linear, non-convex behavior of the ML components [18].
For this reason, we deliberately avoid favoring input diversity
in the search process itself since this may lead to discarding
similar inputs that yield diverse failures.

2) Diversity Clustering: According to Fig. 3, we run
clustering to group together similar test cases. We rely on
DBSCAN, a density-based clustering method that uses a
parameterized distance metric to define clusters that are dense,
in the sense that they have a high concentration of data points
in a particular regions, separated by low-density regions. The
selection of DBSCAN is motivated by its capability of (1)
automatically determine the number of clusters, (2) identifying
clusters of arbitrary shapes and sizes. In our context, the
dataset of failure-revealing test cases contains value assign-
ments to domain features (e.g., see Table III) that may be
high dimensional. In this case, we can limit the computational
complexity by reducing the number of dimensions before
clustering with PCA. Principal components are ranked in the
order of the amount of variation they capture, with the first
component capturing the most variation, the second capturing
the next most, and so on. Our approach adopts a common
practice and retains only the first few principal components
capturing 95% of the variance [14].

At the end of the clustering analysis, we use the total
number of clusters as surrogate measure of test case diversity.

3) Diversity Validation: To measure the extent to which
different clusters capture diverse sets of test cases, we make
use of LIME explanations as mentioned in Sec. II. The idea is
to build a local explanation for the outcome of each test case.
The explanation includes weights to highlight the important
features as well as their influence on the outcome (the higher
weight the higher the influence). As an example, consider two
test cases A1 and A2 belonging to different clusters. The local
explanation for A1 may reveal that when the robot speed is
very high the feature has high influence, no matter what is the
light condition. The explanation for A2 may reveal instead
that low light condition has the highest influence, under low-
to-medium robot speed. In this case, the diversity between A1

and A2 holds since they belong to different clusters and the
observed failure has different root cause(s) according to LIME.

Based on such reasoning, we introduce the notion of Local
Explanation Diversity (LED) that we use to prove the validity
of using the number of clusters as a surrogate measure of test
case diversity in our context.

Given two test cases, we measure the difference between
the corresponding LIME explanations by using the normalized
Levenshtein distance [20] of the two sorted sequences of
features obtained by ranking them according to the weights
given by LIME. Thus, given two sets of test cases C and C ′,
the LED measure is defined as the average pairwise distance
between the test cases belonging to C and C ′, respectively:

LED = avg({L∗(seq(A), seq(A′)) ∀A ∈ C,A′ ∈ C ′}) (4)

where seq represents the sorted sequence of feature for a
test case, and L∗ is the normalized Levenshtein distance. The
higher the LED the higher the diversity between two sets.

Notice that, in our context, we want to measure the diversity
of clusters of test cases. In particular, we talk about inter-
cluster diversity if C and C ′ are different clusters. We talk
about intra-cluster diversity if C and C ′ identify the same
cluster.

V. EMPIRICAL EVALUATION

In this section, we report on the empirical evaluation of our
approach applied to the case study presented in Sec. III.

A. Research Questions

Our empirical evaluation has been designed to investigate
the following Research Questions (RQs).
RQ1: What is the effectiveness of the risk-driven test case

generation across different search strategies?
We compare multiple search strategies using a tra-
ditional effectiveness measure based on number of
hazards (i.e., safety requirements violations) identified
during a test session. We also assess the statistical
significance and effect size of our results.

RQ2: Are generated test cases diverse in a relevant way
according to explanations of hazards?
We study the results obtained by applying diversity
clustering of the test cases and then diversity validation
using LIME explanations and the LED measure.



TABLE IV: Configuration parameters of the search algorithms.

Algorithm Configuration parameters

GA Polynomial mutation probability 0.143 and DI 100.0,
Binary crossover probability 0.9 and DI 100.0

ES
Polynomial mutation probability 0.143,
Elitist option true,
λ = 20, µ = 20

SA

Temperature T0 = 1.0,
Min temperature 0.000001,
Temperature variation coefficient α = 0.95,
Polynomial mutation probability 0.143

B. Design of the evaluation

We designed and carried out an experimental campaign4 to
evaluate our approach to risk-driven test case generation and
diversity analysis. We executed multiple runs of the generation
process by using different search approaches. In particular, we
use and compare four selected single-objective search algo-
rithms: three metaheuristic optimizing search algorithms in-
cluding Genetic Algorithm (GA), Evolutionary Strategy (ES),
Simulated Annealing (SA), and finally a (uniform) Random
Search (RS) algorithm that we use as a baseline in our empir-
ical evaluation. To implement these algorithms we rely on an
existing off-the-shelf framework JMETALPY5. We configured
the algorithms by following the best practices suggested in
the documentation of the library. Table IV lists the main
configuration parameters we used in our search engine during
the experimental campaign. Concerning GA, we used an initial
and offspring population size of 20 individuals and a total of
20 iterations (i.e., 400 individuals in total). Concerning the
other algorithms (RS, ES, SA), we set population size and/or
number of iterations accordingly, to be consistent with the total
number of generated test cases. For the other parameters (e.g.,
mutation and crossover in GA, or initial temperature in SA),
we used the values recommended in the original studies as
stated by the documentation of JMETALPY (see Table. IV).
For all search algorithms, a preliminary evaluation in which
we executed a few proof-of-concept runs showed that 12 hours
are enough for the runs to converge.

We henceforth refer to run as a whole generation and
execution process adopting a given search algorithm, that is,
the generation and execution of 400 test cases. To account for
randomness, we repeated each run 20 times (i.e., 20× 400 =
8000 test cases per individual search algorithm). Collected data
out of all runs have been analyzed using the non-parametric
Mann-Whitney U-test [21] to assess the statistical significance
of the results between search strategies (significance level
α = 0.05). We use Vargha and Delaney’s ÂAB measure [22]
to capture the effect size of the difference between A and
B. We adopt the following standard classification: effect size
ÂAB (= 1−ÂBA) is small, medium, and large when its value
is greater than or equal to 0.56, 0.64, and 0.71, respectively.

4Replication package available at https://zenodo.org/record/8152294.
5https://github.com/jMetal/jMetalPy

TABLE V: Statistical analysis results.

Groups Mann-Whitney U-test ÂAB effect size
A B U statistic p-value estimate magnitude

GA RS 353.0 0.000 0.88 L
ES RS 400.0 0.000 1.0 L
SA RS 374.0 0.000 0.94 L
GA ES 168.0 0.394 0.58 S
GA SA 142.0 0.119 0.64 M
ES SA 251.5 0.168 0.63 S

All the runs have been executed on a commodity hardware
machine equipped with an Intel Core i7-8650U vPro and 24GB
RAM, running UBUNTU 22.04.1 LTS. The simulation of our
case study has been implemented using the robot simulator
COPPELIASIM [9] (formerly known as V-REP) Edu v4.2
connected to an external test case generation PYTHON v3.8
program relying on the JMETALPY framework v1.5.7 and
communicating with the simulator via ZEROMQ API [23].

C. Results

1) Effectiveness (RQ1): Figure 4 shows the distribution of
the search algorithms per each individual test case outcome
(either pass, fail, or false fail) using box plots. Results have
been collected considering all the 20 runs for each search algo-
rithm. The distribution in Fig. 4a shows that the effectiveness
of RS is generally lower than the metaheuristic optimizing
search algorithms with a median of detected hazards equal to
31.5, while it is equal to 76.0, 93.0, and 107.5 for SA, ES, and
GA respectively. Concerning the three latter search algorithms,
we can also observe that the dispersion of the distribution is
the highest using GA and lowest using ES. GA yields the
highest effectiveness on average since it exhibits the highest
dispersion but also higher peaks.

Considering the results in Fig. 4c, we can observe that RS
consistently generates more safe executions with a median
value equal to 341.0. GA is instead the one associated with
the lowest pass median value equal to 84.4. Again, SA is
the search algorithm with the highest dispersion according to
Fig. 4c. Concerning the false fail corner case, we can observe
from Fig. 4b that SA yields the highest median equal to 210.0,
while RS consistently generated fewer false hazards.

To assess the statistical significance of the effectiveness
results, we followed the guideline presented by Arcuri and
Briand [24] to perform a pairwise comparison between ran-
domized search algorithms employed by the risk-driven test
case generation process. As anticipated in Sec. V-B, we use the
non-parametric Mann-Whitney U test since we do not assume
that effectiveness data are drawn from a given parametric
family of probability distributions. Thus, we compared the
number of failures collected for all runs, for each pair of
search algorithms A and B, as reported in Table V. We
set a confidence level of 95% (i.e., p-value less than or
equal to 0.05). Additionally, we determine the effect size
using the Vargha-Delaney ÂAB as a measure of the practical
significance between the two populations A and B.

https://zenodo.org/record/8152294
https://github.com/jMetal/jMetalPy
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Fig. 4: Distribution of the search algorithms per individual test
case outcome (fail, false fail, pass).

Table V shows that the difference between the baseline
RS and all the other search algorithms is always statistically
significant with a large (L) effect size. The comparison of
GA, ES, and SA against each other does not achieve statistical
significance (p-value between 0.119 and 0.394). Furthermore,
the effect size is small (S), medium (M) and small (S): 0.58,

0.64, 0.63 when comparing GA and ES, GA and SA, and ES
and SA respectively.

RQ1 Summary. The difference between the baseline RS
and all the other search algorithms is statistically significant
with large effect size. GA yields the highest average even
though the pairwise comparison considering ES and SA is
not significant and has a small effect size. The comparison
between ES and SA is again not statistically significant and
yields a small effect size.

2) Test case diversity (RQ2): To answer this RQ, we
collected all the results obtained considering all runs, for
all search algorithms. Thus, for each algorithm, we built a
dataset containing all the test cases (i.e., value assignment
to domain features) associated with outcome fail, according
to Eq. 1. As anticipated in Sec. IV, the rationale for this
process is the collection of all hazards observed during the
test sessions (adopting a given search strategy). Each test case
is a specific assignment to domain features and, therefore, the
analysis of these assignments allows us to assess the similarity
of generated test cases. As anticipated in Sec. IV, clustering
automatically groups sets of similar data points. Thus, we use
the total number of clusters as a surrogate measure of the
test case diversity assuming that different clusters effectively
capture diverse failures.

To validate this assumption, we measured the LED after
collecting the results of clustering. Figure 5 shows the outcome
of the diversity validation illustrating the distribution of both
intra- and inter-cluster LED values. We can observe that results
are consistent across alternative search algorithms. The median
intra-cluster LED is around 0.25, while the median inter-
cluster LED is around 0.65. This means that for all search
algorithms, test cases drawn from different clusters are likely
to be different in a relevant way, since, according to local
explanations, they yield failures for different root causes (LED
up to 0.65). Test cases drawn from the same clusters have in
general higher similarity. Yet, there are still test cases in the
same cluster that yield considerable differences (LED up to
0.25). This means that discarding similar test cases during
the test case generation process may lead to overlooking
significant differences when considering the root causes of
failures.

Figure 6 shows the distribution of the number of clusters
obtained by using DBSCAN for each search algorithm. All
search algorithms are better compared to the baseline RS.
We can observe that ES generally exhibits a higher number
of clusters compared to GA and SA. SA is also slightly
better than GA. Since the intra- and inter-cluster diversity is
consistent across these algorithms, we can conclude that even
though GA yields more failures on average (see Fig. 4a), both
ES and SA are better when it comes to failure diversity. In
particular, ES is the best algorithm according to our results.
This reinforces the fact that selecting the testing strategy based
on the number of failures only may be misleading as a lot of
failures does not necessarily mean comprehensive coverage of
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a wide range of relevant failures.
Table VI shows a summary of the results obtained by

DBSCAN clustering with PCA dimension reduction with
explained variance ratio at a confidence level of 95% when
considering the testing outcomes collected from all the runs
ranked according to the total number of clusters per algorithm.
Results are consistent to those obtained without dimension
reduction. We can observe that ES yields more clusters (82)
than the other algorithms. ES is followed by SA (67 clusters),
and then GA (54 clusters). The baseline RS is the last one in
the rank and represents the worst case with only 1 cluster.

TABLE VI: Clustering results with dimension reduction

Algorithm #Clusters w PCA #PCA components

ES 82 2
SA 67 2
GA 54 2
RS 1 2

RQ2 Summary. The LED measure is consistent across
all selected search algorithms. Test cases drawn from the
same clusters have in general higher similarity. Yet, there
are still test cases in the same cluster that yield considerable
differences. Thus, discarding similar test cases may lead to
overlooking significant differences in the testing outcome.
Even though GA yields in general more failures, both
ES and SA lead to more clusters (more diversity). Thus,
selecting the testing strategy based on the number of
failures only may be misleading.

D. Threats to validity

In the following, we discuss major threats to the validity of
our empirical evaluation in the common categories: internal,
external, construct, and conclusion.

a) External Validity: Threats in this category may
emerge if the characteristics of our case study cannot be
generalized to other systems. Since we use an individual CAIS
and a specific robot simulator (i.e., COPPELIASIM), external
validity is our main concern. To the best of our knowledge, the
case study adopted in this work is a representative example
of CAIS in the Industry 4.0 [25] and by extension, Industry
5.0 [26], [27] including a nontrivial (dense) search space
with 7 relevant domain features. COPPELIASIM represents a
high fidelity robot simulator used by leading companies to
simulate industrial applications. Other publicly available high-
fidelity robot simulators exist. For instance, GAZEBO6 could
be adopted to carry out further experiments on this topic. Note
that such experiments are highly computationally-intensive.
Our experimental campaign took around 45 computing hours
in total (around 12 for GA and ES, 11 for SA, 10 for RS).
Nevertheless, additional experiments with different case stud-
ies and high-fidelity simulators would be required to increase
the generalizability of our findings.

b) Internal Validity: Threats may be caused by bias in
establishing cause-effect relationships in our experiments. To
limit these threats, we elicited and controlled the factors of
interest as much as possible during our experimental cam-
paign. In particular, the search algorithms have direct access
to domain features to find cause-effect relations between
generated test cases and the fitness measured during the
simulations. We also directly controlled the specific search
algorithms adopted during the experiments by using the same
configuration parameters across all the runs (see Table. IV).
Direct manipulation of these factors increases internal validity
compared to observations without manipulation.

c) Conclusion Validity: We addressed major threats in
this category by reducing the possibility of obtaining results
by chance. In particular, for each run we collected a large
sample of test cases (400). Furthermore, each run has been
repeated 20 times for all algorithms, executing a total amount
of 32k test cases (i.e., 20 runs, 4 search algorithms, and 400
test cases generated for each run). We followed well-known
guidelines in the software engineering research community to

6https://gazebosim.org/

https://gazebosim.org/


assess the statistical significance of our experiments [24]. In
particular, we conducted pairwise comparisons using the non-
parametric Mann-Whitney U test to calculate the p-value. In
addition to statistical significance, we used the Vargha and
Delaney’s ÂAB non-parametric effect size measure.

d) Construct Validity: We limited this threat by assessing
the validity of our selected metrics before using them in our
experiments. In particular, we measured the effectiveness of
test sessions by counting the number of failures (i.e., safety
violations in our case) that represents a standard metric.
According to the guidelines in [21], we used the standard
significance level α = 0.05 for the Mann-Whitney U test. We
also followed the common categories (small, medium, large)
and corresponding levels (0.56, 0.64, 0.71) for the Vargha
and Delaney’s ÂAB non-parametric effect size measure as
described in [22]. To measure test case diversity we adopted
the number of clusters. It is worth noting that this is a non-
standard surrogate measure of diversity that has been validated
by studying intra- and inter-cluster LED.

VI. RELATED WORK

Online testing of ML-enabled systems in a closed loop with
a simulated environment is an active research area, especially
in the automotive domain. Abdessalem et al. [28] studied the
problem of testing control systems of autonomous vehicles
leveraging vision-based ML components. The approach com-
bines evolutionary search and classification models (Decision
Tree) to characterize critical regions used by the evolutionary
search itself. The authors show that their approach generates
more distinct test scenarios compared to baseline approaches.
Gambi at al. [19] propose the combination of content gen-
eration and search-based testing to create virtual roads for
autonomous vehicles. Their approach embeds a similarity
measure to filter out similar test cases during the search
process. AV-FUZZER [29] is an online testing framework
that applies fuzzing techniques to modify nominal traffic
conditions and create situations in which an autonomous
vehicle can run into safety violations. Evaluation of the testing
algorithms is based on the number of failures. Haq et al. [18]
proposed to combine surrogate-assisted and many-objective
optimization to efficiently spot safety requirement violations in
autonomous driving scenarios. The authors compare different
testing strategies using the proportion of safety requirements
that are violated when running the test suite over the total
number of safety requirements.

Overall, we found that failure diversity in ML-enabled sys-
tems is less studied compared to the ability to produce a lot of
failures. However, this concern is recently emerging. A notable
example in this direction is DEEPHYPERION [6], a testing
framework for ML-enabled systems that determines failure
diversity by calculating the ratio of the maximum Manhattan
distance between cells in the feature map containing failures
and the total number of mapped misbehaviors.

Considering our target domain of interest, collaborative
robotics, there is a growing concern for human-centric en-
gineering approaches. In this direction, the detection of safety

issues has been recently studied by Huck et al. [30], [31]. The
authors use a risk metric to guide the search of possible human
behaviors toward high-risk behaviors which are more likely to
expose hazards. Compared to our work, the main focus of
testing is on human behaviors only, neglecting other factors
of the environment. Parisi et al. [32] consider the problem of
online prediction of failures in collaborative robots that carry
out force-sensitive tasks. Failure prediction uses unsupervised
ML, with learning parameters optimized via GA. In these lines
of research, robots have pre-programmed behaviors and do not
embed ML components. Furthermore, the diversity of detected
failures is not taken into account.

VII. CONCLUSION

We introduced a novel risk-driven online testing method and
test case diversity analysis for ML-enabled systems running
in safety-critical settings. Due to the safety-critical nature of
these systems, we rely on a high-fidelity (industry-strength)
simulator and we apply an online search-based testing process
that aims at falsifying domain-specific safety requirements.
We also studied the diversity of failure-revealing test cases
generated by different search algorithms, including genetic al-
gorithm, simulated annealing, evolutionary search, and random
search (our baseline). To study the degree of diversity our
method combines clustering and model-agnostic interpretable
ML to group together test cases with a small distance and then
validate whether such test cases are similar in a relevant way,
that is, they yield the same hazard for the same root causes.

We applied our approach to a CAIS case study featur-
ing a collaborative robot application, where an ML visual
perception component is used to detect foreign objects and
trigger emergency stop actions of the robot. We conducted
an empirical evaluation with the aim of studying: (1) the
effectiveness of the risk-driven test case generation across
different search strategies and the statistical significance of the
results; (2) the diversity of the generated test cases causing
hazards. Metaheuristic optimization search approaches are
better compared to the baseline with statistically significant
results. We have also demonstrated that selecting a particular
search strategy based on traditional metrics of effectiveness
only may be misleading. Furthermore, discarding similar test
cases may lead to overlooking significant differences in the
testing outcome due to non-linear, non-convex behavior of ML
components.

We plan to expand the scope of our experiments by making
the scenario more complex and considering different applica-
tion domains. We also plan to develop novel methods that favor
test case diversity by design by embedding local explanations
within the test case generation process.
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