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Abstract. Joint safety and security analysis of cyber-physical systems
is a necessary step to correctly capture inter-dependencies between these
properties.
Attack-Fault Trees represent a combination of dynamic Fault Trees and
Attack Trees and can be used to model and model-check a holistic view
on both safety and security. Manually creating a complete AFT for the
whole system is, however, a daunting task. It needs to span multiple
abstraction layers, e.g., abstract application architecture and data flow
as well as system and library dependencies that are affected by various
vulnerabilities.
We present an AFT generation tool-chain that facilitates this task using
partial Fault and Attack Trees that are either manually created or mined
from vulnerability databases. We semi-automatically create two system
models that provide the necessary information to automatically combine
these partial Fault and Attack Trees into complete AFTs using graph
transformation rules.

Keywords: AFT · CPS · safety analysis · security analysis.

1 Introduction

As cyber-physical systems (CPS) become more and more ubiquitous, safety and
security analysis of such systems must take new and emerging problems into con-
sideration. The proliferation of connected and smart devices, their interaction,
and constantly changing software (e. g., due to over-the-air updates) leads to new
safety and security problems. In particular, the increasing inter-connectivity of
CPSs has a significant impact on their security. The amount of reported vulner-
abilities increases year by year6. Each vulnerability can cause a failure of (parts
6 https://www.cve.org/About/Metrics
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of) the system, which in turn may affect its safety. In consequence, safety and se-
curity analysis in isolation, and without consideration of the specific environment
the system is used in, usually cannot capture inter-dependencies between these
concerns easily. The heterogeneity of CPSs in terms of hardware, but especially
in terms of operating system versions with different installed package versions,
requires that the deployed CPSs are analyzed and constantly monitored during
operation.

Attack-Fault Trees (AFT) as a combination of Attack Trees and dynamic
Fault Trees enables the joint analysis of safety and security properties in a single
modeling formalism [1,7]. The AFT model can then be checked using existing
model-checking techniques, e. g., critical path analysis or calculation of failure
rates and probabilities. Generating large AFTs for realistic systems by hand,
however, is error-prone and infeasible. It is much easier for safety experts to
model Fault Trees on a system level and for security experts to create Attack
Trees for used components [5].

These partial models are often on very different levels of abstraction. On the
one side, a Fault Tree for a safety hazard ends on the level of logical system
components and data channels. On the other side, vulnerabilities are reported
on the level of packages and libraries and not on the level of components. The
creation of an Attack Tree for a component thus requires intimate knowledge
of the implementation of this component. Our approach attempts to bridge this
gap of abstraction levels by deriving system dependency models from a running
system and combining Fault Trees and Attack Trees into an AFT on this basis.
Since we allow the extension of the generated models by manual models at each
modeling level, we refer to our approach as semi-automatic.

In this paper, we present our toolchain (Fig. 1) and preliminary evaluation
for the semi-automatic generation of AFTs, previously outlined in [22]: As an
input, we use Attack and Fault Trees created by security and safety experts
respectively as well as additional Attack Trees, that are automatically mined
from vulnerability databases for components, tools and libraries found on the
analyzed system. Compared to [22], which provided a vision of the approach,
this paper provides a complete running pipeline.

In order to combine these partial models into a single AFT, we use infor-
mation from two system models. Separate models for the logical system archi-
tecture and dataflow (Dataflow Model), and the deployment and dependencies
of these logical components (Deployment Model) are automatically derived from
the running system and used to provide the necessary information to combine
higher-level Fault Trees with system-level Attack Trees.

We then use graph transformation rules inferred from typical attack and
fault propagation patterns to identify and generate missing AFT fragments to
bridge the abstraction gap between the partial attack and Fault Trees. To reduce
the number of candidate Attack Trees to attach to the partial Fault Trees, we
annotate basic events with impact requirements for potential attacks. These
requirements are then propagated and matched with the impact scores of basic
attack steps derived from vulnerability databases.
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Fig. 1. Overview of the AFT generation toolchain and its models. Data sources for
model generation are shown on the left and resulting models on the right.

We evaluate our implementation by analyzing a quadcopter system: the quad-
copter pose is tracked using multiple cameras. Flight trajectories that avoid ob-
stacles are generated on a PC and then sent to the quadcopter. Our toolchain
connects to the system, automatically gathers dataflow and deployment informa-
tion of the system, mines vulnerability databases for found library and system
dependencies, and generates initial Attack Trees. Then it combines these models
with manually created Fault Trees, using dataflow and deployment information
to complete the Fault Trees to full AFTs that include potential system vul-
nerabilities. On the intentionally not updated operating system, our approach
successfully found some possible attacks that might lead to the hazards modeled
in the Fault Trees and created meaningful AFTs for this scenario.

However, we identified some possible improvements especially with respect
to the mapping of software packages to vulnerabilities in CVE-databases and
related the precise decision, which of the generated Attack Trees can be applied
to an AFT to minimize the amount of false positives.

The outline of the paper is as follows: Sect. 2 shortly introduces besides
necessary background on safety and security models, security metrics, and the
robot operation system, a running example used in the remaining paper. In
Sect. 3, we present our approach to combined safety and security modeling and
analysis followed by a discussion of its chances and limitations in Sect. 4. Sect. 5
compares the presented approach to related ones before Sect. 6 concludes the
paper.
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2 Background

This section provides a short overview of safety and security models used in
the following sections. We also provide a short overview of common vulnera-
bility metrics and the robot operating system (ROS), the system platform our
demonstrator focuses on.

2.1 Fault/Attack Trees and Their Combination

Fault Trees (FT) are a popular model formalism from safety analysis that is
used to model possible hazards and their causes [21]. There are several variants
of FTs [15], but we will restrict ourselves to a model formalism including complex
gates like SAND or PAND similar to dynamic FTs [3] for modeling.

Attack trees (AT) [18,10] are models used to represent adversary actions
regarding how a certain system or component can be targeted. Vertices present
intermediate targets or attack steps (i. e., various types of exploits or vulner-
abilities). Edges represent dependencies among the actions and (intermediate)
targets. By introducing logical gates (AND, OR, PAND, SAND, etc.) more com-
plex attack scenarios can be modeled. A path from a leave to the root of an AT
is called an attack path [8]. Moreover, weights can also be assigned to edges to
include costs, probability, risks, or other metrics.

Automatic generation of (simple) ATs is a complex task that can be achieved
by employing various existing databases that include vulnerability, library, at-
tack, and severity data.

Attack-Fault Trees (AFT) [11,7] integrate Attack Trees within Fault
Trees. This is achieved by redefining the basic events of a FT which now de-
scribe not only accidental events (e.g., the sudden failure of a component) but
also the failure of a component due to the malicious actions of an attacker.
While ATs usually describe a general attack pattern, the Attack Trees attached
to FTs must be directed at a specific target. Therefore, it is necessary to make
the definition of ATs more specific for this purpose, as described in [11].

In our approach, an attack event consists of a description of the attack, a
reference to a model element from the deployment or the dataflow model (see
Sect. 3.1) and a requirement in the form of minimum CIA values (see Sect. 2.2)
that an attack on the linked component must possess in order to trigger the
attack. Adapted from the external events from Vesely et al. [21], we use a house
shape to represent our attack events graphically.

2.2 Vulnerability Metrics

In the following, we discuss vulnerability-related terms that are utilized in the
proposed modeling approach. CVE7 data is used to uniquely distinguish differ-
ent vulnerabilities. CWE8 entries represent specific higher-level groups to which
7 Common Vulnerabilities and Exposures, https://cve.mitre.org/
8 Common Weakness Enumeration, https://cwe.mitre.org/

https://cve.mitre.org/
https://cwe.mitre.org/
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CVEs are assigned in order to provide a hierarchy for vulnerability data. There
exist two main hierarchies, which divide them into software and hardware weak-
ness types. Most of the CVEs contain a CVSS9 vector. It provides various types
of qualitative scores related to the severity of the vulnerability. Besides some
more detailed information assessing the severity, it contains information about
the impact of a CVE, the so-called CIA triad [16].

CPEs10 represent various systems, software, and platforms, which are repre-
sented using syntax for Uniform Resource Identifiers (URI) including a specific
version of a software or library. This allows security engineers and researchers
to exactly know which software is affected by a certain CVE. In cyber-security,
attacks can also occur by exploiting multiple vulnerabilities, which form attack
chains. Some of these chains are similar in a way that they address CVEs that
belong to the same CWE or they have corresponding mechanics. In order to rep-
resent these similarities, CAPEC11 entries were created, which allow an easy un-
derstanding of common attacker actions. The aforementioned databases present
a solid foundation for the proposed approach since they include vulnerabilities,
weaknesses, platforms, and attack patterns.

2.3 Robot Operating System (ROS)

While our safety and security analysis toolchain is technology and system agnos-
tic, we implemented specific dataflow and deployment generators for the Robot
Operating System (ROS). ROS [9] is a middleware for component-based robotic
applications. It consists of various helper libraries, e.g., for message transport,
standardized interfaces, and tools. Components, called Nodes, communicate over
named and typed channels (Topics) and via RPC (Services). Application com-
ponents can use multiple implementation languages; 3rd party components pro-
vided by, e.g., hardware manufacturers might act as black boxes, showcasing
heterogeneous systems in need of joint safety and security analysis of the system
as a whole.

2.4 Running Example

As a running example, we present the following scenario: an autonomous drone
might pose an injury hazard to a bystander in case of a collision. This can be
caused through a mechanical malfunction causing the accident, or as a result of
an attack on the control system of the drone.

The drone control system in our quadcopter lab consists of a camera array for
optical tracking, that calculates the exact position and orientation of the drone at
a high frequency. This pose data is then sent to a ROS application, which consists
of several components that implement trajectory planning, obstacle avoidance,
and position control, among others. The quadcopter is connected via WiFi and
9 Common Vulnerability Scoring System, https://www.first.org/cvss/

10 Common Platform Enumerations, https://nvd.nist.gov/products/cpe
11 Common Attack Pattern Enumeration and Classification, https://capec.mitre.org/

https://www.first.org/cvss/
https://nvd.nist.gov/products/cpe
https://capec.mitre.org/
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control commands are sent to it using the AR.Drone SDK, closing the position
control loop.

We create a Fault Tree to model the injury hazard: if one or more components
or channels in the position control loop fail, a drone operator standing near
the drone might be injured. Refining this FT and figuring out which software
vulnerabilities, exploits or weaknesses might be applicable to trigger these fault
events is done using our proposed AFT generation toolchain. An excerpt of the
generated AFT is shown in Fig. 3. Two potential attacks that might lead to a
failure of the position controller are identified and attached based on libraries
used by this component.

3 SafeSec Attack-Fault Tree Generation Toolchain

We developed the SafeSec Attack-Fault Tree Generation Toolchain (SAFT-GT)
(Fig. 1) to semi-automatically create and analyze AFT models for self-adaptive
systems. Our toolchain uses dataflow (Sect. 3.1), and deployment models(Sect. 3.2)
to capture the state of the system and uses this information to automatically
combine generated Attack Trees (Sect. 3.3) and manually created Fault Trees
that use different abstraction levels. A set of combination rules is used to find
and connect these AFT fragments (Sect. 3.4). The complete toolchain includ-
ing the models used for the running example can be downloaded here: https:
//www.uni-ulm.de/in/sp/research/projects/safesec/

3.1 Dataflow Model

Our dataflow model captures the logical components and dataflow of the system.
We separate this logical view on the system from the actual implementation and
deployment in the deployment model. The meta-model of the dataflow model
is rather simple: it consists of components – entities that provide, transform
or process data – and channels – ways for components to communicate, send
messages or observe the state of other components.

This high level of abstraction is necessary to easily map basic fault events
to system components and channels. A safety engineer manually creating Fault
Trees for the system needs to specify the origin of basic fault events by annotating
respective components and channels.

We designed the model to be simple to generate for systems using different
middlewares or frameworks. Our model simplifies the ROS component meta-
model similar to the abstract component meta-model in [4] in order to easily
generate and integrate dataflow models from ROS systems as well as other sys-
tems. ROS nodes are mapped to components while ROS topics, services, and
actions are mapped to channels. Additionally, the model is designed to be man-
ually extensible: additional components and channels can be defined manually
and interface with the rest of the model. For example, the camera system and
infrastructure to optically track quadcopters might be manually added including

https://www.uni-ulm.de/in/sp/research/projects/safesec/
https://www.uni-ulm.de/in/sp/research/projects/safesec/
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an optical channel from the quadcopter to the camera components to model the
optical tracking of the quadcopter position.

Our implementation includes a dataflow model generator for ROS2 systems.
ROS nodes do not define their interface statically, but connect to topics and ser-
vices dynamically. Therefore, our generator consists of a single ROS node, that
can be triggered to collect architecture and dataflow data using ROS’ introspec-
tion capabilities at runtime. Due to its design as a daemon that collects data at
runtime, the generation of the dataflow model is fast and captures exactly the
current state of the system. The generator can be triggered repeatedly in or-
der to monitor the system for changes or architecture reconfigurations. Deriving
the dataflow model from a static configuration/composition description instead
would require complex static analysis and access to the source code of all nodes.

3.2 Deployment Model

In order to bridge the gap between the high-level dataflow model and the compo-
nents that are deployed on a certain system, we introduce a so-called deployment
model. This model contains the information which component is running on
which system. Our toolchain automatically extends this initial information with
the files and ultimately the libraries, a component depends on. Dependencies
that cannot be derived automatically (e.g., because the platform a component
runs on cannot be reached by our analysis tool) can be given manually.

Unlike other existing tools, such as snyk12, we do not rely on component
source code to obtain dependency information. Instead, our tool uses information
about the open files of a component’s running processes.

Deployment Element

type
properties

RefComponent

link to dataflow model

Component

CPE
CVSS requirements
definition

RefChannel

link to dataflow model

Connection

properties

from

to
1..*

Channel

executes

1

0..*

depends_on

1

0..*

Fig. 2. Simplified meta-model of deployment model.

Fig. 2 shows a slightly simplified meta-model of the deployment model. Due
to limited space, the Channels are shown but not described further below. A
Deployment Element is either a newly defined Component or a reference to a
dataflow component (RefComponent). Each component has a type (e.g., File,
12 https://snyk.io

https://snyk.io
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Library, Package, Platform, OS, HW, Sensor, Actor, ...) and arbitrary proper-
ties (key/value-pairs whose interpretation depends on the type). A (low level)
component might have a CPE entry or CVSS requirements. If these require-
ments are met by an appropriate attack, the component can be considered as
corrupted (see Sect. 3.4).

Each deployment element can be executed on another element. In our run-
ning example most ROS nodes run on a PC called “rosbox”. The properties of
this “rosbox”, including information how our analysis tool can reach this PC,
are used to gather more detailed information about the components running
on it. A deployment element can also depend on other elements. For instance,
the component “default_FARFETCH_bebop_position_control” of our running
example depends on library “fast_dds” in version 2.1.1 (compare Fig. 3). This
dependency information is generated recursively by our analysis tool via the used
files and libraries of a component returned by Unix tools like lsof and ldd. Sys-
tem specific package managers like apt and dpkg abstract this information into
package names for which CVEs can be found. So far, the tool supports Ubuntu
and Gentoo as platforms, but its architecture includes several abstraction layers
to facilitate the integration of other platforms.

The next step is to find the corresponding CPE for each identified pack-
age. For this purpose, we use the tool CPEguesser13 in combination with some
heuristic preprocessing like shortening names, removing additional version infor-
mation, etc. Both lists, CPEs and all packages for which no CPE entry can be
found, are then passed to the Attack Tree Generator to find possible CVEs for
these pieces of software.

3.3 Attack Tree Generation

The Attack Tree generator searches for vulnerabilities for a given set of software
packages and generates (simple) ATs for each. Common CVE databases are
utilized for this purpose. The selection of public information security databases
was conducted based on the studies by Sauerwein et al. [17] and Pekaric et al.
[13]. As a result, NVD and MITRE databases were chosen as the most current
and credible sources. For faster querying, all CVEs of these databases (including
meta-information like CVSS) are cached in a local database.

For CPEs, a specific query can be executed, while for general packages, a
full-text search is performed. Once one or several CVEs are found for an entry,
an Attack Tree containing all identified attack paths is generated using our self-
defined DSL.

In order to obtain a more extensive list of related CVEs, the CWE data, its
hierarchy, and especially their relationship information like PeerOf, CanFollow,
and CanPrecede is considered in order to create attack chains in which multiple
CVEs are linked using SAND, AND, and OR gates, telling the combination
in which different CVEs must be exploited to conduct more complex attacks.
Besides these automatically generated Attack Trees (ATs), more complex attack

13 https://github.com/cve-search/cpe-guesser

https://github.com/cve-search/cpe-guesser
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scenarios are only in a later step with the help of manually predefined AFT
fragments.

3.4 Attack-Fault Tree Generation

Drone crashes into person

Trajectory out of control

The position control loop of the drone is disrupted

The position controller does not work
[default_FARFETCH_bebop_position_control]

Sender is corrupted
[optitrack_motive]

Insufficient Control of Network Message Volume
(Network Amplification) [cpe:2.3:a:eprosima:fast_dds:2.1.1]

CVE-2021-38425
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:H

eProsima Fast DDS versions prior to 2.4.0 (#2269)
are susceptible to exploitation…

Untrusted Search Path [libgcc_s]

CVE-2021-26807
CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H

GalaxyClient version 2.0.28.9 loads unsigned DLLs
such as zlib1.dll, libgcc_s_dw2-1.dll, …

OR

OR

OR

OR

System specific Fault Tree

Attack Trees

Domain FT Library

Generated AFT Fragments

…

…

…

VRPN data is not transmitted
[VRPNData]

Channel is corrupted
[VRPNData]

Fig. 3. Generated AFT for the running example (truncated for readability).

The AFT generation, as shown in Fig. 1, mainly consists of combining frag-
ments using model transformations based on our different input models. Overall,
the AFT generation can be divided into three phases. First, the FT that forms
the upper part of an AFT is copied into a new AFT model. Second, the newly
generated AFT model is extended using manually (pre-)defined AFT fragments,
which represent generic, common attack patterns. Third, appropriate ATs are
attached at the leaves of the created AFT model.

To decide whether an AFT fragment or an AT can replace an attack event
and thus be attached to the AFT we use the information about the system
provided by the dataflow and the deployment model. Since copying the FT into
the AFT is trivial, we will present only the last two phases of AFT generation.
AFT Fragments-phase: The goal of the second phase is to create a bridge
between the more abstract FTs, which are based on events caused by corrupted
logical data flow or components, and the very technical ATs, which model, e.g.,
attacks on individual hardware or protocols. This bridge is formed by our AFT
fragments. These fragments represent different attack patterns that help to break



10 R. Groner et al.

down the more abstract attack events of the FT to the same level as the ATs.
Such a fragment describes for example the individual steps, which are necessary
to perform an adversary in the middle attack (AiTM) or another one describes
the relationship that when a sender is corrupted its associated channel on which
it transmits is also corrupted.

We have defined two types of preconditions for each AFT fragment, which
must be fulfilled, to replace an attack event in the AFT. The first type of pre-
condition defines the context of an attack event, namely the dataflow and/or
components of the underlying system necessary to perform an attack. The con-
text of an attack event is defined by the referenced deployment model element or
dataflow model element. For example, an attack event must reference a channel
from the dataflow model and the deployment model must define a communica-
tion over TCP/IP or UDP for the channel to be prone to an AiTM attack and
thus allow to attach the respective fragment. In order to attach the AFT frag-
ment describing the relationship between a corrupted sender and its channel, an
attack event needs to reference a channel and there needs to be a component in
the dataflow model which writes to this channel.

The second type of precondition is the expected impact of an AFT fragment
to the confidentiality, the integrity and the availability (CIA triad) of the com-
ponent or channel referenced by an attack event. Each of the three aspects can
take one of four values, namely * (any), L (low), N (neutral) and H (high). A
CIA value required by an attack event is satisfied if the attack described by an
AFT fragment provides the same or a higher impact for a given aspect. For this
we use the following order of the values: * < L < N < H. For example, the
attack event “VRPN data is not transmitted” from our original FT defines that
it can be replaced by an AFT fragment whose attack has a low impact on the
confidentiality and a more than neutral impact on the integrity and availability.
Thus, even if the context is correct, an AiTM attack which aims to obtain data
cannot replace this attack event since the confidentiality value of this AiTM at-
tack is high and its integrity and availability values are low. Our AFT fragment
describing the relationship between a corrupted sender and its channel, defines
that such an attack towards a sender has a high impact on the integrity and a
neutral impact on the confidentiality and availability. Thus, this AFT fragment
satisfies both types of preconditions specified by the attack event “VRPN data
is not transmitted” from our initial FT and is attached to the AFT, as shown in
Fig. 3.

AFT fragments can also introduce new attack events, which then can be
further replaced with other AFT fragments or ATs. For example, “Sender is cor-
rupted” in Fig. 3 is an attack event introduced by our AFT fragment describing
the relationship between a corrupted sender and its channel.

In our proof of concept implementation, we manually defined five AFT frag-
ments and their preconditions, which we have developed based on our expertise
in modeling AFTs and ROS. We also analyzed the available list of CAPEC en-
tries to identify entries that are suitable as a basis for AFT fragments and, e.g.,
used the CAPEC-94 [2] as basis for our AiTM AFT fragment.
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Append AT-phase: In the last phase of AFT generation, we attempt to re-
place attack events that were not replaced in the previous phase or are newly
added by the AFT fragments with generated ATs. In order to decide whether
an AT is suitable to replace an attack event or not we use the same two types of
preconditions, namely the context and the CIA values defined in the respective
attack event.

Since we generate the ATs, their preconditions regarding their context are
much simpler than for the AFT fragments we define manually. For an AT, the
precondition for its context is already fulfilled if the context referenced by the
attack event is mentioned in the description, the CPE or the name of the AT. If
an attack event references a deployment model element, it is checked whether this
referenced element or one of its subcomponents is affected by the attack described
in the AT. If the attack event references a dataflow element, the deployment
model is first searched for a more precise system description for the referenced
dataflow model element. If a corresponding element is found in the deployment
model, it is checked as before whether this element or one of its subcomponents
is affected by the attack described in the AT.

To decide whether the values of the CIA triad are fulfilled by the attack we
use the corresponding values from the CVSS vector of the generated AT and the
same rules as already used to attach our AFT fragments. In our example, the
attack event “The position controller does not work” defines that an attack must
have at least one low impact on the confidentiality and at least a neutral impact
on the integrity and availability. This requirement is fulfilled by two generated
ATs since according to its CVSS vector the AT “Insufficient Control of Network
Message Volume” contains the value high for confidentiality and availability and
a neutral one for the integrity. The CVSS vector for the AT “Untrusted Search
Path” even possesses a value high for all three CIA values. Since we rely on CIA
values, our approach is limited to ATs that possess a CVSS vector.

4 Discussion

We have modeled two different FTs to demonstrate the feasibility of our ap-
proach. The first one describes the possible injury of a person by a drone, we
have also used this FT in our running example. The second FT describes how a
privacy violation by a drone can occur due to errors or malicious behavior. We
performed our AFT generation for both FTs in the context of our quadcopter
lab. In total, the three phases of the AFT generation took approx. 15 s for the
first and 10 s for the second FT on a Intel Core i7-3770 CPU with 16GB RAM.

Based on these results and a manual review of the generated AFTs, we can
conclude that the whole pipeline, starting with the automated dataflow extrac-
tion of a (intentionally not updated) running ROS system generates correct and
useful AFTs in a reasonable time. The most time consuming part is the search
for vulnerabilities, especially in the case of full-text search. To improve the per-
formance, the intermediate results could be cached and only recalculated, if new
CVEs are reported and/or new package/file (versions) are detected.
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Unfortunately, some of the generated and attached attacks are false posi-
tives: The AT “Untrusted Search Path” fulfills all our preconditions, but the
described attack does not apply to our system. The reason for this is that identi-
fying software and software versions and mapping them to vulnerability data is
hard. CPEs mitigate this problem by uniquely identifying affected software and
software versions. However, to our knowledge, no mapping between arbitrary
OS packages and CPEs exists and not all CVE entries contain affected CPE
information. Our fallback to a full-text search may result in wrong or incom-
plete mappings due to different package names (e.g., software split into multiple
packages, OS specific package naming), different versioning (e.g., due to addi-
tional applied patches), or renamed software projects. We only applied some
simple heuristics, and thus the results can definitely be improved by using more
sophisticated mining techniques such as NLP and/or by merging more detailed
package databases. We think, this is an interesting research field that many other
CVE-related research approaches could benefit from.

Moreover, our precondition consisting of the consideration of the three CIA
values may be too vague to decide reliably whether an AFT fragment or an
AT should be attached or not. Here, a solution could be to include the other
metrics provided by a CVSS vector in the decision. In addition, we have defined
only a few AFT fragments and we did not yet conduct a structured review of all
CAPEC mechanisms and other related taxonomies of common attack patterns to
derive and evaluate a complete set of general AFT fragments. We envision future
iterations of our toolchain to provide a core set of general AFT fragments that
can then be tailored toward specific domains and application areas by adding
additional, more specific, AFT fragments.

5 Related Work

The research field of combined security and safety analysis in software and sys-
tems engineering is huge [14]. For this reason, we will concentrate on the aspect
of Attack/Fault Tree generation in our discussion of related work and only briefly
address other aspects.

The idea of generating fault- or attack graphs is not new. Swiler et al. [20]
present a tool that generates attack graphs based on an assessment of security
attributes and vulnerabilities in computer networks. Similar to our presented
approach the authors use vulnerability scanning tools and attack templates.
They mention the integration of an attacker profile might be interesting but
also do not take this into account. Besides their focus on network attacks, the
main difference to our approach is our attempt to combine the generated Attack
Trees with Fault Trees. The configuration files introduced by Swiler et al. are
similar to our dataflow and deployment models, but we generate these partially
automatically.

Kotenko et al. [6] utilize in their approach for Attack Tree generation similar
techniques as proposed by us: CPEs are used to identify CVEs for components
and CAPECs are employed for the generation of more complex attack scenarios.
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However, the main difference is their focus on network scenarios. Therefore, they
use network security detection tools to identify possible vulnerabilities. Instead,
we build upon software packages of a running (ROS) system. Similarly, Ou et
al. [12] generate attack graphs for network topologies using logic programming.
One disadvantage of their approach is that all information of the system must
be given manually in advance by “facts” in the logical programming language.

Our combination of FTs and ATs into AFTs follows the general approach
stated by Steiner et al. [19] which is in accordance with the work of Fovino et
al. [11]. They describe the introduction of so-called “security events” in FTs in
contrast to the existing “safety events”. In contrast, Stoelinga et al. [7] introduce
new model elements in order to combine FTs with ATs.

6 Conclusion and Future Work

In this paper, we presented our automated tool pipeline for generating AFTs
based on generated and manually supplemented models. To bridge the gap be-
tween high level Fault Trees and low-level Attack Trees, we introduce different
intermediate models that describe the data flow between components and sys-
tem dependencies. Using these models, we extend manually created FTs with
generic and specific AFT fragments, and then attach generated ATs to the cre-
ated AFT. The advantage of this combined approach is the possibility to add
manually created (partial) models at any stage. This allows this approach to be
used even if the level of automation in a particular environment is not yet very
high.

At the moment, however, we see potential for improvement with respect to
the mapping of used software packages and their vulnerabilities and the decision
of whether an AT can be attached to the AFT or not. Here, we see several
possibilities for improvement we plan to investigate in the future, from which
also other research approaches can benefit. Also the extension of our approach
towards other operating systems and software platforms besides ROS2 is an
interesting future research direction.
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