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ABSTRACT
This paper introduces several, publicly available, serverless scien-
tific workflows Montage, BWA, and Monte Carlo developed at a
high level of abstraction using the Abstract Function Choreography
Language (AFCL). Any individual function can run across federated
FaaS comprising cloud regions of AWS and GCP. We present the
support for composition with AFCL and execution with the xAFCL
serverless workflow management system. For each AFCL workflow,
we present implementation details, networking, and complexity.
The evaluation of the presented serverless workflows shows that
workflow functions download ephemeral data and run computation
faster on AWS than on GCP. However, functions on GCP upload
faster on the collocated storage.

CCS CONCEPTS
• Computer systems organization → Cloud computing.
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1 INTRODUCTION
Serverless computing is gaining more traction for running scientific 
applications in public cloud providers or on premises with various 
open source platforms [23]. Scientists usually code workflow tasks 
as serverless functions using Function-as-a-Service (FaaS) and or-
chestrate them in serverless workflows [13, 22, 24, 27]. Such scientific 
workflows include astrophysics (e.g., Montage [5]), bioinformat-
ics (e.g., Burroughs-Wheeler Alignment (BWA) [19]), earthquake 
simulations (e.g., Cybershake [21]), and many more.
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Many cloud providers introduced serverless workflow manage-
ment systems, such as AWS Step Functions or IBM Cloud Com-
poser. However, these systems are mainly intended to be used for
event-based and near real-time applications that often use other
cloud services. Moreover, they are locked to run in the respective
FaaS (AWS Lambda or IBM Cloud Functions) within a single cloud
region, which restricts the required scalability for scientific work-
flows. Therefore, scientists are more focused to build open source
serverless workflow management systems [2, 6, 11, 20, 24, 36, 38].
However, most of them support portable execution of the entire
workflow, that is, to run the workflow on one or another provider.

In this paper, we develop and characterize several serverless
workflows Montage, BWA, and Monte Carlo simulation. We se-
lected these workflows because of their diversity in terms of 1)
dynamic problem size that can be selected during runtime, e.g.,
based on the number of files stored in some cloud storage, 2) scala-
bility vs. synchronization trade-off, and 3) various levels of com-
putation, communication, and structure complexity. All workflows
are composed in the Abstract Function Choreography Language
(AFCL) [30] at a high level of abstraction. For each function of the
workflow, a user can specify the function location (e.g., AWS Ama-
zon Resource Name or URL) on any cloud provider. Unlike the native
serverless workflowmanagement systems of public cloud providers,
which lock the users to run the workflows on their respective FaaS
system, individual functions of AFCL workflows can be executed
across any of the top cloud providers with the xAFCL serverless
workflow management system [31]. These scientific workflows are
publicly available, along with supporting tools to compose and run
across federated FaaS, formed by various cloud regions of AWS and
GCP. We also evaluated the workflows and determined that AWS
provides better infrastructure for computation and downloading
files from storage, while GCP’s functions upload the files faster to
the respective GCP cloud storage. Paper contributions include:

(1) publicly available1 three scientificworkflowsAFCL-Montage,
AFCL-BWA, and AFCL-MonteCarlo with details for their setup and
execution in federated FaaS;

(2) workflow functions are coded in Python and can be deployed
across AWS and GCP;

(3) characterization of workflow functions in terms of interme-
diary data transfer time and round trip time on AWS and GCP.

The remainder of the paper is organized into several sections.
Section 2 presents the implementation, complexity, and network-
ing of all evaluated AFCL workflows. The results of the evalua-
tion and characterization are discussed in Section 3, while related
work, workflow diversities, insights, and limitations are presented

1https://github.com/AFCLWorkflows
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- function:
name: "monteCarlo"
type: "monteCarloType"
dataIns:
- name: "num_samples"
type: "number"
source: "ParallelFor1/num_samples"

dataOuts:
- name: "result"
type: "number"

properties:
- name: "resource"
value: "ARN|URL"

Figure 1: Base function specification.

in Section 4. Finally, conclusion and future work are presented in
Section 5.

2 AFCL WORKFLOWS IMPLEMENTATION
In this section, we give a brief overview of portability with AFCL
and implementation details of the AFCL serverless workflowsAFCL-
MonteCarlo, AFCL-Montage, and AFCL-BWA.

2.1 Portability with AFCL

General overview of AFCL. AFCL is a YAML-based language to
orchestrate serverless functions in a serverless workflow with con-
trol and data flow constructs. The smallest computational task of an
AFCL serverless workflow is the base function, which cannot be split
into smaller tasks. For more complex serverless workflows, AFCL
offers several compound functions to design the control and data
flow. Most important constructs for serverless scientific workflows
are parallel and parallelFor. The former allows parallelization
of different tasks, while the latter represents data parallelism. AFCL
workflows receive a JSON input, which is passed to base and com-
pound functions with the data-flow.

Base function portability. Fig. 1 describes the main parts of the
base functions that should be filled by the workflow developer.
At the highest level of abstraction, workflow developers use func-
tion types to show what the function should do, without details
for implementation or deployment. This includes the input data
(dataIns), output data (dataOuts), and the unique function name
within the workflow.With the function types, data, and control flow,
the developer specifies the application-based information, without
specifying the resources on which each function should run. This
can be configured in the resource field under properties. Here,
the developer can place the ARN (Amazon Resource Name) of the
AWS Lambda, or e.g., URL of the function deployed on GCP. If
developers want to run the presented function on another provider,
they simply need to replace this value. The requirement of AFCL is
that both functions should be of the same type, that is, to have the
same data inputs, data outputs, and conduct the same work.

2.2 AFCL-MonteCarlo
Overview. Monte Carlo simulation is widely used by researchers

as serverless workflow [3, 4, 8, 10, 33, 34]. The Monte Carlo approx-
imation of 𝜋 estimates its value by randomly generating points
within a square and determining how many of these points fall
within a quarter circle inscribed within the square. The more points
are used, the closer the approximation gets to the actual value.

Implementation. The AFCL-MonteCarlo workflow consists of
two different function types. The first function type is monteCarlo,
which estimates the value of𝜋 . The second function type averagePi
averages the results of the previous functions to get a final result of
the estimate. While only a single instance of the averagePi func-
tion is needed, the number of monteCarlo functions can vary. Our
version of the workflow consists of a parallel construct containing
three sections, with each section containing a parallel loop with
the monteCarlo function. Each of these three functions could be
deployed to a different region, or even different provider to over-
come the concurrency limit of the providers of 1,000 functions per
region and provider, which often is much lower of maximum 100
functions [14, 31, 37]. In case fewer instances of monteCarlo are
desired, the workflow could be simplified by only using a single
parallel loop instead of the parallel construct.

Complexity. The number of MonteCarlo functions is dynami-
cally configurable with the workflow input. All functions exchange
data by value, without accessing storage.

Output. The workflow outputs the result of averagePi (𝜋 esti-
mation), which is the averaged number of all intermediate results
produced by the monteCarlo functions.

2.3 AFCL-Montage
Overview. Montage [5] is an open source toolkit, which is cre-

ated by the NASA/IPAC Infrared Science Archive. It can generate
custom mosaics of the sky with input images in the Flexible Im-
age Transport System (FITS) format. With a set of intermediary
actions, Montage creates a final mosaic from the input images. Mon-
tage is a representative astronomy workflow widely used by many
researchers [1, 2, 15, 24, 26].

Implementation. The structure of the AFCL-Montage workflow
is presented in Fig. 2a). It comprises a sequence of 13 sequential
functions including three parallelFor loops, each of which con-
tains a single function. It is IO intensive and requires to transfer
lots of data between the individual functions in order to create
the final output mosaic. The first function prepareColor defines
if a colored or gray image is created. The next step is to repro-
ject the single input images to a pre-defined scale, which results
in two new images per input image: a reprojected image and an
area-image showing how much of the sky each part of the new
image represents. This mProjectPP function can be orchestrated
in a parallel loop, with each function getting exactly one image of
the set of input images as an input. To determine the number of
parallel iterations of the loop depending on howmany input images
are used, the prepmProjectPP function is invoked before the loop.
After the first parallel loop, another helper function prepmDiffFit
prepares the data for the next parallel loop that contains mDiffFit.
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(a) AFCL-Montage. (b) AFCL-BWA.

Figure 2: AFCL serverless workflows.

It calculates the difference between a pair of reprojected images
to determine all overlapping image pairs and fits a plane to the
generated difference image. The output is then combined into a
single table by the mConcatFit function. Afterwards, mBgModel
determines a set of corrections to apply to each image in order to
achieve the best global fit. The next step is to remove the back-
ground plane of the input FITS images, which is done in parallel
again by mBackground, with prepmBackground determining the
iterations for the parallel loop. mImgtbl creates an image metadata
table and mAdd adds the reprojected images to form the mosaic
in FITS format. Lastly, mShrink reduces the size of the mosaic by
averaging blocks of pixels and mViewer generates the final JPEG
image.

Complexity. We characterize the AFCL-Montage workflow with
0.25-degree, which creates 30 instances of the mProjectPP and
mBackground functions, and 141 instances of the mDiffFit func-
tion. Particularly important for this workflow are the mAdd and
mShrink functions, which transfer large ephemeral data of 116.05MB
and 51.58MB.

Output. The result of AFCL-Montage is a combined mosaic of all
input images with the corrected background. Based on the selection,
it may be gray or in color.

2.4 AFCL-BWA
Overview. BWA is a scientific application thatmaps low-divergent

sequences against a large reference genome from Escherichia coli
DNA. With this workflow, medical persons may investigate the
mutations of the bacteria, which shows whether the bacteria is
curable or resistant to antibiotics. Many researchers use the BWA
workflow [12, 25, 27, 28, 31, 39] due to its compute and data-bound
requirements.

Implementation. AFCL-BWA (Fig. 2b) consists of seven func-
tions, with the first five functions being nested in a parallel loop
of four iterations. Each iteration processes a different sub-part of
the reference genome to speed up the overall processing time by
parallelizing the workload. The first function split is responsible
for splitting the reference genome. It replaces all the bases outside
of the split’s window with null characters, keeping the amount
of characters and order the same. In order to make the reference
genome file better searchable, index uses the bwa executable to
index the previously created reference genome split. Next, a parallel
construct follows that runs two functions in parallel. Both functions
aln1 and aln2 align the paired end reads of a DNA sample to the
reference genome. Due to the DNA being read from both directions,
two files need to be aligned which is the reason for requiring both
of these functions. After the nested parallel construct, sampe uses
both SAI files created by the aln functions to generate alignments
in the SAM format. After each sub-part of the reference genome has
been fully processed, merge uses the samtools executable to merge
all SAM files of each reference genome split. Lastly, sort uses the
samtools executable again to firstly sort the SAM file, followed by
converting it to a binary representations that results in a BAM file
and the indexed BAM.BAI file.

Complexity. All functions access storage to download a total of
1,042.56MB or 109 files and upload a total of 181.7MB or 39 files.

Output. The output files of the workflow can be analyzed with
the Integrative Genomics Viewer (IGV) tool [32] to determine
whether the E. coli sample is resistant to antibiotics. When the
E. coli sample bears two distinct mutations within the hipA gene, it
demonstrates an elevated occurrence of persisters. This heightened
presence of persisters consequently empowers the bacteria with
resistance against antibiotics [17]. In Fig. 3, the partial results from
the IGV tool are depicted. The middle part of the image is trimmed
out to show only the relevant parts. At the bottom, the reference
genome with its bases is shown. Above, the series of gray bars each
signifies a distinct read. When several readings show a difference
from the expected genome, it becomes more probable that this dif-
ference is real and not just random variations. On the left side, all
of the reads show that one base has transitioned from G to A. On
the right side, one base has transformed from A to C. These specific
alterations are the mutations responsible for endowing the E. coli
bacteria with antibiotic resistance.

3 CHARACTERIZATION OF AFCL
WORKFLOWS

This section characterizes AFCL-Montage, AFCL-MonteCarlo, and
AFCL-BWA in terms of function round trip time, transfer times
for download and upload, and overall makespan, for both cloud
providers AWS and GCP.

3.1 Experiment setup
We deployed all evaluated workflows in two regions of AWS and
GCP in London. Workflow functions accessed to their collocated
storage, based on the recent work to move the functions close to
data [35]. All functions of AFCL-Montage and AFCL-BWA, were
deployed with 2GB of memory, except for three functions that use

26



WoSC ’23, December 11, 2023, Bologna, Italy Mika Hautz, Sashko Ristov, and Michael Felderer

Figure 3: Twomutations in thehipA gene of the E. coli sample,
determined after running AFCL-BWA.
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Figure 4: Characterization of AFCL-Montage functions’
download, upload, and total round trip time while running
the workflow on AWS and GCP London.

4GB on GCP to avoid that the functions run out of memory. These
functions are mAdd, mImgtbl and mShrink of the AFCL-Montage
workflow. For AFCL-MonteCarlo, all functions use 128MB because
its functions do not require more memory.

The xAFCL enactment engine [31] was executed on a PC with an
Intel i7-7700k CPU and 32GB of RAM at the University of Innsbruck.
We repeated the execution of each workflow setup six times and
ignored the cold starts from the first execution, similar as other
works [7, 27, 28].

3.2 Characterization of AFCL-Montage
Figure 4 characterizes AFCL-Montage on AWS and GCP in Lon-
don. AFCL-Montage finishes on AWS in 65.67 s, thereby achiev-
ing a speedup of 1.2× compared to GCP. Surprisingly, functions
mConcatFit, mBgModel, and mImgtbl run faster on GCP, but mainly
due to faster download time, while the other functions run both
computing and download time faster on AWS. Another interesting
observation is that all uploads are faster on GCP.

3.3 Characterization of AFCL-MonteCarlo
We ran the 𝑀𝐶10 AFCL-Workflow used for evaluation of Sim-
Less [28]. That is, it runs 𝑛 = 9 instances of the monteCarlo func-
tion. Figure 5 presents the characterization of AFCL-MonteCarlo
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Figure 5: Characterization of AFCL-MonteCarlo functions
round trip time on AWS and GCP London.
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Figure 6: Characterization of AFCL-BWA functions’ down-
load, upload, and total round trip time while running the
workflow on AWS and GCP London.

serverless workflow on AWS and GCP in London. AWS runs AFCL-
MonteCarlo in 18.88 s, or 40.53 % faster than GCP. Both functions
were faster on AWS.

3.4 Characterization of AFCL-BWA
Figure 6 characterizes AFCL-BWA on AWS and GCP in London.
Overall, AFCL-BWA runs 49 s on AWS, or 12.92% faster than on
GCP (55.33 s). However, split, index, and merge run faster on
GCP by 6.77% on average. We observe that only a small part of
the functions’ round trip time is spent on data transfers, with the
majority being attributed to computing.

All AFCL-BWA functions downloaded ephemeral data faster
than their GCP counterparts, on average by remarkable 57%. On
the other side, all GCP functions upload ephemeral data by 51.84 %
faster than AWS on average. Computationally, all AFCL-BWA func-
tions on AWS, except split that does not run intensive computa-
tion, run the computation part faster than on GCP.

4 DISCUSSION
This section discusses the related work, diversity of implemented
AFCL workflows, additional insights, and limitations.

4.1 Related work
Some of the AFCL workflows that were developed and evaluated
in this paper were already developed for other serverless workflow
management systems. Montage implementation is used with Hy-
perflow [24]. Some of the AFCL workflows were already used in
federated FaaS for (1) simulation with SimLess [28], (2) spawn start
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evaluation [29], and (3) scheduling with FaaSt [27]. However, in this
paper, we show implementation details how to compose the AFCL-
workflows at the high-level of abstraction and run in federated FaaS.
Larcher and Ristov [18] developed composite Backend-as-a-Service
(BaaS) services by wrapping the BaaS services in functions and
composed them in AFCL workflows.

4.2 Workflow diversity
The presented AFCL serverless workflows are very diverse and we
believe that they are useful for the workflow and serverless commu-
nities to evaluate various optimization and simulation techniques
with other serverless workflow management systems.

Dynamic workflow problem size. We exploited the AFCL option
of parallelFor loops with dynamic loop iteration count and com-
posed the AFCL workflows with this option. AFCL-MonteCarlo
can change the problem size by increasing or decreasing the value
of a single parameter samples in the workflow input in the in-
put_monteCarlo.json file. This change does not require any change
in the AFCL-MonteCarlo yaml file or in the code of the functions.
Based on the scheduler decision for different function deployments
of the monteCarlo function, the parameter workers should be
adapted as well in the workflow input. This operation requires to
adapt the workflow structure with more sections in the parallel
construct, for which the transformation service of the FCEditor2
can be used. On the other side, one can change the problem size of
AFCL-Montage by adding FITS input files for the workflow with
another size. For example, instead of input images with an angular
size of 0.25 degrees, one could use inputs with 2.0 degrees, result-
ing in a larger field of view and therefore bigger files. This can be
achieved without altering the workflow yaml file, but rather by
solely changing the input.json file. Similar changes can be done
to the other AFCL workflows to adapt the problem size.

Scalability vs. synchronization. Both the AFCL-Montage and
AFCL-MonteCarlo workflows are embarrassingly parallel and can
scale to hundreds of thousands of functions. In particular inter-
est is the scalability - synchronization trade-off in workflows that
have synchronization functions, such as the merge function in the
AFCL-BWA workflow. We composed these workflows with the
optimal trade-off between scaling the predecessor parallelFor
loops and additional overhead in the synchronization task for the
given workflow input. Additional mathematical models are needed
to determine the optimal trade-off for arbitrary workflow inputs.

Computation, communication, and structure complexity. AFCL-
MonteCarlo is a mainly computationally intensive workflow with
zero communication cost, AFCL-BWA is mainly communication
demanding, while AFCL-Montage is both computationally and
communication intensive. AFCL-MonteCarlo and AFCL-Montage
are implemented as a sequence of base and compound functions
(parallelFor), while AFCL-BWA has a more complex structure,
which includes nesting of base and compound functions into other
compound functions.

2source code can be found on https://github.com/sashkoristov/FCeditor and publicly
accessible on http://qe-fceditor.uibk.ac.at:8180/

4.3 Additional insights
Non-dominating FaaS providers. Overall, all workflows run faster

on AWS due to faster download and computation time. On the
other side, workflow functions upload files faster on GCP. Unlike
the related work, such as Hyperflow [24] or Triggerflow [2], which
can port the entire workflow from one to another FaaS provider,
our AFCL workflows benefit from the xAFCL serverless workflow
management system, which can run individual functions of the
same workflow on different FaaS providers.

Data awareness. However, there is a pitfall by porting functions
in Federated FaaS regarding the data awareness. Namely, recently,
Eismann et al. [9] reported that more than 60 % of functions access
storage. In our AFCL workflows, almost all functions download
and upload intermediary data through storages of AWS or GCP.
If a function is ported to another provider, then data access time
changes, regardless if the storage is replaced or not. This insight
requires additional research, which we set as our future work.

4.4 Limitations

Homogeneous memory. We used a diverse experiment setup in
two FaaS providers in their regions in London. However, we re-
stricted our evaluation with a single memory setup for almost all
functions of each workflow, which was the minimum necessary
memory to run all functions of the workflow. However, more op-
timal is to run each function with different memory in order to
optimize its performance or cost, which we set as our future work.

Sample data vs. performance instability. We repeated each exper-
iment for six times and averaged the values without the initial cold
start. However, several researchers reported a huge deviance in the
underlying infrastructures within a longer time period [16], as well
as spawn start performance [14, 28, 29], especially for GCP and
IBM.

5 CONCLUSION AND FUTUREWORK
In this paper, we presented three portable serverless scientific work-
flows AFCL-Montage, AFCL-MonteCarlo, and AFCL-BWA on two
cloud providers AWS and GCP. All AFCL serverless workflows are
publicly available including sources for their Python functions and
AFCL codes of the abstract workflows. All serverless functions of
the AFCL workflows can also be used by other serverless workflow
management systems, by simply adapting the control and data flow
for the new serverless workflow management system. The evalua-
tion of the AFCL workflows showed that AWS functions run and
download the files from AWS S3 faster than GCP. However, GCP
functions upload files faster on GCP cloud storage.

We will extend our work in three directions:
(1) develop memory-intensive (e.g. satellite image processing),

or GPU-based workflows (e.g. AI model training and federated
learning) as AFCL serverless workflows and engineer them in a
federated FaaS environment;

(2) use these characterizations in simulators, such as SimLess [28],
to simulate execution of AFCL workflows with data awareness;
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(3) develop a multi-objective scheduler that considers both per-
formance and cost of AFCL serverless workflows in federated FaaS.
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