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a b s t r a c t

Context: Cyber–physical systems (CPS) are increasingly self-adaptive, i.e. they have the ability to
introspect and change their behavior. This self-adaptation process must be considered when modeling
the safety and security aspects of the system.
Objective: This study collects and compares security attacks and safety hazards on self-adaptive
systems (SAS) described in the literature. In addition, mitigation and treatment strategies, as well
as the modeling and analysis approaches, are investigated.
Method: We conducted a systematic literature review on 21 selected papers. The selection process
included a database search on four scientific databases using a common search string (1430 papers),
forward and backward snowballing (1402 papers), and filtering the results based on predefined
inclusion and exclusion criteria. The coding scheme to analyze the content of the papers was obtained
through research questions, existing domain-specific taxonomies, and open coding.
Results: Safety and security are not jointly modeled in the context of self-adaptive systems. The
adaptation process is often not considered in the attack and hazard analysis due to naïve assumptions
and modeling. The proposed approaches are mostly verified and validated through simulation often
using simple use cases and scenarios.
Conclusion: A thorough and joint modeling approach for safety and security in self-adaptive systems is
still an open challenge that needs to be addressed. Further work is needed to address the gap between
safety and security modeling in self-adaptive systems.

Editor’s note: Open Science material was validated by the Journal of Systems and Software Open Science
Board.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Historically, safety and security were mostly studied in sep-
ration. Both domains independently developed techniques and
odeling approaches for conducting different types of analyses.
afety-critical systems increasingly expose high software com-
lexity and connectivity that warrant security concerns such
s e.g., in the automotive (Amorim et al., 2017), medical de-
ices (Johnson and Kelly, 2019), and robotics domain Sesame
roject (2022). A joint analysis of safety and security aspects in
yber–physical systems (CPS) is therefore necessary, particularly
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to expose security implications on system safety and vice versa.
Several mainly methodological approaches to safety and secu-
rity co-engineering have been proposed recently (Kondeva et al.,
2019; Chockalingam et al., 2017).

Self-adaptive systems (SAS), i.e., systems that can adapt their
behavior or architecture at runtime, offer a promising and bio-
logically inspired approach to manage or mitigate risks (Macías-
Escrivá et al., 2013). Such adaptation mechanisms are already
computationally feasible and in use in safety and security-critical
domains, e.g. robotics, critical infrastructure, and production sys-
tems or transportation. Additional software components to pro-
vide the necessary introspection and adaptation capabilities for
self-adaptation increase the software complexity significantly.
This makes the adaptation mechanism itself a target for security
attacks or the source of software failures and it has, therefore, to
be included in the joint safety and security analysis.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Currently, a comprehensive overview of existing work on the
ntersection of joint safety and security analysis in the context
f self-adaptive systems is missing. The increasing computational
ower available to cyber–physical systems and their steadily in-
reasing complexity makes self-adaptation more and more viable
n the future. Safety and security-critical robotic systems like au-
onomous and connected cars, home assistance or transportation,
nd logistic robots will become ubiquitous and pervasive in the
ear future and will require runtime validation and certification
or applications such as platooning or integration into robot fleet
anagers.
We conducted a systematic literature review, finally selecting

1 out of 1430 papers identified using database search and 1402
apers found via snowballing. In the literature, we identified
ttacks and hazards for self-adaptive systems and determined
ow safety and security are interrelated, jointly modeled, ana-
yzed, and mitigated. Open challenges found in these papers hint
t unsolved problems and possible future research directions.
elevant papers were collected using a predefined search string
n multiple scientific databases and by applying an additional
orward and backward snowballing iteration, manually filtering
he results based on predefined inclusion and exclusion criteria
fter each step. We coded, collected, and extracted information
n the treatment of security attacks and safety hazards. In addi-
ion, architectures that are used by the system or the adaptation
rocess were investigated. This was achieved using a codebook,
hich contains all codes used and their documentation (Mac-
ueen et al., 1998). The codebook was partially predefined using
xisting taxonomies and adapted during coding using an open
oding approach. Open coding is an iterative process in which
ata are categorized based on concepts and themes identified by
he researcher based on the data being analyzed (Williams and
oser, 2019).
The 21 selected papers are recent and most are published in

he year 2015 or later. These are mainly from the automotive
omain and utilize the MAPE-K architecture to implement the
elf-adaptation process. The identified attacks and safety haz-
rds show a strong relationship in these systems, e.g. an attack
eading to a safety hazard. We could not identify a common or
tandardized approach that is used to model and analyze this
nterrelationship between safety and security in self-adaptive
ystems. To mitigate safety hazards or as a reaction to security
ttacks, most strategies try to prevent damage to the system.
daptations that use redundant systems, reduce capabilities, or
top the operation of the system altogether are commonly used.
ccording to the results, most current systems integrate safety
nd security only loosely without considering self-adaptation ca-
abilities as an integral part of the system. The self-adaptation
rocess is merely an afterthought to resolve emerging safety and
ecurity problems. The self-adaptation process is often modeled
ith unrealistic, implicit assumptions such as that it is always
ucceeding in zero-time, or is not modeled at all.
The examined papers use a wide variety of analytical ap-

roaches for both security and safety analysis. In regards to these
pproaches, simulation and dynamic analysis at runtime are well
uited due to the dynamic nature of self-adaptive systems.
Extracted open challenges as well as our results show the

eed for further research to jointly model and analyze safety
nd security in self-adaptive systems to adequately address and
nalyze safety hazards and security vulnerabilities impacting each
ther. As the self-adaptation mechanism is an integral part of the
ystem, it must be taken into consideration during modeling and
nalysis.
The remainder of this paper will introduce significant back-

round concepts in Section 2 and give an overview of related
tudies in Section 3. We describe our methodology and criteria for
aper selection and analysis in Section 4, before presenting and
iscussing our results and findings in Sections 5 and 6. Finally, we
onclude the paper in Section 7.
2

2. Background

In this section, the background information on self-adaptive
systems such as their definition and common architectures is
presented. In addition, the security and safety aspects that are
used in the classification scheme presented in Section 4.3, are
introduced.

2.1. Self-adaptive system

Birthed by a challenge posed by IBM in 2003 (IBM, 2005)
leading to the founding of the International Conference on Au-
tonomic Computing (ICAC), self-adaptive systems have grown
in popularity over the last two decades. With the notion of
self-management in autonomic computing that allows a comput-
ing system to dynamically modify its configuration in response
to a change in the system while adhering to business goals,
Self-adaptive Systems (SAS) refer to systems that are able to re-
spond to changes in the operating environment thereby affecting
the system’s structure, behavior or even the system’s logic. In
some studies, self-adaptive systems are referred to as Dynami-
cally Adaptive Systems (DAS) (dos Santos et al., 2021). All these
systems exhibit certain characteristics such as self-healing, self-
optimization, and self-configuration (Wong et al., 2022). To gain
a common understanding, in the following, we describe briefly
some of the terms used in SAS-related studies.

2.1.1. Adaptation
Adaptation is what gives SASs the ability to modify their

behavior in response to changes within and outside the system.
The type of adaptation possible is usually described in terms of
self-* properties. Because adaptation can manifest itself in dif-
ferent ways, studies explore these various adaptation strategies
employed by self-adaptive systems. At the primitive level of SAS,
adaptivity is achieved through a system’s ability to perceive its
environment (self-awareness or context-awareness) (Salehie and
Tahvildari, 2009). In addition to self-awareness, several other self-
* properties can be defined of which the following are frequently
encountered:

• Self-protection describes a group of self-managing systems
capable of detecting and mitigating security threats at run-
time (Yuan et al., 2014).

• Self-healing is the ability of a system to return to a functional
state after being compromised by an anomalous agent. Self-
healing systems endeavor to heal themselves in a similar
fashion as a biological system heals from a wound from
faults and recovers into normalcy (Ghosh et al., 2007).

• Self-optimization allows for systems to find the optimal so-
lution such as configuration or output.

• Self-configuration is the feature of a system to dynamically
and automatically reconfigure itself in response to changes.
It allows for the adaptation of a new component or new
execution environment within a system with little or no
human intervention (Khan et al., 2008).

2.1.2. General architecture
In general, a self-adaptive system consists of two distinct

parts, wherein the first part (self-awareness element) interacts
with the environment, while the second part cooperates with
the first part and deals with any adaptation concerns (Weyns,
2017). The self-awareness element requires that SAS is able to
get information about its state through a process by which it
monitors itself and its environment, detects changes, decides how
to react, and acts based on the decisions made. This is known as
the MAPE cycle (MAPE-K loop) (Kephart and Chess, 2003), which
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Fig. 1. General MAPE-K Architecture.

elies on an adaptation logic. M stands for Monitoring (system
nd environment), A for Analysis (what change should happen?),
for Planning (decision(s) to be made), E for Execution (of the
ction decided), and K for Knowledge base (a shared space that
aintains data of the system and its environment). Fig. 1 shows
general MAPE-K architecture. The eventual detail of each object

n the architecture depends on the application domain.
For example, in Carré et al. (2018), the MAPE-K architec-

ure is applied to the safety domain to create a scalable and
volvable framework that decouples the different concerns into
icroservices that perform safety assurance and validation.

.2. Adaptation properties

In the assurance of SASs, both functional (i.e. those relating
o the function of the system) and non-functional properties
i.e. those relating to the runtime qualities of the system) must
e taken into account. The fulfillment of these requirements
ay be impacted by the self-adaptation of the system. Even

hough the managed system or operational environment may
ose uncertainties, the properties of the system specifications
hould hold before, during and after the whole adaptation process.
he term adaptation properties refers to the characteristics (non-
unctional operational properties) of the system that need to be
aintained to ascertain the normal operating condition of such
system. Examples of the qualities are: availability, efficiency,
erformance, reliability, robustness, security, and stability (Cheng
t al., 2014). Some of these qualities that resulted from open
oding are presented and described further in Section 5.4.2.

.3. Security and safety

Due to the widespread use and ubiquity of CPS in our daily
ife today, malfunctions of these software-intensive systems can
ecome a danger to life. In addition to physical harm, economic,
cological, and emotional risks can also occur. The IEC standard
1508 on functional safety defines safety as ’’freedom from unac-
eptable risks’’ (IEC 61508 2010, 2010). Minimizing these risks is
major field of research in the software engineering context.
In order to secure a system, it is not sufficient to consider

nly existing attacks, but also the functionalities of the system.
he increasing interconnection of systems means that security
3

is also increasingly influencing the functional safety of a com-
plex system. The possibility of manipulating a system-internal
message using an exploit or by making a component fail, can
lead to the system reaching a critical state. This only holds if the
aforementioned cases have not been taken into account from the
beginning of the development.

Safety and security requirements can sometimes contradict
each other, e.g., the encryption and displaying of a warning mes-
sage, which can make the reaction time longer. It is therefore
important that these two aspects are considered together right
from the beginning in a software development process (Lisova
et al., 2019).

The focus of this study lies in the common consideration of
safety and security in the context of SASs. In the following, some
typical terms of these areas are briefly introduced.

2.3.1. CAPEC mechanisms
Sometimes when a SAS experiences a change, it is usually be-

cause of a vulnerability within the system itself that is exploited
by an external attacker. The Common Attack Pattern Enumeration
and Classification (CAPEC)1 scheme postulated by the MITRE Cor-
poration demonstrates a hierarchical framework of different ways
by which systems are attacked by a foreign entity. These tech-
niques include Deceptive Interactions, Abuse of Existing Function-
ality of the System, Data Structure Manipulation, System Resources
Manipulation, Injection of Unexpected Items, Employing Probabilis-
tic Techniques, Manipulation of System Timing and State, Collect
and Analyze Information, and Circumventing or Subverting Access
Control. Each of these techniques is further categorized under
different headings (which may also be further sub-categorized)
that describe individual attack approaches employed by a perpe-
trator. For instance, when an attacker employs deceptive means,
they could either decide to go by spoofing an identity, content,
resource location, action, or manipulate human behavior. Simi-
larly, when the approach is to subvert laid-down access control,
this can be done by physically stealing access items, bypassing
physical control, using known domain credentials, or abusing and
bypassing authentication.

2.3.2. CIA triad
The CIA triad represents the most commonly used and applied

information security model. It is used to provide various orga-
nizations and types of systems with knowledge on how to keep
data secure. The model consists of the following three aspects:
(1) confidentiality — prevention of unauthorized disclosure or use
of information assets, (2) integrity — prevention of unauthorized
modification of information assets, and (3) availability — ensuring
authorized access of information assets when required (Oscarson,
2003). The CIA triad is applied in order to better understand
which of the aforementioned aspects are affected by attacks on
self-adaptive systems as well as to understand the attacker’s
goals.

2.3.3. Hazard source and cause
The overall objective of safety engineering is to make sure that

the unacceptable risk does not transpire (International Organiza-
tion for Standardization, 2011). The term risk represents the joint
probabilities of occurrence of various harms and their respective
severities (International Organization for Standardization, 2011).
The direct assessment of such harms is extremely difficult. Thus,
this needs to be achieved by identifying hazards, which are con-
sidered to be potential sources of harm. The identification of
hazards is especially complex in the SAS domain because recon-
figurations are conducted automatically and usually there is no

1 https://capec.mitre.org/data/definitions/1000.html

https://capec.mitre.org/data/definitions/1000.html


I. Pekaric, R. Groner, T. Witte et al. The Journal of Systems & Software 203 (2023) 111716

h
S
I
p
r
t
r
h
t
e
s
e

2

w
e
c
c
i
c
p
d
p
s
t
c
o

3

i
a
a
(
a
2
2
c
(

3

t
r
s
f
h
t
c
t
s
g
p
a
2

a
a
a
a
i
i
t
m

3

d
a

uman expert that can evaluate the safety of a system (Trapp and
chneider, 2014). As a result, the system has to assure its safety.
n this regard, hazard causes and sources are investigated as a
art of the conducted SLR. Hazard causes represent the potential
easons behind why the safety of a SAS was affected. According
o Allouch et al. (2019), this can occur due to the following
easons: collision with another object, environmental conditions,
ardware failure, loss of control, pilot error and external attack. On
he other hand, hazard sources can be classified as internal and
xternal. For example, an internal factor can be mechanical or
oftware related, while external ones can relate to human and
nvironment interaction (Allouch et al., 2019).

.3.4. Safety quality factors
In the case that a hazard occurs, it is important to know

hat factors were affected. This includes health, property and
nvironmental factors (Allouch et al., 2019). For example, in the
ase of a vehicle crash, it is possible that a person within the
ar is injured, which would affect health. Another example of the
mpact on health is when a drone falls to the ground and hits
ivilians or causes a mid-air collision with an aircraft that carries
assengers. On the other hand, vehicle crashes can also cause
amage to the vehicle itself, which would be an effect on the
roperty. Finally, it is also possible that the vehicle damages any
urrounding environmental object, which would be an effect on
he environment. An additional effect could be an environmental
atastrophe in case a SAS is transporting some sensitive chemicals
r crashes into gas tanks causing a devastating explosion.

. Related work

Different studies have gone into understanding and develop-
ng self-adaptive systems at various levels, which includes the
daptation approach. Accordingly, these studies cover individual
spects of self-adaptive systems or a combination of aspects
e.g. planning for decision-making (Pandey et al., 2016), models
nd verification at runtime (Blair et al., 2009; Calinescu et al.,
018) respectively, model-driven engineering (Vogel and Giese,
014) etc.). At the same time, several literature reviews have been
onducted to collect the body of knowledge in this area together
e.g. SAS evaluation (Gerostathopoulos et al., 2021)).

.1. Overview

In a recent study that explored self-adaptive systems over
he 30 years before the year 2021, the authors established a
eview across different categories and domains of self-adaptive
ystems (Wong et al., 2022). The Internet-of-Things (IoT) account
or the largest application domains in the last five years. There
as been an increasing amount of effort invested in self-adaptive
echnologies within the same period in web services and no
hange in the study category during the first half of the last
en years. The authors presented a matrix that distributed the
elected papers (293 in total) according to the following cate-
ories: analytical, empirical, technological, methodological, and
erspectives. Over the 30 years, studies focused mostly on self-
daptive technologies correlating to 109 papers out of the total
93.
Also, Muccini et al. (2016) provided an overview of self-

daptation in cyber–physical systems (CPSs) with a focus on their
rchitecture. The study provided answers on how adaptation is
pplied in CPSs, how self-adaptive approaches in CPSs address
daptation concerns, the different assurance strategies employed
n providing evidence for adaptation, and the strengths and lim-
tations of such approaches. They also provided a generalized
hree-layered adaptation model divided into physical, context
anagement, and application layers.
4

.2. Adaptation

Salehie and Tahvildari (2009) provided a taxonomy for the
evelopment and concerns of adaptation. This was achieved by
nswering the questions that relate to what (system properties),

how (supporting infrastructure), when (temporal properties), and
where (system component changed) in the self-adaptive software
domain. The authors identified challenges in self-* properties,
adaptation processes, engineering concerns, and system interac-
tion. Furthermore, they investigated the different disciplines that
contribute to the development of SASs, among which are Software
Engineering, Artificial Intelligence, Machine Learning, and Soft Com-
puting and Network and Distributed Computing. According to the
authors, testing and assurance were perhaps the least focused
aspects of self-adaptive software. With appropriate yardsticks,
test-beds, and suitable case studies, the authors identified that
one can evaluate and compare different adaptation solutions.

Gheibi et al. (2021) accentuated the growing application of
learning approaches for understanding and analyzing the SAS
environment and configuration spaces to facilitate adaptation. In
their study, Geibi et al. investigate problems tackled by applying
ML in SASs as well as the key engineering considerations for
applying ML in this domain. The problems identified tackled
adaptation and learning while cloud applications appeared to
be the most popular. In addition, the authors identified learn-
ing methods open for future research including unsupervised
learning, active learning, and adversarial learning. The authors
also postulated an ‘‘Other learning methods’’ category for models
that can detect novelty in the environment and synchronize the
execution paths in complex settings.

Furthermore, D´Angelo et al. (2019) discussed the need for
equipping individual components of a collective self-adaptive
system (CSAS) with learning capabilities for the system to be
able to dynamically handle uncertainty in operational environ-
ments. In this work, Reinforcement Learning was found to be
the most popular learning technique representing about 60% of
the reviewed papers. They carried out an extensive analysis of
learning-enabled CSASs and introduced a 3D framework for il-
lustrating the learning aspects of CSASs. The dimensions were
autonomy, knowledge access, and behavior with each dimension
being orthogonal to the others to form a continuous 3D space.
Also, they highlighted various application examples to identify
what open challenges there were and prescribe that there is a
need for collaboration between resilience and privacy-awareness
for CSASs.

3.3. General modeling dimensions and assurance

Cheng et al. (2009) and Andersson et al. (2009) provided mod-
eling dimensions for self-adaptive systems. The authors identified
dimensions for modeling and describing various facets of self-
adaptation. They grouped the dimensions into four groups that
include Goals, Change, Mechanisms, and Effects which were also
partly adopted and modified in this publication. This was a study
conducted to collect the areas of divergence in the development
of self-adaptive systems having gone through various software
engineering texts with the guiding insight that any development
of a self-adaptive system should be according to a conceived
model, regardless of the tools or underlying technologies de-
ployed. The authors’ objective was to demonstrate a baseline for
key aspects of SAS. With their established modeling dimensions,
they were able to showcase their application in two case studies
— Traffic Jam Monitoring System (Self-healing) and Embedded
Mobile System (Self-Adapting). In Cheng et al. (2009), Cheng et al.
further proposed an assurance framework — a V&V model of the
system going through a series of operational modes as the system
context changes.
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On the other end, Weyns et al. (2012) carried out a survey of
ormal methods used in SAS. It was posited that formal methods
ere mostly used for modeling and analysis with few studies
f formal methods for verification of self-adaptive systems. The
uthors identified regular algebra as the most popular modeling
anguage among studies that employ the use of tools for property
pecification. Whereas the use of formal methods was mostly
pplied concerning efficiency/performance of self-adaptation, the
aper did not address the security and safety aspects of SAS.
Additionally, Cheng et al. (2014) explored the contemporary

orks that use models@runtime (M@RT) to address the assur-
nce of self-adaptive software systems. They identified what in-
ormation could be captured by M@RT bearing in mind their
it for assurance purposes, accompanying challenges, and the
ifferent application domains wherein M@RT could be useful.
dditionally, the authors characterized assurance methods based
n techniques and non-functional attributes that the assurance
ethods address.

.4. Applications and challenges

Altawy and Youssef in Altawy and Youssef (2016) identified
he safety and security challenges with respect to cyber–physical
hreats and physical vulnerabilities in civilian unmanned aerial
ehicles (UAVs) while reiterating the different application areas
f UAVs as well as privacy concerns with civilian drones, but no
spects of self-adaptation or its architecture were mentioned.
Similar to the work of Salehie and Tahvildari (2009), Macías-

scrivá et al. (2013) also studied the applications and challenges
n SAS. The authors provided four common definitions for self-
daptivity and highlighted the different approaches employed in
he development of SASs, which are both nature-inspired and
ngineered. Likewise, they identified global and specific tools
nd methods that help to achieve self-adaptivity e.g. feedback
oop control used in monitoring the system and the process of
ecision-making after the analysis of data. Similarly, Alcaraz and
eadally (2015) also studied security challenges in various critical
ystems but did not tackle the notion of self-adaptation. The focus
as placed on organizational and operational security standards
nd measures with a brief mention of safety.
In comparison to the paper by Muccini et al. (2016), which

ocuses more on adaptation at the architecture level, this study
oes further to explore attack surfaces, modeling approaches that
ombine security and safety, and V&V approaches. With respect
o the number of papers, Muccini et al. studied a final set of
2 papers out of an initial set of 1103 using a combination of
anual and automatic searches. This publication on the other
and resulted in 21 papers out of an initial set of 1430 using
atabase searches as well as forward and backward snowballing.
In summary, most studies identified in this section provide a

ood overview of SASs, while some present ideas related to the
wo key notions of safety and security e.g. Altawy and Youssef
2016). However, these two features are studied in isolation even
hough studies have shown that they are related. In this work,
ombined modeling of security and safety is further explored in
he context of self-adaptive systems as there is no study that
oes this concretely. Again, verification and validation techniques
re used to test and evaluate system behaviors and detect un-
ntended interactions that may occur. More so, with dynamic
untime behaviors of self-adaptive systems, it is crucial to be
ble to provide assurance for these systems throughout their life
ycle, both at development time and at runtime. However, since
he adaptive nature of SASs only precipitates at runtime, studies
ave been carried out to address runtime testing of SASs. dos
antos et al. (2021), studied the runtime testing of context-aware
ariability of adaptive systems by identifying possible failures
5

that occur as a result of the system adaptation and verifying
its behavioral properties with an approach dubbed as RETAkE.
They evaluated the approach using two DAS examples and a
mutation testing technique. Therefore, this paper aims to explore
several aspects of the aforementioned related works to develop
a comprehensive classification scheme that combines the safety
and security elements of self-adaptive systems. In addition, the
V&V of SASs are further investigated as they take up more than
half of the design and development efforts. This is significant
because it extends the coverage of the various components of
SAS that have been studied by previous works. In this aspect, the
characteristics and properties of SASs that are used in assuring
the behavior of SASs are further investigated. This is achieved
by introducing a classification dimension that helps to view how
certain properties impact the security and safety of SASs.

4. Methodology

This paper aims to answer the following four research ques-
tions:

• (RQ1) Which security attacks and safety hazards in the con-
text of self-adaptive systems are described in the literature?

• (RQ2) How are security attacks and safety hazards related
and which safety mitigation and treatment strategies exist?

• (RQ3) How are models used in the context of security, safety,
and self-adaptive systems, and which analysis approaches
are utilized?

• (RQ4) What open challenges are described in the literature
in relation to self-adaptive systems?

In order to address these research questions, a systematic
literature review was carried out, in which both keyword-based
database search (Kitchenham et al., 2009) and snowballing
(Wohlin, 2014) methodologies were applied (see Section 4.1).
The resulting set of papers contains publications that focus on
the security and safety of self-adaptive systems (see Section 4.2).
These publications were systematically classified according to
a developed classification scheme that directly relates to the
four research questions. The classification scheme is described in
Section 4.3.

4.1. Search strategy

The goal of the search strategy was to retrieve a representative
set of scientific works dealing with safety and security aspects
in the context of self-adaptive systems. Therefore, a systematic
literature review was conducted by employing a keyword-based
database search that was complemented by applying single for-
ward (cf. identification of new publications that cite the one being
examined) and single backward (cf. examining the references
of a publication being studied) snowballing iteration. According
to Badampudi et al. (2015), the efficiency of additional snow-
balling stages is very low. By employing the two aforementioned
methodologies together, sufficient literature coverage should be
achieved and threats mitigated, especially since our initial set is
quite extensive.

4.2. Search process

The search process consists of the following main phases:
keyword identification, database search, application of selection cri-
teria, and snowballing. This is illustrated in Fig. 2 together with
the different amounts of publications added or excluded in the
different phases/steps.

Keyword identification. In order to develop the search string,
he terms ‘‘‘self-adaptive’’’, ‘‘‘system’’’, ‘‘‘safety’’’, and ‘‘‘security’’’
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Fig. 2. The search process stages.
s

were combined. Since safety, security, and system are widely
used terms in software engineering, we decided to only search
them within abstracts of publications. It is expected that publi-
cations that focus on these topics mention them already in the
abstract. As we are interested in the combination of safety and
security, we require that both terms are mentioned in the ab-
stract. In addition, we strictly focus on the term ‘‘‘self-adaptive’’’
– to include self-adaptive systems as well as self-adaptive ar-
chitecture – and do not consider broader, adjacent terms due
to a very large number of results (over 10000 papers), which
cannot be checked in a realistic timeline. We expect relevant
papers containing synonymous terms to be found through the
additional back- and forward snowballing. Additionally, we aim
to keep the search string as simple and as concise as possible
to avoid over-optimizing it and thereby introducing bias. All of
these considerations lead to the formation of the following search
string:

security[:abstract] AND safety[:abstract] AND
self-adaptive[:full-text] AND system[:abstract].

Database search. The keyword search was conducted using
the following publication databases: ACM, Science Direct, IEEE
Xplore, and Springer Link. This search strategy was applied be-
cause they are widely used databases that are utilized within the
domains of software engineering, hardware safety and security,
and electronic engineering. This allowed us to obtain a good
starting set of papers that is highly relevant for the study.

The search resulted in a set of 1430 publications, consisting
of 339 papers found through ACM, 305 papers found through
Science Direct, 21 papers found through IEEE Xplore, and 765
papers found through Springer Link.2 However, this set contained
a large number of papers that were not relevant for the study,
which were removed by applying the following inclusion and
exclusion criteria.

Inclusion and Exclusion Criteria. The applied inclusion and ex-
clusion criteria are listed in Table 1. The goal was to obtain a set
of high-quality publications and therefore only peer-reviewed ar-
ticles were considered. This included academic publications, jour-
nal papers, conference proceedings, books, and standards. On the
other hand, gray and white literature was excluded, which con-
sists of: technical/vendor reports, preprints, news/press, articles,
work in progress, unpublished results, expert opinions/experience
based on theory, blog entries, and tweets. In addition to the gray
literature, secondary studies such as other literature reviews were
also excluded.

Furthermore, only publications that were accessible in the full
text were considered in order to avoid any incomplete informa-
tion for the data extraction phase. The time period from which
publications were selected ranges from the year 2000 to the year
2020, which allowed us to obtain a set of recent publications.
Regarding the language in which publications were written, only

2 Limitations in the search syntax lead to a higher number of results
6

English papers were selected. Moreover, the final set of papers
consisted only of papers that address explicitly self-adaptation or
self-adaptive architecture such as MAPE-K. These papers also had
to address security (describe an attack, security issue, vulnera-
bility) and safety (safety scenario, safety approach). In addition,
papers presenting verification and validation approaches com-
bined with self-adaptive aspects of a system were included in
the final selection. Finally, all the duplicate papers were excluded
in order to avoid any inconsistencies. This involved removal of
seven papers during the database search and the removal of 14
papers after the snowballing iterations. In total, this resulted in
the elimination of 21 publications.

These inclusion and exclusion criteria were checked in three
iterations that involved checking the title, abstract and full text of
each publication. This was done by splitting papers equally into
four overlapping subsets, wherein each paper was checked by at
least two authors, which resulted in an overlap of 25%. Regarding
the set for full-text reading, it was checked and discussed by four
authors. As a result, a set of 19 papers was obtained, which was
used for snowballing iterations.

Snowballing. The snowballing methodology was executed on
the starting set obtained through the database search. Forward
and backward snowballing iterations resulted in 1402 additional
papers (998 backward and 404 forward snowballing), which were
evaluated by four authors using the aforementioned overlapping
sets procedure. This set was reduced to a total of 27 papers
by applying the same inclusion and exclusion criteria as for
the database search phase. Besides the application of the inclu-
sion/exclusion criteria, an additional quality check was performed
by reading the full text of each of these 27 papers making sure
that they strongly relate to the research questions. This also
assured that non-relevant publications are excluded from the
final set. The check was conducted independently by each of
the four authors, in which each of 27 papers was evaluated. In
case of conflicts, these were thoroughly discussed and solved. If
authors thought that a certain publication did not relate strictly
to research questions, the publication would be removed by
unanimous decision. As a result, six publications were removed
from the set, which resulted in a final set of 21 papers. The
confidence in the resulting number was obtained because of
the rigorous cross-readings done by the team members. Adding
additional variants of the search keywords would return more
results, but the experience from preliminary readings and the
initial papers that we iterated through, shows that most papers
only superficially mention the buzz words such as self-organizing
and self-awareness without demonstrating any implementation
or example. In addition, it is evident that this seems to be a
common trend in the SAS domain. For instance, Gheibi et al.
(2021) and D´Angelo et al. (2019) eventually obtained 109 out of
6709 papers and 52 out 6147 papers from their initial automatic
searches respectively.

4.3. Development of the classification scheme

The information included in the 21 publications of the final
set obtained by the database search and snowballing processes,



I. Pekaric, R. Groner, T. Witte et al. The Journal of Systems & Software 203 (2023) 111716

a
r
(
s
a
t
p
a
w
A
w
a
f
i
d
e
d
a

i
M
e
m
c

t

(
t
a
a

Table 1
Inclusion and exclusion criteria.
Inclusion Exclusion

Peer-reviewed articles Gray and white literature
Accessible in full text Non-English articles
Published between year 2000 and 2020 Secondary studies
Discusses explicitly self-adaptation, self-healing or relates to a self-adaptive architecture
Addresses security and safety
Addresses verification and validation
was systematically extracted by applying a classification scheme
or a codebook. This codebook was developed in accordance with
the methodology proposed by Usman et al. (2017). The following
five phases were executed: (a) Planning, (b) Identification and
Extraction, (c) Design, and Construction, (d) Validation, and (e)
Refinement.

Phase (a) included the planning process, where four of the
uthors proposed ideas for the dimensions. These dimensions
epresented building blocks for the classification scheme. Phase
b) involved the actual development of the classification dimen-
ions. Some of the dimensions were drawn from the literature
nd existing standards (e. g. CAPEC metrics The MITRE Corpora-
ion, 2021). This basic set of dimensions was extended and refined
rogressively by the authors while reading publications. For ex-
mple, whenever at least two papers that belong to a new domain
ere identified, a new category for this domain was created.
fter this identification phase, each of the proposed dimensions
as discussed and agreed upon among all the authors. Phase (c)
nd Phase (d) involved combining all the dimensions into the
inal classification scheme and validating these by classifying the
dentified papers. Finally, in the last phase (cf. Phase (e)) some
imensions were further refined after attempting to classify sev-
ral papers. This was done in order to improve the quality of the
imensions and provide a better codebook, in which categories
re directly related to the research questions.
Fig. 3 shows the proposed classification scheme which is split

nto five main categories (System and its properties, Integration,
odeling Approach, Challenges, and Treatment). These main cat-
gories are subdivided into several subcategories that are sum-
arized in the following and described in more detail in the
orresponding subsections of Section 5.
Besides the domain in which the described system is applied

o (e. g. automotive, IoT, robotics, . . .), the category System and its
properties focuses on the general characteristics of a self-adaptive
system such as the used architecture (see Section 2.1.2). This part
of the coding book was developed in an open coding process as
described in Gibbs (2018).

The adaptation strategy describes concrete measures taken
by the self-adaptation process, clustered to common high-level
strategies, e.g. redundancy, in an open coding process. Adaptation
realization similarly classifies how the adaptation is realized and
which components or part of the adaptation process is detailed
in a paper. The presented limitations are also coded as possible
attacks on the self-adaptation process. Lastly, an adaptation is
classified by its Degree of Automation in case this was described
in a paper.

The subcategories that relate to the Integration of security
aspects of the self-adaptive system are mainly derived from the
literature along the categorizations presented in Section 2.3. They
provide answers to research question RQ1 and include the im-
pact of an attack to a system regarding its confidentiality, in-
tegrity, or availability (CIA triad, see Section 2.3.2). In addition,
the attack surfaces and attack mechanisms that relate to CAPEC
Section 2.3.1) are considered in the classification scheme. Finally,
he used type of security data, the affected part of the adaptation,
nd how the severity of an attack is measured in the investigated

pproaches is taken into account in the classification scheme.

7

Regarding the safety aspects, the described hazard sources and
causes are categorized as well as the safety quality factors (see Sec-
tions 2.3.3 and 2.3.4). However, hazard causes were not classified
according to the classification presented by Allouch et al. (2019).
This is due to the classification being biased and considering
specific hazards that only relate to a specific type of system such
as UAVs. As a result, hazard causes dimensions were developed
using open coding in order to provide the classification of hazards
that would be applicable to any domain.

Finally, any approach focusing on the integration of security
and safety aspects in the context of self-adaptive systems was
coded separately. These codes together with the codes under the
category Treatment address the research question RQ2.

Research question RQ3 is answered by analyzing the codes
of the main category Modeling approach. These categories were
derived in an open coding process and they comprise different
contexts in which a model is used such as illustration purposes
or behavior description, the objectives of the analyses performed
on the presented models, and the checked properties (see Sec-
tion 2.2). The information about the usage of models at runtime
and any described verification and validation techniques were also
collected.

The last research question, RQ4, was answered using the anal-
ysis results for the code Openwhich is a subcategory of Challenges.
The subcategories used emerged during the analysis through
open coding. These reflect the mentioned origins of open chal-
lenges and encompass: the System itself, e.g., through its dis-
tribution; the often not fully known Environment of a system;
the missing joined consideration of Safety and Security as well as
challenges resulting from the Adaptation of a system. Additionally,
there exist Other origins that cannot be further categorized.

4.4. Classification and analysis

Once the classification scheme was completed, the classifica-
tion of the final set of publications was conducted according to
the following procedure:

1. Coding of each publication according to the proposed clas-
sification scheme by one of the authors. The coding was
done using the MAXQDA 2020 tool.

2. In the verification process, the final set of papers was
divided so that the coding of each publication was verified
by at least three other authors. Their comments and results
were recorded in the same coding document.

3. Finally, each discrepancy that was identified was discussed
by all the authors, until an agreement was reached.

The application of the aforementioned procedure guaranteed
that multiple authors were involved in the classification of each
paper. The results were documented in a repository,3 which
were used for further analysis, as well as answering the research
questions. The obtained results are presented in the following
section.

3 https://zenodo.org/record/6821442

https://zenodo.org/record/6821442
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Fig. 3. The proposed classification scheme.
. Results

The codes applied to the different publications of the final
et were analyzed in a qualitative and quantitative way. The
esults of these analyses are summarized in this section. First,
n overview of the domains of the included papers is given
Section 5.1). In Sections 5.2 to 5.5 the analyses of the categories
elated to the different research questions are presented. At the
nd of each of these subsections, an answer to the corresponding
esearch question is formulated.

.1. Overview of included papers

Most papers are from the automotive domain, especially cov-
ring autonomous cars and platooning ( Table 2). Automotive
pplications need to focus on safety and increased security to
eep the passengers safe (more immediate safety risks than other
obotics). Car platoons are dynamic systems of systems (SoS) that
an form and dissolve, which immediately implies some relevant
haracteristics of self-adaptive systems (the cars in the platoon
re monitored for misbehavior; the platoon controller reacts to
isbehavior by changing the platoon. This forms a meta-control
ycle of a self-adaptive system).
8

Other robotic applications include unmanned aerial vehicles
(UAV) (Ferrão et al., 2020; Yoon et al., 2017) as well as coop-
erative robotics (Beltrame et al., 2018; Causevic et al., 2019).
Adaptive safety and security-critical applications also exist in the
critical infrastructure and critical production systems domain Set-
tanni et al. (2018a), Liang et al. (2018), Knight and Strunk (2004).
These systems often consist of multiple subsystems – possibly de-
ployed in multiple locations – that are connected to an industrial
control system (e.g. SCADA). In a similar domain, Settanni et al.
(2018b) focuses on workplace safety and security.

Sensor networks using IoT technology to form ad-hoc net-
works and exchange data adapt the network topology to ensure
safe and secure operation in a changing environment (Veledar
et al., 2019; Potteiger et al., 2020; Teimourikia and Fugini, 2017;
Settanni et al., 2018a). Domain-independent papers in most cases
cannot easily focus on safety and security in a way to fulfill
our inclusion criteria. The motivation to require both safety and
security and sufficiently concrete examples showcasing threats or
attacks ties the paper to specific domains. Most papers focusing
on broader, domain-independent aspects, therefore, did not fulfill
the inclusion criteria for safety and security and were filtered
out in the process. The two selected, domain-independent papers
focus on runtime trust assurance, a narrow, cross-cutting con-

cern, and translating existing ideas inspired by the mammalian
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Table 2
Papers per domain (multiple selections possible).
Domain #Papers Papers

Automotive 12 Liu et al. (2017), Le and Maple (2019), Veledar et al. (2019), Potteiger et al. (2020),
DeBruhl et al. (2015), Zhu et al. (2020), Liang et al. (2018), Petit and Shladover
(2015), Monteuuis et al. (2018), Amoozadeh et al. (2015), Bolovinou et al. (2019),
Causevic et al. (2019)

IoT 4 Veledar et al. (2019), Potteiger et al. (2020), Teimourikia and Fugini (2017),
Settanni et al. (2018a)

Critical Infrastructure & Production Systems 4 Settanni et al. (2018a), Liang et al. (2018), Knight and Strunk (2004), Settanni et al.
(2018b)

UAV & other robotics 4 Ferrão et al. (2020), Yoon et al. (2017), Beltrame et al. (2018), Causevic et al. (2019)

No specific domain 2 Schneider et al. (2011), Polack (2010)
Fig. 4. Selected papers by year of publication.
Table 3
Type of venue for publication of the selected papers.
Type #Papers Papers

Conference 8 Le and Maple (2019), Veledar et al. (2019), DeBruhl et al. (2015),
Zhu et al. (2020), Liang et al. (2018), Causevic et al. (2019),
Settanni et al. (2018a), Yoon et al. (2017)

Journal 5 Potteiger et al. (2020), Petit and Shladover (2015), Amoozadeh
et al. (2015), Teimourikia and Fugini (2017), Settanni et al.
(2018b)

Workshop 4 Liu et al. (2017), Monteuuis et al. (2018), Beltrame et al. (2018),
Polack (2010)

Symposium 3 Ferrão et al. (2020), Bolovinou et al. (2019), Schneider et al.
(2011)

Book Chapter 1 Knight and Strunk (2004)
immune response from swarm robotics to other domains and
roviding multiple example use cases from multiple domains.
The intersection of safety, security, and self-adaptation is a

ecent and active research area. Although we searched for papers
ublished in the past 20 years, most of the selected papers were
ublished in 2015 or later as shown in Fig. 4.
The venues or journals, where these papers were published

r presented, correlate with the domains of the papers, covering
he respective research areas. The selected papers are mostly
onference publications, possibly due to the very recent and novel
esearch area (see Table 3).

.2. Security, safety and self-adaptation (RQ1)

System adaptation can occur on different levels: from a simple
arameter or configuration change to architectural reconfigura-
ion at runtime that modifies the behavior of the system. In the
LR, the focus was on behavioral changes driven by architectural
econfiguration or state changes in the software that modify
9

the behavior. A specialized adaptation architecture is required to
trigger, execute and supervise the adaptation.

5.2.1. Adaptation architecture
Most of the 13 papers that specifically mention their self-

adaptation mechanism or architecture use MAPE-K or a variant
of it (see Table 4). Some papers (focusing specifically on platoon-
ing) do not mention how the self-adaptation is done or which
self-adaptation architecture is used but only the trigger and the
goal of the adaptation. Other adaptation architectures that are
mentioned are directly tailored toward a very specific applica-
tion and they are not generally applicable to all self-adaptive
systems. Some of these can also be considered unnamed and
cannot be identified as MAPE-K. For example, the virtualization
architecture in Yoon et al. (2017) is specifically tailored towards
UAVs or similar autonomous systems and enables adaptations to
defend against specific attacks. Papers that are classified as not
mentioning a specific architecture mention an adaptation process
or adaptation goal but contain no information on how this goal
is reached.
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Table 4
Adaptation architectures used in papers.
Architecture #Papers Papers

MAPE-K or variant 7 Causevic et al. (2019), Settanni et al. (2018a), Teimourikia and Fugini (2017),
Veledar et al. (2019), Settanni et al. (2018b), Knight and Strunk (2004), Le and
Maple (2019)

Other architecture 6 Schneider et al. (2011), Beltrame et al. (2018), Zhu et al. (2020), Ferrão et al.
(2020), Yoon et al. (2017), Potteiger et al. (2020)

No specific
architecture
mentioned

8 Liu et al. (2017), DeBruhl et al. (2015), Liang et al. (2018), Petit and Shladover
(2015), Monteuuis et al. (2018), Amoozadeh et al. (2015), Bolovinou et al.
(2019), Polack (2010)
Table 5
Adaptation strategies (multiple selection possible).
Strategy #Papers Papers

Redundancy 8 Monteuuis et al. (2018), Settanni et al. (2018a), Ferrão et al. (2020), Amoozadeh
et al. (2015), Le and Maple (2019), Zhu et al. (2020), Potteiger et al. (2020),
Knight and Strunk (2004)

Stop Operation 7 Settanni et al. (2018a), Yoon et al. (2017), Liu et al. (2017), DeBruhl et al.
(2015), Amoozadeh et al. (2015), Le and Maple (2019), Teimourikia and Fugini
(2017)

Reduce Service 5 Polack (2010), Yoon et al. (2017), Zhu et al. (2020), Amoozadeh et al. (2015),
Knight and Strunk (2004)

Increased Vigilance 4 Knight and Strunk (2004), DeBruhl et al. (2015), Settanni et al. (2018a), Yoon
et al. (2017)

Other 7 Knight and Strunk (2004), Teimourikia and Fugini (2017), Settanni et al.
(2018a), Monteuuis et al. (2018), Causevic et al. (2019), Yoon et al. (2017),
Potteiger et al. (2020)
5.2.2. Adaptation strategies
While MAPE-K was the only architecture for self-adaptation

entioned and used in multiple papers, the adaptation strategies
nd goals were more diverse. Four main adaptation strategies
re mentioned: redundancy (redundant controllers (4), redun-
ant sensors (1), model-based state estimation (3), unspecified
2)), increasing vigilance (higher safety margins (1), stricter se-
urity policies (1), blocking communication (2)), reducing service
degeneracy (1), saving energy (1), removing components (3),
inimal operation mode (1)) and stopping operation (return to
ase (1), end cooperation (3), restarting the system (2), fail-stop
1)) (see Table 5). Redundancy is a common safety strategy to
etect and recover from failing components. Redundancy can also
ncrease security by adding plausibility checks to detect mali-
ious or manipulated data and components. Redundant sensor
easurements can be acquired from similar sensors (Amoozadeh
t al., 2015) or by predicting the state using a model (Ferrão et al.,
020; Amoozadeh et al., 2015; Le and Maple, 2019). Multiple
ontrollers are used, for example, to switch to a safe but worse-
erforming controller if another better-performing but unreliable
ontrol strategy (e.g. using trained neural networks) fails (Knight
nd Strunk, 2004; Potteiger et al., 2020).
Increasing the security or safety level can be another effective

daptation strategy. If an attack or malicious actor is detected,
locking communication and tightening security policies (e.g. by
nstalling additional network traffic monitors (Knight and Strunk,
004)) can prevent the attacker from compromising other parts
f the system. Raising the safety margins can help compensate for
onger reaction times due to less (trusted) information and higher
ncertainty (DeBruhl et al., 2015).
These adaptations often include service reduction as an in-

entional or unintentional side effect: the service reduction due
o worse-performing redundant sensors is unintentional while

locking communication is an intentional service reduction. Other

10
forms of service reduction such as removing malicious or compro-
mised actors from a vehicle platoon (Amoozadeh et al., 2015) can
help stabilize the remainder of the system.

If the system is unable to ensure a secure and safe state
or cannot safely recover from a fault or attack, stopping the
service is often the best solution. The system can then restart
or reform: e.g. after ending cooperation and dissolving a car
platoon (DeBruhl et al., 2015; Liu et al., 2017), the platoon can
be re-established. Robots may return to base (Yoon et al., 2017),
remain stationary (Le and Maple, 2019), or shut down to avoid
their loss or destruction.

Apart from these general strategies, adaptations can have very
diverse goals. In some cases, instead of reducing the capabili-
ties and access rights of system components at risk, the inverse
strategy is used: granting these components additional privi-
leges to be able to recover (Yoon et al., 2017), or scheduling
an inspection and informing users of the risk (Teimourikia and
Fugini, 2017). In addition to increasing the security level, pro-
posed strategies include the anonymization of communication
and messages (Monteuuis et al., 2018), e.g. to prevent the leaking
of confidential and personal data. Decryption and checking the in-
tegrity of application components before loading them (Potteiger
et al., 2020) can ensure, that after resetting the software, a known
and secure state is reached. Instead of or in addition to blocking
normal communication, establishing a hidden communication
channel (Yoon et al., 2017) can help keep or regain control of the
system in case of an attack. Concerning the platooning use case,
route re-planning (Causevic et al., 2019) instead of dissolving the
platoon might be an adequate mitigation strategy for external
attacks or avoiding hazardous locations.

It is possible to select one of the multiple strategies depending
on the criticality, e.g. switching to or using additional redundant
sensors as a first countermeasure and escalating to stopping or
reducing service if the critical state is not resolved. Stopping
operation is mostly used as a last resort or catch-all in papers
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hat do not describe the adaptation strategy in detail (Amoozadeh
t al., 2015; DeBruhl et al., 2015; Liu et al., 2017; Settanni et al.,
018a; Le and Maple, 2019).

.2.3. Limitations to self-adaptation
Only a few papers mention conditions under which the suc-

ess of the self-adaptation cannot be guaranteed (Liu et al., 2017;
otteiger et al., 2020; Zhu et al., 2020; Knight and Strunk, 2004),
r checks on the self-adaptation (Causevic et al., 2019). Especially
f no specific adaptation architecture is mentioned, the adaptation
s implicitly seen as atomic, instantaneous, and guaranteed to
ucceed, then showing that after the successful adaptation a safe
nd secure state can be reached.
In Liu et al. (2017), it is mentioned, that the switch from coop-

rative adaptive cruise control (CACC) to adaptive cruise control
ACC) might not succeed. No method or mechanism to detect or
ecover from such failure is described. Runtime verification of
afety and cyber-security requirements is used in Causevic et al.
2019) to guarantee dependability after and during a reconfigu-
ation. In Knight and Strunk (2004), the authors advise against an
d-hoc implementation of the adaptation mechanism, as it might
educe system dependability even compared to no adaptation
t all due to failures during the adaptation process. The operat-
ng system and the reconfiguration mechanism must be secure
nd isolated from potentially compromised components for the
daptation to succeed (Potteiger et al., 2020). Virtualization tech-
ology can be used to isolate components from the supervising
ystem (Yoon et al., 2017), but failures in these components or
ttacks on this isolation are not considered in the papers. Even
f succeeding and working correctly, frequent and intermittent
econfigurations (such as switching between different, redun-
ant controllers) can lead to undesired behavior and reduced
erformance (Zhu et al., 2020). Methods to limit or prevent in-
entionally induced frequent adaptations are not reported in the
apers.

.2.4. Implementation of the adaptation
Even though the same MAPE-K adaptation architecture is used

n most papers, the implementation varies widely or is sometimes
nly described on a high level. Noteworthy, in Causevic et al.
2019) runtime monitors are used during both normal operation
nd self-adaptation to assure optimal scheduling of computa-
ional resources, as during adaptation additional computational
oad might occur. Runtime verification during adaptation is used
o ensure the dependability of services.

The MAPE-K components run often in a privileged mode com-
ared to the rest of the system. This provides isolation between
he system and the MAPE-K components to restrict potentially
rroneous or malicious dataflow between the system and the
daptation system (Potteiger et al., 2020; Yoon et al., 2017). The
rivileged role of the adaptation component allows it to give ad-
itional access or rights to other parts of the system as part of the
econfiguration, e.g. creating hidden channels (Yoon et al., 2017),
iving some components additional capabilities (Teimourikia and
ugini, 2017; Yoon et al., 2017) or restart (parts) of the system.
In large systems, multiple MAPE loops can be used in a de-

entralized manner. The MAPE functions can then communicate
irectly or indirectly via the knowledge base (Settanni et al.,
018b,a). Even in papers that do not specifically use MAPE-K, the
elf-adaptation mechanism is similarly distributed over multiple
omponents. This helps separate concerns like monitoring, con-
ext knowledge, threat analysis, and mitigation assessment (Le
nd Maple, 2019) or control objectives, adaptation controller, and
ontext monitoring. Computational resources are conserved by
riggering and executing later stages of the self-adaptation only
f context changes are detected.
11
5.2.5. Attack mechanisms
In order to identify potential threats to self-adaptive sys-

tems, we investigated various attacks that are described in the
literature. These attacks were classified according to the Mech-
anisms of Attack: CAPEC-1000 (The MITRE Corporation, 2021)
(see Section 2.3.1), where each attack vector was mapped to a
specific category. As a result, a classification of attacks related to
self-adaptive systems was developed. This mapping is illustrated
in Table 6, in which papers are assigned to specific categories
of attack mechanisms. The large majority of attacks belong to
Manipulate System Resources (56), Engage in Deceptive Interactions
(34), and Inject Unexpected Items (20). In addition, we identified
attacks that belong to Subvert Access Control (8), Collect and Ana-
lyze Information (6), and Abuse Existing Functionality (2). Finally,
there were no attack vectors that Manipulate Timing and State,
Employ Probabilistic Techniques, or Manipulate Data Structures.

A manipulation of system resources includes attacks in which
attackers aim to manipulate single or multiple resources to
achieve a certain goal. This is achieved by degrading the avail-
ability of critical sensors (Yoon et al., 2017), GPS jamming (Petit
and Shladover, 2015) and message replay (Liu et al., 2017) attacks.
Attack mechanisms that focus on malicious interactions towards
a target with a goal to deceive it by falsifying the content or
identity are part of the Engage in Deceptive Interactions cate-
gory. These attacks include sensor and camera spoofing (Le and
Maple, 2019), sound interference (Petit and Shladover, 2015), and
invisible object (Petit and Shladover, 2015) attacks. The Inject
Unexpected Items category focuses on attacks that aim to control
or disrupt the target, which includes attacks such as message
falsification (Amoozadeh et al., 2015), fault injection (Zhu et al.,
2020) and miss-report (Liu et al., 2017) attacks. Attacks that try
to exploit the weakness that leads to access to the system and
various resources can be referred to as Subvert Access Control
attacks. An example of such attacks include unauthorized access
to privacy information (Veledar et al., 2019), personation (Polack,
2010) and man in the middle (Settanni et al., 2018b) attacks.
TheCollect and Analyze Information category deals with attacks
that aim to collect and steal various information. Examples of
such attacks are location tracking (Petit and Shladover, 2015),
information disclosure (Monteuuis et al., 2018), and eavesdrop-
ping sensors (Petit and Shladover, 2015) attacks. Finally, in the
Abuse Existing Functionality an attacker tries to manipulate the
functionalities of an application to achieve a malicious goal. Side-
channel (Yoon et al., 2017) and blocking pseudonym change (Petit
and Shladover, 2015) are examples of such attacks.

In relation to attack mechanisms that specifically focus on the
reconfiguration itself, Yoon et al. (2017) discusses that an attacker
might forge special, privileged commands that override control
of a drone returning to the base. These commands, normally
designed to prevent losing control over the drone, can therefore
be used against the drone if not carefully chosen and secured.

5.2.6. Attack surfaces and CIA
Aspects that were also addressed from a security point of

view include attack surfaces and the CIA triad (see Section 2.3.2).
This was done to understand how are the attacks executed as
well as to perceive the focus of the attacks. In regards to at-
tack surfaces, attacks can be classified based on the initial entry
point, which includes the following three types of access: physical
access (direct access to wires and control boxes), close proxim-
ity (includes the attacks that focus on communication with the
system such as sensor, audio, and dedicated short-range com-
munication attacks) and remote access (involves attacks that are
implemented over large distances over the network that utilize
GPS, radio, and internet) (Parkinson et al., 2017). As shown in
Table 7, a large majority of attacks on self-adaptive systems are
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Table 6
Classification of attack vectors using Mechanisms of Attack: CAPEC-1000.
Attack
Mechanisms

#Attacks Papers

Manipulate
System
Resources

56 Liu et al. (2017), Le and Maple (2019), Knight and Strunk (2004),
Settanni et al. (2018b), Zhu et al. (2020), Petit and Shladover (2015),
Settanni et al. (2018a), Monteuuis et al. (2018), Amoozadeh et al.
(2015), Bolovinou et al. (2019), Yoon et al. (2017)

Engage in
Deceptive
Interactions

34 Liu et al. (2017), Le and Maple (2019), DeBruhl et al. (2015), Liang
et al. (2018), Petit and Shladover (2015), Monteuuis et al. (2018),
Amoozadeh et al. (2015), Ferrão et al. (2020), Bolovinou et al. (2019),
Yoon et al. (2017), Potteiger et al. (2020)

Inject
Unexpected
Items

20 Liu et al. (2017), Settanni et al. (2018b), Potteiger et al. (2020),
DeBruhl et al. (2015), Zhu et al. (2020), Petit and Shladover (2015),
Settanni et al. (2018a), Amoozadeh et al. (2015), Bolovinou et al.
(2019), Yoon et al. (2017)

Subvert Access
Control

8 Settanni et al. (2018b), Veledar et al. (2019), Petit and Shladover
(2015), Settanni et al. (2018a), Monteuuis et al. (2018), Polack (2010)

Collect and
Analyze
Information

6 Veledar et al. (2019), Petit and Shladover (2015), Monteuuis et al.
(2018), Bolovinou et al. (2019)

Abuse Existing
Functionality

2 Yoon et al. (2017), Petit and Shladover (2015)

Manipulate
Timing and State

0

Employ
Probabilistic
Techniques

0

Manipulate Data
Structures

0

Table 7
Attack Surfaces.
Attack Surfaces #Papers Papers

Remote Access 17 Liu et al. (2017), Le and Maple (2019), Knight and Strunk (2004),
Settanni et al. (2018b), Veledar et al. (2019), Potteiger et al. (2020),
DeBruhl et al. (2015), Zhu et al. (2020), Liang et al. (2018), Petit and
Shladover (2015), Settanni et al. (2018a), Monteuuis et al. (2018),
Amoozadeh et al. (2015), Polack (2010), Ferrão et al. (2020), Bolovinou
et al. (2019), Yoon et al. (2017)

Close Proximity 3 Le and Maple (2019), Petit and Shladover (2015), Amoozadeh et al.
(2015)

Physical Access 1 Petit and Shladover (2015)
conducted using remote access (17). This is due to multiple attacks
hat involve Camera/RADAR/LiDAR spoofing/tampering/jamming
e.g., Petit and Shladover (2015), Yoon et al. (2017), Liu et al.
2017)). On the other hand, only a small number of attacks are
xecuted via close proximity (3) such as camera tampering (Le
nd Maple, 2019), blind vision (Petit and Shladover, 2015) and
adio jamming (Amoozadeh et al., 2015). Only a single paper
ddressed attacks that require physical access such as removing
lash firmware and thermal attacks (Petit and Shladover, 2015).
egarding the information security principles that are affected,
ntegrity (16) and availability (14) are influenced to the highest
egree (see Table 8). At the same time, confidentiality (12) is
mpacted slightly less.

.2.7. Type of data
The type of data dimension (see Table 9) is significant because

t provides information regarding what security data is being
sed in attacks that were described in the investigated set of
apers. This makes it possible to better understand the attacker’s
eans and targets. The highest addressed type of security data

s asset (13). This is due to many approaches describing directly
ignificant assets that are targeted by adversaries. For example,
n asset can be a vehicle, infrastructure, or a specific component
12
(e.g., Monteuuis et al. (2018)). On the other hand, risk (6) and
threat data (5) are described to a lesser extent. The possible risks
were usually only stated qualitatively (e.g., Amoozadeh et al.
(2015)). The biggest surprise is that there is a small number of
approaches utilizing vulnerability (3) (Amoozadeh et al., 2015;
Potteiger et al., 2020; Settanni et al., 2018b) and exploit (0) data.
It would be expected that this type of data would be included
together with the identified attacks to describe how the attack
was conducted.

5.2.8. Affected part of adaptation
Another aspect that was investigated is the affected part of

adaptation (see Table 10). This dimension investigates the com-
ponents that are affected by attacks, which interact with the
adaptation mechanisms. The self-adaptive architectures such as
MAPE-K include or interplay with various components such as
controllers, sensors, and database. As a result, it is important
to identify which of these components are affected by attacks
because this can affect the overall adaptation process and cause
serious issues. The components that are most often targeted
include sensors (7 - e.g., Veledar et al. (2019), Liang et al. (2018))
and controllers (7 - e.g., Yoon et al. (2017), DeBruhl et al. (2015)).
On the other hand, the self-adaptive database (1) (Veledar et al.,
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Table 8
CIA Triad.
CIA #Papers Papers

Integrity 16 Liu et al. (2017), Le and Maple (2019), Schneider et al. (2011),
Settanni et al. (2018b), Veledar et al. (2019), DeBruhl et al. (2015),
Zhu et al. (2020), Liang et al. (2018), Petit and Shladover (2015),
Settanni et al. (2018a), Monteuuis et al. (2018), Polack (2010), Ferrão
et al. (2020), Bolovinou et al. (2019), Yoon et al. (2017)

Availability 14 Liu et al. (2017), Le and Maple (2019), Knight and Strunk (2004),
Schneider et al. (2011), Settanni et al. (2018b), Veledar et al. (2019),
Potteiger et al. (2020), Petit and Shladover (2015), Settanni et al.
(2018a), Monteuuis et al. (2018), Amoozadeh et al. (2015), Ferrão
et al. (2020), Bolovinou et al. (2019), Yoon et al. (2017)

Confidentiality 12 Liu et al. (2017), Le and Maple (2019), Settanni et al. (2018b), Veledar
et al. (2019), Potteiger et al. (2020), Petit and Shladover (2015),
Settanni et al. (2018a), Monteuuis et al. (2018), Amoozadeh et al.
(2015), Ferrão et al. (2020), Bolovinou et al. (2019), Yoon et al. (2017)
Table 9
Type of Data.
Type of Data #Papers Papers

Asset 13 Liu et al. (2017), Le and Maple (2019), Settanni et al. (2018b),
Potteiger et al. (2020), DeBruhl et al. (2015), Zhu et al. (2020), Liang
et al. (2018), Petit and Shladover (2015), Monteuuis et al. (2018),
Amoozadeh et al. (2015), Ferrão et al. (2020), Bolovinou et al. (2019),
Yoon et al. (2017)

Risk (indicators) 6 Liu et al. (2017), Settanni et al. (2018b), Veledar et al. (2019),
Teimourikia and Fugini (2017), Monteuuis et al. (2018), Amoozadeh
et al. (2015)

Threat 5 Le and Maple (2019), Settanni et al. (2018b), Veledar et al. (2019),
Petit and Shladover (2015), Monteuuis et al. (2018)

Vulnerability 3 Settanni et al. (2018b), Potteiger et al. (2020), Amoozadeh et al. (2015)

Exploit 0
Table 10
Affected Part of Adaptation.
Affected Part of
Adaptation

#Papers Papers

Controller 7 Liu et al. (2017), Settanni et al. (2018b), Potteiger et al. (2020),
DeBruhl et al. (2015), Zhu et al. (2020), Monteuuis et al. (2018), Yoon
et al. (2017)

Sensors 7 Veledar et al. (2019), Le and Maple (2019), Liang et al. (2018), Petit
and Shladover (2015), Monteuuis et al. (2018), Bolovinou et al. (2019),
Yoon et al. (2017)

Database 1 Veledar et al. (2019)
2019), in which different configurations are stored, presents the
least likely target for attackers.

5.2.9. Hazard source and cause
In relation to the safety aspects that were investigated, hazard

ource and hazard cause (see Section 2.3.3) play a significant role
see Table 11). According to Allouch et al. (2019), hazard source
an be classified as internal or external. For example, an internal
actor can be mechanical or software related, while external
an relate to human and environment interaction. Most of the
dentified hazards take place due to external factors (16), while
low number of hazards are realized by internal factors (7).

xternal factors mostly include adversaries that aim to cause
amage to a system (e.g., Le and Maple (2019), Settanni et al.
2018a), Yoon et al. (2017)), while internal factors are usually
elated to mechanical or hardware problems (e.g., Teimourikia
nd Fugini (2017), Ferrão et al. (2020), DeBruhl et al. (2015)).
hen it comes to the hazard cause (see Table 12), this dimension

nvestigates the potential reasons behind why the safety property
13
was affected. It was identified that collisions (6 — e.g., Liu et al.
(2017), DeBruhl et al. (2015), Liang et al. (2018)) and system
failures (6 — e.g., Petit and Shladover (2015), Monteuuis et al.
(2018), Bolovinou et al. (2019), Settanni et al. (2018a)) play the
biggest role because these are the hazards that can potentially
create the biggest impact. As a result, they were investigated
to the highest degree. Other significant hazard causes include
performance alterations (5 — e.g., Liu et al. (2017), Le and Maple
(2019), Veledar et al. (2019)), crashes (4 — e.g., Potteiger et al.
(2020), Liang et al. (2018), Petit and Shladover (2015)), component
failures (3 — (Veledar et al., 2019; Petit and Shladover, 2015; Yoon
et al., 2017)), overheating (2 — (Settanni et al., 2018a; DeBruhl
et al., 2015)), and string stability decrease (2 — (Liu et al., 2017;
Settanni et al., 2018b)). All the hazard causes that occurred only
a single time were placed into the other category (5). These in-
cluded the following: unwanted behavior (Potteiger et al., 2020),
faulty navigation, Beltrame et al. (2018), failing to turn (Petit and
Shladover, 2015), erroneous response (Teimourikia and Fugini,
2017) and engine failure (Beltrame et al., 2018).
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Table 11
Hazard Source.
Hazard Source #Papers Papers

External 16 Liu et al. (2017), Le and Maple (2019), Knight and Strunk (2004),
Settanni et al. (2018b), Veledar et al. (2019), Potteiger et al. (2020),
DeBruhl et al. (2015), Zhu et al. (2020), Liang et al. (2018),
Teimourikia and Fugini (2017), Petit and Shladover (2015), Settanni
et al. (2018a), Monteuuis et al. (2018), Amoozadeh et al. (2015),
Ferrão et al. (2020), Yoon et al. (2017)

Internal 7 DeBruhl et al. (2015), Teimourikia and Fugini (2017), Petit and
Shladover (2015), Monteuuis et al. (2018), Amoozadeh et al. (2015),
Ferrão et al. (2020), Bolovinou et al. (2019)
5.2.10. Safety quality factors
The last safety dimension that was addressed is safety quality

actors (see Table 13). This was investigated in order to check
hat is affected by different hazards that relate to self-adaptive
ystems (see Section 2.3.4). The two highest affected factors
re property (11 — e.g., DeBruhl et al. (2015), Bolovinou et al.
2019)) and health (10 — e.g., Ferrão et al. (2020), Le and Maple
2019)). On the other hand, the impact on environmental factors
as described in only three approaches (Settanni et al., 2018b;
eimourikia and Fugini, 2017; Ferrão et al., 2020).

Answer to RQ1: A substantial number of security attacks
that target self-adaptive systems was identified. These were
investigated and classified according to the Mechanisms of At-
tack: CAPEC-1000, which resulted in the following mapping of
categories and specific attacks: Manipulate System Resources
(56), Engage in Deceptive Interactions (34), and Inject Un-
expected Items (20), Subvert Access Control (8), Collect and
Analyze Information (6), and Abuse Existing Functionality (2).
In regards to the specific attacks, these include sensor degra-
dation (Yoon et al., 2017), GPS jamming (Petit and Shladover,
2015), message replay (Liu et al., 2017), sensor and camera
spoofing (Le and Maple, 2019), sound interference (Petit and
Shladover, 2015), invisible object (Petit and Shladover, 2015),
message falsification (Amoozadeh et al., 2015), fault injec-
tion (Zhu et al., 2020), miss-report (Liu et al., 2017) attacks,
unauthorized access to privacy information (Veledar et al.,
2019), personation (Polack, 2010), man in the middle (Settanni
et al., 2018b), location tracking (Petit and Shladover, 2015), in-
formation disclosure (Monteuuis et al., 2018), eavesdropping
sensors (Petit and Shladover, 2015), side-channel (Yoon et al.,
2017), and blocking pseudonym change (Petit and Shladover,
2015) attacks. The aforementioned attacks are in most cases
executed remotely targeting each property of the CIA triad
with a focus on sensors and controller of a self-adaptive sys-
tem. In regards to the safety hazards, the sources of hazards
are to a high degree external and are realized by external at-
tacks targeting property and health quality factors. The results
of hazards are in most cases collisions and system failures.

+

5.3. Combined security and safety approaches and their mitigation
strategies (RQ2)

In the following, the approaches that integrate security and
afety aspects, as well as their mitigation strategies are presented.

.3.1. Approaches combining safety and security
A joint consideration of safety and security that also takes into

ccount the interplay of these two aspects, is presented in six
apers (Liu et al., 2017; Veledar et al., 2019; Beltrame et al., 2018;
olovinou et al., 2019; Monteuuis et al., 2018; Yoon et al., 2017).
he authors of Liu et al. (2017) present their engineering process
14
which combines safety and security considerations during the
development of a system. The process described consists of first
defining security and safety goals and then determining which
attacks threaten them. For example, it is indicated that collision
induction attacks can cause severe accidents by broadcasting an
acceleration message, which indicates that they are speeding up,
while the attacker starts to brake heavily. Another example is
the message falsification attack in which the preceding vehicle
that drives with a low speed misreports that it is driving faster.
This may lead to a possible collision and life endangerment. As
a result, it is very important that a system is resilient to these
attacks. Based on these findings, security requirements are then
defined for the system to be developed.

The authors of Veledar et al. (2019) propose the usage of Dig-
ital Twins to improve the safety and security of IoT and CPS. The
authors present a process for designing a corresponding Digital
Twin, consisting of identifying the assets as well as the safety and
security goals. Subsequently, metrics for the safety and security
evaluation are defined and finally, among other things, threat
modeling is performed. The authors of Beltrame et al. (2018)
propose to extend Buzz code, which is a multi-robot scripting
language, by including safety and security primitives. A Pattern
Traversal Flow Analysis (PTFA) should then extract a Control Flow
Graph from this extended code. The model extracted is then used
for model checking. A threat model that calculates the impact of
an attack based, among other factors, on the attack’s impact on
safety is presented in Bolovinou et al. (2019).

The authors of Monteuuis et al. (2018) discuss a risk assess-
ment approach, in which both security and safety are jointly
addressed. In addition, they mention possible attacks that could
impact the safety of a vehicle. One such attack includes an at-
tacker attempting to affect sensors connected to a vehicle by
altering the calibration. This leads to a system error and possible
system failure, which could cause a vehicle crash and serious
safety issues. Similarly, sensor attacks are also described in Yoon
et al. (2017), where an attacker launches an attack in order to de-
grade the availability of critical sensors impacting overall safety.
Furthermore, an attack could also disable the flight controller
during the flight, which would cause the system to be in an
open-loop state leading to a crash.

5.3.2. Treatment of hazards
An important component of self-adaptive systems is the need

to be sure that hazards created from changes in the system or
as a result of an external influence have little or no negative
impact on the system. To do this, hazards need to be handled
in different ways demonstrated in Table 14. Hazard treatment
refers to the various annulment approaches that are employed
to ensure that derailment from the normalcy of a system does
not result in the complete destruction of the system, property
damage or total property loss, and human injury or even loss
of life. In this classification, the damage minimization appears to
be the least popular as it was not identified in a single paper.
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Table 12
Hazard Cause.
Hazard Cause #Papers Papers

Collision 6 Liu et al. (2017), DeBruhl et al. (2015), Liang et al. (2018), Petit and
Shladover (2015), Amoozadeh et al. (2015), Ferrão et al. (2020)

System Failure 6 Petit and Shladover (2015), Monteuuis et al. (2018), Bolovinou et al.
(2019), Settanni et al. (2018a), Knight and Strunk (2004), Polack (2010)

Performance
Alteration

5 Liu et al. (2017), Le and Maple (2019), Veledar et al. (2019), Potteiger
et al. (2020), Amoozadeh et al. (2015)

Other 5 Potteiger et al. (2020), Petit and Shladover (2015), Teimourikia and
Fugini (2017), Yoon et al. (2017), Beltrame et al. (2018)

Crash 4 Potteiger et al. (2020), Liang et al. (2018), Petit and Shladover (2015),
Bolovinou et al. (2019)

Component Failure 3 Veledar et al. (2019), Petit and Shladover (2015), Yoon et al. (2017)

Overheating 2 Settanni et al. (2018a), DeBruhl et al. (2015)

String Stability
Decrease

2 Liu et al. (2017), Settanni et al. (2018b)
Table 13
Safety Quality Factors.
Safety Quality
Factors

#Papers Papers

Property 11 Liu et al. (2017), Le and Maple (2019), Settanni et al. (2018b),
Potteiger et al. (2020), DeBruhl et al. (2015), Liang et al. (2018),
Teimourikia and Fugini (2017), Amoozadeh et al. (2015), Ferrão et al.
(2020), Bolovinou et al. (2019), Yoon et al. (2017)

Health 10 Liu et al. (2017), Le and Maple (2019), Potteiger et al. (2020), DeBruhl
et al. (2015), Teimourikia and Fugini (2017), Petit and Shladover
(2015), Monteuuis et al. (2018), Amoozadeh et al. (2015), Ferrão et al.
(2020), Bolovinou et al. (2019)

Environmental 3 Settanni et al. (2018b), Teimourikia and Fugini (2017), Ferrão et al.
(2020)
Table 14
How hazards are handled.
Treatment and Mitigation #Papers Papers

Hazard Reduction 8 Liu et al. (2017), Le and Maple (2019), Knight and Strunk (2004),
Schneider et al. (2011), Veledar et al. (2019), Settanni et al. (2018a),
Monteuuis et al. (2018), Yoon et al. (2017)

Hazard Control 7 Le and Maple (2019), Veledar et al. (2019), Zhu et al. (2020),
Amoozadeh et al. (2015), Settanni et al. (2018a), Ferrão et al. (2020),
Yoon et al. (2017)

Hazard Elimination 6 Liu et al. (2017), Potteiger et al. (2020), DeBruhl et al. (2015),
Teimourikia and Fugini (2017), Monteuuis et al. (2018), Settanni et al.
(2018a)
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The reason for the unpopularity of damage minimization seems
to be obvious bearing that the cost of damage may be too dear
to bear. Consequently, we see the corresponding highest number
for hazard reduction as we aim to reduce how much impact the
system gets upon attack from a foreign entity or changes from
within the system. Here, a PLC reset action is triggered when
the number of security events through a human–machine inter-
face (HMI) exceeds two per minute. The three identified hazard
treatment types follow similar concepts as what we have in fail-
passive or fault-operational systems (Hazard Control — systems
hat will remain operational during system failure by passing con-
rol to another agent), fault-tolerant systems (Hazard Reduction —
ystems that continue to operate by detecting components that
re at risk and replacing them before any hazard results) and
ail-safe systems (Hazard Elimination — systems that switch to
afe-mode when the system fails).
15
From Table 14, eight papers employed hazard reduction tech-
iques to treat hazards. It is evident that most of these studies
re in domains that are heavily safety-critical e.g. automotive and
utonomous systems as in Liu et al. (2017), Le and Maple (2019),
eledar et al. (2019), Monteuuis et al. (2018), Yoon et al. (2017).
n Yoon et al. (2017), a combination of both hazard control and
azard reduction techniques is used. To achieve this, the system
witches control over to a secure controller to limit functionalities
hat are not trustworthy or reliable. Settanni et al. (2018a) studies
yber–physical production systems which are the backbone of
odern-day and future industrial systems while (Knight and
trunk, 2004) and Schneider et al. (2011) are more focused on risk
anagement and trust assurance addressing concerns related to
urvivability and dependability respectively. Both hazard control
and hazard elimination follow closely with hazard reduction at a
total of seven and six papers respectively.
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Answer to RQ2: According to the results of the SLR, there is
a significant relationship between security attacks and safety
hazards in the context of self-adaptive systems. Mainly in
the automotive domain, this interrelation of safety and secu-
rity becomes apparent. For example, attacks such as message
falsification attacks, message spoofing, message replay, and
collision induction attack can lead to collisions and system
failures (Liu et al., 2017; DeBruhl et al., 2015; Petit and
Shladover, 2015). This is also similar to various types of
jamming attacks, which can cause a self-adaptive system to
stay or switch to a wrong trajectory leading to a safety haz-
ard (Le and Maple, 2019). Additionally, security attacks such as
GPS/radar/lidar spoofing and jamming can also develop traffic
disturbance hazards creating a wide range of safety issues (Pe-
tit and Shladover, 2015). In order to mitigate hazards that
arise as a result of attacks on SAS, it was identified that the
most common strategy employed is hazard reduction whereby
the ability of a foreign agent to impact the system is greatly
reduced as much as possible. It was also noted that there exist
instances of combination of approaches as in the case of Le and
Maple (2019), Settanni et al. (2018a) and Yoon et al. (2017).
First, in order to identify a change in behavior, systems have
different adaptation properties (see Table 19) that they check
and then are able to tell when a system’s behavior has changed
within the system. When the system’s behavior defers from
normalcy, the system is triggered to implement hazard man-
agement techniques to deal with potential hazards that may
arise. As an example, (Le and Maple, 2019) propose that for a
connected automated vehicle (CAV) system, a security profile
of roads and their conditions can provide details about the
roads’ security threats and then exchange safety information
with the system such as Basic Safety Messages (BSM).

+

5.4. Modeling and analysis (RQ3)

In the following, Section 5.4.1 presents results regarding the
sage of models in the context of safety and security of self-
daptive systems, while Section 5.4.2 discusses the utilized anal-
sis approaches. Models and analyses are considered jointly, as
nalyses based on models are increasingly common. This connec-
ion does not only exist in the field of model checking but is also
sed for other analyses. For example, Bucchiarone et al. (2009)
sed the critical pair analysis of AGG4 to verify that for every

reachable inconsistent configuration of a modeled self-repairing
system, there is a repairing rule that leads to a valid configuration
again.

5.4.1. Modeling
Through our analysis of the papers, it was identified that mod-

els are mainly used to model the system considering adaptation,
security, and safety. Table 15 shows in detail the number of
papers according to the context in which models are used. This
classification was chosen in order to see if there are models that
are used jointly in the context of safety, security, and adapta-
tion. In total, out of the 21 publications considered, the three
papers (Petit and Shladover, 2015; Ferrão et al., 2020; Yoon et al.,
2017) do not use models at all.

One can see in Table 15 that in 12 papers models are used
to model the system considered. In Potteiger et al. (2020) and
Teimourikia and Fugini (2017) models of the system considered
were only used for illustration purposes. The authors of Potteiger
et al. (2020) use an informal model to represent the components

4 https://www.user.tu-berlin.de/o.runge/agg/index.html
 c
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of the system and Teimourikia and Fugini (2017) describe the se-
curity management process used in their tool using Business Pro-
cess Model and Notation (BPMN) (Chinosi and Trombetta, 2012).
The five papers (Liu et al., 2017; Settanni et al., 2018b; DeBruhl
et al., 2015; Settanni et al., 2018a; Liang et al., 2018) present the
mathematical models that the authors used to describe the states
and the behavior of a system. These models are then used as the
basis for simulations. The three papers (Amoozadeh et al., 2015;
Potteiger et al., 2020; Zhu et al., 2020) also perform simulations,
which means that they also have a corresponding mathematical
model of their system and its behavior, even if this is not explic-
itly described in the publications. Besides mathematical models,
models are also used to describe the state or behavior of a system.

The modeling of the system state was mentioned in Knight
and Strunk (2004), Causevic et al. (2019). Each of the two pa-
pers mentions using the models at runtime and none of them
mentioned a specific type of model used to describe the system
state. For example, the authors of both papers only mention using
‘‘resource models’’. With respect to the usage of the models, the
authors of Knight and Strunk (2004) describe that they use them
to determine the adaptation, and in Causevic et al. (2019) the
authors plan to use them for analyses.

Modeling the behavior of a system was reported in four papers.
n Knight and Strunk (2004) finite state machines are used to
etect erroneous states in the system by modeling the behavior
f the system in case of a fault. It should be noted here that
his is a different model than the previously mentioned model
rom (Knight and Strunk, 2004) that is used to model the system
tate. The difference is that the previously mentioned model
as used to model the application state to determine possible
daptations. Embedded in their mathematical model, the authors
f DeBruhl et al. (2015) use models at runtime of the behavior of
ehicles in order to detect misbehavior. The authors of Beltrame
t al. (2018) generate a control flow graph out of safety and
ecurity code primitives, which is later transformed and used as
nput for model checking. In Causevic et al. (2019), the authors
nly mention that they plan to develop ‘‘run-time behavioral
odels’’ for adaptive systems.
As shown in Table 15, two papers use models in the context

f adaptation. One paper (Knight and Strunk, 2004) describes the
se of a distributed workflow model that describes the intentions
f an adaptation request, the temporal order needed for its exe-
ution, and its resource usage. The vision paper (Causevic et al.,
019) only states that the authors plan to develop models to take
nto account the adaptive characteristics of a system.

In the context of security, six papers use models. Veledar et al.
2019) uses attack trees and security metrics in their presented
alidation method. In addition to the aforementioned paper, Le
nd Maple (2019) utilizes attack trees as well. The authors model
he attacker by taking into account the attacker’s knowledge of
he system, expertise, equipment, opportunities, and time. Com-
ared to Le and Maple (2019), the authors of Monteuuis et al.
2018) apply attack trees to model an attacker only on the basis
f the attacker’s knowledge of the system, expertise, and equip-
ent. In addition, they present their developed threat model

STRIDELC) and security goal model (AINCAAUT). Bolovinou et al.
2019) presents a developed threat model named TARA+. Here,
ttackers are modeled using the same properties as in Le and
aple (2019), but time is not taken into account. In DeBruhl et al.

2015), attacks are modeled by the values of the coefficients in
he mathematical model of the system that was used. In order to
etect coordinated security attacks that try to attack the system
ith multiple vulnerabilities, (Knight and Strunk, 2004) proposes
he usage of a finite-state-machine hierarchy.

Table 15 shows that in three papers models are used in the

ontext of safety. The authors of Teimourikia and Fugini (2017)

https://www.user.tu-berlin.de/o.runge/agg/index.html
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Table 15
Context in which models are used.
Context #Papers Papers

System 12 Potteiger et al. (2020), Teimourikia and Fugini (2017), Liu et al. (2017),
Settanni et al. (2018b), DeBruhl et al. (2015), Settanni et al. (2018a),
Liang et al. (2018), Amoozadeh et al. (2015), Zhu et al. (2020), Knight
and Strunk (2004), Causevic et al. (2019), Beltrame et al. (2018)

Security 6 Veledar et al. (2019), Le and Maple (2019), Monteuuis et al. (2018),
Bolovinou et al. (2019), DeBruhl et al. (2015), Knight and Strunk
(2004)

Safety 3 Teimourikia and Fugini (2017), Schneider et al. (2011), Zhu et al.
(2020)

Adaptation 2 Knight and Strunk (2004), Causevic et al. (2019)
Table 16
Objectives of the analyses.
Objective #Papers Papers

Evaluation 8 Liu et al. (2017), Settanni et al. (2018b), DeBruhl et al. (2015),
Settanni et al. (2018a), Liang et al. (2018), Amoozadeh et al. (2015),
Potteiger et al. (2020), Zhu et al. (2020)

Detection 5 Yoon et al. (2017), Settanni et al. (2018b), DeBruhl et al. (2015), Liang
et al. (2018), Settanni et al. (2018a)

Risk & Threat 4 Teimourikia and Fugini (2017), Monteuuis et al. (2018), Veledar et al.
(2019), Le and Maple (2019)

Requirements 4 Liu et al. (2017), Schneider et al. (2011), Yoon et al. (2017), Causevic
et al. (2019)

Adaptation 1 Knight and Strunk (2004)

Other 3 Veledar et al. (2019), Beltrame et al. (2018), Zhu et al. (2020)
present a safety ontology that allows the creation of a safety
model. This model is intended to capture safety expertise and en-
able risk management. (Schneider et al., 2011) presents ConSert,
which describes a set of alternative safety guarantees in the form
of boolean expressions. These expressions are then represented in
the form of Binary Decision Diagrams (BDD) and used at runtime
to realize dynamic negotiation of safety contracts. In order to
specify an initial set of states, the authors of Zhu et al. (2020)
use a directed graph in their analysis.

There were no identified papers in the context of joint mod-
ling of safety and security of self-adaptive systems. This fact
an also be seen in Table 15, as there is no paper that uses
odels jointly in the context of safety, security, and adaptation.
he closest to an approach that provides joint modeling of safety
nd security is the threat model presented in Bolovinou et al.
2019). The authors suggest calculating the impact of an attack
ased on security metrics. In the steps mentioned in Veledar et al.
2019) to design a digital twin, safety and security goals and their
odeling are also considered, but without further details. Also

n the vision paper (Causevic et al., 2019), the authors mention
odels for joint consideration of safety and security at runtime.

oint consideration of these two aspects is currently only realized
n the form of approaches that attempt to combine safety and se-
urity, such as in Liu et al. (2017), Veledar et al. (2019), Beltrame
t al. (2018), Bolovinou et al. (2019) (cf. Section 5.3.1).

.4.2. Analysis
Models are often used as a basis for analysis. In the following,

e describe in more detail the identified analysis methods.
The analyses mentioned in the papers are very heterogeneous

nd use a wide variety of data as input, so we decided to classify
he analyses according to their objective. This also allows us to
ee what analyses are used for in the selected set of papers.
Table 16 shows the number of papers in which an analysis is

entioned and categorized by the objectives of the analysis. One
17
can see that analyses are mainly used for evaluation purposes,
more precisely models of this category are used in the context
of assessing an approach presented in a paper. All eight of the 21
included papers use simulations based on a mathematical model
to evaluate their presented approaches, namely (Liu et al., 2017;
Settanni et al., 2018b; DeBruhl et al., 2015; Settanni et al., 2018a;
Liang et al., 2018; Amoozadeh et al., 2015; Potteiger et al., 2020;
Zhu et al., 2020).

In terms of analysis related to adaptation, (Knight and Strunk,
2004) mentions that the state needs to be analyzed to determine
to which nodes adaptation commands should be sent to.

As shown in Table 16, risk and threat analyses are mentioned
by four papers, whereas risk assessment analyses are mentioned
in three papers, namely (Teimourikia and Fugini, 2017; Mon-
teuuis et al., 2018; Veledar et al., 2019). In addition to the risk
assessment, (Veledar et al., 2019) also mentions threat modeling
and forecasting. The authors of Veledar et al. (2019) describe the
evaluation of risks and threats using metrics and security models
and the authors of Le and Maple (2019) mention a threat agent
analysis.

Four papers mention analyses that are used to check whether
requirements are met. The papers (Liu et al., 2017; Schneider et al.,
2011; Yoon et al., 2017) mention analyses that check whether
safety requirements are met or not. The vision paper (Causevic
et al., 2019) also mentions analyses to check safety and security
requirements at design time and at runtime.

In addition to checking requirements, some papers also de-
scribe analyses to detect anomalies, e.g. caused by an attack. As
shown in Table 16, five papers described such analysis (Yoon
et al., 2017; Settanni et al., 2018b; DeBruhl et al., 2015; Liang
et al., 2018; Settanni et al., 2018a). In Yoon et al. (2017), authors
fetch the data from a trusted environment, which allows them to
rely on the authenticity of the data during analysis. Based on that
condition, the authors state that they can identify attacks that
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Table 17
Overview of the models used and the related analyses.
Context Model Language Analysis Objectives Paper

System Math. formula Evaluation Potteiger et al. (2020)
System Math. formula Evaluation Liu et al. (2017)
System Math. formula Evaluation Zhu et al. (2020)
System Math. formula Evaluation Amoozadeh et al. (2015)
System Math. formula Evaluation Settanni et al. (2018a)
System Math. formula Evaluation Settanni et al. (2018b)
System Math. formula Evaluation, Detection DeBruhl et al. (2015)
System Math. formula Evaluation, Detection Liang et al. (2018)
System - Illustration None specific Potteiger et al. (2020)
System - Illustration BPMN Teimourikia and Fugini (2017)
System - State None specific (‘‘resource models’’) Requirements Causevic et al. (2019)
System - State None specific (‘‘resource models’’) Knight and Strunk (2004)
System - Behavior Finite-state-machine Adaptation Knight and Strunk (2004)
System - Behavior Math. formula Evaluation, Detection DeBruhl et al. (2015)
System - Behavior Control Flow Graph Other Beltrame et al. (2018)
System - Behavior None specific (‘‘run-time behavioral models’’) Requirements Causevic et al. (2019)
Adaptation None specific Requirements Causevic et al. (2019)
Adaptation None specific (‘‘workflow model’’) Knight and Strunk (2004)
Safety Directed graph Other Zhu et al. (2020)
Safety BDD Requirements Schneider et al. (2011)
Safety Own safety model Risk and threat analysis Teimourikia and Fugini (2017)
Security Math. formula Evaluation, Detection DeBruhl et al. (2015)
Security Attack Trees Risk and threat analysis Veledar et al. (2019)
Security Attack Trees, own threat model and own security goal model Risk and threat analysis Monteuuis et al. (2018)
Security Attack Trees Risk and threat analysis Le and Maple (2019)
Security Finite-state-machine hierarchy Knight and Strunk (2004)
Security Own threat model Bolovinou et al. (2019)
set e.g. wrong control parameters. The security threat detection
analysis described in Settanni et al. (2018b) consists of analyzing
monitored data and security metrics to identify system events
that indicate possible threats. In addition, previously collected
external security information is also taken into account during
the analysis. In Settanni et al. (2018a), AMiner is used to check the
collected log data for anomalies using a white list, and in Liang
et al. (2018) the authors use the Principal Component Analysis,
which adapts a Gaussian model to the data that represents nor-
mal behavior. An anomaly is then detected in case of deviations.
In the analysis described in DeBruhl et al. (2015), each vehicle in
a platoon models the expected behavior of its predecessor. If the
actual measured behavior deviates from the modeled behavior,
this is recognized as an anomaly.

Three papers mention further analysis types, in which (Veledar
t al., 2019) uses asset modeling and Beltrame et al. (2018),
hu et al. (2020) describe various analyses for their presented
pproach. The authors of Zhu et al. (2020) present an analysis to
heck whether a system enters pre-specified unsafe states. Dur-
ng the analysis, weakly-hard constraints are taken into account
hich are related to different functional properties, i.e. safety. The
nalysis described in Beltrame et al. (2018) is performed with
he help of a Pattern Traversal Flow Analysis. This is achieved by
xtracting primitives in the program code based on security and
afety aspects. The result is a Control Flow Graph which is then
ransformed and used as input for a model checker.

In Table 17, the different models are sorted by their modeling
ontext and related to the objectives of the analyses which work
n these models. One can clearly see that mostly mathematical
ormulas were used to model the systems and then used for
valuation. This is due to the fact that mainly simulations were
sed for evaluation, which requires a description of the system
s a mathematical model. For the risk and threat analysis, as
hown in Table 17, Attack Trees are used quite often, but overall
he modeling languages used are very different, e.g. specially
eveloped models, finite state machines, or Binary Decision Di-
grams (BDD) are used. Often the authors make only very vague
tatements about the model languages used, so frequently no
anguage is mentioned or only general terms, such as ‘‘resource
odel’’, are used to describe the models used.
18
In the following, the analysis types of SASs with respect to the
objective of checking conformance to requirements are further
explored. This relates to V&V and has been described earlier
in Sections 2 and 3. Even though models are common for this
purpose, they are not the only assurance strategies especially
when related to safety and security as concerned as in (Liu
et al., 2017; Schneider et al., 2011; Yoon et al., 2017; Causevic
et al., 2019). In the following paragraphs, this process is further
described.

Table 18 shows the distribution of the different approaches
collected from our studies.

There are two main V&V approaches, i.e. formal verification
(i.e. relying on the mathematical specification of systems using tem-
poral logic and its variants or some other tools and frameworks), and
testing which largely relates to simulations, proof of concepts, use of
testbeds and hardware-in-the-loop (HITL) testing. For instance, for
the latter, Veledar et al. (2019) uses a digital twin for validation in
an autonomous driving setting. The study also uses a multi-metric
security approach to validate both security and safety.

Testing is observed to be more common. One can see that
12 papers were identified to have used different testing tech-
niques in verifying the performance of their proposed system. In
particular, the most popular technique is the use of simulators
in virtual environments as in most of the papers or frameworks
e.g. a virtual drone framework demonstrated in Yoon et al. (2017)
or HITL testing as previously mentioned in Veledar et al. (2019).
At the same rate, in Amoozadeh et al. (2015), the authors make
use of an integrated simulation platform called VENTOS, which
combines SUMO (Simulation of Urban Mobility)5 and OMNET++6
which is used in wireless communication simulation.

At the same rate, across all 21 papers, a total of 13 proper-
ties were identified from open coding as well as from existing
literature. It was observed that four papers check for security and
safety respectively. Yoon et al. (2017) and Veledar et al. (2019)
both check for security and safety while (Settanni et al., 2018a;
Schneider et al., 2011) and (Liang et al., 2018; Zhu et al., 2020)

5 https://sumo.dlr.de/docs/index.html
6 https://omnetpp.org/

https://sumo.dlr.de/docs/index.html
https://omnetpp.org/
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Table 18
Verification and Validation Approaches (overlapping papers may apply)
V & V Approach #Papers Papers

Testing 12 Liu et al. (2017), Settanni et al. (2018b), Veledar et al. (2019),
Potteiger et al. (2020), DeBruhl et al. (2015), Zhu et al. (2020), Liang
et al. (2018), Settanni et al. (2018a), Amoozadeh et al. (2015), Polack
(2010), Ferrão et al. (2020), Yoon et al. (2017)

Formal Verification 4 Schneider et al. (2011), Beltrame et al. (2018), Zhu et al. (2020),
Causevic et al. (2019)
Table 19
Different adaptation property checked.
Adaptation Property #Papers Papers

Security 4 Yoon et al. (2017), Veledar et al. (2019), Settanni et al. (2018a),
Schneider et al. (2011)

Safety 4 Yoon et al. (2017), Veledar et al. (2019), Liang et al. (2018), Zhu et al.
(2020)

Stability 2 Zhu et al. (2020), Amoozadeh et al. (2015)

String Stability 2 DeBruhl et al. (2015), Liu et al. (2017)

Controllability 2 Veledar et al. (2019), Monteuuis et al. (2018)

Robustness 1 Yoon et al. (2017)

Node Criticality Index 1 Ferrão et al. (2020)

Termination 1 Settanni et al. (2018a)

Consistency 1 Settanni et al. (2018a)

Dependability 1 Schneider et al. (2011)

Scalability 1 Monteuuis et al. (2018)

Accuracy 1 Zhu et al. (2020)

Settling time 1 Potteiger et al. (2020)
check separately for security and safety properties respectively.
There were no indications of the properties checked in nine
papers and those that were found to contain indications are
reported in Table 19.

Properties that arose from open coding include Node Criticality
ndex (NCI), String Stability and Controllability. NCI is a property
that combines network quality of service, safety, and security
and provides useful information for decision (Ferrão et al., 2020).
Controllability, on the other hand, refers to how the system
controls are configured per time, either at design time or run
time. This behavior was observed in both (Veledar et al., 2019)
and (Monteuuis et al., 2018). Furthermore, scalability is men-
tioned in Monteuuis et al. (2018) and describes how attack goals
can be scaled across multiple vehicles e.g. single or multiple
attacks. Another commonly identified property is stability in Zhu
et al. (2020), Amoozadeh et al. (2015) which is not to be mistaken
for string stability, in which a group of vehicles (in a platoon)
tend to maintain a certain distance among each other, achieved
through obeying a constant control law. Stability which may
also be referred to as Local stability describes how the effect of
perturbation reduces with time in the following vehicle behind
another in a vehicle platoon. One property that was identified in
previous studies is small overshoot but was not observed in any of
our final paper selections. Suffice it to mention that Dependability
is a notion of trust and combines many attributes such as avail-
ability, reliability, safety, integrity, and maintainability and may
include confidentiality when security is in question (Avizienis
19
et al., 2004). However, for the purpose of our work, we have
decided to treat Dependability as a whole since we are unable to
draw the isolated impact of each of the attributes on the system.

Answer to RQ3: The results show that mainly the system
and its behavior are modeled using mathematical models.
These models are then used for simulations, e.g. to analyze
the response of a system under attack. Modeling in the con-
text of adaptation is mentioned in only three publications,
namely (Knight and Strunk, 2004; Veledar et al., 2019; Cau-
sevic et al., 2019). Two of these papers describe the usage of
models at runtime for detection, reasoning, and adaptation.
For security modeling mainly attack trees are used and for
safety modeling, different models are used, depending on
the purpose, e.g. Binary Decision Diagrams to model safety
guarantees. As already mentioned, simulations are mainly
performed for analysis. Otherwise, risk and threat analyses
are performed in most cases, as well as analyses to detect
anomalies or to check requirements.

+

5.5. Open challenges (RQ4)

In the following, the open challenges in the context of safety
and security of self-adaptive systems mentioned in the selected
set of papers are summarized and discussed.
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Table 20
Number of papers mentioning open challenges categorized by the origin of the challenge.
Origin of open Challenges #Papers Papers

Adaptation 4 Settanni et al. (2018b), Causevic et al. (2019), Beltrame et al. (2018),
Polack (2010)

Environment 3 Teimourikia and Fugini (2017), Causevic et al. (2019), Beltrame et al.
(2018)

System 2 Causevic et al. (2019), Beltrame et al. (2018)

Safety & Security 2 Causevic et al. (2019), Teimourikia and Fugini (2017)

Other 1 Liang et al. (2018)
The open challenges mentioned in the publications can be
ivided into five classes: adaptation, environment, system, com-
ined consideration of safety and security, and other. Each of these
lasses describes the origin of a challenge.
Table 20 shows for each of these categories how many papers

elong to each class.
In total four papers mention challenges resulting from the

daptation of a system. The authors of Settanni et al. (2018b)
mention, that a major issue for running self-adaptive systems,
which have to meet certain safety requirements is that after
any adaptation, the safety certification of the system becomes
invalid. The paper (Causevic et al., 2019) notes that the currently
used safety assurance or verification methods are not applicable
to self-adaptive systems, since these methods require detailed
knowledge about the system and its environment. Similar chal-
lenges are also mentioned in Beltrame et al. (2018) and Causevic
et al. (2019) regarding the validation of the emergent behavior
of a system at runtime. Other challenges include the required
additional processing overhead and memory, the fragility to un-
expected changes, and the complex design of a self-adaptive
system, which are mentioned in Polack (2010).

The system itself also leads to new challenges. The increasing
connectivity of self-adaptive systems results in more vulnerabil-
ities, that can be exploited for attacks (Causevic et al., 2019).
Additionally, systems must also be able to cope with the loss
of messages. Challenges arising from swarm applications are the
unknown global system state, which forces robots to rely only on
local information, and the unpredictability of the resulting group
behavior (Beltrame et al., 2018).

The three papers (Teimourikia and Fugini, 2017; Causevic
t al., 2019; Beltrame et al., 2018) mention challenges that result
rom the environment of a system. The cooperation of people
with complex systems, for example at a workplace, leads to
new safety and security requirements that must be taken into
account (Teimourikia and Fugini, 2017). In Beltrame et al. (2018)
the authors mention not only the interaction of the system with
the environment and its influence on the system but also the fact
that the environment can only be partially observed. A continuous
change of the environment is also possible, to which the system
must adapt in terms of safety and security, even under uncer-
tainty. This, in turn, can lead to the rise of new vulnerabilities
that need to be taken into account (Causevic et al., 2019).

As seen in Table 20, two papers mention challenges in com-
bining safety and security. Thus, the authors of Causevic et al.
(2019) mention a combined consideration of these two aspects
of a system as an open challenge. The paper (Teimourikia and
Fugini, 2017) is a bit more detailed and states that a balanced
consideration of both aspects of a system without compromising
each other is a challenge.

Another challenge mentioned by the authors of Liang et al.
(2018) is related to secure communication. The authors of Liang
et al. (2018) mention the need for methods to prove the security
of cryptographic constructions, for example, to ensure secure

communication.

20
Answer to RQ4: The results of the analysis show that the
adaptation of a system is the main cause of new challenges.
In particular, the focus is on the assurance of safety require-
ments and the expected behavior of the system. The system
environment is also mentioned as an origin of new challenges.
Because of the increasing interaction of self-adaptive systems
with their environment, more safety and security problems
can occur that were not fully known during the design of
the system. Further challenges occur due to the often dis-
tributed system design of self-adaptive systems, which results
in more vulnerabilities. In addition, balanced joint considera-
tion of safety and security aspects of self-adaptive systems is
mentioned as an open challenge.

+

6. Discussion

In the following section, we present the key findings and
possible threats to validity related to this study.

6.1. Key findings

The high number of papers from the automotive domain
shows that applications like autonomous cars and platooning are
in need of a joint analysis and modeling approach for their innate
safety and security criticality. Emerging technologies, such as the
increasing computerization of these systems, along with their
growing complexity and connectivity, make a component-based
and self-adaptive architecture necessary. Therefore, applications
in the automotive domain are likely drivers for future standard-
ization and full integration of safety, security, and self-adaptation.
Current approaches, however, fall short: the adaptation process is
seldom fully fleshed out and incomplete. Risks and vulnerabilities
of the adaptation system are often not considered or left unad-
dressed due to naive assumptions such as reconfigurations always
succeeding or happening instantaneously. As the lack of modeling
and analysis of the adaptation itself shows (Tables 15, 16), the
need for modeling the adaptation, accompanying modeling tools,
the additional complexity, and the increased attack surface of
a self-adaptive system are mostly ignored. While MAPE-K can
be seen as the greatest common denominator of many of the
examined approaches (7 papers mention using MAPE-K or clearly
use a similar architecture; Table 4), the implementation of the
adaptation system is currently not standardized and often incom-
pletely described or formalized (eight papers do not mention a
specific adaptation architecture used or do not describe it at all;
Table 4). Only two papers use an adaptation model; Table 15).

Our findings also indicate that attacks that specifically target
self-adaptive systems and their respective architectures are not
addressed to a high degree. Most of the security attacks men-
tioned in Section 2.3 could also be applied to other systems.
However, some attacks that specifically target self-adaptiveness
were still identified. These attacks are almost always realized by
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urposely targeting sensors in order to feed false data to the
ystem. In most cases, the aim of these attacks is to affect the
ontroller so the system would switch to the wrong configuration
uring the reconfiguration phase. This can have serious conse-
uences because the device that uses the system could crash
nd cause serious damage to the surroundings. Moreover, these
ttacks mostly target the integrity and availability of a system,
hile confidentiality is affected to a smaller degree. This directly
elates to the attacks that target self-adaptiveness because an
ttacker usually attempts to disrupt the system and not read or
teal confidential data.
In regards to the combination of security and safety, results

how that there is a lack of approaches that utilize both of
hese at the same time. This can be seen from the total number
f papers that were collected, as well as that only six papers
onsidered them jointly to a higher degree (cf. Section 5.3.1).
his is very significant for self-adaptive systems because they are
onsidered hazardous technology and are prone to both security
nd safety aspects (Ismail et al., 2021). In the past, the problem
f differentiating between security and safety could be addressed
y establishing the difference between a criminal offense and an
ccident (Bieder and Pettersen Gould, 2020). However, due to the
igitalization and transformation of security and safety policies,
s well as the increase in the complexity of risk management so-
utions, it is evident that joint consideration cannot be overlooked
nymore (Plósz et al., 2017).
SAS increases the problem, not only do these systems often

perate in a dynamic environment that is not fully known at the
ime of design (cf. Section 5.5). On the other hand, each adap-
ation of the system must be re-certified with respect to safety.
his is aggravated by the fact that not all possible adaptations
ay be known at the design time of the system (cf. Section 5.5).
urthermore, a SAS offers new attack surfaces while it performs
n adaptation. A combined modeling approach for the safety
nd security of self-adaptive systems, which also includes possi-
le threats during adaptation and the resulting consequences, is
issing (cf. Section 5.5). However, these points must be taken

nto account in order to ensure the safety and security of a SAS.
With respect to verification and validation, we have observed

hat not a lot of work has been done specifically focusing on a
ombined security and safety V&V (assurance) of self-adaptive
ystems. In our study, only (Ferrão et al., 2020) mentions the
ode Criticality Index, which is a metric that combines the quality
f service, security, and safety. By extension, the extrapolation
f classification taxonomy in this regard remains a challenge.
ost of the activities under V&V are carried out as part of the
nalysis of a system and for the purpose of evaluating the pro-
osed system for conformance with requirements and certain
oals. We have observed that the most common verification
nd validation approach is simulation testing. This includes the
se of standalone simulation systems, model-in-the-loop (MIL)
ests, software-in-the-loop (SITL) tests, and hardware-in-the-loop
HITL) tests.

.2. Threats to validity

The possible threats to validity were taken into account while
onducting the SLR. These threats were also minimized as much
s possible. According to (Petersen and Gencel, 2013), we differ-
ntiated between descriptive validity, theoretical validity, gener-
lizability, interpretive validity, and repeatability.
Descriptive validity: There is a threat that the classification

cheme does not address the stated research goal. In order to
ackle this issue, the research questions were developed as an
nitial step. This allowed the clear formulation of each dimension
n the classification scheme and classification of all the papers
21
from the final set. Additionally, many of the dimensions were
extracted systematically from existing literature.

Theoretical validity: As an initial step in the publication search
process, a keyword search was conducted. This included the
search in multiple publication databases. As a result, a large
set of relevant publications was obtained. However, there is al-
ways a chance that some key papers were missed using the
aforementioned methodology. The vastly different numbers of
search results between search engines might indicate that the
search string excludes relevant papers in some search engines
(e.g. through different semantics of operators or options in these
search engines). This threat to validity was reduced by applying
a forward and backward snowballing iteration to find these pa-
pers missed by the database search. However, this snowballing
strongly depends on the connectivity of the citation graph and
might fail to include papers not directly related to the papers
found through the database search. Additionally, there was a
chance that there could be a potential bias regarding the selection
and extraction processes. This was countered by applying the
cross-validation approach by which each paper was classified and
checked by multiple authors. In case of a difference in opinion,
each issue was thoroughly discussed and resolved among the
authors. It is also significant to consider the researcher’s bias
during the classification of papers. This is strongly related to
the understanding of self-adaptive architectures and related pro-
cesses. We addressed this in the same way as the bias in the
selection and extraction processes.

Generalizability: It is important to note that this study has a
substantial focus on self-adaptive systems and their relationship
with security and safety aspects. This means that the results
are not applicable to any other domain. However, parts of the
classification scheme could be used within other domains related
to cyber–physical systems. Besides this, the study has a strong
scientific focus. This means that only evaluated research work
was considered, but for instance, gray literature was not.

Interpretive validity: In order to avoid results or part of the
esults being interpreted according to a personal point of view
f a specific author, it was made sure that all results were in-
erpreted by every author. This means that all the disagreements
ere profoundly discussed and solved. In addition, the MAXQDA
020 tool was used, which allowed rigid tracking of findings,
ransparent classification, and thorough analysis of papers.

Repeatability: The replication of the conducted SLR represents
nother possible threat to validity. This is addressed by pro-
iding a detailed methodology, which was documented to the
mallest detail. This is shown in the methodology section (see
ection 4). Furthermore, we applied the existing guidelines ac-
ording to Wohlin (2014), Usman et al. (2017) and Petersen
nd Gencel (2013). Similarly, the process of classifying publica-
ions can be executed by employing the proposed classification
cheme. As a result, the replication of the study and its procedure
hould be possible.

. Conclusion

We conducted a systematic literature review to analyze how
ell the safety and security of self-adaptive systems are con-
idered in current research. For this purpose, we assessed 2.832
ound publications using our inclusion and exclusion criteria and
lassified the resulting 21 remaining publications using our cod-
ng scheme.

The results show that the correlations between security at-
acks and safety hazards are already addressed in the literature.
owever, their interplay is not sufficiently considered in the
esign or analysis of a system. Some approaches attempted to
ombine safety and security, but there is a lack of a tighter
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oupling of the two aspects in order to reliably model and analyze
heir interaction. In particular, the consideration of safety and
ecurity requirements during the adaptation of a system is com-
letely neglected in the literature. Various investigated analyses
ocus on ensuring that the system resulting from an adapta-
ion meets safety and/or security requirements. The fact that
hese requirements could also be violated during the adaptation
s not considered. It is often (implicitly) assumed that adapta-
ion is performed in zero-time and in the form of a transaction.
owever, this does not reflect reality, which means that severe
ulnerabilities of a system could easily be missed.
As a part of future work, it is necessary to focus on reducing

he gap between safety and security analysis. In particular, the
ocus needs to be on self-adaptation to be able to fulfill the nec-
ssary safety and/or security requirements during the adaptation
rocess.
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Appendix. Selected papers detailed table

To give an overview over the selected papers and their cod-
ing, we condensed the tables from the result section into the
following overview table (Table A.21).
Table A.21
Comprehensive Table of selected papers and their coded properties.
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Domain
Automotive ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
IoT ✓ ✓ ✓ ✓
C. Infrastructure & Prod. Systems ✓ ✓ ✓ ✓
UAV & other robotics ✓ ✓ ✓ ✓
No specific domain ✓ ✓

Adaptation Architecture
MAPE-K or variant ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other architecture ✓ ✓ ✓ ✓ ✓ ✓
No specific architecture mentioned ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Adaptation strategies
Redundancy ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Stop Operation ✓ ✓ ✓ ✓ ✓ ✓ ✓
Reduce Service ✓ ✓ ✓ ✓ ✓
Increased Vigilance ✓ ✓ ✓ ✓
Other ✓ ✓ ✓ ✓ ✓ ✓ ✓

Attacks by Attack Mechanisms
Manipulate System Resources ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Engage in Deceptive Interactions ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Inject Unexpected Items ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Subvert Access Control ✓ ✓ ✓ ✓ ✓ ✓
Collect and Analyze Information ✓ ✓ ✓ ✓
Abuse Existing Functionality ✓ ✓

Attacks by Attack Surfaces
Remote Access ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Close Proximity ✓ ✓ ✓
Physical Access ✓

(continued on next page)
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Table A.21 (continued).
Attacks by CIA Triad
Integrity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Availability ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Confidentiality ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Type of Data used in Attacks
Asset ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Risk (indicators) ✓ ✓ ✓ ✓ ✓ ✓
Threat ✓ ✓ ✓ ✓ ✓
Vulnerability ✓ ✓ ✓

Affected Part of Adaptation
Controller ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sensors ✓ ✓ ✓ ✓ ✓ ✓ ✓
Database ✓
Hazard Source
External ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Internal ✓ ✓ ✓ ✓ ✓ ✓ ✓

Hazard Cause
String Stability Decrease ✓ ✓
Crash ✓ ✓ ✓ ✓
Component Failure ✓ ✓ ✓
Overheating ✓ ✓
System Failure ✓ ✓ ✓ ✓ ✓ ✓
Performance Alteration ✓ ✓ ✓ ✓ ✓
Collision ✓ ✓ ✓ ✓ ✓ ✓
Other ✓ ✓ ✓ ✓ ✓

Safety Quality Factors
Property ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Health ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Environmental ✓ ✓ ✓

Treatment and Mitigation
Hazard Reduction ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Hazard Control ✓ ✓ ✓ ✓ ✓ ✓ ✓
Hazard Elimination ✓ ✓ ✓ ✓ ✓ ✓

Modeling Context
System ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Security ✓ ✓ ✓ ✓ ✓ ✓
Safety ✓ ✓ ✓
Adaptation ✓ ✓

Analysis Objectives
Evaluation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Detection ✓ ✓ ✓ ✓ ✓
Risk & Threat ✓ ✓ ✓ ✓
Requirements ✓ ✓ ✓ ✓
Adaptation ✓
Other ✓ ✓ ✓

V & V Approach
Testing ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Formal Verification ✓ ✓ ✓ ✓

Adaptation Property
Security ✓ ✓ ✓ ✓
Safety ✓ ✓ ✓ ✓
Other ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Open Challenges
Adaptation ✓ ✓ ✓ ✓
Environment ✓ ✓ ✓
System ✓ ✓
Safety & Security ✓ ✓
Other ✓
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