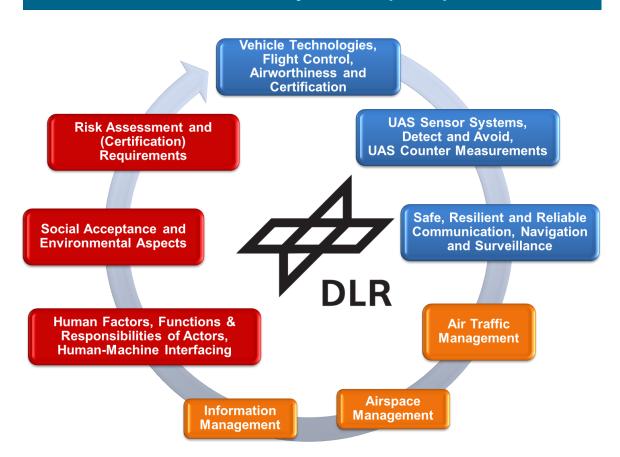
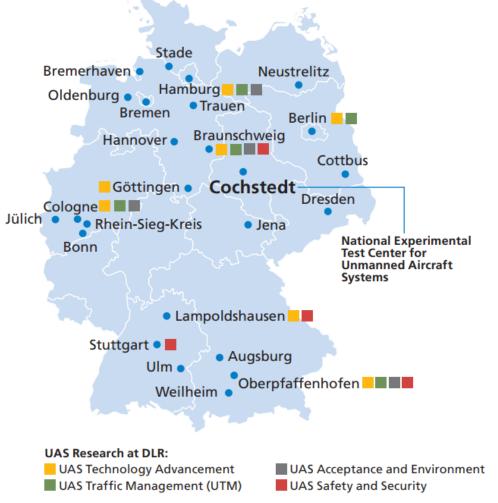
URBAN AIR MOBILITY RESEARCH AT THE GERMAN AEROSPACE CENTER (DLR)

Deutsches Zona DLR für Luft- und Raumfahrt **Deutsches Zentrum**

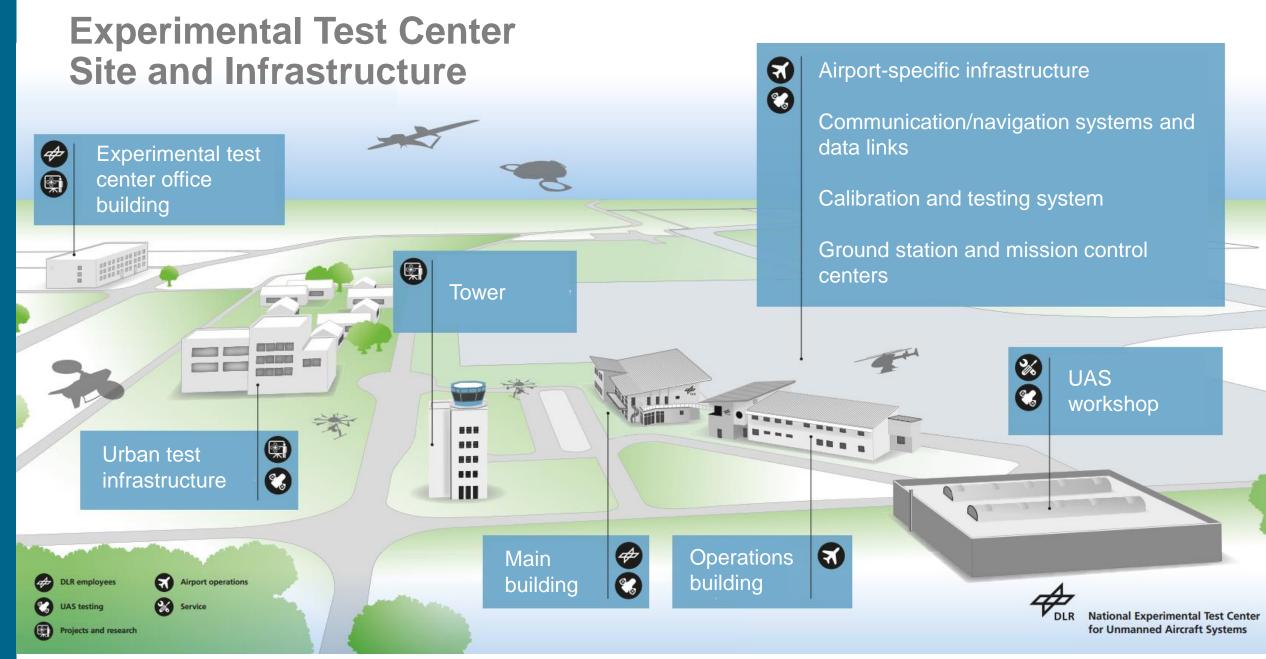
German Aerospace Center

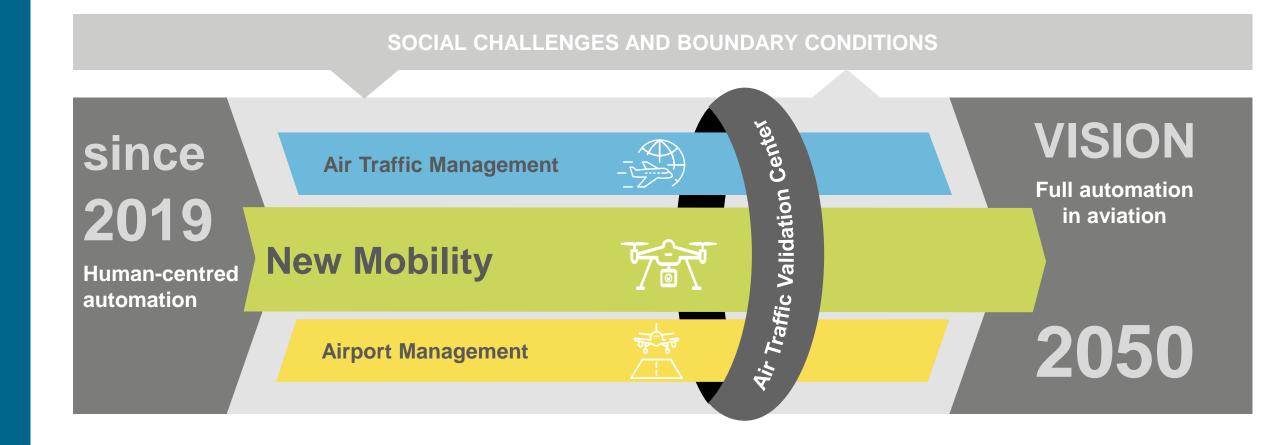
- Research Institution
- Space Agency
- Project Management Agency


Research Fields

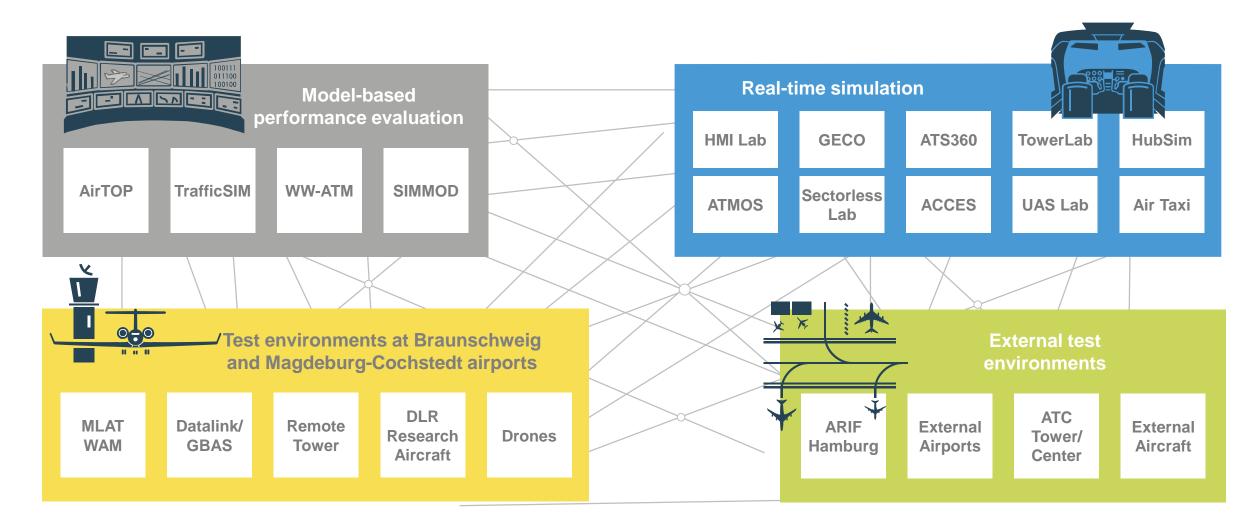

- Aeronautics
- Space Research and Technology
- Transportation
- Energy
- Security (cross-sectional field)
- Digitalisation (cross-sectional field)

DLR Sites and Institutes


Unmanned Aircraft Systems (UAS) Research


- In total, 10,000 employees work in 54 institutes and facilities.
- Offices in Brussels, Paris, Tokyo and Washington D.C.

Research Focus of the Institute of Flight Guidance The Vision of Full Automation in Aviation



The Air Traffic Validation Center

Flexible and powerful for ATM concepts, technologies and procedures

Unmanned Aircraft Systems and Urban Air Mobility

Airspace Integration

 Performance and density-based traffic management for a wide range of aircraft

Mission Management

Coordinated planning and implementation for multiple UAS

Technology

Reliable navigation and 4D trajectories for the guidance of the UAS

Demonstrator DO 228 D-CODE

- National demonstrator for unmanned air vehicles in medium altitude and long endurance (MALE UAV)
- Integration of collision avoidance systems in cooperation with industry partners

Key Networks and Partners

	Industry	Research	Commitees / Authorities
National	Lufthansa DIEHL F.U.N.K.E. Hamburg Airport /Flughafen München Lufthansa Lufthansa Frankfurt Airport Frankfurt Airport Flughafen BRAUNSCHWEIG WOLFSBURG FUNGHAFEN BRAUNSCHWEIG WOLFSBURG	Technische Universität Trier Ostfalia Hochschule für angewandte Wissenschaften Ostfalia Wissenschaften Ostfalia Hochschule für angewandte Wissenschaften Ostfalia Hochschule osnabrück University of Applied Sciences Otto von Guericke UNIVERSITÄT MAGDEBURG	Bundespolizei NFL am Campus Forschungsflughafen Forum Flughafen und Region
International	FREQUENTIS FREQUENTIS FREQUENTIS ORTHOGON ABORING COMPANY	AT-ONE IN NASA ENRI TUDEIT ONERA THE FRENCH AEROSPACE LAB THE PRINCIPAL THE FRENCH AEROSPACE LAB	SESSIFIANDA ASSOCIATION for the Scientific Development of ATM in Europe GURS Global UAM Regional Summit EUROCAE EUROCAE INTERNATIONAL FORUM FOR AVIATION RESEARCH REGIONAL SCIENTIFIC COUNCIL INTERNATIONAL FORUM FOR AVIATION RESEARCH

Urban Air Mobility Research at the German Aerospace Center (DLR)

Objective:

Assessment of opportunities and challenges of air taxis and urban air mobility (UAM) concepts

Main content

- Forecast of UAM market share
- Model-based UAM system simulation
- Air taxi vehicle system development
- Flight guidance concepts for vertidromes
- Airport integration of UAM traffic
- Public acceptance
- Scaled flight demonstrations in model city

Flight Guidance

Flight Systems

System Architectures in Aeronautics

Communications and Navigation

Air Transport

Aerospace Medicine

Maintenance, Repair and Overhaul

Atmospheric Physics

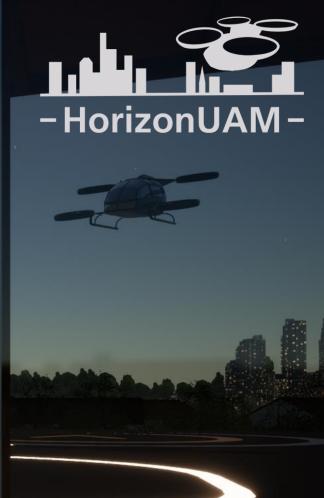
Combustion Technology

National Experimental Test Center for Unmanned Aircraft Systems

■ Duration: 07/2020 – 08/2023 (38 months)

Scope: 52.1 person-years (9.1 M€)

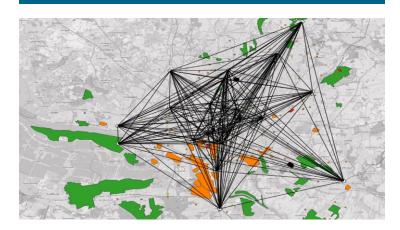
Participants: 10 DLR institutes, cooperation partners NASA and Bauhaus Luftfahrt



OVERALL SYSTEM SIMULATION

VERTIDROME

Vertidrome



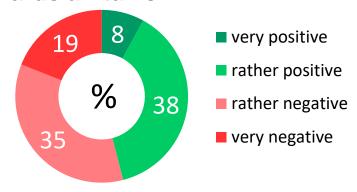
Airside Level of Service

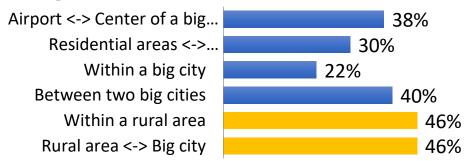
- Fast-time simulation of vertidrome operations.
- The method Level of Service was adapted for the assessment or vertidrome airside operations.

Network Management

- Hamburg Case Study: A network of 20 vertiports requires 422 parking positions, a maximum cumulated charging power of 11.05 MW and 275 vehicles to service 2800 missions per day.
- A reduction of battery charging time can reduce the fleet size by 18%, causing a spatial footprint reduction of 24% regarding parking stands.

Airport Integration

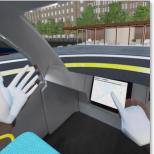

- Human-in-the-loop simulation: 44 conventional aircraft, 15 air taxis/hour and 10 air traffic controllers.
- Integration into conventional runway systems is only recommended for low-traffic hours.
- Exclusive air taxi working position in case of more traffic is suggested.

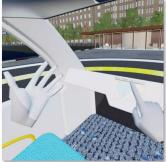

Large-scale Telephone Survey

- Attitude towards air taxis in general is mixed in the German population.
- Acceptance of using an air taxi is highest for use cases including rural areas.

Attitude towards air taxis

Willingness to use an air taxi


N = 1001 computer-assisted telephone interviews in 2022 (\emptyset 21 Min.), representative for the German population


Mixed-Reality Simulation

- 30 participants experienced an airport shuttle flight in the city of Hamburg in a mixed reality air taxi simulator.
- Well-being tended to be higher when an air steward was on board during flights with re-routing.

Urban Air Mobility Flight Demonstration

at the National Experimental Test Center for Unmanned Aircraft Systems, Cochstedt, Germany

- Air taxi flight from vertidrome "Hamburg Airport" to "Hamburg Binnenalster"
- Scaled demonstration: multicopters representing passenger carrying air taxis
- Focus of demonstration:
 - Airspace integration through U-space (unmanned aircraft system traffic management)
 - Vertidrome management
 - Artificial intelligence (AI) for automatic detection of persons
 - Urban communication and navigation

References - Preprints

H. Pak, L. Asmer, P. Kokus, B.I. Schuchardt A. End, et al.	, Can Urban Air Mobility Become Reality? Opportunities, Challenges and Selected Research Results	https://doi.org/10.48550/arXiv.2309.12 680
A. Devta, I.C. Metz, S.F. Armanini	Experimental Evaluation of Bird Strikes in Urban Air Mobility	https://doi.org/10.48550/arXiv.2308.13 022
B.I. Schuchardt, A. Devta, A. Volkert	Integrating Vertidrome Management Tasks into U-space	https://doi.org/10.48550/arXiv.2309.09 584
A. End, C. Barzantny, M. Stolz, P. Gruppe, R. Schmidt, A. Papenfuß, H. Eißfeldt	Public Acceptance of Civilian Drones and Air Taxis in Germany: A Comprehensive Overview	https://doi.org/10.31234/osf.io/kuvzs
F. Reimer, J. Herzig, L. Winkler, J. Biedermann, F. Meller, B. Nagel	Applied Design Thinking in Urban Air Mobility: Creating the Airtaxi Cabin Design of the Future from a User Perspective	https://doi.org/10.48550/arXiv.2309.05 353
F. Jäger, O. Bertram, S.M. Lübbe, A.H. Bismark, J. Rosenberg, L. Bartscht	Battery-electric powertrain system design for the HorizonUAM air taxi concept	https://doi.org/10.48550/arXiv.2309.10 631
T. F. Sievers, J. Sakakeeny, N. Dimitrova, H Idris	. Operational Integration Potential of Regional Uncrewed Aircraft Systems into the Airspace System	https://doi.org/10.48550/arXiv.2309.08 537
L. Asmer, R. Jaksche, H. Pak, P. Kokus	A city-centric Approach to Estimate and Evaluate Global Urban Air Mobility Demand	https://doi.org/10.48550/arXiv.2309.15 621
D. Becker, L. Schalk	Towards Robust and Efficient Communications for Urban Air Mobility	https://doi.org/10.48550/arXiv.2309.08 796
N. Naeem, P. Ratei, P. Shiva Prakasha, L. Asmer, R. Jaksche, et al.	A Collaborative Systems of Systems Simulation of Urban Air Mobility	https://doi.org/10.48550/arXiv.2310.01 900
N. Hagag, B. Hoeveler	The Feasibility of Electric Air Taxis: Balancing Time Savings and CO2 Emissions - A Joint Case Study of Respective Plans in Paris	https://doi.org/10.48550/arXiv.2310.01 417

Previous publications: https://www.dlr.de/fl/en/desktopdefault.aspx/tabid-18246/29007_read-76340/

Imprint

Topic: Urban Air Mobility Research at the German Aerospace

Center (DLR)

K-UAM Confex, Incheon, South Korea

Date: 9 November 2023

Authors: D. Kügler, B.I. Schuchardt

Institute: DLR Institute of Flight Guidance

Credits: All pictures "DLR (CC BY-NC-ND 3.0)", unless otherwise stated