
Fast Desensitized Optimal Control
for Powered Landing Applications

Tesi di Laurea Magistrale in
Space Engineering - Ingegneria Spaziale

Author: Tommaso Robbiani

Student ID: 992846
Advisor: Prof. Francesco Topputo
Co-advisor: Dr. Marco Sagliano
Academic Year: 2022-23

i

Abstract

This research revisits the Desensitized Optimal Control Theory for its application to a
computationally challenging numerical benchmark, specifically a descent and landing sce-
nario involving a rocket propulsion system. The primary objective is to assess the efficacy
of the proposed method in mitigating the impact of perturbations on the final state,
thereby establishing a framework capable of simultaneously optimizing Guidance and
Control for the specified case. Additionally, our focus is on formulating a rapid and com-
putationally efficient approach to enhance speed without compromising precision. The
investigation begins with a comprehensive analysis of the fundamental components of the
method, particularly the sensitivity terms and the computation of feedback gains, with
a comparison of alternative formulations to evaluate competitiveness. Subsequently, the
application of this methodology to the target problem is thoroughly examined and char-
acterized. Case dependent modifications are introduced to improve the method perfor-
mances, and the results are critically compared against those obtained using conventional
methods through an extensive Monte Carlo analysis campaign.

Keywords: rocket trajectories, powered landing, desensitized optimal control, NLP prob-
lems

Sommario

Questa ricerca considera la Teoria del Controllo Ottimale Desensitizzato per la sua appli-
cazione ad un caso di studio computazionalmente oneroso, ovvero uno scenario di discesa e
atterraggio per un veicolo con sistema di propulsione a razzo. L’obiettivo principale è val-
utare l’efficacia del metodo proposto nel mitigare l’impatto delle perturbazioni sullo stato
finale, stabilendo così un approccio in grado di ottimizzare simultaneamente la Guida e
il Controllo per il problema considerato. Inoltre, ci concentriamo sulla formulazione di
un approccio rapido e computazionalmente efficiente per migliorare la velocità di con-
vergenza del metodo del metodo senza comprometterne la precisione. L’indagine inizia
con un’analisi approfondita degli elementi fondamentali del metodo, in particolare dei
termini di sensitività e dei guadagni di retroazione, con confronto di diverse formulazioni
per valutarne la competitività. Successivamente, viene esaminata l’applicazione di questa
metodologia al problema specifico e caratterizzata in dettaglio, con variazioni per miglio-
rarne le prestazioni. I risultati sono poi confrontati con quelli ottenuti mediante metodi
tradizionali attraverso una approfondita campagna di analisi Monte Carlo.

Parole chiave: traiettorie di razzi, atterraggio con propulsione, controllo ottimo de-
sensitizzato, problemi di programmazione non lineare

v

Contents

Abstract i

Sommario iii

Contents v

List of Figures ix

List of Tables xi

List of Symbols xiii

1 Introduction 1
1.1 Historical Evolution of Landing Missions 1
1.2 Research Questions and Thesis Structure 2

2 Optimal Control Problem 5
2.1 Problem Formulation . 5
2.2 OCP as Boundary Value Problem . 7

2.2.1 Mathematical Background . 7
2.2.2 Problem Dualization . 9
2.2.3 Euler Lagrange Equations . 10
2.2.4 Pontryagin’s Maximum Principle 11

2.3 OCP as Nonlinear Programming Problem 12
2.3.1 Mathematical Background . 12
2.3.2 Problem Transcription . 13

2.4 Numerical Methods . 15
2.4.1 General Overview . 15
2.4.2 Pseudospectral Methods . 17
2.4.3 Numerical Implementation . 23

vi | Contents

3 Desensitized Optimal Control 25
3.1 Sensitivity Definition . 25

3.1.1 Sensitivity Matrix . 26
3.1.2 Sensitivity Function . 28

3.2 DOC Architecture . 30
3.2.1 Cost Function . 30
3.2.2 Feedback Control . 33

3.3 DOC Interpretations . 34
3.4 Implementation Strategies . 36

3.4.1 Sensitivity Terms . 36
3.4.2 Feedback Gain Strategies . 39
3.4.3 NLP-based DOC . 43

4 Powered Landing Scenario 45
4.1 Mission and Scenario . 45

4.1.1 Mathematical Model . 46
4.1.2 Nominal Solution . 48

4.2 DOC Architecture for Powered Landing Scenario 51
4.3 Method Characterization . 53

4.3.1 Sensitivity Analysis . 55
4.3.2 Saturation Handling Strategy . 56
4.3.3 Marginal DOC . 61
4.3.4 LQR Tuning . 63
4.3.5 Desensitization Strategies . 69

5 Numerical Simulations and Results 77
5.1 Problem Settings . 78
5.2 Open-Loop Case . 80
5.3 Closed Loop Case . 84

5.3.1 Linearity and Decoupling . 85
5.3.2 Final Design . 87
5.3.3 Alternative Design . 93
5.3.4 MC Analysis . 93

5.4 CPU Time Analysis . 100

6 Conclusions and future developments 105
6.1 Conclusions . 105
6.2 Future directions . 107

Bibliography 109

A Appendix A 115

ix

List of Figures

2.1 Runge Phenomenon for Lagrange Interpolation with N nodes 18

3.1 Summary of DOC Procedures . 43

4.1 Nominal Control . 49
4.2 Sensitivities of the final altitude, h(tf) . 55
4.3 Sensitivities with respect to the positions 56
4.4 DOC Solutions for increasing α weights . 58
4.5 η(t) for increasing α weights . 58
4.6 S3(tf) for increasing α weights . 59
4.7 Control trends without η for increasing α 60
4.8 Feedback gains norms for different ν values 61
4.9 Sensitivities for different ν values . 62
4.10 Gain Matrix Norm for increasing R values 65
4.11 Sensitivities for different R values . 66
4.12 Sensitivities for different Q diagonals . 68
4.13 Final y sensitivities with different DOC strategies 72
4.14 Final h sensitivities with different DOC strategies 73
4.15 Sensitivities of the state with respect to Thrust 73
4.16 Thrust Sensitivities of different states in time 74
4.17 Sensitivities with respect to state perturbations for different β weights . . . 75

5.1 Control trends of OL Case for increasing α 81
5.2 Sensitivity of h(tf) for OL case with α . 81
5.3 MC analysis for OL Case . 82
5.4 NoDOC solution with new bounds . 84
5.5 Correlation between h(tf) standard deviation and final sensitivity 86
5.6 Positions trends for different α weights . 87
5.7 Velocity trends for different α weights . 87
5.8 Trajectory for different α weights . 88
5.9 Fuel Mass consumption for different α weights 89

x | List of Figures

5.10 Control Norm in time for different α weights 90
5.11 Hamiltonian for different α weights . 90
5.12 Gain Margin compared with different ν values 91
5.13 MC Analysis for x(tf) and y(tf) . 94
5.14 MC Analysis for vx(tf) and vy(tf) . 94
5.15 MC Analysis for h(tf) and vh(tf) . 95
5.16 Comparison of x(tf) dispersion with ν = 1 and ν = 2 96
5.17 % extra saturation time over time of flight 97
5.18 MC Analysis for x(tf) and vh(tf) with y and vh desensitization 98
5.19 MC Analysis for h(tf) and h(tf) with Thrust desensitization 98
5.20 MC Analysis for h(tf) and h(tf) with Thrust desensitization 99

xi

List of Tables

3.1 Summary of Sensitivity computation strategies 39

4.1 Initial Conditions . 49
4.2 Problem Parameters . 49

5.1 Initial State Uncertainties, 3σ . 79
5.2 CPU Time - Sensitivity Term . 101
5.3 CPU Time - α steps . 102
5.4 CPU Time - Softwares . 103

xiii

List of Symbols

Mathematical Symbols

x State Vector

f RHS Vector Field

J Problem Cost Function

c Constraint

h Equality Constraints

g Inequality Constraints

Λ Lagrange Multipliers for Dynamics Constraint

ω Lagrange Multipliers for Boundary Conditions

γ Lagrange Multipliers for Constraints

y NLP Variables Vector

X Nodal State Values Vector

U Nodal Control Values Vector

Φ Mayer Cost Term

L Lagrange Cost Term

L Lagrangian Function

S State Sensitivity Matrix

Λ Reduced State Sensitivity

Ω Parameter Sensitivty

xiv | List of Symbols

Physical Quantities

t Physical Time s

τ Radau Time s

x Horizontal Position - 1 m

y Horizontal Position - 2 m

h Vertical Position m

r Position Vector m

vx Horizontal Velocity - 1 m/s

vy Horizontal Velocity - 2 m/s

vh Vertical Velocity m/s

v Velocity Vector m/s

m Mass kg

u Control Norm [-]

K Feedback Gain Matrix [-]

nT Number of Thrusters [-]

γ Thrusters Pointing Angle rad

T Thrust Value N

Isp Thrusters Specific Impulse s

g Gravity Acceleration m/s2

1

1| Introduction

1.1. Historical Evolution of Landing Missions

During the Cold War, the United States and the Soviet Union engaged in a space race
to assert their dominance in space exploration. The Soviet Luna 9 mission achieved the
first soft landing on the Moon in 1966, followed by successful landings on Venus and Mars
[1]. In the same period, the United States focused on the Moon, with Surveyor 1 and the
historic Apollo 11 mission in 1969. The American Viking 1 probe landed on Mars in 1976
[2].

After the dissolution of the USSR, the Russian program shifted to Venus, while Mars
became a research focus for American Entry, Descent, and Landing (EDL) technologies.
NASA’s progress in EDL allowed the successful landing of the Curiosity rover on Mars
with higher precision than in the past.

Space probes and prototypes have provided valuable testing opportunities to enhance
landing performance, meeting rigorous mission requirements. The idea of reusable, cost-
effective launchers had the potential to revolutionize the space industry, aligning with
NASA Administrator Daniel Goldin’s vision in 1992 of making missions “faster, better,
cheaper” [3].

In 1993, McDonnell Douglas’ DC-X achieved the first vertical landing on Earth after a
100-meter hop. NASA embraced the project and conducted further tests with the DC-XA,
although it was ultimately dismantled in 1996, marking the end of the vertical landing
concept under Goldin’s leadership [4].

In 1999, the Japan Aerospace Exploration Agency initiated the Reusable Vehicle Testing
campaign, inspired by the DC-XA model, with several flight series from 1999 to 2003 [5].

The first proper space vehicle to achieve vertical landing did not occur until 2015, with
Blue Origin’s New Shepard reaching 100.5 kilometers in altitude and precisely landing
back on the launchpad [6]. A year and a half later, SpaceX achieved satellite orbit
insertion using a launcher with a previously flown and refurbished first stage, marking a

2 1| Introduction

significant milestone in autonomous vertical landing with reused stages [7].

Rocket reusability gained traction beyond the United States, with various efforts initially
focused on small demonstrators for GNC algorithm testing. Examples include EAGLE
from DLR [8] and FROG [9] from CNES, both featuring tethered safety systems and
turbojet engines for propulsion.

Several projects, including CALLISTO, and RETALT, are contributing to the advance-
ment of reusable launchers. CALLISTO, a trilateral project involving DLR, JAXA, and
CNES, aims to demonstrate Return-To-Landing-Site (RTLS) operations with a suborbital
rocket [10–13].

The H2020-funded RETALT project, led by Elecnor Deimos, focuses on improving tech-
nologies essential for reusable launchers, particularly within the GNC subsystem [14].

1.2. Research Questions and Thesis Structure

In the context of landing strategies, the primary emphasis of the proposed work lies in
the powered landing phase, where control is executed using a propulsion system. The
main objective is to conduct a preliminary investigation into integrating the fundamental
principles of Desensitized Optimal Control (DOC), originally introduced in [15], into the
Powered Landing Scenario. Although a similar endeavor was previously undertaken in a
study in 2010 [16], the proposed work seeks to expand upon it by applying it within a Non-
linear Programming (NLP) environment, specifically GPOPS [17]. This extension aims
to provide a more comprehensive algorithmic characterization. Additionally, in alignment
with the title of the work, the secondary goal is to develop a ’Fast’ version of the algorithm
in terms of CPU time.

As a result, the three key research questions are as follows:

1. What are the true capabilities of DOC techniques applied to the Rocket Landing
scenario compared to classical separated (Guidance & Control) architectures?

2. Is it feasible to implement a computationally efficient version of the proposed algo-
rithm in the GPOPS environment?

3. How can the method be characterized and improved to meet prescribed performance
requirements?

Without delving into extensive details, Chapter 2 offers an overview of the Optimal Con-
trol Problem and the commonly employed numerical strategies. Chapter 3 delves deeply
into the Desensitized Optimal Control strategy. Chapter 4 centers on the problem under

1| Introduction 3

consideration and how DOC can be applied to address it, while also equipping readers
with the tools to assess the impact of various design choices on algorithm efficiency. Chap-
ter 5 presents the obtained results, and Chapter 6 aims to address the research questions
while offering insights into potential future developments.

5

2| Optimal Control Problem

Optimal Control is a branch of applied mathematics focusing on determining the inputs
to a dynamical system that optimize a specified performance index. The resulting solu-
tion has to fulfill the dynamical constraints within a certain threshold, while satisfying
the prescribed boundary conditions. Various numerical methods have been created to
cope with optimal control problems and they could be classified in two major categories,
indirect methods and direct methods, that are presented in the latter part of the chapter.

2.1. Problem Formulation

Determine the state, x(t) ∈ Rn, the control, u(t) ∈ Rm, the initial time, t0 ∈ R, the final
time, tf ∈ R, and the parameters p ∈ Rp that optimize the performance index:

J = Φ(x(t0), t0,x(tf), tf) +

∫ tf

t0

L(x(t),u(t), t) dt (2.1)

Subject to the n dynamic constraints,

ẋ(t) = f(x(t),u(t), t) (2.2)

the q inequality constraints and the s equality ones, collected in the vector c:

c(x(t),u(t), t;p) ≤ 0 (2.3)

and the r = ri + rf boundary conditions

ψ0(x(t0), t0) = 0 and ψf (x(tf), tf) = 0 (2.4)

6 2| Optimal Control Problem

The state, control, and static parameter can be written also component-wise as:

x(t) =

x1(t)

...
xn(t)

 u(t) =

u1(t)

...
um(t)

Once defined the problem statement, the explicit dependency with respect to time can be
dropped to simplify the notation, i.e. x = x(t) and x0 = x(t0).

Equation (2.1) outlines the index J that needs to be minimized along the optimization
process, while Eq. (2.2) characterizes the dynamics of the system under analysis. The
path constraints, as defined in Eq. (2.3), consist of q + s equations imposing limitations
to the system dynamics. These constraints may arise for various reasons (e.g., physical
limitations of the system or safety measures). The control and states shall satisfy the
boundary conditions, Eq. (2.4), which could be expressed in either vector or scalar form.

The Optimal Control Problem can be formalized as:

min
u
J s.t.

ẋ = f(x,u, t)

c(x,u, t) ≤ 0

ψ0(x0, t0) = 0

ψf (xf , tf) = 0

(2.5)

Remark 3.1 The formulation presented in Eq. (2.5) is intentionally the most general
possible. Since the initial time is typically provided, t0 can be excluded from the opti-
mization problem variables. In closed final-time problem, the final tf is also provided.

Remark 3.2 The performance index J of Eq. (2.1) is expressed in the most general
Bolza formulation. Equivalently, it can be defined in either Lagrange or Mayer formula-
tion, which, respectively, consider the integral term (path cost) and the term depending on
boundary conditions only, respectively. In practical applications, the first term depends
typically on the final conditions, so it can be referred to as the terminal cost.

In the upcoming sections, the methodologies for converting the OCP into a TPBVP and
into an NLP are presented. Both formulations are useful when solving the OCP, as
extensively discussed in Section 2.4.

2| Optimal Control Problem 7

2.2. OCP as Boundary Value Problem

The transformation of the Optimal Control Problem into a Two-Point Boundary Value
Problem (TPBVP) is achieved through the variational approach reported in Section 2.2.1.
Initially, the original problem undergoes dualization as shown in Section 2.2.2, by defining
an augmented cost function and by incorporating Lagrange Multipliers. Consequently,
the variational approach is applied to the cost function, given its functional nature.

2.2.1. Mathematical Background

This sections aims to provide the mathematical fundamentals needed to transform the
Optimal control problem into a Boundary Value Problem. The first part focuses on the
definition and the proprierties of a Boundary Value Problem, while the second introduces
the main concepts of the Calculus of Variations.

Boundary Value Problems

A boundary value problem is a system of differential equations accompanied by conditions
specifying the values of the solution and/or its derivatives at two or more points. The
number of conditions is given by the product of the order of the differential equations and
the number of such equations. Boundary value problems commonly have two relevant
features: conditions are applied at two different points, the boundaries of the domain, and
the solution is of interest between the two points, inclusive. These problems may have no
solution, a unique solution or an infinite number of solutions, in contrast to initial value
problems. Boundary value problems are denoted as BVP or TPBVP, two-point boundary
value problem, if the boundary conditions are imposed at only two points.

The boundary conditions can be expressed in different mathematical forms leading to
different problems. As reported in [18], they could be categorized as Dirichlet, whenever
the value of the state is imposed at the boundary, or as Neumann, when the specified
value is a derivative of the state. Therefore, a typical TPBVP, a second order system,
with Dirichlet boundary conditions, can be defined as:

ẋ = f(x(t), t) s.t

x(t0) = x0

x(tf) = xf

where x ∈ Rn is the state vector, t ∈ R is the time, t0 ∈ R and tf ∈ R are respectively
the initial and the final time. x0 ∈ Rn and xf ∈ Rn are the boundary conditions, while
the vector field is defined as f : Rn → Rn.

8 2| Optimal Control Problem

One key feature of BVPs is their state of posedness: if the problem admits at least one
solution (existence), and, provided it has at most one solution (uniqueness) and that the
solution depends continuously from the data, the problem is said well-posed. If one of the
three reported conditions is not fulfilled, the problem falls into the category of ill-posed
BVPs [19]. Given a generic problem, is advisable to reject any ill-posed formulation since
the lack of one of the three conditions could respectively lead to the absence of a solution,
multiple solutions or large sensitivity to perturbations. If such issue arise, mathematical
analysis or regularization techniques should be employed for as intermediate steps before
moving to the numerical solving phase.

Calculus of Variations

The calculus of variations is a branch of mathematics highly effective when seeking to
minimize or maximize a functional. In order to provide a synthetic and complete overview
of the topic, some key definitions from [20] are reported:

Definition 2.2.1: a functional J is a rule of correspondence that assigns to each vector
function γ in a certain class Ω a unique real number. Ω is called the domain of the
functional, and the set of real numbers associated with the functions in Ω is called the
range of the functional.

Definition 2.2.2: if γ and γ + δγ are functions for which the functional J is defined,
then the increment of J, denoted as ∆J is:

∆J = J(γ + δγ)− J(γ)

where δγ is called the variation of the function γ.

Definition 2.2.3: The increment of a functional can be written as:

∆J(γ, δγ) = δJ(γ, δγ) + q(γ, δγ) · ||δγ||

where δJ is linear in δγ. If
lim

||δγ||→0
q(γ, δγ) = 0

then J is said to be differentiable on γ and δJ is the variation of J evaluated for γ.

The crucial concept is the variation of a functional, that can be interpreted as the first-
order approximation of the functional’s increment. Of course, if ||δγ|| is large, the approx-
imation accuracy may be poor. Given all the building blocks, the Fundamental Theorem
of Calculus of Variations can be enunciated.

2| Optimal Control Problem 9

Theorem 2.1. Let γ(t) be a vector function of the time t and J(γ) being a differentiable
function of γ. The Fundamental Theorem of Calculus of Variation states: if γ∗ is an
extremal, the first variation of J must vanish on γ∗ for all admissible δγ.

δJ (γ∗, δγ) = 0

The theorem presented is a necessary condition in determining the extreme values of
functionals, and is analogous to the well known corresponding theorem for functions [20].

2.2.2. Problem Dualization

Once all the mathematical fundamentals are defined, the first step is the dualization pro-
cess. It consists in augmenting the cost function with the problem’s constraints, through
Lagrange multipliers.

The augmented cost function of the optimal control problem can be defined as:

Ja = Φ(x0, t0,xf , tf)− ωT
0 ψ0(x0, t0)− ωT

f ψf (xf , tf)+∫ tf

t0

L(x,u, t)− λT (t) (ẋ− f(x,u, t)) + γT (t)c(x,u, t) dt
(2.6)

where λ(t) ∈ Rn, γ(t) ∈ Rp, ω0 ∈ Rri , ωf ∈ Rrf are the Lagrange multipliers for
Eq. (2.2), Eq. (2.3) and Eq. (2.4) respectively. As stated in the previous sections, the
explicit dependence on time of these variables and the functional dependencies drop in
favour of a lighter notation.

The first order variation with respect to the free variables can be computed as [21]:

δJa =
∂Φ

∂x0

δx0 +
∂Φ

∂t0
δt0 +

∂Φ

∂xf

δxf +
∂Φ

∂tf
δtf − δωT

0 ψ0 − ωT
0

∂ψ0

∂x0

δx0 − ωT
0

∂ψ0

∂t0
δt0

− δωT
f ψf − ωT

f

∂ψf

∂xf

δxf − ωT
f

∂ψf

∂tf
δtf + (L − λT (ẋ− f)− γTc)t=tf δtf

− (L − λT (ẋ− f)− γTc)t=t0δt0 +

∫ tf

t0

∂L
∂x

δx+
∂L
∂u

δu− δλT (ẋ− f)+

λT ∂f

∂x
δx+ λT ∂f

∂x
δx− λT δẏ − δγTc− γT ∂c

x
δx− γT ∂c

u
δu dt

(2.7)

In order to derive the necessary conditions for optimality, all the partial derivatives in
this equation with respect to the variables should be set equal to zero and then solved for
the different unknowns. However, this is nontrivial due to the unhelpful notation.

10 2| Optimal Control Problem

2.2.3. Euler Lagrange Equations

In order to obtain a compact formulation, the augmented Hamiltonian can be defined as:

H(x,u,λ, γ, t) = L(x,u, t) + λT · f(x,u, t)− γT · c(x,u, t) (2.8)

By merging Eq. (2.6) and Eq. (2.7), the first-order optimality condition, known as Euler-
Lagrange equations, for the optimal control problem result in:

ẋT (t) =
∂H

∂λ

λ̇T (t) = −∂H
∂x

0 =
∂H

∂u

λT (t0) = − ∂Φ

∂x0

+ ωT
o

∂ψ0

∂x0

λT (tf) = − ∂Φ

∂xf

+ ωT
f

∂ψf

∂xf

H|t=t0 = −ωT
0

∂ψ0

∂t0
+
∂Φ

∂t0

H|t=tf = ωT
f

∂ψf

∂tf
− ∂Φ

∂tf

ψ0 = 0

ψf = 0

(2.9)

A further outcome of this procedure is that the γ components linked to the inequality
constraints are equal to zero when the corresponding complementary condition is inactive.
This means that inactive path constraints are effectively disregarded in the cost function.

Remark 3.3 The equations presented define the most general set of necessary conditions
that must be satisfied for an extremal point of the optimal control.

Remark 3.4 Boundary conditions for states may be partially defined; any missing
conditions are substituted by constraints on the corresponding costate. For example, if
a state is set free at the final time, the corresponding costate will be fixed and equal to
zero at final time.

Remark 3.5 If the cost function is expressed in Lagrange form, i.e., Φ = 0, the initial
time and final time are fixed, leading to δti = 0 and δtf = 0, as well as the initial

2| Optimal Control Problem 11

and final conditions on the state, x(t0) = x0 and x(tf) = xf , some terms vanish. The
boundary conditions for λ(t) disappear as well as the ones for H. The initial and final
state constraints are reformulated, since the boundary values for the state are fixed. The
resulting system of equations reads as follows:

ẋT (t) =
∂H

∂λ

λ̇T (t) = −∂H
∂x

0 =
∂H

∂u

x(t0) = x0

x(tf) = xf

(2.10)

Remark 3.6 The Euler-Lagrange conditions constitute a system of differential algebraic
equations and also a TPBVP, with an augmented state comprising both x and λ. An
approach to treat the problem is the the Pontryagin’s Maximum Principle, presented in
the subsequent section, needed to express the control actions as functions of state and
costate in order to obtain a TPBVP formulation, then solved.

2.2.4. Pontryagin’s Maximum Principle

The Pontryagin’s Maximum Principle (PMP) is employed to determine the optimal values
of the control variables. Even if it has been developed for maximization problems [22] it
can be extended to minimization ones, with the acronym PmP.

As reported in Remark 3.6, the third equation of Eq. (2.10) is used to calculate the
external actions needed to fulfill the boundary conditions and the path constraints. The
key issue is that the applicable control is not infinite and, therefore, it belongs to a finite
feasible region, defined as U .

The weak form of the Pontryagin’s principle is stated in [22] as: Find u∗ such that:

u∗ = min
u∈U

H (x,u,λ,γ, t)

Remark 3.7 In Euler-Lagrange equations, the partial derivative of H with respect to
u is set to zero, therefore PmP can be interpreted as a constrained minimization over a
set of the control actions.

12 2| Optimal Control Problem

2.3. OCP as Nonlinear Programming Problem

The alternative approach involves discretizing the continuous-time optimal problem, through
a process named transcription. The resultant problem is then treated as a NLP problem,
as discussed Section 2.3.1, wherein the optimization parameters include the components
of the discretized state and control, as well as the initial and final times.

2.3.1. Mathematical Background

As already done for BVP, a brief discussion of necessary mathematical tools is presented
in this section. The main goal is the definition of Nonlinear Programming, together with
its optimality conditions, the KKT conditions.

Nonlinear Programming

The nonlinear programming (NLP) problem, also referred to as parametric (or static)
optimization, involves finding a finite set of variables that minimizes a cost function,
provided that the all the constraints are fulfilled. Multiple subsets of problems are included
in the general NLP problem category, such as linear and quadratic programming [23].

The general nonlinear programming (NLP) problem can be stated as follows.
Find the vector x ∈ Rn that minimizes the scalar objective function J(x), subject to
equality constraints h : Rn → Rs and inequality constraints g : Rn → Rq, such that:

min
x
J(x) subject to

h(x) = 0

g(x) ≤ 0

For every examined state, the active set of inequality constraints can be defined as:

cA(x) : {gi(x) | gi(x) = 0, i ∈ 1, . . . , n}

The constraints belonging to cA are treated as equality constraints. They can be collected
with h(x) in the constraint vector, defined as c(x) =

[
h(x); cA(x)

]
Numerous methods have been defined for solving NLP problems, broadly categorized in
Gradient Methods and Heuristic Optimization Methods. Gradient methods aim to deter-
mine the best search direction and the optimal step length seeking for a local minimum of
the problem, when an initial guess is provided. Commonly employed techniques include
SQP (Sequential quadratic programming) or IP (Interior Point). In contrast, Heuristic

2| Optimal Control Problem 13

Methods research is performed in a stochastic manner, in contrast with the deterministic
strategy of Gradient Methods. A frequently utilized method is the genetic algorithm [24].

Karush-Kuhn-Tucker Conditions

The necessary optimality conditions for an NLP problem are called Karush-Kuhn-Tucker
conditions [25]. They must be satisfied for a solution to be optimal in a constrained opti-
mization problem. In practice, solving optimal control problems often requires numerical
techniques and optimization algorithms that take into account these conditions to find
the best control strategies while respecting system dynamics and constraints.

They can be retrieved from the definition of the problem’s Lagrangian. The Lagrangian
is formed augmenting the cost function with the the vectors of Lagrangian multipliers,
denoted as λ̂ ∈ Rs+M ·n and ν̂ ∈ Rq. Thus, the Lagrangian is expressed as:

L(y,λ,ν) = Ĵ(y) + λ̂T ĥa(y) + ν̂
T ĝ(y)

As stated in [26], if y∗ is a local minimum of the problem, then exist unique vectors λ̂∗

and ν̂∗ such that:

∇yL = ∇Ĵ(y∗) +G(y∗)T λ̂∗ +Ha(y
∗)T ν̂∗ = 0

∇λ̂∗L = ĥ(y∗) = 0

∇ν̂∗L = ĝ(y∗) ≤ 0

ν̂∗L ≥ 0

ν̂∗T ĝ(y∗) = 0

where G and Ha are, respectively, the equality and inequality constraint Jacobians.

2.3.2. Problem Transcription

The process of transcription aims at transforming the continuous (or infinite-dimensional)
optimal control problem into a discrete (or finite-dimensional) optimization problem.
While various methodologies exist for this purpose, this work focuses on two specific
approaches: the nodal approach and the modal approach. The nodal approach, presented
in this section, employs nodal values of state and control as variables in the NLP prob-
lem. On the other hand, the modal approach approximates all the involved quantities as
polynomials, whose coefficients are the NLP variables. The former strongly relies on the
use of Lagrange polynomials, thanks to the isolation propriety, presented in Section 2.4.2.

14 2| Optimal Control Problem

The first step of the nodal approach involves discretizing the state and the control vari-
ables, passing from the continuous domain to the discrete one. The time span of the
problem, from t0 to tf , is divided in N nodes, ti for i = 1, . . . , N . The states are eval-
uated in the same time instants, xi = x(ti) for i = 1, . . . , N , while the controls can
be evaluated at Nu other nodes, depending on the transcription method adopted. This
operation leads to a NLP state vector defined as:

y =
[
x1, . . . ,xN ,u1, . . . ,uN , t0, tf

]T
=
[
XT ,UT , t0, tf

]T
in vector form to avoid the loss of generality and with length, w = N · n+Nu ·m+ 2.

The dynamics undergoing transcription become a set of algebraic nonlinear equalities,
meaning that they are evaluated ad a fixed number of instants (M), not necessarily
coincident with the state/control discretization vector. The result is a series of defect
constraints, which are imposed on each interval in the discretization [27].

ξj = ẋ(tj)− f(xk,uj, tj) = 0 for j = 1, . . . ,M (2.11)

The objective function, Eq. (2.1), Mayer term is is evaluated at the initial and/or final
nodes, while the path cost is approximated through a discrete integration scheme whose
coefficients depend on the selected quadrature scheme. The approximated cost is Ĵ .

Ĵ(y) = Φ(x1, t0,xN , tN) +
N∑
i=1

wiL(xi,ui, t)

The equality and inequality constraints must to be redefined, and they are represented
as: ĥa : Rw → Rs+M ·n and ĝ : Rw → Rq. The equality constraints vector is comprised
by two different parts: the first part corresponds to the discretization of the optimal
control problem’s equality constraints augmented with the defect constraints, considered
as equality additional equality constraints.

The transcripted NLP problem can be formulated as:

min
y ∈Rw

Ĵ(y) s.t

ĥa(y) = 0

ĝ(y) ≤ 0

The first-order necessary optimality conditions for the reported problem are already shown
in Section 2.3.1, with a slightly different notation, but can be easily extended to the
problem under analysis.

2| Optimal Control Problem 15

2.4. Numerical Methods

Upon formulating the OCP as TPBVP or as NLP problem, numerical methods are essen-
tial to solve it. With the exception of simple problems, optimal control problems must
be solved numerically. In the first part of this section typical numerical methods are
presented, while the second emphasizes on Pseudospectral methods (PSM), due to their
significance in this work.

2.4.1. General Overview

The numerical methods can be divided into two categories: indirect methods and direct
methods.

Indirect methods are based on the TPBVP formulation (refer to Section 2.2), since they
exploit Euler-Lagrange necessary conditions Eq. (2.9). Examples of indirect methods in-
clude the Indirect Single-Shooting Method (ISSM) and Indirect Multiple-Shooting Method
(IMSM) [27]. The fundamental idea behind these methods is to make an initial guess of
the unknown boundary conditions at one end of the interval and then perform a numer-
ical integration to the other end. Different schemes can be employed for propagation,
classified as one-step methods and multi-step methods [23].

If the result of the integration deviates from the corresponding boundary conditions of
more than a prescribed value, corrections to the guess are applied iteratively until the
convergence is achieved. Various strategies, such as the State Transition Matrix technique,
can be employed to facilitate convergence with the differential corrections method [28].

The primary distinction between ISSM and IMSM is that the latter discretize the trajec-
tory in multiple segments. Since Hamiltonian dynamic evolution is typically ill-conditioned,
reducing the time span mitigates the sensitivity of the problem to errors in initial condi-
tions. However, this comes at the cost of an increased number of variables, and additional
boundary conditions between segments are required to ensure the continuity of the state.

Another indirect method is the so called Indirect collocation method, where state and
costate are parameterized using piece-wise polynomials. This procedure leads from a
TPBVP to a root-finding problem, where the state is given by the coefficients of the
polynomials [27].

Direct methods operate with a fundamental different Philosophy, compared to indirect
methods. The core concept is to transform the OCP into a NLP, as illustrated in Sec-
tion 2.3. These methods offer two significant advantages: they can be applied without

16 2| Optimal Control Problem

explicitly deriving necessary conditions, and they do not require a priori specification of
the arc sequence for problems with path inequalities [27]. The main distinction from
indirect methods lies in the fact that direct methods build a series of points to minimize
the objective function, whereas the indirect methods seek to find a root of the necessary
conditions [23].

This category includes the Direct Single-Shooting Method (DSSM) and Direct Multiple-
Shooting Method (DMSM). In these methods, the control is parameterized through a
specified functional form, as expressed in:

u(t) ≈
m∑
i=1

aiPi(t) (2.12)

where Pi(t) are known functions and ai are the parameters to be determined in the
optimization process. The dynamic constraints are satisfied by integrating differential
equations with a time-marching algorithm, and the cost function is approximated through
a quadrature formula, as reported in Eq. (2.11). Although the sensitivity issue does not
play a crucial role, it remains a challenge for direct methods [27].

In DMSM, the time interval is divided into N + 1 sub-intervals and the DSSM is applied
in each interval, to minimize the sensitivity to initial conditions given the integration is
performed over smaller time intervals [24]. However, both of these methods may encounter
challenges when the control cannot be easily parameterized, due to the increment of NLP
variables or the complexity of the discretization.

In line with Indirect Methods, a Direct collocation methods (DCM) can be formulated,
and this family of methods holds significance within the broader panorama of Direct
Methods. The fundamental idea is that the state and the control are approximated using
a specified functional form [24]. Collocation can be performed locally or globally. The
former is based on the discretization of the time interval into sub-intervals where local
polynomial approximations is employed, while the latter aims to approximate the state
and the control functions across the entire domain. Commonly used global collocation
methods are the Pseudospectral Methods, that will be discussed in the next section.

A notable challenge associated with these methods is the potential largeness of the number
of variables. In real applications, the relevant matrices of this NLP problem - specifically,
the Jacobian and the Hessian - are typically sparse. Exploiting sparsity to reduce storage
and computation time is a critical aspect for the numerical implementation. Details on
addressing sparsity issues can be found in [27]. These problems are typically solved with
commercial solvers, like SNOPT [29], SPRNLP [30] and KNITRO [31].

2| Optimal Control Problem 17

2.4.2. Pseudospectral Methods

Pseudospectral methods represent a category of indirect collocation methods based on or-
thogonal polynomials, with commonly used basis functions being Chebyshev or Lagrange
polynomials. Their relevant advantage over traditional methods lies in their spectral
convergence, i.e., they converge exponentially with respect to the number of collocation
points. Therefore, even a coarse grid is sufficient to ensure a rapid convergence of the
solution. The subsequent sections provide a brief description of the method, followed by
an exploration of different types of Legendre nodes.

Introduction and Motivations

In practical applications, the state and/or the control could be approximated by different
polynomial bases, in the form reported in Eq. (2.12). Two commonly employed bases
are either Legendre polynomials or Chebyshev polynomials, both expressed in Lagrange
form.

Lagrange polynomials offer a notable advantage, since the coefficients ai in Eq. (2.12)
are the nodal values of the original function. This property, known as the isolation prop-
erty, implies that the parameters vector of the Nonlinear Programming (NLP) problem
comprises the nodal values of the state and/or control from the original problem.

The Lagrange polynomial approximation is based on the fact that, given a set of N time
nodes, t1, . . . , tN on a time interval [t0, tf] and a continuous function of time y(t), defined
on the same interval, there exists a unique polynomial Y (t), of degree N − 1, such that:

Y (ti) = y(ti) = yi for i = 1, . . . , N (2.13)

The polynomial approximation formula is given by:

Y (t) =
N∑
i=1

aiPi(t)

where Pi(t) are the Lagrange polynomials, defined as:

Pi(t) =
N∏

k=1,k ̸=i

t− tk
ti − tk

(2.14)

18 2| Optimal Control Problem

The already cited insulation problem states that:

Pi(tk) = δik =

1 if i = k

0 if i ̸= k

as a consequence, coherently with Eq. (2.13), ai = yi for i = 1, . . . , N .

The Lagrange approximation is exact for functions of order up to N − 1. The error
between Lagrange approximation and the initial function can be computed as [32]:

y(t)− Y (t) =
(t− t1) . . . (t− tN)

N !

dN

dtN
y(ξ)

where ξ ∈ [t0, tf]. Notably, if t = ti, the numerator goes to zero, consistent with Eq. (2.13).
Additionally, for functions of order up to N − 1, the derivative vanishes, ensuring exact
Lagrange approximation.

The central challenge is the potential occurrence of the Runge phenomenon for evenly
distributed points. Intuitively, one might expect that increasing the number of nodes,
denoted by N , would enhance the approximation quality, thereby reducing the error.
However, in certain cases, the opposite effect takes place - increasing nodes may lead to
a rise in error. High-degree polynomials can, in some instances, result in ill-conditioned
problems, particularly towards the outer part of the interval [33].

-1 -0.5 0 0.5 1

x [-]

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y
 [
-]

fun(x)

L, N=5

L, N=9

L, N=11

Figure 2.1: Runge Phenomenon for Lagrange Interpolation with N nodes

Consequently, oscillations emerge in the approximating functions between nodes, partic-
ularly at the ends of the time interval, as shown in Section 2.1, reporting the following

2| Optimal Control Problem 19

functions and its polynomial interpolations:

fun(x) =
1

1 + 25x2
(2.15)

As N increases, the magnitude of these oscillations grows, exacerbating the discretization
error.

In order to avoid the Runge phenomenon, discretization points must be properly chosen
between the non-uniformly distributed nodes families. A non-uniform discretization can
be obtained as roots of orthogonal polynomials, like Chebyshev or Legendre polynomials.
Expansions of functions in terms of orthogonal polynomials are easy to manipulate, have
good convergence proprieties and give a well-conditioned representation of the function
[33].

Moreover, these specific collocation points guarantee the exponential convergence of the
method as the number of points increases in case of smooth problems. This is the key
advantage of using them as nodes, and it is the key feature of pseudospectral methods.
Further analyses on the different types of points that could be employed are reported in
Section 2.4.2.

Global collocation Since Legendre polynomials are orthogonal in the domain τ ∈
[−1, 1], the pseudospectral methods refers to this domain as pseudospectral time. The
mapping between the physical time t ∈ [t0, tf] and the pseudospectral time is:

t =
tf − t0

2
τ +

tf + t0
2

, τ ∈ [−1, 1]

while the opposite one is:

τ =
2

tf − t0
t− tf + t0

tf − t0
, t ∈ [t0, tf]

Assuming that the domain is discretized in N nodes, ti for i = 1, . . . , N the state x(t)
with n elements, can be approximated by the sum of N Lagrange polynomials:

x(t) ≈
N∑
i=1

XiPi(t)

where Li are the Lagrange Polynomials defined in Eq. (2.14) andXi are the nodal values of
the state. For pseudospectral methods, the number of nodes does not necessarily coincides

20 2| Optimal Control Problem

with the number of collocation points (M), i.e., where the dynamics is evaluated. The
collocation points are defined as τj for j = 1, . . . ,M . The pseudospecral differential matrix
D ∈ Rn·N×n·M can be defined as:

Dj,i =
∂Ẋj

∂Xi

=
dPi

dτ
(τj)Ins =

tf − t0
2

Ṗ (τj)Ins (2.16)

If the control vector Uj = u(tj) ∈ Ru is considered, the problem is be formulated as:

DjX =
tf − t0

2
f(Xj,Uj)

where Dj stands for the jth column of D matrix and X ∈ RnsNn is the vector of all the
states at all the nodes. In this way the dynamics is properly collocated at M points.

The Lagrange cost term L(x,u, t) can be approximated as:

∫ tf

t0

L(x,u, t) dt ≈ tf − t0
2

Nn∑
i=1

ωiL(Xi,Ui, ti) (2.17)

where ωi is the quadrature weight.

Quadrature formulas relying on evenly spaced points often fail to converge for many cases.
Therefore, two alternative approaches can be considered: composite rules or Gaussian
quadrature [34]. Gaussian quadrature coefficients, based on Legendre polynomials, offer
high accuracy owing to their orthogonality properties. Thus, it is reasonable to adopt the
integration scheme corresponding to the collocation points used. Each of these schemes
has a corresponding set of quadrature coefficients.

An alternative perspective is to define the integral operator instead of the differential
operator [35]. While in some methods, both procedures yield the same result, in others,
they may differ. Further details are provided in the following sections.

Local Collocation Local collocation, also known as the hp-method, is as an extension
of the global collocation method. According to [36], global collocation methods may
demand larger CPU times compared to standard methods. This is attributed to the need
for a large number of nodes to achieve precise function approximations, resulting in a non-
sparse Jacobian matrix. To address this issue, the local collocation method divides the
time interval into h segments. In each segment, an equivalent global collocation method,
with order p, is employed.

2| Optimal Control Problem 21

The primary distinction from global methods lies in the introduction of linking conditions
to ensure the continuity of the state, control, and time across the intervals. For a given
interval i ∈ 2, . . . , h, the linking conditions are:

ti−1
p = ti0

X i−1
p =X i

0

U i−1
p = U i

0

where the index p indicates the last node in each segment.

Legendre Points

Pseudospectral methods utilize the roots of Legendre polynomials or roots of linear com-
bination of Legendre polynomials of different order as nodes. The Legendre polynomial
of order N is:

LN(τ) =
1

2NN !

dN

dτN
(τ 2 − 1)N .

This works considers three different families of nodes: Legendre-Gauss (LG) points, also
called Gauss points, Legendre-Gauss-Lobatto (LGL) points, also called Lobatto points,
and Legendre-Gauss-Radau (LGR) points, also called Radau points [35]. A brief descrip-
tion is provided in the next paragraphs, while the rationale behind choosing Radau nodes
is explained in the following section.

Gauss Points - LG These points exclude both endpoints. They are the roots of Pn(τ);
as they do not include the ends, τ1 > −1 and τN < 1. To obtain a state discretization, a
node τ0 = −1 can be added, extending the range from i = 0 to i = N . Since the number of
collocation points differs from the number of discretization points, the resulting differential
matrix is non-square but is equivalent to the integral one.

Lobatto Points - LGL They include both endpoints and are the roots of ṖN−1(τ)

plus the points [−1,+1]. Since they include both extremes, the first point is τ1 = −1,
while the last is τN = +1. In this case, the differentiation matrix is square since, but
it is singular. The differential matrix and the integral one are not equivalent, and the
linear system of equations for costate dynamics is under-determined, leading to the lack
of correspondence in optimality conditions. The differential matrix has a non-empty null
space, resulting in the existence of an infinite number of solutions for the costates values.

22 2| Optimal Control Problem

Radau Points - LGR They include one of the endpoints and are asymmetric with
respect to the origin. They can be defined either using the initial point (LGR) or the final
point in the flipped configuration (f -LGR points). They are the roots of PN−1(τ)+PN(τ).
In the nominal case, τ1 = −1 and τN < 1, but the node τN+1 = 1 is added, not as
collocation points. The differentiation matrix is non singular and, as for LG, is equivalent
to the integral one.

Radau Method

The Lobatto pseudospectral method (LPM), based on Lobatto nodes, and the Gauss
pseudospectral methods (GPM), based on the Gauss nodes, have been deeply investigated
[34]. However, both of them are suboptimal selections.

The LPM strategy might seem optimal due to its architecture, with both endpoints col-
located. The problem is that the optimality conditions of the NLP are not equivalent to
the discretized form of the continuous-time optimality conditions. In particular, a poor
estimation of LPM is obtained [34].

On the contrary, although the optimality conditions of the Gauss pseudospectral methods
(GPM) in NLP are equivalent to the discretized form of the continuous-time optimality
conditions, the Gauss points lack collocation at both the initial and final points. Conse-
quently, the control at the initial point cannot be obtained from the NLP solution.

Moreover, when utilizing an hp pseudospectral method, where the terminal point of one
sub-interval aligns with the initial point of the following one, the inclusion of both end-
points in LGL points results in a redundancy in the number of variables. In contrast, the
GPM architecture faces challenges due to the absence of boundary conditions.

Considering these motivations, the LGR points result to be the optimal choice. Their
NLP optimality conditions are equivalent to the discretized version of the continous-time
ones and, since they have just one endpoint, no redundancy in the hp scheme is present.
The only drawback is that the final/initial control is not obtained for nominal/flipped
configuration [34], but can be retrieved by interpolation. Furthermore, the implementation
of Radau pseudospectral method (RPM) is less complex than the GPM one.

Given a M collocation points, the number of nodes is N = M + 1. Therefore, the
differential operator of Radau D ∈ Rn·M×n·N is a non-square matrix. In case of RPM,
according to equation Eq. (2.16), j ∈ [1, N] and i ∈ [1, N + 1] while for fRPM ∈ [1, N]

and i ∈ [0, N]. This is because in RPM the τN+1 discretization points, while in fRPM the
τ0 [37].

2| Optimal Control Problem 23

The quadrature weights of Eq. (2.17) can be defined as:

ωi =
1

(1− τi)[L̇N−1(τi)]2
for i = 2, . . . , N with ω1 =

2

N2
.

2.4.3. Numerical Implementation

Once the OCP problem has been reformulated as an NLP, the application of a numerical
method is required. In recent years, some important features of the practical implemen-
tation have been considered and analyzed. This section aims to provide a brief overview
as the most relevant aspects that need to be taken into account.

Differentiation Schemes Given that common solvers like SNOPT or IPOPT rely on
gradient based methods, selecting an optimal differentiation scheme is crucial to mini-
mize numerical errors. Analytical derivation is the most accurate but often impractical
for complex problems [24]. However automatic differentiation [38] could produce a good
alternative, as it aims to provide a quasi-analytical derivation tool. The ADiGator tool-
box is properly integrated with the newest versions of GPOPS-II, the software used in
this work. Another approach to address this problem is based on dual numbers theory.
Although free from truncation and round-off errors this method is limited to analyti-
cal functions only and cannot handle tabular data. Moreover, the number of operations
to be performed increases, introducing additional computational complexity due to the
underlying mathematical rules [39].

Sparsity In direct collocation methods, the majority of the Jacobian terms are zero and
the number of variables could be very large. Therefore, to efficiently handle this, matrices
must be stored in sparse form [27]. As highlighted in [23], various solutions have been
implemented to mitigate this issues. Many commercial software, like the aforementioned
IPOPT, take advantage of the sparsity proprieties to minimize the needed memory.

Scaling In order to minimize the computational effort, the problem could be scaled. The
normalization process could be based on linear or non-linear methods, and involves scaling
the states, the costates, the dynamics, the constrains and the cost function. Various
techniques for scaling are reported in [37]. The efficiency of the process can be evaluated
by considering the ratio between the condition number of the non-scaled Jacobian and
the condition number of the scaled one [40]. A higher value for this ratio indicates better
performance of the scaling procedure.

25

3| Desensitized Optimal Control

The theory of Desensitized Optimal Control (DOC) was initially introduced in [15]. This
theory serves as a comprehensive approach for designing robust trajectories and controllers
in a unified manner. It belongs to the category of sensitivity analysis methods, as it
involves the definition of a sensitivity matrix denoted as S. The primary objective of DOC
is to enhance the robustness of the optimal solution in the face of perturbations related
to the state, control, or parameters. This approach provides a strategy for mitigating the
effects of uncertainties and disturbances on an optimal trajectory while simultaneously
ensuring the optimization of both guidance and state feedback control gains.

In most applications, Guidance and Control (G&C) are treated as separate components.
First, the trajectory is optimized, and then an appropriate controller is synthesized of-
fline in response to the optimized trajectory. However, simply combining two separately
optimized sub-solutions does not always yield the optimal solution for the overall prob-
lem. DOC theory has the potential to simultaneously address both processes, achieving
a synchronous optimization. The degree of correlation between these two processes can
vary, as shown in subsequent sections.

The proposed solution represents a departure from the conventional paradigm, where
robustness is an attribute expected from the controller. In DOC, robustness is inher-
ently provided by the trajectory design, and the controller plays a role in supporting and
enhancing this robustness.

3.1. Sensitivity Definition

Before delving into the core concept of DOC, it is essential to provide an overview of
various sensitivity definitions. Sensitivity is essentially a means to measure how changes
in one quantity can affect another. In this context, sensitivity is used to evaluate how
perturbations in the state or parameters impact other states. These definitions correspond
to the sensitivity matrix and sensitivity function, both of which will be examined in depth.

In general, sensitivity serves as a tool for predicting the effects of perturbations. However,

26 3| Desensitized Optimal Control

this prediction is most accurate when working under a fundamental assumption: linearity.
As demonstrated in the forthcoming sections, the dynamics of the sensitivity matrix
inherently follow a linear pattern. In cases where the actual dynamical system is nonlinear,
the prediction may become less precise. Furthermore, substantial perturbations applied
to a nonlinear system could potentially worsen the accuracy of sensitivity predictions.

3.1.1. Sensitivity Matrix

Given a generic dynamic system in the form:

ẋ = f(x(t), t) (3.1)

and subject to the initial condition x(t0) = x0, the sensitivity matrix S(t, t0,x0) can be
defined, according to [15], as:

S(t, t0,x0) =
∂

∂x0

X(t, t0,x0) (3.2)

where X(t, t0,x0) is the state at time t obtained via propagation of Eq. (3.1) the from
the initial conditions t0 and x0.

S matrix can be seen as a state transition matrix, but, according to Eq. (3.2), it is able
to map the sensitivity of the state with respect to perturbations on the initial conditions.
Its dynamics is governed by the following differential equation:

∂S(t, t0,x0)

∂t
=
∂f(x, t)

∂x x=x(t)
· S(t, t0,x0) = A · S(t, t0,x0) (3.3)

having as initial condition S(t0, t0,x0) = I, with I the identity matrix of consistent size.
To keep the notation coincise, from now on the matrix S(t, t0,x0) can be also addressed
as S(t).

Due to the mathematical properties of the sensitivity matrix, the following mathematical
proprierties can be shown:

S(t, t0,x0)
−1 = S(t0, t,X(t, t0,x0)) (3.4)

S(t, t0,x0) = S(t, t1,X(t1, t0,x0)) · S(t1, t0,x20) (3.5)

This concept of sensitivity holds its own significance, but its importance becomes more

3| Desensitized Optimal Control 27

relevant when considered within the framework of optimal control. When dealing with
optimal control problems, one objective may involve minimizing the impact of perturba-
tions on the state at a specific time, denoted as S(t̃). The matrix S(t̃) encapsulates this
information in terms of sensitivities, and the problem can be formulated to penalize it.

Nevertheless, in many practical applications, the sensitivity of the final state can have
seminal importance. For instance, in a landing scenario, the mission’s success is deter-
mined more by the accuracy of the final state rather than that of a generic state at the
generic time t̃. With the previously mentioned definition, the sensitivity of the final state
can be expressed in two distinct manners.

The first one is trivial and relies on the evaluation of the sensitivity matrix defined in
Eq. (3.2) at the final time:

S1 = S(tf , t0,x0) (3.6)

This is a proper measure of how perturbations arising at the initial time affect the state
at the final time.

The alternative expression, reported in [15] and obtained from Eq. (3.4) and Eq. (3.5),
measures how perturbations at any time affect the final state:

S2(t) = S(tf , t,x) = S(tf) · S(t)−1 (3.7)

The two definitions are inherently different; the first is a fixed quantity, while the second is
time-dependent. Nevertheless, both embed information on the influence of uncertainties
on the final state. Although notable distinctions already emerge, a more comprehensive
comparison is furnished in Section 3.2.1.

The sensitivity matrices delineated in Eq. (3.6) and Eq. (3.7) can be perceived as black
boxes containing valuable information. Nonetheless, some relevant insights can be offered.
It is evident, through data inspection or problem analysis, that certain terms within the
sensitivity matrix play major roles in specific scenarios, while they might be irrelevant in
others. These components of the sensitivity matrix establish connections between various
state variables; if the connected states are independent, the corresponding sensitivity
term becomes zero. Consequently, it is reasonable to consider only specific portions of
the sensitivity matrix rather than the entire S matrix, as some terms may be zero or
irrelevant for the particular problem under consideration.

By the definition of the sensitivity matrix, it becomes apparent that the rows of the S
matrices indicate how a perturbation in the state (at either the initial time or a specific

28 3| Desensitized Optimal Control

time instant) influences a single component of the final state. Conversely, the columns
reveal how a perturbation in a single state variable affects the entire state. Depending
on the application and the analytical objective, different rows and columns may be of
interest.

The extracted terms can be compiled into a vector denoted as Λ, representing a linear
combination of rows of the S matrices (superscript r) or columns (superscript c). This
vector is formed by pre- or post-multiplying the S matrix by a constant vector of the
appropriate dimension. An additional subscript can be added to indicate which matrix,
either S1 or S2(t), the components are derived from.

Although this approach may appear purely mathematical, it carries a clear physical sig-
nificance, as illustrated in the following example. Given b(x(tf)), a generic linear function
of the final state, its sensitivity with respect to a generic state is defined, as:

Sb =
∂b(x(tf))

∂x(t)

However, through the chain rule, this sensitivity can be expressed as:

Sb =
∂b(x(tf))

∂x(tf)
· ∂x(tf)
∂x(t)

The second term of the multiplication is equivalent to the quantity defined in Eq. (3.7),
therefore:

Sb =
∂b(x(tf))

∂x(tf)
· S2(t) = bx(tf) · S2(t) = Λr

2 (3.8)

It is evident that this term is equivalent to Λr
2. Hence, the Λ values can be construed

with a well-defined physical interpretation. The same methodology can be extended to
the other Λ definitions. Functions zS and b(x(tf)) can be defined, and correspondingly,
zS Λ can be established.

The take home message is that any S matrix can be manipulated to suit the requirements
of the analysis or of the problem itself. This choice is seminal in shaping the architecture
of DOC, as it carries significant implications in terms of both physical outcomes and
numerical implementation, as demonstrated in Section 3.2.1.

3.1.2. Sensitivity Function

In certain scenarios, parametric uncertainties assume a significant role. The approach
outlined in Section 3.1.1 can accommodate these uncertainties, but only if the uncertain

3| Desensitized Optimal Control 29

parameters are incorporated into the state, as discussed in [15]. However, this inclusion
results in a substantial increase in the number of variables, particularly when dealing with
numerous parameters. To mitigate this issue in variable count, an alternative formulation
of sensitivity is presented and examined in [41]. Assuming an uncertain parameter p, the
parameter sensitivity function can be defined as:

Ω(t) =
∂x(p, t)

∂p x=x(p0,t)

and its dynamics as:

Ω̇(t) = A(t) ·Ω(t) +C(t), Ω(t0) = 0 (3.9)

where A(t) is defined equivalently to Eq. (3.3)and C(t) is:

C(t) =
∂f(x, p, u(t), t)

∂p x=x(p0,t),p=p0

This leads to the first-order approximation of x(p, t) as:

x(p, t) ≈ x(p0, t) +Ω(t)(p− p0) (3.10)

The physical interpretation of this formulation is straightforward: when the variation
of parameter p remains within a linear domain, Eq.3.10 holds and establishes a direct
relationship between parametric perturbations and their impact on the current state.

This formulation introduces a different framework for the DOC approach. In the case
of having n states and l uncertain parameters, the original formulation by [15] requires
(n+l)2+n+l states. However, in the formulation proposed by [41], this number is reduced
to n+n·l. This reduction offers a significant advantage in terms of computational efficiency
and can be applied to a wide range of problems. However, this comes at the cost of
reduced flexibility; the sensitivity matrix in this formulation is primarily designed for time-
invariant parameters and is not able to capture the information regarding the relationship
between p(t) and x(t) at various time instances. In this case as well, sensitivities with
respect to multiple parameters can be defined, and their total number is denoted as zΩ.

30 3| Desensitized Optimal Control

3.2. DOC Architecture

In the preceding section, the concept of sensitivity has been introduced and two specific
forms of sensitivity discussed. This chapter is dedicated to elucidating the fundamental
principles of DOC theory and how the new Optimal Control Problem (OCP) needs to be
formulated. The primary contributions of this theory pertain to the modification of the
cost function, which is detailed in the first section, and the definition of feedback control,
which is presented in the second section of this chapter.

3.2.1. Cost Function

In the general context of an optimal control problem, the cost function is typically ex-
pressed as shown in Eq. 2.1. To simplify notation, the Lagrange term is omitted and
merged with the Mayer term, resulting in the following expression:

J = ϕ(x(tf), tf) (3.11)

As proposed in [15], the fundamental idea behind the DOC theory is to augment the
cost function presented in Eq. 3.11 with some terms related to sensitivity. Instead of
merely penalizing the original cost index, the sensitivities are also subject to penalization.
This straightforward modification serves as the foundation for any application of DOC.
By introducing a term that penalizes sensitivities, the trajectory is made more robust,
meaning that certain variables become less sensitive to perturbations. Such variables are
referred to as desensitized.

The cost function can be expanded with various types of sensitivities. However, for
the purposes of this work, which aims to reduce the impact of perturbations on the
final states, only sensitivities related to the final state are considered. Without loss of
generality, a comprehensive DOC formulation combines the principles presented in [15]
and [41], penalizing both a term related to the sensitivity matrix and a term related to the
sensitivity function. Depending on the specific application, a design choice can be made
to determine which sensitivity components to include. The DOC cost function results in:

J = ϕ(x(tf), tf) + αJS + βJΩ

where JS is the cost term related to the sensitivity matrix and JΩ the one referred to the
sensitivity function, both suitably weighted by non-negative coefficients α and β.

3| Desensitized Optimal Control 31

Sensitivity Matrix DOC Cost First, the cost term related to the sensitivity matrix
is defined. As explained in Section 3.1.1, various forms of sensitivity matrices, denoted
as S matrices, can be defined, and corresponding Λ vectors can be derived. In theory,
all of these sensitivities could be embedded into the cost function to penalize them, thus
reducing the impact of perturbations on the final state. However, certain criteria should
be considered.

S1 from Eq. 3.7 and S2(t) from Eq. 3.6 should be penalized differently. Given that S2(t)

is time-dependent and measures the sensitivity of the final state concerning states at any
time, it requires integral penalization.

JS,1 = ∥S1∥Ξ JS,2 =

∫ tf

t0

∥S2(t)∥Ξ dt (3.12)

where W express a generic Ξ-matrix norm.

The second approach is somewhat conservative. In certain dynamic systems, sensitivity
peaks can occur at specific time instants, making the system highly sensitive to pertur-
bations at those moments. This effect is not penalized when considering sensitivity S1,
while integral penalization of S2(t) can effectively reduce sensitivity peaks at various time
points. Therefore, it is convenient to penalize S2(t) in integral form.

While the black-box approach for the S matrix is conceptually straightforward, the alter-
native Λ formulations introduced in Section 3.1.1 could offer valuable proprierties. The
choice is whether to penalize specific norms of Λr

2 or Λc
2. Notably, these vectors are of

size 1 × n, where n represents the number of states in the problem, and correspond to
rows or columns of the original S matrix. By properly selecting n different Λ terms, the
entire S matrix can be effectively reconstructed. Thus, Λ can be penalized without loss of
generality, since all the information collected in S can be retrieved by penalizing multiple
Λ terms.

Although hybrid solutions can be implemented (e.g., penalizing the generic ith row of S
through a specific Λr and the generic jth column of S through Λc), it is advisable to focus
on terms related to the rows of the sensitivity matrix. This is mainly due to two factors:
first, the physical interpretation of rows and columns of the sensitivity matrix. Since the
primary focus is on the final state rather than the perturbations themselves, it is more
meaningful from a physical point of view to consider a row of the sensitivity matrix, which
measures how a component of the final state is affected by all perturbations. Second, the
row extraction approach is prone to reduced order formulations of the DOC problem, as
discussed in Section 3.4.1.

32 3| Desensitized Optimal Control

Not all criteria are clear at this stage, but this reasoning highlights a unique character-
istic of any DOC formulation. Given the substantial increase in the number of variables
required, the advantages in terms of performance offered by any reduced-order formu-
lation are highly significant, as they lead to a reduction in the CPU time required to
solve the problem. However, this computational efficiency advantage can affect the phys-
ical significance of the method itself, potentially eliminating relevant aspects or reducing
the method flexibility. Therefore, careful consideration of these two factors is essential
when making algorithm design choices, as certain desired formulations, such as penalizing
sensitivity matrix columns, could lead to such a degradation of computational efficiency
that they become impractical. As a matter of fact, the term Λc

1 also allows for a conve-
nient reduced-order DOC formulation. However, the physical meaning of Λr

2 guides the
preference for this latter term.

The cost term related to JS is expressed as:

JS =

∫ tf

t0

zS∑
k=1

∥Λ(t)rk,2∥2 dt =
∫ tf

t0

zS∑
k=1

∥Λ(t)k∥2 dt

where zS express the number of Λ(t) terms, in the same fashion of Eq. (3.8). The generic
Ξ norm of Eq. (3.12) is replaced by the common 2-norm. The superscript and subscript
indices are omitted in favor of a more concise notation.

Sensitivity Function DOC Cost The second cost term related to DOC, denoted as
JΩ, is the next focus. Given that the primary goal of desensitization is to minimize the
impact of perturbations on the final state, it is straightforward to penalize the norm of
the Ω term, evaluated at the final time, to gauge how parametric uncertainties influence
the final state. While other penalty terms, such as integral ones, have been formulated,
this approach emerges as the most relevant from a physical perspective. A total of zΩ
functions can be penalized, resulting in the cost term:

JΩ =

zΩ∑
l=1

∥Ω(tf)l∥2

DOC Cost function Defined all the building blocks, they can be put in Eq. (3.12),
forming the complete DOC cost function.

J = ϕ(x(tf), tf) + α

∫ tf

t0

zS∑
k=1

∥Λ(t)k∥2 dt+ β

zΩ∑
l=1

∥Ω(tf)l∥2 (3.13)

3| Desensitized Optimal Control 33

The original problem is effectively recovered by setting α and β to zero. When α = 0,
only the sensitivity to parameters is penalized, but this term disappears when β = 0.

The significance of the sensitivity terms increases with higher values of α or β, making
the minimization algorithm prioritize the reduction of these sensitivity terms. This has a
clear physical interpretation: the optimal solution at the final time becomes less sensitive
to both state and parameter perturbations along the trajectory. However, this approach
comes with the trade-off of increasing the value of the original cost function ϕ(x(tf), tf)

of the non-desensitized problem because two terms are now present in the augmented
cost. A precise tuning measures the relative importance of the two terms, and is needed
to guarantee the desired balance between performance and robustness of the solution.

3.2.2. Feedback Control

The feedback control component holds significant importance in the DOC theory, as it
constitutes one of the two fundamental building blocks of the approach. In addition to
enhancing robustness, DOC also establishes a connection between trajectory and con-
trol optimization. As explained in [15], the controller gains can be embedded into the
optimization process. By means of u, an affine feedback control law can be derived as:

u(t) = u∗(t) +K∗(t) (x− x∗(t)) (3.14)

where the K matrix contains the feedback gains and the apex ∗ represents the optimal
solution of the problem. Therefore, the new state dynamics f̃(x, t) can be defined as:

f̃(x(t), t) = f(x(t),u∗(t) +K∗(t) (x− x∗(t)) , t) (3.15)

Therefore, sensitivity matrix equation referred to Eq. (3.15) reads as follows:

∂S

∂t
=

(
∂f

∂x
+
∂f

∂u
·K
)
S = (A+B ·K)S (3.16)

and sensitivity function differential equation becomes:

Ω̇(t) = (A+BK) ·Ω(t) +C(t), Ω(t0) = 0 (3.17)

The feedback gains can be regarded as additional variables in the problem, therefore
increasing the problem’s dimension. Alternatively, there are other methods for defining
them, as will be explored in Section 3.4.

34 3| Desensitized Optimal Control

3.3. DOC Interpretations

While the DOC method introduced in the previous sections is characterized by a straight-
forward and lucid formulation, its interpretation is not trivial. To gain a deeper under-
standing of the method, two analyses are presented: the first analysis is documented in
[42], and the second analysis has been fully developed by the authors of this work.

Statistical Interpretation As detailed in [42], a direct correspondence between the
sensitivity matrix of the deterministic problem and the covariance matrix of the resulting
stochastic problem can be established. The initial state and the dynamics of Gaussian
white noises are encompassed in the variables w0 and w(t), which exhibit the following
properties:

E[w0] = 0

E[w0w
T
0] = P0

E[w(t)] = 0 ∀t

E[w(t)w(τ)T] = W (t) · δ(t− τ) ∀t, τ

where E[·] is the expected value operator, P0 denotes the initial covariance matrix and
W (t) the power spectral density. Through some mathematical steps, a direct relation
between the covariance matrix P (t) and the sensitivity matrix S(t) can be expressed as:

P (t) = S(t)P0S(t)
T +

∫ t

t0

(
S(t)S(τ)−1

)
W (τ)

(
S(t)S(τ)−1

)T
dτ (3.18)

The provided equation illustrates that, given S(t), P (t) can be derived. The inverse rela-
tionship, from P (t) to S(t), is documented in [42]. This holds significant implications, as
the DOC formulation can also be understood in a statistical context: reducing sensitiv-
ity results in a decreased covariance matrix of the states. This insight yields two direct
consequences.

First, instead of using the S(t) matrix, the equivalent P (t) matrix can be employed in
the DOC formulation to define the overall equation. The primary advantage of this
approach is that P (t) is symmetric, enabling a substantial reduction in the number of
propagated states. However, this solution is not explored in this work, since other reduced
dimensionality solutions are presented in Section 3.4. Nonetheless, it may prove useful in
future applications.

The second, and more significant, implication is that the DOC impact can be assessed in
terms of the covariance of the final state. Given the direct link between S(t) and P (t),

3| Desensitized Optimal Control 35

reducing S(tf) results in a decrease in P (tf). In a Monte Carlo analysis, it becomes feasible
to compute the standard deviations of the final states, which can serve as a reference for
evaluating the success of the DOC procedure.

Feedback Gain Effect It is well-known that exists a physical gap between the nominal
solution of an optimal control problem and the actual trajectory followed in real applica-
tions. This discrepancy arises due to numerous factors collectively termed uncertainties,
which are typically not considered during the design of the optimal trajectory. These
uncertainties can include model variations, state fluctuations, parametric deviations, and
their influence on the trajectory can be mitigated by implementing a feedback control law.
This entire process can be interpreted in terms of sensitivity, since the feedback gains aim
to reduce the impact of uncertainties on the trajectory.

As demonstrated in Eq. (3.16), the dynamic equations of the sensitivity matrix are linear
and governed by three matrices: A, B, and K. These matrices respectively represent the
linearized versions of the problem concerning the state, control, and gain matrix. It is
important to note that if the linearized system is stable, the sensitivity matrix dynamics
will also be stable. Conversely, if the linearized system is unstable, the dynamics of the
S matrix will be unstable.

In typical applications, the matrix A possesses at least one eigenvalue that is non-stable,
necessitating the use of a controller to guide the system toward a desired final state. In
the absence of control, when the K matrix is set to zero, initial state perturbations have
a profound impact on the system dynamics as they grow indefinitely. This phenomenon
can be accurately described by the S matrix: if its dynamics are unstable, indicating
an unstable system, the terms in the S matrix grow, starting from the initial identity
matrix condition. As time progresses, the S matrix increases, in line with the growth of
perturbations. Consequently, a direct relationship can be established between the effects
of perturbations on the trajectory and the sensitivity matrix.

The open-loop DOC method, where feedback gains are absent, seeks to reduce sensitivity
by shaping the trajectory in such a way that the DOC term in Eq. (3.13) is minimized.
However, to achieve linear system stability and manage the incremental growth of sensitiv-
ity, a closed-loop DOC formulation becomes imperative. If the stability condition is met,
the trends in initial state perturbations diminish, and their impact on system dynamics
gradually wanes, in contrast to the exponential amplification observed in an unstable sys-
tem. This is the essence of feedback control laws, which can be comprehensively explained
through the dynamics of the S matrix.

36 3| Desensitized Optimal Control

3.4. Implementation Strategies

The numerical implementation of the DOC approach necessitates an additional compu-
tational effort compared to the nominal case. To achieve the complete closed-loop DOC
formulation, it is essential to compute the single or multiple Λ(t) terms and Ω(tf) terms
as described in Eq. (3.13). Concurrently, the feedback gains outlined in Eq. (3.14) must
be synthesized. For this reason, an augmented state is defined accordingly, and extra
states must be introduced based on the chosen procedures for computing the sensitivity
terms and the components of the K matrix.

This section seeks to examine various implementation strategies that can be employed to
formulate the DOC procedure. The first part delves into the sensitivity-related terms,
while the second part explores the feedback gains.

3.4.1. Sensitivity Terms

To implement DOC, it is essential to compute Ω and Λ terms for each time step, when-
ever β and α respectively differ from zero. Calculating Ω is a straightforward process,
as it involves augmenting the state with its components, which are then propagated in
accordance with Eq. (3.9). However, when computing the Λ term, various strategies are
available, and this section highlights the most relevant ones.

S Matrix The most straightforward and intuitive method is to directly compute Λ

using Eq. (3.7) and Eq (3.8). For this approach, the S(t) matrix is required at each time
step, and its propagation is carried out in accordance with Eq. (3.16). The problem state
is augmented with the components of S(t), namely n2 components. Since the dynamic
equation of S(t) is linear, its numerical implementation is relatively simple once the initial
condition, which is an identity matrix, is established. However, this formulation presents
a major challenge: the computation of the matrix inverse.

To evaluate the Λ term, the inverse matrix of S is necessary at each time instant. One
potential solution to this problem is the analytical computation of the matrix inverse.
However, this approach is not practical for problems with a large number of states, as
the number of elements in the S(t) matrix scales proportionally to the square of the
number of states. Additionally, problems may arise when dealing with ill-conditioned
matrices, as the computation of the inverse becomes highly inaccurate. Moreover, in
some cases, the matrix S(tf) may not be accessible, depending on the solver used and how
boundary conditions are enforced. As demonstrated in [15], this formulation necessitates
the introduction of another set of variables: Sf components, which are constant values

3| Desensitized Optimal Control 37

matching the final values of S(t) components. These are used to compute the inverse
matrix of S(t) at the final time. In this formulation, the number of extra states increases
dramatically, introducing 2 · n2 additional states.

S Inverse Matrix One strategy to address the aforementioned issue is to propagate
the inverse of the S(t) matrix rather than the S(t) matrix itself. Since the inverse of the
S(t) matrix is required at all times, and the S(t) matrix is only needed at the final time,
an effective solution is to augment the state with the components of the S(t)−1 matrix.
This approach is feasible because, as mentioned in Section 3.1.1, the S(t) matrix is never
singular.

In theory, this dramatically reduces the computational effort, as matrix inversion only
needs to be performed once, at the final time. This idea is supported by the fact that the
differential equation for the S(t) matrix is linear (Eq. (3.3)). Therefore, reformulating it
using the inverse of S(t) also results in a linear matrix differential equation, simplifying
the analytical derivation of the dynamic equation for S(t).

Assuming the identity matrix as I, the following derivation demonstrates this approach:

∂I

∂t
=

∂

∂t
(S(t) · S(t)−1) =

∂S(t)

∂t
S(t)−1 + S(t)

∂S−1

∂t
(3.19)

By rearranging Eq. (3.19), the following equation is obtained:

∂S(t)−1

∂t
= −S(t)−1∂S(t)

∂t
S(t)−1 = −S(t)−1∂f(x, t)

∂x x=x(t)
S(t) · S(t)−1

This leads to the elegant form:

∂S(t)−1

∂t
= −S(t)−1∂f(x, t)

∂x x=x(t)
= −S(t)−1(A+BK) (3.20)

It is worth noting that although this idea was introduced in [42], it has not been practically
implemented so far.

To establish the complete formulation, the initial condition for propagation must be de-
fined. As mentioned in Section 3.1.1, the initial condition for the S matrix is the identity
matrix. The generic S(t) matrix, defined as S(t, t0,x(t0)) according to Eq. (3.7), de-
scribes the effect of perturbations at the initial time t0 on the state at the generic time t.
Since time t equals time t0 at the initial time, the initial S(t) matrix can be expressed as
S(t0, t0,x(t0)). This matrix measures the impact of perturbations at the initial time on
the initial state, thus it is equal to the identity matrix.

38 3| Desensitized Optimal Control

As reported in [15], a property holds for two generic time instants t1 and t2:

S(t1, t2,x(t2)) = S(t2, t1,x(t1))
−1

By extension, this property is valid for the initial S(t) matrix:

S(t0, t0, (x)(t0)) = S(t0, t0, (x)(t0))
−1

Hence, the initial condition for S(t) matrix propagation is equivalent to that of S(t)−1,
and it is the identity matrix.

Lambda Vector While the previously proposed architecture mitigates numerical issues
related to matrix inversion, it still necessitates the use of extra states equal to 2 · n2.
However, in many practical applications, there is no need to desensitize the entire final
state, therefore just a part of the sensitivity matrix can be propagated. The goal of
this second reformulation is to provide an efficient implementation scheme for the DOC
problem, minimizing the number of extra states and the inversion-related issues.

In Eq. (3.20), both sides of the equation can be pre-multiplied by the term S(tf), leading
to the following equation:

∂ (S(tf)S(t)
−1)

∂t
= −

(
S(tf)S(t)

−1
)(∂f

∂x
+
∂f

∂u
·K
)

(3.21)

This equation is subject to the final condition (S(tf)S(tf)
−1) = I. According to [42], the

initial boundary value problem becomes a final boundary value problem because:

S(tf) = S(t)t = tf →
(
S(tf)S(t)

−1t = tf
)
=
(
S(tf)S(tf)

−1
)
= I

By multiplying both sides by
∂b(x(tf), tf)

∂x(tf)
and transposing the equations, a new formu-

lation is derived:

∂Λ(t)

∂t
= −

(
∂f

∂x
+
∂f

∂u
·K
)T

·Λ(t) = − (A+BK)T ·Λ(t) (3.22)

This equation is subject to the final condition as expressed in Eq. (3.23):

Λ(tf) =

(
∂b(x, t)

∂x

)T

x=x(tf),t=tf

(3.23)

This new formulation significantly reduces the number of extra states compared to the

3| Desensitized Optimal Control 39

previous ones, where components of S(t) or S(t)−1 and Sf were incorporated into the
augmented state. In this approach, multiple functions b(x(t), t) can be desensitized, but
the advantage in reducing the number of extra states diminishes if the number of functions
exceeds n, the number of states in the initial problem, as each Λ has a size of n elements.

One of the primary issues of DOC, as addressed in [41], is the increase in the size of
the state space. However, this new formulation only requires n extra elements, the same
as the state size of the sensitivity function proposed in [41], providing a more complete
and flexible formulation. Additionally, the boundary conditions, which were enforced by
definition in the previous formulations as S(tf) = Sf , are now automatically met through
Eq. (3.23). As a result, the number of extra states is reduced from 2 · n2 to n.

This propagation method clarifies the choice made in Section 3.2.1: using Λr
2 offers a highly

convenient reduced-order propagation with distinct properties of S while maintaining the
desired physical meaning.

Table 3.1 reports a summary of the methods proposed, where nS is the number of Λ(t)

functions considered.

Quantity States Final Cond. Generality

S(t) n2 n2 Maximum

S(t)−1 n2 n2 Maximum

S(tf)S(t)
−1 n2 - Maximum

Λ(t) zS · n - Reduced

Table 3.1: Summary of Sensitivity computation strategies

3.4.2. Feedback Gain Strategies

As mentioned in Section 3.2.2 and explored further in Section 3.3, the significance of
feedback gains in the desensitization procedure is very relevant. This is because these gains
shape the sensitivity matrix and play a seminal role in ensuring system stability. Users
have the option to prescribe these gains themselves [43], or they can be treated as constant
values to be determined by the solver or considered as additional time-varying variables
[15]. Another approach involves obtaining these gains through structured methodologies
[16]. In this section, a concise overview of the available methods is offered, with a specific
focus on the advantages and disadvantages associated with each choice.

40 3| Desensitized Optimal Control

User Defined The initial and most straightforward method for determining the feed-
back gains involves using constant values provided by the user. This approach has the
notable advantage of significantly reducing the computational effort required by the solver.
This reduction in the number of unknowns results in a faster problem solution and a sub-
stantial decrease in CPU time. However, there are potential drawbacks to this approach.
Firstly, selecting appropriate gain values demands a deep understanding of the problem,
which is not always available. Moreover, employing fixed user-defined values can lead
to sub-optimal solutions, as it restricts the exploration of the research state-space. As
discussed in the subsequent section, allowing gains to vary can potentially yield more
optimal results. Lastly, is not guaranteed that user-defined values are able to guarantee
the system stability for each condition.

Free Gains To reduce the constraints on gain values and grant more flexibility to the
optimizer, another strategies can be implemented, allowing for freedom in computing
gain values. In contrast to the fixed gain values approach, these strategies introduce
extra variables, which can increase the time required for problem solution.

Since the gains must vary, they are treated as additional state or control variables to
be determined during the optimization process. Several implementation strategies are
available, with one of the most effective approaches being as follows.

Given the cost function reported in Eq. (3.13), it can be augmented with two extra terms
as shown:

J = Φ(x(tf), tf) + α

∫ tf

t0

∥Λ(t)∥2 dt+ γ

∫ tf

t0

∥K∥WK(t)dt+ θ

∫ tf

t0

∥UK∥WU (t)dt (3.24)

where WK(t) and WU(t) are respectively the WK and the WU norms, K is the gain matrix
and UK is the gain rates matrix, defined as:

K̇ = UK

The number of Λ(t) functions is set to one to simplify the problem, as well as β set to
zero.

The K matrix terms are extra states, while the UK elements augment the control variables
vector. The size of the problem is increased and the number of adding state/control
variables depend on the problem formulation. The K and U matrix are m x n, therefore
extra 2 · m · n states are required. A brief discussion of Eq. (3.24) is needed to deeply
understand the meaning of the two new cost terms.

3| Desensitized Optimal Control 41

The first term, weighted by the non-negative coefficient γ, serves as a constraint on
feedback effort. Without this term, control gains would have unrestricted variability,
potentially leading to undesirable outcomes. The innovative aspect of this work is the
inclusion of the gain-rate penalization, which had not been previously considered in the
DOC formulation. Without the gain-rate matrix UK penalization term, the K terms
would act as control variables rather than state variables.

After defining this general framework, the weights γ and θ need calibration. The tuning
of the weight α is guided by other specific requirements, such as fuel consumption or final
sensitivity, and is not covered in this section. The tuning process is complex and necessi-
tates consideration of various factors, but two main strategies are under consideration:

Setting θ to high values significantly penalizes the gain-rate term, resulting in almost zero
values for UK terms. This choice leads to nearly constant K values, which are chosen by
the solver. While this approach provides greater flexibility, it might not be suitable for all
applications, as some scenarios require time-varying feedback effort. The values of nearly
constant K gains are strongly influenced by the γ value, and precise tuning is required
to ensure reasonable feedback control values without exceeding bounds. Unfortunately,
there are no predefined solutions, and a trial-and-error procedure assisted by Monte Carlo
simulations is necessary.

Adopting small γ values uses UK as a regularization term for time-varying feedback gains.
Among the proposed solutions, this is the least constrained one, allowing the solver to
search for the optimal solution with more degrees of freedom. However, this flexibility
comes at the cost of increased computational effort. This formulation provides substantial
flexibility and can lead to the simultaneous optimization of the trajectory and feedback
gains, resulting in the optimal guidance and control combination.

Despite its functionality, this approach still presents some challenges. When using tradi-
tional methods for regulator tuning (e.g., manual, LQR, H-inf), system stability is a basic
requirement. With this formulation, system stability is not guaranteed. Additionally,
the precise tuning of controller performance (e.g., noise rejection, steady-state error) is
difficult. The design of γ and θ values has unpredictable effects on the optimality of the
problem, as certain values can lead to non-optimal solutions, reducing the search space.

Structured Approaches None of the previously mentioned solutions meet the mini-
mum requirement of stability, which is a fundamental criterion for any feedback controller.
In the absence of alternative methods, the design choice has leaned toward well-established
structured approaches, specifically LQR (Linear Quadratic Regulator). LQR is favored

42 3| Desensitized Optimal Control

for its ease of implementation and straightforward tuning process, where the gains are
computed by propagating Riccati Equations alongside trajectory generation, augmenting
the state variables as necessary.

Given that the problem is finite-horizon (i.e., the final time is not infinite), the differential
form of LQR is employed. In contrast, the algebraic form is used in infinite-horizon cases.
Consequently, the state must be expanded with components of the Riccati matrix, adding
n × n states. Due to the symmetries inherent in the LQR sweep-method formulation,
the Riccati matrix is symmetric, which means that a reduced number of extra states
is introduced into the problem. This not only results in a more compact and efficient
formulation but also avoids symmetry loss issues associated with numerical errors that
can arise in certain applications. Another advantageous aspect of this solution is that it
reduces the number of variables with respect to the full Free Gains methodology, explained
in the previous paragraph.

Given the state penalty matrix Q(t) and the control penalty matrix R(t), and the lin-
earized dynamics matrices of the problem A(t) and B(t), the differential equation for the
Riccati Matrix P (t) is:

−Ṗ (t) = P (t)A(t) + AT (t)P (t)− P (t)BR−1BTP (t) +Q(t) (3.25)

subject to the final condition:
P (tf) = Q(tf)

The reported differential equations comes from the minimization of the corresponding
finite-horizon cost function, defined as:

JLQR = x(tf)
TQ(tf)x(tf) +

∫ tf

t0

x(t)TQ(t)x(t) + u(t)TR(t)u(t) dt (3.26)

The LQR optimal gains are computed as:

K = −R−1BTP (t)

It is important to note that the Q(t) matrix in the Riccati equation must be positive semi-
definite. Assuming Q(t) is zero along the trajectory leads to a loss of penalization on the
current state error, giving more importance to the terminal state error, which is weighted
by Q(tf). This approach was proposed by [16], but it differs from the methodology applied
in this work, as it can lead to significant state errors along the trajectory.

3| Desensitized Optimal Control 43

Figure 3.1: Summary of DOC Procedures

Since one of the aims of the DOC methodology is to integrate trajectory and control
optimization into a single process, the consequences of selecting a structured approach
need to be examined. One critical consideration is that a structured approach restricts
the freedom of the solver. The gains and gain rate cannot be freely adjusted and used as
optimization variables. Furthermore, LQR is already an optimal gain selection method,
and the trajectory is shaped accordingly. In other words, each iteration of the guidance
optimization process is based on an internally performed optimal gain selection through
Riccati Matrix propagation. While guidance and control are not optimized simultaneously,
as in the free gains approach, they are not entirely separate either. With the current
state of DOC theory, this procedure finds a balance between fully decoupled guidance
and control optimization (as in traditional methods) and fully coupled optimization (as
in DOC with the free gains, using the cost function of Eq. (3.24)).

3.4.3. NLP-based DOC

After presenting analyzing all available alternatives, the next step is to consider the most
suitable options for implementing NLP-based DOC. As discussed in the preceding section,
the software tools utilized include GPOPS [17] with Radau collocation and IPOPT as the
solver to obtain solutions for the NLP problem. The general architecture of the code
involves discovering the optimal control problem solution in a noDOC formulation and
employing it as an initial guess for the DOC problems with increasing α values, for both
open-loop (OL) and closed-loop (CL) scenarios.

44 3| Desensitized Optimal Control

The choice of strategies heavily depends on the software’s properties, which, in turn, are
influenced by the collocation method used. Given the computationally intensive nature
of inverting the S(t) matrix, the most valid and efficient formulation involves propagating
the Λ(t) term, as described by the differential equation in Eq. (3.22). This term can
be directly integrated into the cost function without the need for further processing,
significantly reducing the number of states to be propagated (from 2 · n2 to n).

The second design choice pertains to the method used for calculating feedback gains. As
previously mentioned, a structured approach offers the best balance in terms of controller
properties and solution optimality. The LQR method has been adopted, and the Q and
R matrices have been configured to meet the desired performance criteria. However, it is
important to note that a limitation with LQR-GPOPS integration is that Q and R must
be chosen as constants to ensure manageable CPU time, which reduces the method’s
flexibility compared to time-variant weightings.

Due to the complexity of this formulation, the implementation must be carefully optimized
to accelerate the entire search process. Whenever feasible, Matlab features are leveraged
to their fullest extent. For instance, vector operators are used extensively instead of loops,
and this can reduce the CPU time by a factor of 5 to 10.

45

4| Powered Landing Scenario

Following the presentation of the theoretical foundation for Desensitized Optimal Control
(DOC), the proposed methodology is applied in the context of the specific investigation
scenario. This chapter’s primary aim is to offer an overview of the Powered Landing Main
Scenario, as described in Section 4.1. This involves detailing the equations governing the
object’s motion, reporting the fundamental assumptions, and introducing the solution for
the nominal problem. The latter part of this chapter, found in Section 4.2, is dedicated to
the integration of the Desensitized Optimal Control (DOC) approach with the case study.
This section will dive into the definition of the algorithm. Subsequently, in Section 4.3,
the focus shifts towards characterizing the tuning procedure and measuring the strategy
performances.

4.1. Mission and Scenario

Powered descent refers to the phase during which the rocket’s propulsion system provides
thrust to control the trajectory, ensuring that specific final conditions are met. The
primary objective of this phase is to guarantee that the landing site or a point slightly
above it is reached with a predetermined final velocity. The control action for this process
is achieved through the use of thrusters distributed around the landing vehicle in various
configurations. This work adopts the configuration detailed in [44].

It is important to note that this study exclusively concentrates on the final stage of the
landing process. Other design choices, such as determining the starting point of the
powered phase, are beyond the scope of this work.

A crucial aspect to consider is that the ultimate goal of this problem is not just to derive
any trajectory but to determine the optimal trajectory based on a specific cost index.
Depending on different requirements, the problem can be approached as time-optimal,
fuel-optimal, energy-optimal, or using mixed formulations, as discussed in [45]. However,
this research focuses only on the mass-optimization aspect, and the cost function is defined
accordingly.

46 4| Powered Landing Scenario

4.1.1. Mathematical Model

Although this situation could be described with a high level of complexity, this work
employs a simplified dynamical model. In this model, the landing body is treated as a
point mass, and all rotational degrees of freedom are omitted to avoid dealing with the
complexity of coupled translation-attitude guidance, which is beyond the scope of this
preliminary analysis. Furthermore, aerodynamic forces are disregarded due to the low
velocities values and the increased complexity introduced by nonlinear quadratic terms.
Additionally, the rotation of the planet, as well as variations in the planet’s gravity field,
are excluded from consideration. This is justified by the mission’s relatively short duration
and the minor height changes involved compared to the scales associated with these
phenomena. Consequently, the curvature of the planet’s surface is also not accounted for.

Within this simplified model, the thrusters are idealized, with no transients or delays
affecting their prescribed thrust values. They are depicted as a set of nT identical engines,
each canted at an angle γ with respect to the net thrust direction and providing the same
nominal thrust value, T . The net thrust produced is calculated as nT multiplied by T

and the cosine of γ. For further details regarding the geometry and modeling, refer to
[44]. It is important to note that all values are assumed to remain at their nominal
levels throughout the entire mission, with no deviations in terms of pointing errors or
performance variations. The only permissible perturbation considered is in the thrust
value, represented as ∆T .

The reference frame used is a surface-fixed coordinate system, centered at the desired
landing site. In this frame, the axes, denoted as x̂ and ŷ, span the horizontal plane, which
is tangential to the planet’s surface at the landing point. The ĥ axis points opposite to the
direction of the gravity field and, even if this system is inherently non inertial, it is assumed
to be inertial, due to the strong hypotheses considered. The state vector is defined as
x = [x, y, h, vx, vy, vh, m], where the first three components represent displacements in
the coordinate axes, and the components starting with v the corresponding velocities.
The quantity m represents the mass of the lander. The motion of the lander is controlled
through thrust modulation using the vector u = [ux, uy, uh], where each component
corresponds to adjustments along x̂, ŷ, and ĥ axes, respectively. The magnitude of this
vector, represented as u is constrained by the control constraint outlined in Eq. (4.2),
ensuring that the magnitude remains within specific limits.

4| Powered Landing Scenario 47

The dynamics of the system are described by the following set of equations:

ẋ = vx

ẏ = vy

ḣ = vh

v̇x =
ux · n · T · cos(γ)

m

v̇y =
uy · n · T · cos(γ)

m

v̇h = −gm +
uh · n · T · cos(γ)

m

ṁ = −u · n · T
Isp · g0

(4.1)

Subject to the control constraint:

0 < umin ≤ u =
√
u2x + u2y + u2h ≤ umax (4.2)

and to the no-subsurface flight constraint:

h(t) ≥ 0, ∀t ≤ tf (4.3)

where the lander’s altitude h must remain above zero for all times less than the final time
tf . Even if in many applications the final time is fixed or obtained from multiple guesses,
here it is left free to vary and considered as a variable of the problem.

In terms of additional constraints, factors like the maximum glide-slope, as discussed
in [44], could be considered. However, they are not incorporated into this work due
to its preliminary research nature. Similarly, the final conditions regarding position and
velocity are set to zero, even though, in practical applications, the powered phase typically
concludes with a non-zero final altitude and vertical velocity to achieve a precise vertical
landing in the ending phase.

The boundary conditions are:

t0 = 0 tf = free

r(t0) = r0 r(tf) = 0

v(t0) = v0 v(tf) = 0

m(t0) = m0 m(tf) > mdry

(4.4)

48 4| Powered Landing Scenario

where r = [x, y, h] and v = [vx, vy, vh], and mdry is the vehicle dry mass.

It is important to note that while the same approach could potentially be applied to differ-
ent bodies landing on various planets, the trajectory optimization in this work has been
tailored for the Mars Landing Problem, ensuring consistency with reference numerical
values. However, the same dynamical model can be readily adapted to different celestial
bodies by simply altering the gravity numerical values.

Finally, the cost function is defined and it aligns with the fuel-optimal nature of the
problem, aiming to minimize the final mass of the lander

J = min
ux,uy ,uh,tf

−m(tf) (4.5)

Therefore, the problem can be formulated as: minimize the cost index Eq. (4.5) subject
to Eq. (4.1), Eq. (4.2) and Eq. (4.3), given the boundary conditions Eq. (4.4)

4.1.2. Nominal Solution

The nominal solution for the problem under investigation has a well-known structure. As
outlined in [45], the optimal trajectory possesses a control norm that exclusively adopts
the minimum or maximum allowable values. Additionally, in the context of a three-
dimensional scenario, there are, at most, two switching points for the thrust profile.
Consequently, the optimal trajectory can be conceptualized as a piece-wise continuous
function comprising three distinct segments. It can also be demonstrated that, without
sacrificing generality, all solutions can be classified into the overarching categories of
maximum-minimum-maximum or (max-min-max) trajectories. Hence, there exist max,
min-max, and max-min-max profile possibilities. This theoretical insight is substantiated
by the numerical solutions generated using an NLP solver, specifically GPOPS [17].

Before presenting the nominal solution, it is pertinent to provide the numerical values
utilized in the analysis. The initial conditions draw inspiration from [16] but have been
extended to represent a more general 3-D case. Notably, the initial y component is set to
a non-zero value, as detailed in Table 4.1. The initial mass m is m(t0) = 1905 kg, while
the dry mass of the vehicle is mdry = 1505 kg.

These initial conditions represent one of the most challenging scenarios: the vehicle is
descending (with a negative vertical velocity) while also moving away from the final tar-
get due to positive in-plane velocity components. Consequently, this scenario puts the
proposed strategy to be tested under harsh conditions. The parameter tuning process, as

4| Powered Landing Scenario 49

Unit x̂ ŷ ĥ

Position m 1900 800 3100
Velocity m/s 40 20 -50

Table 4.1: Initial Conditions

characterized in Section 4.3, is applicable to conditions similar to those yielding a nominal
maximum-minimum-maximum thrust profile. However, it is important to note that for
entirely different initial conditions, such as when the vehicle is initially moving towards
the target, the tuning process may vary.

All the other parameters of the problem, appearing in Eq. (4.1) are reported in the
following table. They are typical values, adopted in [44] and in [16].

Quantity Symbol Value

Thrusters nT 6
Thrust Angle γ 27 deg

Thrust T 3100 N
Specific Imp. Isp 225 s
Min. control umin 0.3 [-]
Max. control umax 0.8 [-]
Mars gravity gm 3.7114 m/s2

Earth gravity g0 9.8066 m/s2

Table 4.2: Problem Parameters

0 10 20 30 40 50

Time [s]

0.3

0.4

0.5

0.6

0.7

0.8

u
 [

-]

(a) Control Profile

0 10 20 30 40 50

Time [s]

-1

-0.5

0

0.5

1

u
 [

-]

ux

uy

uh

(b) Control Components

Figure 4.1: Nominal Control

50 4| Powered Landing Scenario

Even if polynomial approximation is not the best option to approximate constant piece
wise functions, the resulting control profile have max-min-max shapes, as shown in Fig. 4.1a

An important observation to note is that, as the initial conditions become more and more
challenging, the minimum thrust part is reduced, until it vanishes. This can be regarded
as the last feasible point of the problem, which might become infeasible when dealing with
even more extreme initial conditions. Under such circumstances, it may be necessary to
relax certain constraints and adjust the final conditions, as demonstrated in [45].

4| Powered Landing Scenario 51

4.2. DOC Architecture for Powered Landing Scenario

In this section, the integration of the Desensitized Optimal Control (DOC) theory with
the scenario outlined above is presented. As discussed in Section 3.4, the optimal im-
plementation strategy involves augmenting the state vector with the Λ vector, the Ω(t)

components, and the elements of the Riccati Matrix. This augmentation is essential for
acquiring the optimal feedback gains required for solving the problem at hand.

The subsequent section provides an overview of the architecture, as the mathematical
model chosen allows for variations in numerous variables. The general algorithmic imple-
mentation presented in this section aims to be as comprehensive as possible, consolidating
contributions from various sources, including [42], [16], and [41]. The fundamental con-
cept is to establish the most complete version of the DOC procedure and subsequently
tune it after empirically characterizing the entire process. This section includes the com-
prehensive formulation of the DOC approach applied to the Powered Landing Problem,
taking into account the outcomes of Section 3.4.3.

The cost function states as:

J = min
ux,uy ,uh

−m(tf) + α

(∫ tf

t0

zS∑
k=1

αk∥Λ(t)k∥2 dt+ β ·Ω3(tf)

)
(4.6)

It is worth noting that, in contrast to Eq. (3.13), the two terms related to sensitivity
are combined and pre-multiplied by a common factor, denoted as α, while the relative
weights assigned to different terms are governed by non-negative coefficients, namely,
αi and βl, respectively. This approach offers two advantages: firstly, it enhances the
method’s flexibility giving different weights to different terms, and secondly, once the
values of αi and βl are determined, the influence of DOC on the cost function can be
effectively controlled through the single parameter α.

The state dynamics is described by Eq. (4.1), subject to the constraints presented in
Eq. (4.2) and Eq. (4.3), subject the boundary conditions in Eq. (4.4).

The evolution of the Λ(t) terms follows the differential equations outlined in Eq. (3.22),
subject to the final conditions specified in Eq. (3.23). The matrices A and B are defined in
Appendix A. There are no constraints on Λ(t) components; however, a precise definition is
required. As mentioned in Section 3.4.1, it is asserted that each Λ(t) function corresponds
to a linear function of the final state. Nevertheless, a linear combination of multiple
sensitivities may result in cancellations within the cost function, potentially nullifying
the sensitivity penalization. To address this, b(x(tf)) functions are defined as single

52 4| Powered Landing Scenario

components of the final state, for instance, setting b(x(tf)) = h(tf). This leads to Λ(tf) =

[0, 0, 1, 0, 0, 0, 0], aligning with the physical states of the system as used in Eq. (4.1).
There are no mathematical constraints on the Λ(t) functions that need to be penalized,
and the choice of which sensitivities to penalize, in conjunction with the relative weights
αk, forms a critical part of the tuning process. If no Λ(t) terms are penalized in the cost
function, they are not included in the states of the problem.

In Section 3.1.2, Ω(t) has been defined as the sensitivity of the state concerning variations
in a specific variable denoted as p. However, since only the Thrust is considered as the
uncertain parameter in the problem, the corresponding Ω(t) term is defined. Therefore,
zΩ = 1. Furthermore, as better explained in Section 4.3.5, the implemented version of
the algorithm just penalizes the third component of Ω(tf), the one related with the final
altitude. Since it is just a numerical positive value, no norms or absolute values are
needed. If β is set to zero, the components of Ω(t) are removed from the problem state.
The matrices A, B, and C for dynamics, in accordance with the differential equation in
Eq. (3.17) and referencing the dynamics in Eq. (4.1), are provided in Appendix A.

After addressing some key aspects related to sensitivity terms, the strategy for computing
feedback gains is discussed. As mentioned in Section 3.4.2, these gains are computed
through the Riccati matrix, where its upper triangular components are added to the
state. However, in the context of this application, a feedback correction for mass error
is not applicable. Therefore, the Riccati Matrix components are reduced to 21, instead
of the 28 components found in the 7x7 case. The propagation is carried out following
Eq. (3.25), with the reduced matrices Ã and B̃, which are sub-matrices of A and B. All
propagated elements are collected in the Pu vector and added to the state, but only in
the closed-loop scenario.

The augmented state is formed through the concatenation of different elements. Depend-
ing on the specific case, it can vary in size and composition. As an illustrative example,
the augmented state for the problem with zS = 1 is provided.

xaug(t) =

x(t)

Pu(t)

Λ(t)

Ω(t)

4| Powered Landing Scenario 53

4.3. Method Characterization

Once the architectural framework is established, meeting all specified requirements while
aiming at optimizing numerical efficiency, it necessitates a precise characterization to
achieve optimal performances. This process is complex, as it involves tuning various
design variables by the user. This section aims to provide a general overview of the
impact of these variables on performance, outlining the advantages and disadvantages of
each choice. However, it is important to note that the outcomes of this section are based
on the initial conditions presented in Table 4.1 and may not apply to different scenarios.

When characterizing a new procedure, different alternatives are evaluated, and the best
one is chosen based on a predefined criterion. The more quantitative the criterion, the
easier the tuning process becomes. However, due to the inherent presence of conflicting
terms within the objective function of the optimization problem, as illustrated in Eq. (4.6),
there is no single absolute criterion that can comprehensively address its complexity.
Mass optimization and sensitivity reduction are competing objectives, and both must be
considered simultaneously.

Additionally, it is important to account for uncertainties in the analysis, and the per-
formance of any procedure is typically assessed through Monte Carlo (MC) analyses to
measure the dispersion around the nominal landing point. While MC tools can provide
reliable results, they often require extensive CPU time, making them challenging for a
detailed characterization and tuning process. As explained in Section 3.3, sensitivity
and covariance are interconnected, so reducing sensitivity results in a smaller final co-
variance hyper-ellipsoid. Given the expected perturbations in the analyzed scenario, it
is reasonable to evaluate the solution’s quality based on its sensitivity to these expected
perturbations, better than using MC analysis.

For all the reasons mentioned above, since the primary source of uncertainties lies in the
initial states, the most effective way to estimate the state’s covariance in advance is by
assessing the sensitivity of the state at time t to the initial state, as defined as:

S(t, t0,x0) =
∂x(t)

∂x(t0)

As the primary focus of the optimization is the covariance of the final state, it is essential to
evaluate this sensitivity matrix at the final time. Consequently, the appropriate measure
of the final state’s covariance is determined by:

S(tf) = S(tf , t0,x0) (4.7)

54 4| Powered Landing Scenario

This choice might appear unconventional because this term does not align with the
sensitivity-related term penalized in the cost function. While, for physical and conver-
gence reasons, Λ(t) retains significance, it does not exclusively capture the impact of
perturbations to the initial state on the final state, as it penalizes sensitivities at each
time in an integral form.

Furthermore, when perturbations in the nominal thrust value are considered, the suitable
measure of their effect on the final state is represented by Ω(tf).

The entire process can be characterized as perturbation-driven. Once the scenario and the
primary sources of uncertainties are established, the design is guided by the minimization
of sensitivities concerning these perturbations. The criteria presented here are validated
in the subsequent chapter (Chapter 5), demonstrating the relationship between covariance
prediction (i.e., sensitivity regarding a specified source of uncertainty) and the covariance
derived from the Monte-Carlo (MC) analysis.

Additionally, another significant physical interpretation of sensitivity is provided: in the
presence of initial state uncertainties, the best a priori estimate of the state covariance is
determined by the expression detailed in Eq. (4.7). As S(tf , t0,x0) is an n×nmatrix, some
synthetic performance indicators of solution efficiency should be offered. The element
Si,j within this sensitivity matrix characterizes the sensitivity of the ith state component
with respect to the jth component of the initial state. Furthermore, since the expected
perturbations in position are approximately one order of magnitude larger than those in
velocity, an appropriate measure of the standard deviation of the ith state is:

Si(t) =

√√√√ 6∑
j=1

wj · Si,j(t, t0,x0)2 wj =

{
100, for j = 1, 2, 3

1, for j = 4, 5, 6
(4.8)

The maximum value for the summation index j is set to six, as mass perturbations are not
taken into account and, therefore, they do not have any sensitivity impact. Consequently,
according to Eq. (4.8), the accurate estimator for the final covariance of the ith state is
represented by the Si(tf) expression.

As the method’s definition and characterization are not straightforward, the subsequent
sections attempt to offer a broad overview of the method in the most clear manner possible.
However, it is possible that some concepts are introduced before they are fully explained:
the complete understanding of the method is achieved only at the end of the chapter.

4| Powered Landing Scenario 55

4.3.1. Sensitivity Analysis

Before delving into the detailed algorithmic characterization, it is essential to offer some
insights into sensitivities. These observations are valuable for gaining a profound under-
standing of the problem’s dynamics and for presenting initial results.

The ith component of Λ(tf), measures the sensitivity of b(x(tf)) with respect to the ith

state in time. If b(x(tf)) = h(tf), the third component of Λh(tf) is equal to one since:

∂b(x(tf))

∂x3(tf)
=
∂h(tf)

∂h(tf)
= 1

0 20 40 60 80

Time [s]

-0.2

0

0.2

0.4

0.6

0.8

1

S
e

n
s
it
iv

it
y
 [

-]

h,1

h,2

h,3

(a) Sensitivities with respect to positions

0 20 40 60 80

Time [s]

-1

0

1

2

3

4

5

6

S
e

n
s
it
iv

it
y
 [

s
]

h,4

h,5

h,6

(b) Sensitivities with respect to velocities

Figure 4.2: Sensitivities of the final altitude, h(tf)

The plot provided illustrates the time evolution of Λh(t), the sensitivity of b(x(tf)) =

h(tf). It is evident that the final condition is fulfilled since the third components to Λ(t)

is equal to one at the final time, whereas the others are all null.

A further insight about sensitivity is the following: as clear from Eq. (4.1), the equations
of motion in the three spatial directions are nearly independent, and cross sensitivities are
minimal, with only a slight coupling due to the mass value. This is achieved through the
problem dynamics and due to the design choice of having both LQR weighting matrices
(Q and R) are chosen as diagonal. Therefore, in Fig. 4.2, h is sensitive to just h itself and
vh, linked with the last component of Λ(t), as reported in Fig. 4.2b.

Moreover, because of its symmetric formulation, if the same LQR weights are chosen for x
and y components, the dynamic evolution of the sensitivities of various elements are nearly
identical. The following graph displays the components of Λx(t), the sensitivity of the

56 4| Powered Landing Scenario

function b(x(tf)) = x(tf), and Λy(t), which represents the sensitivity of b(x(tf)) = y(tf).
It is clear that they exhibit similar patterns, though they belong to different elements, as
could be expected, since the sensitivity of a final position is just influenced by the cor-
responding position and velocity. For instance, the first component of Λx(t) significantly
deviates from zero, since it impacts the sensitivity of x(tf) due to its connection with
x(t). The trends of Λx(t) and Λh(t), shown in Fig. 4.2a, differ when different Q weights
are used.

0 20 40 60 80

Time [s]

-0.2

0

0.2

0.4

0.6

0.8

1

S
e

n
s
it
iv

it
y
 [

-]

x,1

x,2

x,3

(a) Sensitivities of x(tf)

0 20 40 60 80

Time [s]

-0.2

0

0.2

0.4

0.6

0.8

1

S
e

n
s
it
iv

it
y
 [

-]

y,1

y,2

y,3

(b) Sensitivities of y(tf)

Figure 4.3: Sensitivities with respect to the positions

4.3.2. Saturation Handling Strategy

A significant contribution from the work of Shen et al. in [16] is the development of
a strategy to address the saturation issue. As discussed in Section 4.1.2, the nominal
solution for the standard case, also referred to as noDOC, consists of a max-min-max
control profile. However, in the presence of saturation, any feedback control is prone
to be truncated, due to the saturation limits. The proposed approach involves selecting
control gains that tend to decrease as the nominal control profile approaches these limits,
ultimately reducing the feedback control to zero. This is achieved by defining a coefficient
denoted as η(t), which diminishes the feedback as the nominal solution approaches the
saturation bounds. In this work, η is addressed to as the Feedback Capability Factor
since it embeds information about the system’s ability to guarantee feedback control.

η(t) =
4 · (u∗(t)− umin) · (umax − u∗(t))

(umax − umin)2

The definition of η(t) can take any functional form, provided that it fulfills two essential
constraints: it must have zero values at the control bounds and must be non-negative in

4| Powered Landing Scenario 57

the entire interval. The chosen function fulfills these requirements, as it is the simplest
possible and aligns with the existing literature. While it cannot guarantee that feedback
control saturation will never occur, it effectively reduces the frequency of such events.

This design choice is robust, but it comes with a trade-off: to minimize sensitivity, no
feedback control is allowed in specific segments of the trajectory when the control input
u reaches the maximum or minimum bounds. In a real-world scenario, this is strategy is
not implementable, as perturbations can arise throughout the entire trajectory, and the
absence of feedback gains could lead to significant consequences. It is possible to mitigate
this issue by modifying the η(t) function, defining new bounds, or leaving some margin
for feedback. However, these alternatives are not explored in this work, as the goal here
is to provide a demonstration rather than a comprehensive implementation design. In
practice, real design choices are influenced by various criteria beyond the scope of this
work. This choice is also aided by the fact that, in the worst case, the considered system
is marginally stable and not entirely unstable. Therefore, even in the absence of feedback
gains during a short segment of the trajectory, perturbations do not have a catastrophic
impact. Due to the introduction of the Feedback Capability Factor, Eq. (3.14) becomes:

u(t) = u∗(t) + η(t) ·K∗(t) (x− x∗(t)) (4.9)

This design choice not only influences the feedback control but also has an impact on
the differential equations governing Λ(t), as expressed in Eq. (3.22), which is modified as
follows:

∂Λ(t)

∂t
= − (A+ η ·B ·K)T ·Λ(t) (4.10)

While Eq. (3.17) for Ω(t) is:

∂Ω(t)

∂t
= (A+ η ·B ·K) ·Ω(t) +C(t)

It becomes evident that the solution profile diverges from the max-min-max profile. This
deviation can be explained by two main factors: one is mathematical, while the other is
tied to the physical interpretation of the problem.

As a result of Eq. (4.9), the control no longer appears linearly in the cost function of
the problem, and the solution cannot be of the max-min-max form [16]. Furthermore,
as the nominal control approaches the control bounds, η(t) factor tends to zero. Since
one of the objectives in Eq. (4.6) is to reduce sensitivity through the feedback effect, the
optimal solution is encouraged to stay away from the control bounds, thereby preserving

58 4| Powered Landing Scenario

some available feedback to diminish sensitivity. On the other hand, diverging too much
from the max-min-max solution results in a significant increase in fuel consumption. This
trade-off between fuel savings and sensitivity reduction is a critical aspect that must be
considered throughout the characterization and tuning process.

0 20 40 60 80

Time [s]

0.3

0.4

0.5

0.6

0.7

0.8

u
 [
-]

0

0.01

0.04

0.1

2

Figure 4.4: DOC Solutions for increasing α weights

Some control profiles are presented here as illustrative examples to demonstrate the be-
havior of the solution for increasing values of α, assuming β = 0 and zS = 1, which
correspond to the penalization of sensitivity for a single function of the final state accord-
ing to the cost Eq. (4.6). In the presented case, it was chosen to penalize the sensitivity
of the final y. The control profiles are shown, as well as the corresponding η(t) trends.

0 20 40 60 80

Time [s]

0

0.2

0.4

0.6

0.8

1

 [
-]

0

0.01

0.04

0.1

2

Figure 4.5: η(t) for increasing α weights

4| Powered Landing Scenario 59

As mentioned in the preceding section, the method’s effective performance is measured
by Eq. (4.7) and is accurately assessed on a component-wise basis by Si(tf). However,
it is equally important to appropriately measure the mass increase associated with the
sensitivity penalization in order to have a comprehensive understanding of the method. To
achieve this, a Pareto-like [46] plot is presented here: it is used in the subsequent sections
as well to offer a clear graphical interpretation of the performance of DOC approach.

295 300 305 310 315

Fuel Mass [kg]

0

1

2

3

4

5

S
e

n
s
it
iv

it
y

noDOC

DOC

Figure 4.6: S3(tf) for increasing α weights

This figure illustrates the sensitivity S3(tf), which serves as an a-priori indicator of the
algorithm’s efficiency in terms of the final altitude sensitivity, along with the corresponding
nominal fuel mass consumption for increasing values of α, growing moving towards the
right. The different color refers to the noDOC case (α = 0)

In comparison to the scenario with noDOC, we observe a notable increase in the sensitivity
of the final state for low values of α. This might seem counter intuitive, as one would
expect a decrease in final state sensitivity due to the penalization of the sensitivity-related
term in the cost function with non-zero α values. However, the results presented here are
entirely meaningful. As shown in Fig. 4.4, for low α values, the optimal solution closely
resembles the max-min-max profile. Consequently, as illustrated in Fig. 4.5, the parameter
η(t) remains close to zero, resulting in a nearly open-loop solution.

In the case of noDOC, η(t) is not explicitly defined, but it is effectively equivalent to one,
representing a full-feedback scenario. The interpretation of the results is straightforward:
for similar nominal control profiles, the full-feedback noDOC case is more effective in
reducing sensitivities compared to the DOC quasi-open-loop case with α = 0.01, mainly
due to the strong influence of feedback gains. To make the DOC procedure effective, α

60 4| Powered Landing Scenario

needs to be set sufficiently high to ensure that the solution deviates from the max-min-
max profile. As α increases, η(t) takes on values other than zero because sensitivities
must be further reduced through feedback gains, allowing for more feedback control. This
leads to the reduction in sensitivity depicted in Fig. 4.6. However, this improvement
comes at the cost of increased fuel consumption. It is worth noting that these predictions
do not consider the possibility of saturation. Consequently, the noDOC performances are
considered ideal, as saturation only occurs in the MC, providing a proper measure. The
issue is addressed in detail in Chapter 5.

In the absence of η(t), the nominal control value remains closely aligned with the max-min-
max solution, rendering the solutions impractical for real-world scenarios. Furthermore,
they do not exhibit significant differences in sensitivity compared to the noDOC solution.

0 20 40 60 80

Time [s]

0.3

0.4

0.5

0.6

0.7

0.8

u
 [
-]

0

0.04

0.1

0.4

0.8

Figure 4.7: Control trends without η for increasing α

Figure 4.7 shows the different results when Λ(t) is propagated with Eq. (3.22) rather
than Eq. (4.10). For increasing α values, the optimization attempts to minimize fuel
consumption by reducing flight time through reduction of the minimum control part of
the trajectory. This results in fully saturated control profiles and does not lead to major
improvements in sensitivity.

In summary, the DOC strategy for the powered landing scenario can, in some cases, lead
to an increase in sensitivity. The feedback capability factor plays a crucial role in ensuring
the effective integration of Powered Landing and DOC, but it can also be the element
that causes performance deterioration when α is small. It introduces additional degrees
of freedom to the optimizer, giving the possibility of significantly impacting sensitivity,
which is the core objective of the DOC approach.

4| Powered Landing Scenario 61

4.3.3. Marginal DOC

In the Marginal DOC approach, a significant improvement over the implementation pre-
sented in [16] is introduced, involving the addition of an extra multiplicative coefficient
called ν, which is referred to as the Marginal DOC coefficient.

The feedback capability factor, η(t), is, by definition, constrained to the range of 0 to 1.
The equation governing the trend of η(t) over time is arbitrary, but its presence leads to
a reduction in the feedback.

However, when the feedback capability factor is multiplied by a scalar value ν greater than
one, a portion of the original feedback control level is restored. The new η(t) function,
denoted as η̃(t) = ν ·η(t), satisfies the two essential requirements reported in Section 4.3.2
and is a valid candidate for the problem under consideration. While the parabolic shape
of η(t) is retained, ν acts as an amplifier of the feedback gains. Although η(t) alters the
trend of feedback gains over time, the recovery of feedback can be quantified in terms of
its norm across the entire domain.

1 2 3 4 5

 - Marginal DOC Coefficient

0

1

2

3

4

5

n
o

rm
 K

 M
a

tr
ix

K
1,1

 =0

K
1,4

 =0

K
1,1

 =1

K
1,4

 =1

Figure 4.8: Feedback gains norms for different ν values

This illustration is intended to offer a consolidated measure of how ν impacts the feedback
gains. It is important to bear in mind that the time trends of the gains are significantly
influenced by η̃, and as a result, they may exhibit various behaviors over the entire
trajectory. However, as evident from the diagram, when ν is set to one, the feedback
gains without the DOC (where α = 0) are greater than those with the DOC (where
α = 1). As the Marginal DOC Coefficient increases, the magnitude of the feedback gains

62 4| Powered Landing Scenario

increases in proportion to ν, fully restoring the total amount of feedback control and even
surpassing the initial feedback values.

The effectiveness of the suggested approach is assessed by examining its impact on the
sensitivity of the final state. Fig. 4.9 illustrate that, as the ν parameter increases, the final
sensitivities decrease, resulting in an enhancement of the overall performance of the DOC
procedure. This is attributed to the fact that an increase in feedback gains reduces the
sensitivity of the final state to perturbations, as more substantial feedback control actions
are applied. This design choice also has implications for the nominal control profile,
as there is no longer a need for high η values to reduce sensitivity, since the impact of
feedback gains on sensitivities is already amplified by ν. Consequently, for the same α
value, the control profile remains further from the midpoint between the minimum and
maximum control profiles, leading to a reduction in mass consumption. This relationship
is depicted in Fig. 4.9b, where, for the same α value, marginal DOC with increasing ν

manages to both decrease fuel consumption and improve performance. The points with
constant α = 0.3 are marked in red.

Since the proposed strategy only affects the DOC cases, the noDOC case is presented in
black, as it is common to all the different scenarios. As usual, an increase in the fuel mass
toward the right is associated with an increase in the α coefficient.

298 300 302 304 306 308 310

Fuel Mass [kg]

0

1

2

3

4

5

S
e

n
s
it
iv

it
y

noDOC

=1

=2

=3

=4

=5

(a) Sensitivities of h(tf)

298 300 302 304 306 308 310

Fuel Mass [kg]

0.1

0.2

0.3

0.4

0.5

S
e

n
s
it
iv

it
y

noDOC

=1

=2

=3

=4

=5

(b) Sensitivities of vx(tf)

Figure 4.9: Sensitivities for different ν values

The final aspect to consider pertains to the maximum limit for the ν value. For positions,
its increase becomes less significant after a certain threshold, as the curves become nearly
identical for high ν values. In contrast, velocity performance steadily improves, and even
for high ν values, various curves appear to converge. While theoretically, there may be
no strict upper limit on the ν value, other factors must also be considered.

4| Powered Landing Scenario 63

When determining the upper bound for the value of ν, two crucial criteria come into play.
The first criterion is the gain margin, which is defined as the maximum multiplicative
factor for the feedback gains that ensures system stability. Consequently, η̃(t) should
not exceed this value. The second criterion is based on the fact that, if ν becomes too
large, η̃(t) exhibits a steep variation near the control bounds, posing the risk of exceeding
these bounds since the feedback gains are multiplied by high values. This choice would be
counterproductive, as η̃(t) is designed to address the saturation issue. Nevertheless, the
second criterion can be assessed through Monte Carlo (MC) simulations. In practice, the
first criterion tends to be more stringent due to the stability proprierties of the system
and is thus considered a priority in determining the upper limit for ν.

4.3.4. LQR Tuning

As commonly recognized, the proper adjustment of feedback gains is crucial for achiev-
ing optimal performance for every kind of problems, especially in the presence of high
disturbances. However, in the DOC formulation presented in this work, their impact is
even more relevant. This is because they directly influence sensitivities, which are pe-
nalized in the cost function, and have also an impact the nominal control profile shape.
This interplay arises due to the partial coupling of the Guidance and Control processes.
Consequently, when selecting Q and R matrices, several additional criteria must be con-
sidered.

The process of tuning LQR controllers in itself is complex. When trying to improve
disturbance rejection for one state, it often comes at the expense of feedback performance
for other states, primarily due to constraints on total control effort, such as saturation
or physical limits. In the case of DOC-LQR tuning, the complexity is further stressed,
as some trends are less predictable. While some aspects align with established LQR
properties, others are deeply related to the interplay between Guidance and Control.

In common applications, LQR tuning is a complex process. Many requirements can be
considered, but in general the tuning process turns out to be a saturation-driven process,
trying to use all the available control without exceeding the prescribed bounds. However,
saturation is not an issue for the proposed DOC formulation, since feedback capability
factor, defined in Section 4.3.2, offers a good handling strategy for saturation.

Contrary to the saturation-driven approach, DOC-LQR tuning can be seen as a sensitivity-
driven process, since the goal is to reduce certain sensitivities. This method appears
particularly suitable for the DOC procedure; however, measuring sensitivities to pertur-
bations of the final state can serve as a valuable criterion for tuning controllers for other

64 4| Powered Landing Scenario

applications. Utilizing sensitivities as design criteria offers a more structured approach
compared to the conventional trial-and-error method.

The integration of Guidance and Control introduces further complexities into the tuning
process. The nominal trajectory is affected by the feedback gains, influencing both its
shape and performance. Additionally, the CPU time required for obtaining the optimal
trajectory is influenced by LQR design choices. In essence, characterizing the coupling
between Guidance and Control is challenging, given the potential emergence of unmod-
eled behaviors. This section seeks to offer empirical results and practical insights for
characterizing the tuning procedure.

The primary objective of this entire procedure is to minimize the final covariance, and
therefore, S(tf), or a combination of its elements, is employed as the evaluation criterion
for all design choices, as indicated in Eq. (4.8).

As a design guideline, it was decided to configure all the weighting matrices of the LQR
as diagonal. Although this imposes a constraint on the allowable optimal solutions, it was
done to maintain the independence of all components and enhance predictability in the
system’s general behavior. Moreover, this choice automatically satisfies the requirements
of symmetric positive definiteness for the weighting matrices in the LQR architecture
when the diagonal values are positive.

R Impact

The R matrix provides a indication on the maximum feedback control magnitude to be
applied. According to Eq. (3.26), it penalizing the potential variations in u, the control
variable. As a general guideline, a larger norm for the R matrix indicates more constrained
feedback control efforts, often resulting in a reduction of the feedback gains. In classical
LQR tuning, this matrix is of significant importance as it is defined based on control effort
limitations. However, in the context of DOC-LQR tuning, where saturation is no longer a
constraint, theoretically, the R matrix values could be reduced with no bounds to achieve
optimal disturbance management. Strong feedback can effectively handle disturbances,
as it leads to faster system responses. Nonetheless, following classical control theory, high
gains may lead to a decrease in noise rejection performance. In practical applications,
various noise sources, such as sensors and model parameters, can introduce uncertainties,
and high gains might exacerbate the feedback effects. While these factors are not explicitly
addressed in this work, they are essential to consider in real-world tuning scenarios.

In the specific scenario under consideration, the primary limitation on reducing the R
values is associated with the inherent behavior of LQR feedback gains. As mentioned,

4| Powered Landing Scenario 65

reducing R results in an increase in the gains. This effect occurs throughout the entire
trajectory but has a more pronounced impact in the final stages. Assuming that the R
matrix is diagonal with uniform diagonal terms, its norm can be conveniently expressed
in terms of the diagonal values. As illustrated in Fig. 4.10, the feedback gain matrix’s
norm increases as the R value is reduced. This has a further significant impact on the
final stages. In a noDOC problem, this could lead to physical issues since a substantial
amount of control is deferred to the end of the trajectory and not evenly distributed across
the entire path. In the DOC framework, this effect becomes more pronounced, as high
values of feedback gains at the end can introduce discontinuities throughout the problem,
resulting in a substantial increase in CPU time or even the failure of NLP convergence.
The following figure reports the feedback gain matrix norm, defined as:

Knorm(t) =
3∑

i=1

6∑
j=1

∥Ki,j(t)∥2

Even if the elements are not homogeneous, some interesting trends are shown in the
picture.

0 20 40 60 80

Time [s]

10
-1

10
0

10
1

10
2

10
3

10
4

K
-N

o
rm

2.5

1

0.1

0.01

0.001

R

Figure 4.10: Gain Matrix Norm for increasing R values

Figure 4.10 shows that the magnitude of the feedback gains increases as the reduction of
R progresses throughout the entire trajectory.

In order to mitigate the final stages issue, two design choices can be considered: either
maintaining the R value within reasonable bounds or permitting the R value to increase
along the trajectory for a more even distribution of feedback efforts, as demonstrated in
[16]. While the latter strategy can enhance performance, it is not sustainable in GPOPS,

66 4| Powered Landing Scenario

as time-varying R values lead to a significant increase in CPU time. Therefore, the
proposed design adopts constant R values, which need to be optimized.

As can be inferred from the previous section, the design optimization must account for
competing factors: the sensitivities of the final states and the CPU times required to
obtain the trajectories. Since this work focuses on obtaining a computationally efficient
version of DOC, the second criterion plays a pivotal role. The reduction of the values
of R leads to an increment of CPU time; simultaneously, if the absolute values of R
are reasonably low, further reductions do not yield significant improvements in perfor-
mance. Consequently, the priority is placed on maintaining CPU time below a reasonable
threshold.

The following figures depict the sensitivities of two final states for various R values. A
reduction of R, in a reasonable interval, leads to general performances improvements.
However this can not take place for any component, due to the complex coupling between
DOC and LQR. This is quite clear from the following figures: all the position sensitivities
are reduced as R decreases, as well as the vertical velocity one, not shown here, whereas
the vx and vy sensitivities have not clearly predictable behaviours are R grows. However,
is worth mentioning that the reported plot are influenced by the Q values and that the
trends should not be intended as general. In this scenario the worsening of performances
on vx and vy linked with the reduction of R is way less relevant that the one associated
with the reduction of the sensitivity of the position, in absolute sense and with respect to
the expected perturbations, leading to the choice of keeping low R values.

298 300 302 304 306 308 310

Fuel Mass [kg]

0

0.5

1

1.5

2

2.5

3

3.5

S
e

n
s
it
iv

it
y

2.5

5

10

20

R

(a) Sensitivities of h(tf)

298 300 302 304 306 308 310

Fuel Mass [kg]

0.15

0.2

0.25

0.3

0.35

0.4

0.45

S
e

n
s
it
iv

it
y

2.5

5

10

20

R

(b) Sensitivities of vx(tf)

Figure 4.11: Sensitivities for different R values

4| Powered Landing Scenario 67

Q Impact

The next element to be addressed in tuning is the Q matrix, which is a well-known
component typically adjusted based on the maximum allowable errors for each state.
The higher the weight assigned to a state, the more feedback effort will be allocated to
the associated gains. However, it is important to consider the weight on an individual
component relative to all the other elements of the Q matrix, rather than in absolute
terms. Since Q matrix is set to be diagonal, there is no difference between considering
the full matrix itself or its diagonal vector, Qd. A good measure of the effective weight
on a specific component, denoted as i, is given by the ratio Qd,i/||Qd||2.

Two additional factors need to be considered. First, due to the dynamics of the problem,
some states are time derivatives of others, such as velocities being derivatives of the
position states. Therefore, proper tuning accounts for this coupling. Larger feedback gains
on velocities can reduce the final errors of the corresponding positions since a significant
portion of the position error is linked to the integral of velocity errors. However, the
opposite relation, i.e., larger gains on position reducing the sensitivities of corresponding
velocities, is not always valid. In the case under consideration, this implication is valid
only for the vertical direction and will be utilized in the tuning procedure in Chapter 5.

The second important factor to consider is that LQR weights should be adjusted in accor-
dance with the R value. In summary, the R value measures the total control effort, and
the Q matrix determines how control is distributed among the states. However, to achieve
GPOPS convergence and avoid the high-gain effects discussed in the previous section, it
is advisable to select reasonable, not excessively large, values for the Q weights. The
process is self-regulating in terms of performance because a strong penalty on one state
can deteriorate the performance of all other states in terms of disturbance management.

Figure 4.12 demonstrates the effect of choosing different weights: individual sensitivities
are penalized in varying degrees, leading to different sensitivity time behaviors. Since
the problem displays a significant level of symmetry in three directions, using the same
weights for different components leads to similar sensitivity patterns for both respectively
positions and velocities. These patterns exhibit minor variations attributed to distinct
initial conditions. The reason behind this behavior can be easily explained mathemati-
cally. The sensitivity differential equation chosen, as described in Eq. (3.22), stems from
a series of analytical transformations applied to Eq. (3.21). Since sensitivities for vari-
ous final states correspond to different rows within the complete sensitivity matrix, and
all rows within a matrix follow the same dynamics, the dynamics of diverse sensitivities
remain identical, except for the feedback gain values. Consequently, assigning the same

68 4| Powered Landing Scenario

Q weights to two symmetric states (e.g., x and y) results in nearly identical sensitivity
trends over time. This is clearly illustrated in both figures where the sensitivities of x and
y, as well as vx and vy, closely overlap.

0 20 40 60 80

Time

0

2

4

6

8

10

12

14

S
e

n
s
it
iv

it
y

x

y

h

v
x

v
y

v
h

Sens. Comp

(a) Sensitivities with Qd = 2, 2, 30, 1, 1, 0.5

0 20 40 60 80

Time

0

2

4

6

8

10

12

14

S
e

n
s
it
iv

it
y

x

y

h

v
x

v
y

v
h

Sens. Comp

(b) Sensitivities with Qd = 3, 3, 3, 3, 3, 3

Figure 4.12: Sensitivities for different Q diagonals

As seen in Figure 4.12b, it is evident that the sensitivity of h closely resembles that of
the other positions due to their similar dynamics. In the linearized version of the system,
the gravitational terms are eliminated, resulting in the same differential equations for
all three directions. Similar behaviors are observed for the position. However, when
individual weights change, as shown in Figure 4.12a, different behaviors emerge. The
sensitivity of h, with a weight of 30, dramatically diminishes along the trajectory, leading
to smaller final values. It is worth noting that even though the weight on vh is 0.5, the
final sensitivity in Fig. 4.12a is smaller than that in Fig. 4.12b. This discrepancy can
be primarily attributed to the increase in the weight of h in the Q matrix, as previously
mentioned. While various speculations involving different Q matrices can be explored,
it is important to remember that the ultimate outcome of interest is the final sensitivity
value. Consequently, the tuning of the Q matrix should prioritize the final sensitivities as
design criteria over their temporal trends.

4| Powered Landing Scenario 69

4.3.5. Desensitization Strategies

Once an architecture is well-established and tested, a central aspect of its usage is the
selection of elements to be desensitized in order to achieve the desired performance. As
described in Section 3.4, the formulation allows for the desensitization of one or multiple
b(x(tf)) functions. These functions must be linear and scalar in nature, and their unique
form to prevent cancellations is:

b(x(tf), tf) = x(tf)i

where, xi represents a component of the final state. Due to this definition of the pe-
nalized function, the penalization of b(x(tf), tf) = x(tf)i can also be referred to as the
“penalization of x(tf)i”.

For each b(x(tf)) function to be desensitized, seven states are introduced for each penal-
ized function. It is worth noting that the most straightforward solution, desensitizing the
entire final state, would add 49 extra state variables, resulting in a significant increase
in CPU time. However, desensitizing some states might be irrelevant or even lead to a
loss of performance. Therefore, the optimization of the architecture aims to achieve the
best performance with the fewest additional variables. The goal is to identify the compo-
nent(s) that can provide the best results in terms of sensitivity of the final states when
desensitized while minimizing the number of required state variables.

Moreover, not all design choices lead to well-behaved or converging solutions, as this
depends on the problem’s dynamics. Incorrect design choices or badly tuned weighting
factors can lead to numerical issues. Another crucial point to emphasize is that the
performance of the desensitization strategy is influenced by the LQR tuning. With the
same regulator, the desensitization of one component might smoothly converge to achieve
good performance, while desensitizing another component could lead to sub-optimal or
non-converging solutions.

A final consideration is that both desensitization and feedback gains contribute to the
minimization of final state sensitivities in a coupled manner. This is not ideal from an
engineering perspective because there is a high risk of ending up with sub-optimal solutions
due to an improper coupling of the two contributors. For this reason, an extensive testing
campaign has been implemented.

Three design choices are available: desensitizing a single final state, desensitizing multiple
final states, or desensitizing the sensitivity of the final state with respect to Thrust. These
design choices are thoroughly analyzed in the following sections.

70 4| Powered Landing Scenario

Single State Desensitization

Single-state desensitization is the most straightforward and computationally efficient so-
lution to implement. It is particularly simple because there is a single Λ(t) function,
eliminating the need to tune relative weights between multiple cost terms. Consequently,
a detailed analysis of this solution has been carried out, leading to the design choice
presented in Chapter 5.

As discussed in Section 4.1.1, the equations of motion in each direction are almost com-
pletely decoupled from the others. However, position sensitivities and velocity sensitivities
are respectively governed by similar dynamic equations. Therefore, it is reasonable to as-
sume that penalizing one sensitivity could reduce or at least influence the others.

This assumption has been empirically validated through a series of tests. When a state
is desensitized, all sensitivities, including both positions and velocities, are altered. Addi-
tionally, penalizing a position sensitivity positively affects other positions, and the same
holds true for velocities. As a result, two categories of strategies can be defined: final
position desensitizations (PD) and final velocity desensitizations (VD).

It has been observed that solutions falling into the PD category exhibit smooth conver-
gence properties and are in line with optimal controller design. Conversely, VD solutions
do not perform well in terms of CPU time and require sub-optimal LQR design to yield
satisfactory results.

Given that the architecture under consideration allows for the desensitization of a single
component, it is reasonable to select a design from the PD category and explore the
impact of velocity desensitization in the next section, Section 4.3.5. Because positions can
be considered as integrals of their corresponding velocities, minimizing the sensitivity of
a position naturally leads to a reduction in the sensitivity of the corresponding velocity,
as they are linked. However, when velocity is desensitized, there is no guarantee that
position desensitization will be effective since final velocity is entirely independent of the
evolution of the corresponding position.

In the class of PD architecture, three different options arise: desensitizing the final x, the
final y or the final h. Even if the most critical component of to achieve a proper landing
is the final altitude and even if it could seem reasonable to minimize its sensitivity, after
performing some tests it becomes evident that the desensitization of y(tf) has the best
effect in global terms.

Due to this results, another relevant concept of this work can be reported. The concept is
the idea of dominant sensitivity, that can be seen as the single component of the final state

4| Powered Landing Scenario 71

to be desensitized to achieve the best performances possible. In the considered problem,
it turns out to be the one referred to y(tf) but it is not guaranteed that it is always the
same, if the initial conditions vary.

Multiple State Desensitization

The concept of dominant sensitivity suggest that further desensitization can be considered,
such as other final states or the Thrust. However, they are treated as additional features
of the problem where the sensitivity of the final y component is penalized. This decision
is motivated by two primary reasons.

The first reason is that penalizing other sensitivities, like velocity sensitivities alone, leads
to convergence issues, as demonstrated in previous sections. Therefore, if one intends to
penalize the sensitivity of certain final velocities, it must be done in conjunction with a
position desensitization. The second motivation is explained in this section and pertains
to the combination of multiple desensitizations.

As discussed earlier, when multiple b(x(tf)) functions are desensitized, additional states
are introduced into the problem. Consequently, since y desensitization can already lead to
good performances, careful consideration is required when desensitizing other components
of the final state. There is always a trade-off between improving performance and poten-
tially increasing CPU time. In general, the penalization of the dominant sensitivity shapes
the problem formulation by adding the DOC cost term, while other desensitizations can
play a role in enhancing the already achieved performance.

The following two paragraphs aim to analyze two distinct strategies for multiple desensi-
tizations. The first one deals with the desensitization of another final position component
jointly with the dominant one, while the second focuses on penalizing the sensitivity of a
final velocity and the y component one.

Multiple Positions Desensitization Given that the dominant sensitivity in the prob-
lem is y(tf), the other sensitivities that can be penalized are x(tf) and h(tf). When mul-
tiple sensitivities are penalized, the DOC term in the cost function increases in absolute
value, necessitating proper tuning of the weights. To ensure a fair comparison, the solu-
tions are evaluated in terms of sensitivity and the extra mass required, as the α weight is
a design parameter with no clear physical interpretation.

The following plot illustrates four different desensitization strategies: y (Case 1), y and x
(Case 2), y and h (Case 3), and h (Case 4).

72 4| Powered Landing Scenario

295 300 305 310 315 320 325

Fuel Mass [kg]

0

10

20

30

40

S
e
n
s
it
iv

it
y

noDOC

Case 1-y

Case 2-x,y

Case 3-y,h

Case 4-h

Des. States

Figure 4.13: Final y sensitivities with different DOC strategies

It is evident that desensitizing only h results in the worst performance, while the other
strategies yield comparable outcomes. Notably, Case 1 and Case 2 exhibit very similar
behavior. Additionally, Case 3 desensitization leads to intermediate results between the
desensitization of y and h. Therefore, a general conclusion can be drawn: when two or
more final positions are desensitized, the overall sensitivity falls between the sensitivities
of the individual positions when desensitized separately. As x and y dynamics are very
similar, desensitizing x, y, or x and y produces the same results.

For this reason, once the dominant sensitivity has been chosen, further position desensi-
tizations do not enhance performances. As a result, multiple positions desensitizations is
both unnecessary and computationally inefficient.

Position and Velocity Desensitization Another potential extension of the architec-
ture involves simultaneously desensitizing the dominant position and a velocity compo-
nent. Given that the dynamics of velocities and positions are not identical, this approach
could offer further performance improvements. Various combinations of relative weights
and different components have been tested. However, desensitizing multiple velocities,
as with positions, proved to be ineffective. Therefore, a single velocity is desensitized in
conjunction with the dominant position. The configuration that yields the best results
is the desensitization of vh with y, even if the performances are not largely improved.
This is mainly related to the dynamics of the problem: a position desensitization already
influences the other positions’ sensitivities, impacting on the corresponding velocities.
Therefore, no large enhancements arise.

4| Powered Landing Scenario 73

295 300 305 310 315

Fuel Mass [kg]

0

0.5

1

1.5

2

2.5

3

S
e
n
s
it
iv

it
y

noDOC

y

y, vh

Des. States

Figure 4.14: Final h sensitivities with different DOC strategies

Thrust Uncertainties Desensitization

The previous analyses have primarily focused on the sensitivity of the final state with
respect to other states. However, it is also possible to penalize the sensitivity with respect
to thrust by adding the seven states corresponding to the n components of the Ω(t) vector,
as defined in Section 3.1.2.

0 20 40 60 80

Time [s]

0

1000

2000

3000

4000

5000

S
e

n
s
it
iv

it
y

x

y

h

vx

vy

vh

State

Figure 4.15: Sensitivities of the state with respect to Thrust

In the specific application under consideration, thrust uncertainties have a significant
impact on the accuracy of the final state, with a particular influence on the vertical direc-
tion, where thrust should counteract the force of gravity. As expected, these uncertainties

74 4| Powered Landing Scenario

notably affect the error in the final altitude, as errors in velocity accumulate over time.
It is essential to note that the critical values for this work are the final values, and the
temporal evolution is provided to give a complete picture of sensitivity changes over time.

The penalty on Ω(tf) is not applied in norm but only the sensitivity of the final altitude
has been considered, as it has the major impact on the final state, as shown in Fig. 4.15,
and its desensitization has an impact on both the final vertical position and velocity. This
is why no norms of Ω(t) appear in Eq. (4.6). Since the value of the final altitude sensitivity
with respect to thrust is always greater than zero, no absolute values are needed.

Similarly to multiple desensitization, thrust desensitization is considered as an additive
feature of the problem, always penalized jointly with the dominant sensitivity. Addition-
ally, it can be noted that the dynamics of Λ(t) and Ω(t) share some common features.
Thus, a penalty on Λ(t) already reduces the sensitivity with respect to thrust, as indicated
by the typical sensitivity trend shown in Fig. 4.15, with β = 0. However, as β increases,
more importance is given to thrust sensitivity in the cost function, leading to a reduction
in sensitivity with respect to thrust, as shown in the cases with β = 10 and β = 50.

295 300 305 310 315 320

Fuel Mass [kg]

0

2000

4000

6000

8000

10000

S
e
n
s
it
iv

it
y

noDOC

 = 0

 = 10

 = 50

Thrust Weight

Figure 4.16: Thrust Sensitivities of different states in time

However, this improvement comes at a cost: since the thrust sensitivity has a greater
importance in the cost function, the Λ(t) term is less penalized, resulting in a deterioration
of the final sensitivities with respect to state sensitivities for higher β values, as shown in
Fig. 4.17a. Nevertheless, as shown in Fig. 4.17b, penalizing Ω3(tf) also reduces Λ3(tf),
thanks to the mathematical coupling between their dynamic equations.

4| Powered Landing Scenario 75

295 300 305 310 315 320

Fuel Mass [kg]

0

2

4

6

8

10
S

e
n

s
it
iv

it
y

noDOC

 = 0

 = 10

 = 50

Thrust Weight

(a) Sensitivity of x(tf)

295 300 305 310 315 320

Fuel Mass [kg]

0

0.5

1

1.5

2

2.5

3

3.5

S
e

n
s
it
iv

it
y

noDOC

 = 0

 = 10

 = 50

Thrust Weight

(b) Sensitivity of h(tf)

Figure 4.17: Sensitivities with respect to state perturbations for different β weights

A significant point to emphasize is that thrust desensitization requires the addition of
seven extra variables to the state, representing the Ω(t) components. This naturally
results in an increase in CPU time. This increase in computational cost should ideally be
balanced by improved performance. However, due to the distinct nature of perturbations
(Thrust and initial conditions), precise predictions about the final standard deviation
cannot be made. This is because the coupling between initial condition uncertainties
and thrust perturbations is not precisely analytically predictable by any combination of
sensitivities. Therefore, the performance enhancement resulting from this design choice
can only be measured through a Monte Carlo analysis, considering expected perturbations
in both initial state and thrust.

77

5| Numerical Simulations and

Results

This chapter is dedicated to the in-depth analysis of the numerical outcomes stemming
from the DOC formulation. Its primary objective is to validate the effectiveness and
characteristics of this method as it pertains to addressing the Powered Rocket Landing
Problem. For each of the proposed implementation strategies, a preliminary examination
of the nominal solution is conducted, which is subsequently reinforced and validated
through the results obtained from Monte-Carlo (MC) simulations. This deliberate choice
aims at emphasizing the connections between the G&C shaping process and its real-world
performance within a perturbed environment.

The chapter is structured into four main sections. The first one deals with the definition
of the problem setting both in terms of solver and MC. The second section places its focus
on the Open-Loop case, shedding light on the dynamics and implications of this control
approach, while the third section delves deeply into the Closed-Loop case, which serves
as the central focus of this study. Here, the intricate interplay between control strategies
and their impact on the Powered Rocket Landing Problem is thoroughly explored and
dissected.

To conclude this chapter, an essential aspect is the comparison of CPU Times across
the various proposed architectures. This comparative analysis highlights the computa-
tional efficiency of the different methods, providing valuable insights into their practical
applicability and performance under real-world conditions.

78 5| Numerical Simulations and Results

5.1. Problem Settings

Before delving into the presentation of the results, some essential background informa-
tion about the problem are provided. This information is organized into two distinct
paragraphs: the first one details the specific parameters and configurations used in the
numerical framework for problem-solving, while the second paragraph outlines the set-
tings and the perturbations considered in the Monte Carlo (MC) analysis, elucidating
their modeling process.

Numerical Settings The success of the strategy hinges significantly on the numerical
implementation, given the large number of variables involved, which could lead to a
considerable increase in CPU time. As a result, various implementation techniques have
been developed and tested, as relying solely on a priori estimations proves unreliable. Two
distinct versions of GPOPS, namely GPOPS-II, Version 1.0 (referred to as GPOPS-v1.0)
and GPOPS-II, Version 2.5 (referred to as GPOPS-v2.5)1, have been used. GPOPS-v2.5
is equipped with the added capability of automatic differentiation through the Adigator
tool [47], enhancing the convergence process.

The first critical step involves problem scaling. While GPOPS is equipped with automatic
scaling, this process is generic and not tailored to the specific problem at hand. Therefore,
a deliberate decision was made to rescale the entire system, setting the initial altitude as
the distance unit, the initial mass as the mass unit, and the Earth’s gravity acceleration
as unitary distance per squared time unit. Although GPOPS allows additional scaling,
this chosen approach leads to a well-conditioned problem. Another significant code design
choice is the minimization of for loops. Utilizing vector quantities and exploiting point-
wise Matlab operators not only reduces CPU time but also ensures compatibility with
automatic differentiation provided by Adigator. Further details are shown in Section 5.4.

All GPOPS settings were determined through a trial-and-error process aimed at minimiz-
ing CPU times. Each version necessitates unique configurations, which are not detailed
here. The overarching code design philosophy aims to grant significant flexibility to the
solver, facilitating fair comparisons between the proposed architectural approaches.

After performing collocation using GPOPS, the problem is subsequently solved using
IPOPT [48], an interior-point filter line-search algorithm designed for large-scale nonlinear
programming. The solver requires the Jacobian of the problem and can function with
or without the Hessian . In this context, providing the Hessian to the algorithm was
chosen to reduce the CPU time. Although GPOPS is compatible with the SNOPT [49]

1Available by kind courtesy of prof. Anil V. Rao

5| Numerical Simulations and Results 79

solver as well, it is found to be less efficient than IPOPT for the specific problem under
consideration.

MC Settings The Monte-Carlo (MC) campaign involves the use of 1500 samples, and
its convergence is assessed by examining the convergence of both the means and standard
deviations of the final state variables. It is important to note that all the results are
generated as zero-mean processes, with negligible biases arising from numerical integration
errors or sampling errors, due to the sampling of the control and feedback gains to align
with different time vectors. While it could be tried to adjust the final time to ensure a
successful landing for each perturbed case, each sample in the MC analysis employs the
same time of flight to maintain result consistency and measure the perturbation’s impact
on the final state.

Considering the initial conditions presented in Table 4.1, the state perturbations are char-
acterized as deviations from the nominal conditions and follow Gaussian distributions. All
state variables are perturbed with reasonable values, and the corresponding 3σ standard
deviations are provided in the following table:

Unit x̂ ŷ ĥ

Position m 100 100 100
Velocity m/s 10 10 10

Table 5.1: Initial State Uncertainties, 3σ

To align with the actual physical behavior of the system, the thrust perturbation is
represented as a combination of two components. This includes a constant bias term
and a time-varying random noise component. Both of these components follow Gaussian
distributions with zero mean. The 3σ values for these perturbations are set at 2% of the
nominal thrust value, which is detailed in Table 4.2.

80 5| Numerical Simulations and Results

5.2. Open-Loop Case

In the Open-Loop (OL) configuration, the formulation is essentially equivalent to the
Closed-Loop (CL) setup. However, in the OL case, the feedback gain matrix, denoted
as K is set to zero due to the absence of feedback control. Consequently, the definitions
of the state variables η(t) and ν become irrelevant, and the components of the Riccati
matrix are not included in the state representation.

While the OL case may not find practical application in real scenarios, given its inability
to handle any form of perturbations without feedback control, this section provides an
interpretation of the OL strategy. This is done to shed light on some aspects of the DOC
strategy applied to the Rocket Landing Scenario. The reduced number of variables and
parameters to be tuned in the OL case makes it easier to establish a direct link between
design choices and outcomes, which is not as straightforward for the closed-loop cases
with feedback capability factor.

In the absence of feedback gains, the desensitization of the OL case has limited degrees
of freedom to act upon. Both the initial and final states are fixed, and control inputs
are bounded by saturation limits. Simultaneously, the linearized version of the system is
marginally stable, as evidenced by the upper triangular structure of the A matrix with
zero values on the diagonal, as detailed in Appendix A. Although the code implementation
penalizes the sensitivity of the final state y through the term Λ(t), some features of the
problem can be obtained from the analysis of the standard sensitivity matrix, denoted as
S(t). In the absence of feedback gains, the dynamics of S(t) follow Eq. (3.3).

The sensitivity matrix grows over time, starting from the initial condition represented
by the identity matrix. Upon closer examination, it becomes apparent that the upper
diagonal of the matrix Ṡ(t) is filled with ones. As a consequence, the corresponding
terms in the S(tf) matrix are directly related to the time of flight. These two aspects are
equivalent and illustrate that the sensitivity matrix, or some of its components, experience
linear growth over time.

When solving the optimal control problem, minimizing the cost function leads to the
minimization of the flight time. This is achieved by progressively increasing the control
effort, essentially keeping the control input at its maximum saturation value and reducing
the duration of the minimum control phase. This trend is clearly demonstrated in the
accompanying figure: as the DOC term increases, the flight time decreases, and the control
action shifts from a max-min-max solution towards a continuous max solution, where the
control is maintained at its maximum value throughout the trajectory. A similar DOC

5| Numerical Simulations and Results 81

behavior occurs in a CL architecture in the absence of η(t), as evident from the similarities
between Fig. 4.7 and Fig. 5.1.

0 20 40 60 80

Time [s]

0.3

0.4

0.5

0.6

0.7

0.8

u
 [
-]

0

0.04

0.1

0.4

0.8

Figure 5.1: Control trends of OL Case for increasing α

As discussed in Section 4.3.2, in the closed-loop case, the presence of the η(t) term is
responsible for an increase in sensitivity, particularly for low α values. However, this is
not observed in the Open-Loop (OL) case, as the sensitivity exhibits a monotonically
decreasing trend. Nevertheless, the actual sensitivity values in the OL configuration do
not vary significantly, rendering the OL version of the DOC strategy notably inefficient.

290 300 310 320 330

Fuel Mass [kg]

48

50

52

54

56

58

60

S
e
n
s
it
iv

it
y

noDOC

DOC

Figure 5.2: Sensitivity of h(tf) for OL case with α

It is worth noting that when the solution reaches the full max configuration, no further
reductions in sensitivity can be achieved. Therefore, the rightmost point on the plot,

82 5| Numerical Simulations and Results

corresponding to the maximum fuel mass, represents the minimum sensitivity value for
the system. If α were to increase beyond this point, subsequent values would be similar,
as no further improvements in sensitivity are attainable.

In the absence of feedback control, initial position errors cannot be compensated for, nor
can initial velocity errors be mitigated. These errors remain constant throughout the
entire trajectory due to the quasi-linear dynamics of the system. However, velocity errors
can lead to the growth of position errors since they are integrated over time. Therefore,
desensitization can be interpreted as reducing the time of flight to minimize the time
integrals of velocity errors, thereby mitigating the impact of velocity perturbations on
position errors.

Performance can be quantified through Monte-Carlo analysis. When considering all per-
turbations, the 3σ standard deviation of the final altitude is depicted in the following
plot. As anticipated in Fig. 5.2, the DOC strategy does not yield a substantial improve-
ment in terms of the standard deviation of the final state, and the resulting values of the
standard deviations are too high to be considered reasonable. Nevertheless, a reduction
in standard deviation is evident, even though it is not consistently decreasing but ex-
hibits a general decreasing trend. This behavior is influenced by velocity errors. Since the
number of samples in the Monte-Carlo analysis is limited, perturbed velocity samples are
not evenly distributed around the nominal value. Consequently, this leads to significant
variations in the final position due to the integration of this discrepancy throughout the
entire trajectory.

290 300 310 320 330

Fuel Mass [kg]

480

500

520

540

560

580

600

620

S
td

 -
 3

noDOC

DOC

(a) 3σ standard deviation of h(tf)

290 300 310 320 330

Fuel Mass [kg]

9.5

10

10.5

S
td

 -
 3

noDOC

DOC

(b) 3σ standard deviation of vh(tf)

Figure 5.3: MC analysis for OL Case

This is evident in Fig. 5.3b. As the DOC strategy aims to minimize sensitivities by
reducing the time of flight, it does not significantly impact the final velocity errors, which

5| Numerical Simulations and Results 83

remain equal to the perturbations applied to the initial state, leading to sensitivity values
of one for all the velocity components. Consequently, any variation in the final velocity
standard deviation is linked to non-uniform sample distribution around the initial point
and impact the final altitude errors.

An important observation relates to the role of the last three points to the right. As
previously discussed in the context of Fig. 5.2, the point corresponding to the maximum
mass-consumption trajectory represents the physical performance limit of the system.
Consequently, in Fig. 5.3a, three vertically aligned points on the right side of the plot
can be observed. These points correspond to max profiles with different α weights. In
theory, their standard deviations should be the same, given that they represent the same
maximum performance configuration. However, due to the limited number of samples for
initial velocity errors, their standard deviations assume different values, leading to the
observed vertical trend.

84 5| Numerical Simulations and Results

5.3. Closed Loop Case

This section presents the results of the thesis work, showcasing the outcomes of the ar-
chitecture optimization. Before delving into the most significant findings, it is important
to make a brief but significant observation.

As discussed in Section 4.3.2 the noDOC max-min-max is not capable of addressing the
saturation issue, resulting in a control system with reduced feedback. In practical applica-
tions, this limitation is unacceptable as it severely restricts the management of perturba-
tions. Therefore, a common approach is to compute the nominal trajectory with control
bounds set narrower than the maximum and minimum nominal values, allowing room for
feedback. The tuning becomes a saturation-driven process aiming at ensuring that the
actuators do not operate beyond their physical limits while fulfilling the requirements in
terms of prescribed performance.

In the context under examination, the choice of this approach plays a pivotal role. Since
the DOC strategy includes a saturation handling mechanism through the coefficient η(t),
comparing it to a solution with only half the feedback would not be fair. Consequently, it
was decided to adjust the bounds for the noDOC control from the range of 0.3-0.8 to 0.4-
0.7 when defining the guidance and selecting the gains. This adjustment aimed to avoid
exceeding the 0.3-0.8 bounds with the nominal control plus feedback effort. While the
choice of 0.4-0.7 results in an increase in mass compared to the 0.3-0.8 case, it provides a
reasonable benchmark for the DOC strategy since control saturation is rarely encountered.

0 10 20 30 40 50 60

Time [s]

0.3

0.4

0.5

0.6

0.7

0.8

u
 [

-]

Figure 5.4: NoDOC solution with new bounds

The specific values of 0.4-0.7 were selected to ensure sufficient leeway in both directions,

5| Numerical Simulations and Results 85

with particular emphasis on the upper value due to the initial phase of the nominal
trajectory characterized by a control value u = umax and by the presence of significant
perturbations. Therefore, careful tuning was applied to the upper bound of 0.7, while less
attention was given to the lower bound of 0.4. It is worth noting that using 0.4 or other
values, such as 0.35, has minimal impact on both fuel mass consumption and sensitivity
values, since the most relevant role is played by the upper bounds of the interval. Fig. 5.4
displays the 0.3-0.8 boundaries and illustrates the noDOC solution achieved using the
adjusted boundaries of 0.4-0.7.

5.3.1. Linearity and Decoupling

Before discussing the best design solutions, a brief overview of some key properties of
the method and the application scenario is provided. These properties are related to the
linearity of the model and serve to justify certain statements made in previous chapters.

A pivotal aspect of the entire model is its quasi-linearity. Despite being a result of strong
assumptions, such as perfect vehicle modeling, the absence of drag, and ideal attitude con-
trol, which are not typically applicable in real-world scenarios, these assumptions simplify
the preliminary characterization of the DOC, since they allow for some simplifications and
predictions. Another important aspect linked to the aforementioned assumptions is the
quasi-decoupled dynamics between different directions. These dynamics are not entirely
independent or linear due to the presence of a mass term in the equations of motion’s
denominator and the norm constraint coupling the individual thrust components.

The implications of these two assumptions are significant in characterizing the method.
Firstly, perturbations on the initial state in the ith direction, both in terms of position and
velocities, only affect the ith direction. As a result, the impact of individual perturbations
can be considered and analyzed separately, and the resulting covariance matrix is quasi-
diagonal, except for the coupling between the position component and its corresponding
velocity.

However, the most substantial consequence is the nearly exact match between the sen-
sitivity of the final state with respect to initial state perturbations and the final state
covariance. This alignment is straightforward because the propagation of initial state un-
certainties follows the same differential equation as the sensitivity matrix, given that the
original problem (governing perturbation propagation) and the linearized version (govern-
ing sensitivity propagation) are almost identical. In Section Section 4.3, the sensitivity of
the final state was chosen as a criterion for comparing different design choices, as indicated
in Equation (4.8). This criterion can be applied generally, even in more complex models,

86 5| Numerical Simulations and Results

but it is particularly suitable in this case due to the linear relation between final sensitiv-
ities and final covariance matrices. As the results of Monte-Carlo (MC) analysis serve as
the real validation of the methodology, forecasting their results is essential to reduce the
number of MC analyses required during the tuning process. Additionally, when faced with
two competitive design options, the best one in terms of final covariance can be selected
without conducting the computationally demanding MC analysis. As demonstrated in
Fig. 5.5, there is a linear correlation between sensitivity (represented by Si(tf)) and the
standard deviation of the y(tf) component.

0 1 2 3 4 5

Final Sensitivity

0

10

20

30

40

50

S
T

D
 -

 3

noDOC [0.4-0.7]

noDOC [0.3-0.8]

DOC

Figure 5.5: Correlation between h(tf) standard deviation and final sensitivity

Another noteworthy remark that can be made by observing Fig. 5.5 is that the blue point,
corresponding to the noDOC solution with throttle bounds of 0.3-0.8, is the only point
where the linearity between the final sensitivity and the final standard deviation of h is
not respected. This deviation is a result of saturation occurring in the MC simulation,
leading to worse actual performance, measured in terms of standard deviation, compared
to the predicted values. In contrast, the yellow dot corresponds to the noDOC solution
with the new throttle bounds of 0.4-0.7. This point aligns with the red ones, where the
linear relationship between sensitivity and standard deviation is valid. Consequently, the
connection between standard deviation and sensitivity remains linear in this case as well,
suggesting that saturation either does not occur or has minimal impact on the final state
accuracy. This provides a first verification of the shrinkage of the nominal control values
as a valid saturation mitigation strategy for noDOC solution, both in terms of architecture
and chosen values.

5| Numerical Simulations and Results 87

5.3.2. Final Design

The design directly emanates from the characterization process of Section 4.3, taking into
account all the elements reported. As a general guiding principle, the tuning process
has been developed with the aim of ensuring specific performance criteria. This includes
maintaining a final horizontal position error within the confines of 10 meters (with a 3σ

deviation), limiting the vertical position error to 1 meter, constraining the final horizontal
velocity error to 2 meters per second, and keeping the vertical velocity error at 1 meter
per second.

These performance benchmarks are subjected to validation through a comprehensive suite
of MC simulations, which are detailed in Section 5.3.4.

0 20 40 60 80

Time [s]

0

500

1000

1500

2000

2500

x
 [

m
]

0

0.04

0.1

0.4

0.8

2

(a) Trend of x(t)

0 20 40 60 80

Time [s]

0

500

1000

1500

2000

2500

3000

3500
h

 [
m

]

0

0.04

0.1

0.4

0.8

2

(b) Trend of h(t)

Figure 5.6: Positions trends for different α weights

0 20 40 60 80

Time [s]

-60

-40

-20

0

20

40

v
x
 [

m
/s

]

0

0.04

0.1

0.4

0.8

2

(a) Trend of vx(t)

0 20 40 60 80

Time [s]

-80

-60

-40

-20

0

v
h

 [
m

/s
]

0

0.04

0.1

0.4

0.8

2

(b) Trend of vh(t)

Figure 5.7: Velocity trends for different α weights

88 5| Numerical Simulations and Results

The positions and velocities in the x̂ and ĥ directions can be observed in the graphical
representations presented in Fig. 5.6 and Fig. 5.7. This choice was made for the sake of
brevity and to ensure a concise and compact representation. It is worth noting that the
motion in the ŷ direction closely resembles that in the x̂ direction.

It is important to highlight that, even when dealing with high α weights, there are no
significant differences in terms of states. This outcome was expected since the DOC term
has only a minimal impact on the problem’s cost function.

In the x̂ direction, the motion is profoundly affected by the challenging initial conditions:
the vehicle initially moves away from the target with positive velocity and positive initial
x. Nevertheless, within 10 seconds, the thrusters manage to alter the vehicle’s trajectory,
ultimately guiding it to the landing site in approximately 60 seconds. The time of flight
is influenced by the value of α; as α increases, so does the time of flight.

Conversely, in the ĥ direction, the motion follows a more predictable pattern. During the
initial phases of the trajectory, as the control is primarily focused on changing the signs
of vx and vy, the lander’s velocity increases in the negative direction towards the target,
and then it is reduced to ensure a final condition of soft touchdown. Notably, the velocity
vh, as shown in Fig. 5.7b, is more influenced by the increment of α compared to vx, as
depicted in Fig. 5.7a. This phenomenon can potentially be attributed to a greater portion
of control being allocated to the ĥ direction to counteract the effects of gravity, and since
the DOC parameter influences control trends, vh is more significantly affected.

0

500

1000

1500

500

y [m]

2000

h
 [

m
]

x [m]

2500

2000

3000

0 10000

0

0.04

0.1

0.4

0.8

2

Figure 5.8: Trajectory for different α weights

5| Numerical Simulations and Results 89

The overall trajectory resulting from these conditions is visualized in Fig. 5.8. It is evident
that for increasing values of α, the trajectories tend to descend more rapidly in altitude,
as previously observed in Fig. 5.6b.

0 20 40 60 80

Time [s]

50

100

150

200

250

300

350

400

F
u

e
l
M

a
s
s
 [

k
g

]

0

0.04

0.1

0.4

0.8

2

(a) Fuel Mass evolution

0 20 40 60 80

Time [s]

-20

-15

-10

-5

0

5

10

 m
 f

u
e

l
[k

g
]

0

0.04

0.1

0.4

0.8

2

(b) ∆m with respect to α = 0 case

Figure 5.9: Fuel Mass consumption for different α weights

Fig. 5.9, which displays the fuel mass, and Fig. 5.10, illustrating the trends in control u
over time, exhibit a strong interconnection. This link arises from the fact that control is
administered through a propulsive system, and the control value is directly proportional
to the mass flow rate within the thrusters. Consequently, changes in control lead to
fluctuations in the fuel mass. Therefore, the norm of control is directly proportional to
the derivative of the fuel mass variation. This relationship becomes particularly evident
when we examine the case with α = 0. In the initial phase, a sharp decrease in fuel
mass occurs as control is actively applied. However, when control is reduced, the rate of
fuel mass reduction decreases, only to increase once again when the trajectory reaches its
second maximum segment.

Other relevant trends become even more apparent in Fig. 5.9b, which shows the change
in fuel mass, denoted as ∆ fuel mass, between the noDOC case with α = 0 and the other
cases. In the DOC cases, a reduction in fuel mass occurs during the initial stages, as is
evident from Fig. 5.10. Subsequently, the curves representing the DOC and noDOC cases
intersect at various points, depending on the specific control pattern employed. By the
end of the trajectory, ∆m is negative, indicating that for lower α values, the DOC strategy
consumes less fuel mass compared to the noDOC approach, which is computed with 0.4-0.7
bounds. However, as α increases, the differences in fuel consumption gradually diminish.

90 5| Numerical Simulations and Results

0 20 40 60 80

Time [s]

0.3

0.4

0.5

0.6

0.7

0.8

u
 [
-]

0

0.04

0.1

0.4

0.8

2

Figure 5.10: Control Norm in time for different α weights

Since the optimality conditions for optimal control problems are necessary conditions, it
is essential to verify the Hamiltonian of the solution. The Hamiltonian is defined in accor-
dance with Eq. (2.8), although the third term, which is associated with state constraints,
vanishes. The optimality of the solutions is validated by examining the Hamiltonian pro-
files, which should remain constant and close to zero, given that the problem does not
explicitly depend on time, and the final time is left unconstrained. The Hamiltonian,
Fig. 5.11, deviate from zero, but they are in close proximity to it.

0 20 40 60 80

Time [s]

-4

-2

0

2

4

6

8

10

H
a
m

ilt
o
n
ia

n

10
-5

0

0.04

0.1

0.4

0.8

2

Figure 5.11: Hamiltonian for different α weights

5| Numerical Simulations and Results 91

It is worth emphasizing that spectral collocation methods encounter challenges when
approximating constant piece-wise polynomials. This is evident from the curve with α =

0, which displays values that are larger than the others and exhibits strong discontinuities
at the switching points, transitioning from maximum to minimum values and vice versa.

Marginal DOC Coefficient As there are no constraints related to saturation on the
value of ν, only two criteria warrant consideration, as detailed in Section 4.3.3: limitations
on feedback gain effort and gain margin. It has been emphasized that greater attention
is directed towards the latter. The system, being Multi-Input Multi-Output (MIMO) in
nature, involves 7 states and 3 inputs, necessitating the evaluation of 21 gain margins.
Nevertheless, the most critical one can be selected at each instance and used as a reference
value. Fig. 5.12 provides a depiction of the gain margin in comparison to various ν values,
represented in dB scale.

0 20 40 60 80

Time [s]

0

10

20

30

40

50

G
a

in
 M

a
rg

in
 [

d
B

]

sys

 = 2

 = 3

 = 4

Figure 5.12: Gain Margin compared with different ν values

Despite the fact that the selection of ν = 3 results in better overall performance compared
to ν = 2, as demonstrated in Section 4.3.3, the design choice leaned towards the latter
option. This decision was primarily influenced by the fact that, in the later stages of
the trajectory, the gain margin falls below the critical threshold of ν = 3, leading to
potential stability issues. It is well-established that in the final segment of the trajectory,
η̃ = 3 · η(t) becomes less than 3, mainly because the control input u is approaching its
maximum value umax. However, this behavior is not readily predictable in advance, and
the more conservative choice of ν = 2 has been made.

92 5| Numerical Simulations and Results

LQR Tuning The resulting R and Q matrices are presented below. The criteria and
techniques used to determine these matrices are extensively detailed in Section 4.3.4.
In this process, the R value is minimized to the greatest extent possible to enhance
performance, taking into account the constraint on CPU time. Simultaneously, the Q
matrix is tuned to distribute the total control effort across the states. It is important
to note that the Q matrix corresponds to an unscaled version of the problem. Since
these matrices are diagonal, only their diagonal components, denoted as Rd and Qd, are
reported:

Rd =
[
2.5 2.5 2.5

]
Qd =

[
0.63 0.63 9.49 100.00 100.00 50.00

]
(5.1)

Although the orders of magnitude of the components in the Q matrix are similar to the
design choices made in [16], there have been specific adjustments. The weight assigned to
the altitude (the 3rd component) has been increased to accommodate the more stringent
requirements for this particular state. Conversely, the weight on vertical velocity has been
reduced relative to the other velocity components because the substantial gain applied to
altitude also indirectly impacts velocity errors. Given the integral relationship between
altitude and vertical velocity, a significant reduction in altitude error has a positive cas-
cading effect on velocity as well. Furthermore, due to comparable requirements for final
error and symmetric dynamics, the weights assigned to x and y and to vx and vy have
been set as equal pairs.

After tuning the Q and R matrix is was checked, through MC analyses, that the synthe-
sized feedback gains did not lead to saturation issues when considered with the noDOC
[0.4-0.7] case.

Desensitization Strategies As already stated in Section 4.3.5, the most convenient
choice in terms of dominant sensitivity is the y one. Therefore, this choice has been
operated, with several α values to obtain the different solutions. Multiple other solutions
have been considered and tested but the results where not as good as the architecture
desensitizing y component.

5| Numerical Simulations and Results 93

5.3.3. Alternative Design

Since multiple alternatives have been presented, it is worth mentioning two further design
solutions, belonging to the Multiple states desensitization, Section 4.3.5, and to the Thrust
Effect Desensitization one, Section 4.3.5. Since there are not relevant changes in terms of
trajectories and control with respect to Fig. 5.8, the corresponding plots are omitted for
brevity and the performances analysis are left to Section 5.3.4.

Multiple States Desensitization The most convenient choice for multiple states de-
sensitization is the y and vh couple, with a weight of α1 = 100 on y sensitivity and of
α2 = 10 on vh sensitivity, according to Eq. (4.6). Proper results in terms of performances
are provided in Section 5.3.4.

Thrust Uncertainties Desensitization The design choice for the thrust sensitivity
is to penalize the third component of Ω(tf) with a weight β = 50, while all the other
weights and the LQR matrices are unchanged with respect to the final design case.

5.3.4. MC Analysis

This section presents the effective outcomes of the DOC Closed-Loop strategy for the
powered landing problem, taking into account all perturbations affecting the initial state,
as outlined in Section 5.1. To provide a comprehensive overview, we display the standard
deviations related to DOC alongside those obtained from noDOC solutions within the
range of u ∈ [0.4− 0.7], highlighted in yellow, as they serve as the established benchmark
performances. Additionally, we include the MC performance for scenarios where u ∈
[0.3−0.8] to validate the decision to narrow the interval. Each plot also features a dashed
line denoting the landing site requirement to be met.

It is worth noting that both the noDOC solution and the DOC solution regulators are
synthesized according to the same LQR matrices detailed in Section 5.3.2, and subjected
to identical perturbations.

Final Design

To validate design decisions, we solely focus on perturbations to the initial state, as the
nominal design embeds just penalties on state sensitivities. In the subsequent sections,
when examining Thrust desensitization, we also take Thrust perturbations into account.
In the design solution, various plots have been presented, illustrating the ultimate stan-
dard deviation across all states. Each image is accompanied by a concise description to

94 5| Numerical Simulations and Results

ensure a more profound understanding of the results.

-3 -2 -1 0 1 2

Extra Fuel Mass [%]

0

10

20

30

40

50

60

S
td

 [
m

]
-

3

noDOC [0.4-0.7]

noDOC [0.3-0.8]

DOC

(a) 3σ standard deviation of x(tf)

-3 -2 -1 0 1 2

Extra Fuel Mass [%]

0

10

20

30

40

50

60

S
td

 [
m

]
-

3

noDOC [0.4-0.7]

noDOC [0.3-0.8]

DOC

(b) 3σ standard deviation of y(tf)

Figure 5.13: MC Analysis for x(tf) and y(tf)

As emphasized on multiple occasions, the trends for both the x and y directions are nearly
symmetrical, differing mainly in initial conditions and feedback gains. Consequently, it is
quite evident that even the standard deviations of the final states, as depicted in Fig. 5.13,
exhibit similar patterns, with slight values variations. In a general observation, it is clear
that the DOC strategy effectively enhances performance compared to the noDOC baseline,
represented in yellow, which serves as the reference for performance. With the same fuel
consumption, the final uncertainty is reduced, and by slightly increasing the fuel mass,
the requirements are met or nearly met.

-3 -2 -1 0 1 2

Extra Fuel Mass [%]

0

1

2

3

4

5

S
td

 [
m

/s
]

-
3

noDOC [0.4-0.7]

noDOC [0.3-0.8]

DOC

(a) 3σ standard deviation of vx(tf)

-3 -2 -1 0 1 2

Extra Fuel Mass [%]

0

1

2

3

4

5

S
td

 [
m

/s
]

-
3

noDOC [0.4-0.7]

noDOC [0.3-0.8]

DOC

(b) 3σ standard deviation of vy(tf)

Figure 5.14: MC Analysis for vx(tf) and vy(tf)

5| Numerical Simulations and Results 95

A noteworthy point is that the noDOC solution with u ∈ [0.3 − 0.8], indicated in blue,
exhibits worse behavior in the x direction compared to the y direction. This difference
is evident in Fig. 5.14, which displays uncertainties in final velocities. This behavior can
be explained with reference to Figure Fig. 4.1b. Due to challenging initial conditions in
the x direction, significant nominal control effort is necessary in that direction. When the
nominal control value is augmented by feedback control in the Monte-Carlo simulations,
the total control in the x direction becomes more susceptible to saturation, leading to a
deterioration in performance compared to the y direction.

Although the DOC strategy significantly enhances performance in terms of position, these
improvements may not be extraordinarily remarkable in an absolute sense. As evident
from Fig. 5.14, the standard deviation of final positions in the yellow case closely ap-
proaches those achieved with the DOC strategy, both in the x and y directions. The
primary advantage of the DOC strategy lies in its ability to achieve further reductions in
standard deviation with a slight increase in fuel consumption. Performance could poten-
tially be improved by increasing the weight factor α. However, it is worth noting that the
results are approaching a performance limit, and significant additional enhancement may
be challenging to achieve.

-3 -2 -1 0 1 2

Extra Fuel Mass [%]

0

5

10

15

20

S
td

 [
m

]
-

3

noDOC [0.4-0.7]

noDOC [0.3-0.8]

DOC

(a) 3σ standard deviation of h(tf)

-3 -2 -1 0 1 2

Extra Fuel Mass [%]

0

0.5

1

1.5

2

S
td

 [
m

/s
]

-
3

noDOC [0.4-0.7]

noDOC [0.3-0.8]

DOC

(b) 3σ standard deviation of vh(tf)

Figure 5.15: MC Analysis for h(tf) and vh(tf)

In Fig. 5.15, the performance in the h direction, which is the most critical one due to
stringent requirements on the final altitude uncertainty, is presented. The results in
Figure Fig. 5.15a clearly show that the improvement in terms of final altitude uncertainty
is not as significant compared to the noDOC case, and the 1-meter (3σ) requirement is not
met, although the results are very close. On the other hand, the DOC procedure worsens
the uncertainty in the vertical velocity, as demonstrated in Figure Fig. 5.15b, even though

96 5| Numerical Simulations and Results

both strategies manage to meet the specified requirement. It is noteworthy that a small
increase in fuel leads to a trajectory capable of restoring the initial performance and, at
the same time, achieving better results in all other components.

Conversely, a remarkable outcome is that the DOC strategy enhances performance com-
pared to the noDOC blue case. This result was unexpected based on the final sensitivity
analysis. However, saturation has a dramatic impact on the h direction, leading to a sig-
nificant degradation in performance for the blue case compared to the a-priori forecasts.

-3 -2 -1 0 1 2

Extra Fuel Mass [%]

0

10

20

30

40

50

60

S
td

 [
m

]
-

3

noDOC [0.4-0.7]

noDOC [0.3-0.8]

DOC =2

DOC =1

Figure 5.16: Comparison of x(tf) dispersion with ν = 1 and ν = 2

The final notable observation pertains to Fig. 5.16, which highlights the influence of the
Marginal Coefficient Factor ν, as discussed in Section 4.3.3, on the performances. Without
the incorporation of ν, the DOC strategy was unable to improve the noDOC solution or
meet the requirements for final state accuracy. In the case with ν = 3, the requirements
are satisfied; however, it was decided to set ν = 2 for the reasons elucidated in Fig. 5.12.

Saturation In Fig. 5.17, the percentage of time during the flight when the sum of
nominal and feedback control exceeds the bounds is depicted. Two key observations
emerge. Firstly, as indicated by the yellow dot, the reduction of the permissible control
values for trajectory generation and the corresponding LQR tuning is effectively executed,
with the saturation level decreasing from over 20% of the time to nearly zero. Additionally,
the saturation handling strategy discussed in Section 4.3.2 proves capable of delivering
optimal performance in terms of avoiding saturation, in line with the definition of η(t)
and as demonstrated by the DOC related values in the plot.

5| Numerical Simulations and Results 97

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

%
 S

a
tu

ra
ti
o

n

noDOC [0.4-0.7]

noDOC [0.3-0.8]

DOC

Figure 5.17: % extra saturation time over time of flight

Alternative Design

This section is dedicated to presenting the Monte-Carlo performances of the alternative
design architectures outlined in Section 5.3.2. It is important to note that while various
design architectures were considered, this section primarily concentrates on the most
significant and relevant ones.

Multiple States Desensitization This sections reports the MC results of the Multiple
States Desensitization illustrated in Section 4.3.5 and focusing on y and vh. While this
approach does lead to performance improvements, the degree of change is not significant.
This is because the dominant sensitivity approach already delivers satisfactory results
in terms of reducing dispersion in final states, and further desensitization does not yield
substantial enhancements. Moreover, the reduction in sensitivity is influenced both by the
feedback gains and the desensitization process. The significant weighting of the velocities
in the Q matrix, as clear from Eq. (5.1), already maximizes the reduction of sensitivity
in velocity components.

These findings clearly indicate that desensitizing multiple states with the considered Q

and R weights does not offer a significant performance boost. The architecture turns out
to be inefficient, given that it necessitates a larger number of state variables compared to
the single desensitization case. Hence, the concept of dominant sensitivity becomes even
more relevant, as it provides superior performance with minimal computational effort.

98 5| Numerical Simulations and Results

-3 -2 -1 0 1 2

Extra Fuel Mass [%]

0

10

20

30

40

50

60

S
td

 -
 3

noDOC [0.4-0.7]

noDOC [0.3-0.8]

DOC y

DOC y-vh

(a) 3σ standard deviation of x(tf)

-3 -2 -1 0 1 2

Extra Fuel Mass [%]

0

0.5

1

1.5

2

S
td

 -
 3

noDOC [0.4-0.7]

noDOC [0.3-0.8]

DOC y

DOC y-vh

(b) 3σ standard deviation of vh(tf)

Figure 5.18: MC Analysis for x(tf) and vh(tf) with y and vh desensitization

Thrust Uncertainties Desensitization When desensitizing the thrust effect, the
third element of Ω(tf) is penalized to mitigate the influence of thrust perturbations on
the ultimate altitude. Before presenting the results, it is valuable to provide a clear
quantification of the effect of thrust perturbations on the final state.

As mentioned in Section 4.3.5, thrust perturbations primarily impact the vertical direc-
tion. This is evident in Fig. 5.19, which depicts the final dispersion of the final x and
vh with both state and thrust perturbations (‘T’ case) and with state perturbations only
(‘noT’). As anticipated, thrust perturbations have a minimal effect on the x component,
whereas the impact on h component is substantial, and it almost fails to meet the final
error requirement.

-3 -2 -1 0 1 2 3

Extra Fuel Mass [%]

0

20

40

60

80

S
td

 -
 3

noDOC [0.4-0.7]

noDOC [0.3-0.8]

DOC T

DOC noT

(a) 3σ standard deviation of x(tf)

-3 -2 -1 0 1 2 3

Extra Fuel Mass [%]

0

5

10

15

20

25

30

S
td

 -
 3

noDOC [0.4-0.7]

noDOC [0.3-0.8]

DOC T

DOC noT

(b) 3σ standard deviation of vh(tf)

Figure 5.19: MC Analysis for h(tf) and h(tf) with Thrust desensitization

5| Numerical Simulations and Results 99

After demonstrating the influence of Thrust perturbations, the desensitization effect is
illustrated in Fig. 5.20, where different solutions are exposed to Thrust perturbations.
When β = 0, the Thrust is not penalized, while it is subject to a penalty with β = 50 in
the other scenario. The results align with the explanation provided in Section 4.3.5. The
worsening in performance in the x direction is a consequence of state perturbations. This
is attributed to the cost function’s focus on the vertical direction, which arises from the
penalization of Ω3(tf), that leads to the increment of sensitivity to state perturbations in
the x direction. However, Fig. 5.20b clearly highlights the impact of Thrust desensitization
on the final altitude. The solution with β = 0, which corresponds to the one labeled ‘DOC
T’ in Fig. 5.19, performs worse than the β = 50 solution in vertical direction.

-3 -2 -1 0 1 2 3

Extra Fuel Mass [%]

0

20

40

60

80

S
td

 -
 3

noDOC [0.4-0.7]

noDOC [0.3-0.8]

DOC =0

DOC =50

(a) 3σ standard deviation of x(tf)

-3 -2 -1 0 1 2 3

Extra Fuel Mass [%]

0

5

10

15

20

25

30

S
td

 -
 3

noDOC [0.4-0.7]

noDOC [0.3-0.8]

DOC =0

DOC =50

(b) 3σ standard deviation of vh(tf)

Figure 5.20: MC Analysis for h(tf) and h(tf) with Thrust desensitization

100 5| Numerical Simulations and Results

5.4. CPU Time Analysis

Considering that the single desensitization strategy proves to be the most suitable choice
for the problem considered, the subsequent topic for discussion pertains to the compu-
tational time required to obtain such solutions. As mentioned in Section 5.1, various
architectural designs and software tools have been employed and tested, and this section
aims to provide insights into the most efficient implementation for each of them.

All the CPU times presented here are derived from a machine equipped with an Intel 12th
Gen Core™ i5-1250P processor. These times are calculated as the mean values of 15 runs
for each case, a practice adopted to minimize the influence of perturbations. Additionally,
a tolerance of 10−6 was set for GPOPS, ensuring the accuracy of the results. An important
note to consider is that while different tests are categorized into four main paragraphs for
clarity, the results in one paragraph are interconnected with the others, and the complete
context is provided at the end of the section.

As a general procedure, the implementation of the DOC was carried out in a consistent
manner across all cases. Since IPOPT necessitates an initial guess for the optimal solution,
the approach involved computing the noDOC trajectory and utilizing it as the initial guess
for each DOC case. This was done by first obtaining the trajectory with α = 0, and then
gradually increasing the α weight to generate the nominal trajectories. Further details on
how α was incremented are provided in the second paragraph of this section.

Sensitivity Term The first topic of discussion centers on the comparison of different
implementation strategies employed for computing the sensitivity terms. While the pres-
ence of Ω(t) deserves attention, its computation is relatively straightforward and does not
allow for much flexibility in implementation. Therefore, this section focuses on Λ(t). The
insights are based on the findings presented in Section 3.4.1. In that section, four dis-
tinct implementation alternatives are detailed, referred to as S Matrix (Case 1), S Inverse
Matrix (Case 2), and Lambda Vector (Case 3). The latter is further divided into two
subcases, Case 3a and Case 3b, corresponding to scenarios where the state is augmented
with either (S(tf)S(t)−1) components, propagated as per Eq. (3.21), or Λ(t) components,
propagated according to Eq. (3.22).

It is important to note that each of these solutions necessitates a different number of
additional elements to be incorporated into the state vector. This factor plays a critical
role in terms of computational efficiency. Furthermore, without delving into too much
detail, it is relevant to mention that the components of the Sf matrix, which are required
in Case 1 and 2 to satisfy the final condition, have been treated as constant parameters

5| Numerical Simulations and Results 101

rather than as states. This choice was made to enhance the computational properties of
the algorithm, as discussed in Section 3.4.3. Throughout this process, all available Matlab
tools were utilized to optimize CPU times.

Table 5.2 reports the average CPU times required by GPOPS to obtain a solution with
α = 0.01 using the noDOC solution as the initial guess, and considering all the optimized
parameters discussed in Section 4.1.2.

Case Extra Variables CPU Time [s]

1 49 + 49 811.44

2 49 + 49 997.90

3a 49 160.31

3b 7 25.24

Table 5.2: CPU Time - Sensitivity Term

As expected, the implementation that utilizes Λ(t) components to augment the state
emerges as the most efficient choice, requiring the fewest additional variables. However,
due to the limited number of cases provided, it is not possible to establish a direct re-
lationship between the number of extra variables required and CPU time, even though
the increase in CPU time is noticeable. It is important to note that Case 2 was expected
to perform better than Case 1, as the S matrix is inverted only once at the final time.
However, in the context of GPOPS implementation, the actual outcome contradicts this
expectation, even though analytical results suggested the opposite behavior. While the
exact reasons for this discrepancy are not entirely clear, it can be attributed to the con-
ditioning number of the problem. The problem with Case 2 implementation exhibits a
condition number of 166671, whereas the Case 1 implementation reduces it to 144350,
providing evidence of the validity of the results.

Single jump or Homotopy Since the solutions that are comparable to the noDOC
solution with u ∈ [0.4 − 0.7] in terms of mass involve high α weights (around 2), it
is essential to investigate the most effective strategy for transitioning from the noDOC
solution to the DOC solution with α = 2. This paragraph presents two alternatives,
named the Single Jump and Homotopy strategies.

In the Single Jump approach, the desired solution is directly obtained from the noDOC
initial guess by setting α = 2. Conversely, the Homotopy strategy, which is a effectively
a quasi-Homotopy approach, involves a prescribed series of intermediate steps to ensure

102 5| Numerical Simulations and Results

a smooth and uniform variation in the α value. For simplicity, only one intermediate α
value has been considered in this case, which is α = 0.01.

Table 5.3 shows the CPU times required for these strategies, obtained using the most
computationally efficient sensitivity implementation, Case 3b of Table 5.2.

Case α = 0.01 α = 2

Homotopy 25.24 s 18.17 s

Single Jump - 18.95 s

Table 5.3: CPU Time - α steps

The table clearly illustrates that the Single Jump strategy is the most efficient option, as
the total CPU time for the Homotopy scheme is higher. This indicates that the primary
challenge when transitioning from a noDOC solution to a DOC solution lies change of
solution category, rather than in implementing a substantial change in the α value.

Two additional noteworthy points should be considered. The first is that the solver
encounters difficulties in converging to an optimal solution with lower α values compared
to higher ones, even though solutions with lower α values are closer to the noDOC solution.
This distinction is evident when comparing the CPU time required to achieve a solution
with α = 0.01 (in the first row) and the time needed to reach α = 2 directly from the
noDOC case. However, it is important to note that the transition from α = 0.01 to α = 2

demands less time than the shift from α = 0 to α = 2, as one might expect.

Softwares Comparison In order to determine the most suitable software for the given
problem, it is essential to perform a thorough comparison in terms of CPU time. The
three solutions under evaluation are as follows: GPOPS-v1.0 (Case A), GPOPS-v2.5
(Case B), and GPOPS-v2.5 with Adigator (Case C). It is important to note that different
GPOPS settings have been applied to each case to optimize their performance, although
these specific settings are not detailed here. These configurations have been fine-tuned
based on CPU time minimization. The comparison involves transitioning from a noDOC
solution (with α = 0) to a relevant DOC solution (with α = 2) using the Single Jump
approach with Λ(t) components to augment the state.

Before delving into the analysis of the results, it is important to clarify the meaning of the
third column. When using the Adigator tool, automatic differentiation can be performed
either during the minimization process of IPOPT or offline. This distinction arises because
the problem dynamics are already known and well-defined. However, it is crucial to

5| Numerical Simulations and Results 103

Case CPU Time CPU Time & AD

Case A 16.13 s -

Case B 18.95 s -

Case C 16.55 s 22.40 s

Table 5.4: CPU Time - Softwares

recognize that performing online derivatives computation during the optimization process
can impact algorithm efficiency, resulting in increased CPU time, as demonstrated in
Table 5.4. In general, it is advantageous to compute the Jacobian and Hessian matrices
beforehand, as it reduces CPU time. Nonetheless, this approach may not be feasible for
online applications, such as real-time scenarios.

Overall, the performances of the two GPOPS versions are comparable, although Case A
exhibits a slight reduction in CPU time. Since a detailed analysis of the two software
versions is beyond the scope of this discussion, this result can be accepted as it stands,
without further investigation.

noDOC comparison Once the most efficient version of the DOC implementation is
identified, it is essential to compare it with an equivalent noDOC solution in terms of
CPU time. While the performance improvements in final state dispersion are noteworthy,
they come at a substantial cost in terms of CPU time. As demonstrated in Table 5.4, the
minimum achievable CPU time is 16.13 seconds. In contrast, the corresponding noDOC
case, with the same weights and tuning, only requires 0.33 seconds to compute, resulting
in a CPU time that is 50 times smaller.

It is important to note that these CPU times have been measured on a single machine, so
it is not appropriate to generalize that DOC invariably demands 50 times the CPU time
of a noDOC solution. However, this factor allows to gauge the actual impact of DOC on
the solution process, which appears to be extremely relevant.

105

6| Conclusions and future

developments

This chapter aims to highlight the most significant results and discussing the advantages
and disadvantages of the solutions proposed. While specific design solutions were previ-
ously detailed in Chapter 5, a brief summary is reiterated in Section 6.1 to emphasize
the key outcomes of this work. The latter part focuses on suggesting potential future de-
velopments for the application under consideration. Given the preliminary nature of this
study, numerous avenues remain unexplored, but the most pertinent ones are presented
in Section 6.2.

6.1. Conclusions

As demonstrated in this study, the integration of Desensitized Optimal Control (DOC)
into GPOPS for the examined problem has proven to be highly successful, demonstrating
both computational efficiency and performance improvements with respect to classical
architectures.

Addressing the research questions outlined in Section 1.2, the initial focus is on the effec-
tive incorporation of the strategy within the GPOPS environment. Despite the inherent
complexity of the process, successful implementation was achieved by utilizing a conve-
nient form of sensitivity terms, denoted as Λ(t) and Ω(t), and by identifying an optimal
strategy for computing feedback gains through the Linear Quadratic Regulator (LQR)
approach. Certain limitations persist, such as the constant setting of the LQR matrix R
throughout the entire trajectory, but the results prove to be satisfactory. This achieve-
ment is closely tied to the second research question, as the successful implementation of
the proposed methodology was made possible through an optimized form. Without this
optimization, as indicated in Table 5.2, the computational times for finding a solution
would have been prohibitively high, making the validation and characterization of the
implemented scheme more challenging. Therefore, the implementation architecture and
its optimal form are interconnected.

106 6| Conclusions and future developments

Once the implementation architecture is established, in accordance with the third research
question, the method needs to be characterized and refined to meet the specified perfor-
mance requirements. Despite the apparent simplicity of this process, numerous factors
interact, requiring a careful tuning of each when possible. The fundamental steps are
outlined in Section 4.3; however, they are case-dependent, and it remains unclear whether
they are applicable to entirely different scenarios of the same problem (e.g., different ini-
tial conditions). The role of the Feedback Capability Factor η(t) has been extensively
analyzed and the innovative solution of Marginal DOC Coefficient introduced. Addition-
ally, the concept of dominant sensitivity is shown and utilized extensively, along with
clarifying the impact of LQR matrices on the optimal solution. While different desensiti-
zation strategies have been considered, they proved to be less efficient than the dominant
sensitivity-based one, as discussed in Section 5.3.4.

Based on the results, the method’s actual performance is measured in terms of the covari-
ance of the final state. The comprehensive analysis suggests that the DOC strategy out-
performs the noDOC approach, with some flexibility in trajectory design choices. Three
equivalent interpretations are possible, highlighting different factors. The first suggests
that DOC, with the marginal coefficient, achieves the same performance as the noDOC
solution with reduced mass. Furthermore, the method can be seen as a means to reduce
errors while maintaining the same fuel mass consumption or a way to enhance perfor-
mance with a slight increase in fuel mass. These effects can be interchanged by modifying
a single factor: α. Another significant outcome is that DOC performance can be inter-
preted and evaluated solely in light of this synthetic multiplying coefficient α, provided
that the internal DOC weights αi and βi assume reasonable values.

It is important to note that, to achieve the most effective formulation of the DOC problem,
various contributions have been amalgamated into a unified and comprehensive DOC
form, as outlined in Section 3.2.1. This formulation is not case-dependent and can be
considered for any kind of problem once the sensitivity terms are appropriately defined.
While this was not the primary goal of the thesis, it naturally emerged in the quest to
address the research questions.

Despite the seemingly straightforward nature of the concepts presented, the tuning and
management of the algorithm pose challenges. The tuning process is demanding due to the
interplay between different variables, even for a quasi-linear problem like the one analyzed
in this study. The difficulty for non-linear problems or more complex dynamical systems
is uncertain. A crucial point to consider is the validity and optimality of the numerical
results. The thesis aimed to construct a framework and thoroughly characterize it to
achieve the best possible performance. While this objective has been largely accomplished,

6| Conclusions and future developments 107

the results should not be considered absolutely optimal, as there are no criteria to assess
the optimality of the chosen design variables. Although a general overview has been
provided, it cannot be ruled out that some relevant trends or relationships have not been
explicitly mapped.

6.2. Future directions

Among the various alternatives available, some weaknesses of the method are identified as
potential avenues for future research. Despite the satisfactory performance results and the
well-defined desensitization strategy, there is room for improvement in the determination
of feedback gains along two distinct directions.

The first aspect, as previously discussed in Section 3.2.2, involves the creation of a reliable
method for treating gains as optimization variables. This aspect remains absent in the
DOC theory but could serve as a crucial element in establishing a comprehensive theory
capable of simultaneously optimizing trajectory and feedback gains. While structured
approaches like the LQR employed in this study offer effective solutions, the exploration
of a free gains approach, if properly developed, holds promise for further enhancements.
Various methods could be explored to address this issue, ensuring the minimum require-
ment of the controller’s stability. Additional enhancements might involve introducing
constraints on gain margins or noise rejection performance.

Further improvements in feedback gains can be pursued without altering the DOC theory,
as discussed in the first set of improvement directions. Simpler solutions, such as finding
a reasonable way to have varying Q and R along the trajectory or defining feedback
gains through alternative strategies like H-inf, can be explored. These suggestions serve
as initial pointers, and numerous other modifications could be implemented to achieve
superior performance.

The final noteworthy observation underscores that, given the preliminary stage of the
work, certain robust assumptions were taken into account. Future advancements could
center on minimizing the number of assumptions or adjusting them to better correspond
with real-world scenarios.

109

Bibliography

[1] Evgeny Slyuta. Chapter 3 - the luna program. In Andrea Longobardo, editor, Sample
Return Missions, pages 37–78. Elsevier, 2021.

[2] Gerald A. Soffen and Clayton W. Snyder. The first viking mission to mars. Science,
193(4255):759–766, 1976.

[3] Bruce I Larrimer. Promise Denied - NASA’s X-34 and the Quest for Cheap, Reusable
Access to Space. National Aeronautics and Space Administration, 1994.

[4] Ray O. Charette, Don A. Steinmeyer, and Ray R. Smiljanic. Delta clipper lessons
learned for increased operability in reusable space vehicles. AIP Conference Proceed-
ings, 420(1):969–978, 01 1998.

[5] Satoshi Nonaka, Hiroyuki Nishida, Hiroyuki Kato, Hiroyuki Ogawa, and Yoshifumi
Inatani. Vertical landing aerodynamics of reusable rocket vehicle. Transactions of
the Japan Society for Aeronautical and Space Sciences, Aerospace Techonolgy Japan,
10:1–4, 2012.

[6] Seth B Aaron, Dylan Conway, Daniel Clouse, Andrew E Johnson, Yang Cheng,
Adnan I Ansar, Nikolas Trawny, Stefan R Bieniawski, Mark Castelluccio, and Sam
Pedrotty. Performance analysis of terrain relative navigation using blue origin new
shepard suborbital flight telemetry. In AIAA SCITECH 2022 Forum, page 1830,
2022.

[7] Lars Blackmore. Autonomous precision landing of space rockets. In Frontiers of Engi-
neering: Reports on Leading-Edge Engineering from the 2016 Symposium, volume 46,
pages 15–20. The Bridge Washington, DC, 2016.

[8] Marco Sagliano, Michael Dumke, and Stephan Theil. Simulations and flight tests of
a new nonlinear controller for the eagle lander. Journal of Spacecraft and Rockets,
56(1):259–272, 2019.

[9] Massimo Ferlin, Badr Rmili, Sebastien LE Martelot, Anouk Schindler, Olivier Bois-
neau, Stéphane DUSSY, Stéphane Querry, Błażej Marciniak, Paweł Surmacz, Marek

110 | Bibliography

Płochów, et al. Frog project: small demonstrator for big ambitions in rlv european
objectives. status quo and results. Eucass, 2022.

[10] Etienne Dumont, Shinji Ishimoto, Pascal Tatiossian, Josef Klevanski, Bodo Reimann,
Tobias Ecker, Lars Witte, Johannes Riehmer, Marco Sagliano, Sofia Giagkozoglou
Vincenzino, et al. Callisto: a demonstrator for reusable launcher key technologies.
Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace
Technology Japan, 19(1):106–115, 2021.

[11] Marco Sagliano, Shinji Ishimoto, José A. Macés-Hernández, David Seelbinder, and
Etienne Dumont. Guidance and control strategy for the callisto flight experiment.
In 8th European Conference for Aeronautics and Aerospace Sciences, 07 2019.

[12] Marco Sagliano, Tsukamoto Taro, Ansgar Heidecker, Josè A. Macés Hernández, Ste-
fano Farì, Markus Schlotterer, Woicke Svenja, David Seelbinder, Shinji Ishimoto,
and Etienne Dumont. Robust control for reusable rockets via structured h-infinity
synthesis. In 11th International ESA Conference on Guidance, Navigation & Control
Systems, 2021.

[13] Etienne Dumont, Michel Illig, Shinji Ishimoto, Christophe Chavagnac, Yasuhiro
Saito, Sven Krummen, Silas Eichel, Hauke Martens, Sofia Giagkozoglou, Janis S.
Häseker, Tobias Ecker, Josef Klevanski, Felix Krziwanie, Rotärmel Waldemar, Sil-
vio Schröder, Anton Schneider, Christian Grimm, Svenja Woicke, Marco Sagliano,
Markus Schlotterer, Markus Markgraf, Benjamin Braun, Moritz Aicher, Lale E
Briese, Ivaylo Petkov, Johannes Riehmer, and Bodo Reimann. Callisto: A pro-
totype paving the way for reusable launch vehicles in europe and japan. In 73rd
International Astronautical Congress (IAC), 2022.

[14] Gabriele De Zaiacomo, Gonzalo Blanco Arnao, Riccardo Bunt, and Davide Bonetti.
Mission engineering for the retalt vtvl launcher. CEAS Space Journal, 14(3):533–549,
2022.

[15] Hans Seywald and R.R. Kumar. Desensitized optimal trajectories. Advances in the
Astronautical Sciences, light Mechanics, pages 103–116, 01 1996.

[16] Haijun Shen, Hans Seywald, and Richard W. Powell. Desensitizing the minimum-
fuel powered descent for mars pinpoint landing. Journal of Guidance, Control, and
Dynamics, 33(1):108–115, 2010.

[17] Anil V. Rao, David A. Benson, Christopher Darby, Michael A. Patterson, Camila
Francolin, Ilyssa Sanders, and Geoffrey T. Huntington. Algorithm 902: Gpops, a

| Bibliography 111

matlab software for solving multiple-phase optimal control problems using the gauss
pseudospectral method. ACM Trans. Math. Softw., 37(2), 2010.

[18] Alfio Quateroni. Numerical Models for Differential Problems. Springer Milano, 2014.

[19] Ivar Stakgold and Michael Holst. Green’s Functions and Boundary Value Problems.
John Wiley & Sons, Inc., 2011.

[20] Donald E. Kirk. Convex Optimization. Dover Publications Inc., 2004.

[21] Artuhr E. Bryson and Yu-Chi Ho. Applied Optimal Control. Taylor & Francis, 1975.

[22] Lev S. Pontryagin, Vladimir G. Boltyanskii, Revaz V. Gamkrelidze, and Evgenii F.
Mishchenko. The Mathematical Theory of Optimal Processes. CRC Press, Taylor &
Francis Group, 1986.

[23] John T. Betts. Practical Methods for Optimal Control Using Nonlinear Programming.
Siam, 2010.

[24] Anil Rao. A survey of numerical methods for optimal control. Advances in the
Astronautical Sciences, 135, 01 2010.

[25] Harold W. Kuhn and Albert W. Tucker. Nonlinear programming. In Proceedings of
the Second Berkeley Symposium on Mathematical Statistics and Probability, volume 1,
pages 481–492. University of California Press, 1951.

[26] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univer-
sity Press, 2015.

[27] John T. Betts. Survey of numerical methods for trajectory optimization. Journal of
Guidance, Control, and Dynamics, 21(2):193–207, 1998.

[28] Ryan Russell. Global search for planar and three-dimensional periodic orbits near
europa. The Journal of the Astronautical Sciences, 54, 06 2012.

[29] Philip E. Gill, Walter Murray, and Michael A. Saunders. Snopt: An sqp algorithm
for large-scale constrained optimization. SIAM Review, page 99–131, 01 2002.

[30] Richard H. Byrd, Jorge Nocedal, and Richard A. Waltz. Knitro: An integrated
package for nonlinear optimization. Large Scale Nonlinear Optimization, Springer
Verlag, page 35–59, 01 2006.

[31] John T. Betts and Walter P. Huffman. A sparse nonlinear optimization algorithm.
Journal of Optimization Theory and Applications, page 519–541, 09 1994.

[32] Josef Stoer and Roland Bulirsch. Introduction to Numerical Analysis. Springer, 2002.

112 | Bibliography

[33] Germund Dahlquist and Ake Björck. Numerical Methods. John Wiley & Sons, Inc.,
2011.

[34] Divya Garg. Advances in global pseudospectral methods for optimal control. PhD
thesis, Graduate School, University of Florida, 2011.

[35] Marco Sagliano. Development of a Novel Algorithm for High Performance Reentry
Guidance. PhD thesis, Bremen University, 2016.

[36] Marco Sagliano. Generalized hp pseudospectral-convex programming for powered
descent and landing. Journal of Guidance, Control, and Dynamics, 42(7):1562–1570,
2019.

[37] Marco Sagliano, Stephan Theil, Michiel Bergsma, Vincenzo D’Onofrio, Lisa Whit-
tle, and Giulia Viavattene. On the radau pseudospectral method: theoretical and
implementation advances. CEAS Space Journal, 9(3):313–331, 2017.

[38] Matthew Weinstein and Anil Rao. Algorithm 984: Adigator, a toolbox for the al-
gorithmic differentiation of mathematical functions in matlab using source trans-
formation via operator overloading. ACM Transactions on Mathematical Software,
44:1–25, 08 2017.

[39] Vincenzo D’Onofrio, Marco Sagliano, and Yunus E Arslantas. Exact hybrid jacobian
computation for optimal trajectories via dual number theory. In AIAA Guidance,
Navigation, and Control Conference, page 0867, 2016.

[40] Divya Garg, Patterson Michael A., Camila Francolin, Christopher L. Darby, Geof-
frey T. Huntington, William W. Hager, and Anil V. Rao. Direct trajectory opti-
mization and costate estimation of finite-horizon and infinite-horizon optimal control
problems using a radau pseudospectral method. Computational Optimization and
Applications, pages 335–358, 09 2011.

[41] Venkata Ramana Makkapati, Mehregan Dor, and Panagiotis Tsiotras. Trajectory
desensitization in optimal control problems. In 2018 IEEE Conference on Decision
and Control (CDC), pages 2478–2483, 2018.

[42] Kevin Seywald and Hans Seywald. Desensitized optimal control. In AIAA SciTech
2019 forum, page 0651, 2019.

[43] Hans Seywald. Desensitized optimal trajectories with control constraints. Advances
in the Astronautical Sciences, 114:737–744, 2003.

[44] Behcet Acikmese and Scott R. Ploen. Convex programming approach to powered

6| BIBLIOGRAPHY 113

descent guidance for mars landing. Journal of Guidance, Control, and Dynamics,
30(5):1353–1366, 2007.

[45] Ping Lu. Propellant-optimal powered descent guidance. Journal of Guidance, Con-
trol, and Dynamics, 41(4):813–826, 2018.

[46] V. Pareto. Cours d’économie politique: professé à l’Universitè de Lausanne. Number
v. 2 in Cours d’économie politique. F. Rouge, 1897.

[47] Matthew J. Weinstein and Anil V. Rao. Algorithm 984: Adigator, a toolbox for the
algorithmic differentiation of mathematical functions in matlab using source trans-
formation via operator overloading. ACM Trans. Math. Softw., 44(2), aug 2017.

[48] Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. ACM Trans. Math.
Softw., 106, 2006.

[49] Philip E. Gill, Walter Murray, and Michael A. Saunders. Snopt: An sqp algorithm
for large-scale constrained optimization. SIAM Journal on Optimization, 12(4):979–
1006, 2002.

115

A| Appendix A

A, B and C matrices for Rocket Landing Problem are reported here. In order to simplify
the notation, two preliminary quantities have to be defined:

γ = n · T · cos(ϕ) β =
nT · T
Isp · g0

A =

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 −γ ux
m2

0 0 0 0 0 0 −γ uy
m2

0 0 0 0 0 0 −γ uh
m2

B =

0 0 0

0 0 0

0 0 0

γ

m
0 0

0
γ

m
0

0 0
γ

m

−βux
u

−βuy
u

−βuh
u

C =

0

0

0

ux · nT · cos(ϕ)
m

uy · nT · cos(ϕ)
m

uh · nT · cos(ϕ)
m

u · nT

Isp · g0

	Abstract
	Sommario
	Contents
	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Historical Evolution of Landing Missions
	Research Questions and Thesis Structure

	Optimal Control Problem
	Problem Formulation
	OCP as Boundary Value Problem
	Mathematical Background
	Problem Dualization
	Euler Lagrange Equations
	Pontryagin's Maximum Principle

	OCP as Nonlinear Programming Problem
	Mathematical Background
	Problem Transcription

	Numerical Methods
	General Overview
	Pseudospectral Methods
	Numerical Implementation

	Desensitized Optimal Control
	Sensitivity Definition
	Sensitivity Matrix
	Sensitivity Function

	DOC Architecture
	Cost Function
	Feedback Control

	DOC Interpretations
	Implementation Strategies
	Sensitivity Terms
	Feedback Gain Strategies
	NLP-based DOC

	Powered Landing Scenario
	Mission and Scenario
	Mathematical Model
	Nominal Solution

	DOC Architecture for Powered Landing Scenario
	Method Characterization
	Sensitivity Analysis
	Saturation Handling Strategy
	Marginal DOC
	LQR Tuning
	Desensitization Strategies

	Numerical Simulations and Results
	Problem Settings
	Open-Loop Case
	Closed Loop Case
	Linearity and Decoupling
	Final Design
	Alternative Design
	MC Analysis

	CPU Time Analysis

	Conclusions and future developments
	Conclusions
	Future directions

	Bibliography
	Appendix A

