
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023 5247
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Detection: Case of Burned Area Detection
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Abstract—Optical remote sensing instruments accumulate abun-
dant data from across all of the earth’s land surfaces, making
it possible both to understand the effects of climate change and
to monitor, investigate, and manage ground-level events in detail.
Processing data using resources located near on-board satellite
sensors can bring major benefits in terms of minimizing analysis
time and quickly initiating active actions in critical situations.
In satellite missions, long-term production on-board algorithms
may encounter unexplored samples, i.e., abnormal ground-level
events, and need to be able to discriminate and take the correct
action. In this matter, the authors present a field programmable
gate array (FPGA)-based solution for natural anomaly detection
in multispectral imagery using deep convolutional neural networks.
The effects of weather-induced hazards and natural disasters,
considered anomalies in this sense, are discovered by modeling an
anomaly detector on a hybrid system that is hardware efficient.
The proposed approach is assembled on a Xilinx Zynq UltraScale+
XCZU9EG multiprocessor system-on-chip (MPSoC) device, where
a deep convolutional model is scaled into the FPGA logic, followed
by a downstream statistical meta-recognition predictor. The pro-
posed anomaly detection accelerator has produced notable results
in identifying a contemporary natural hazard, i.e., burned areas, in
scenes acquired by Sentinel-2 over Europe, i.e., Spain and France.
The implemented algorithm achieved on the FPGA accelerator an
equivalent speedup of 4.46× and 4.5× lower power consumption
than the equivalent implementation on the Tesla K80 GPU.

Index Terms—Anomaly detection, burned area detection, field
programmable gate array (FPGA), on-board processing, remote
sensing.

I. INTRODUCTION

ANOMALIES are rare patterns in data observations that
deviate from a perception of normal and predicted be-

havior. Classical concepts for unsupervised anomaly detection,
extended across multiple disciplines (e.g., statistics, medicine,
engineering, natural sciences), consists of principal compo-
nent analysis (PCA) [1], nearest neighbor algorithms [2], the
one-class support vector machine (OCSVM) [3], and support
vector data description (SVDD) [4], among others. Due to the
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absence of labeled data to characterize the anomalousness in
real scenarios, a dominant solution for detecting anomalies is to
learn a model from normal data and try to deflect anomalies.

Anomaly detection techniques dealing with satellite imagery
are either concerned with any changes in an image over time,
i.e., change detection [5], or in areas that appear abnormal on the
stationary image [6]. Frequently, anomalies are identified with
man-made targets. However, the anomalies produced by natural
disasters on the earth’s surface are of more interest due to their
high-scale damaging potential, e.g., fire spot in a forest, oil spill
in the sea [7].

Event detection in earth science is often critical for im-
mediately addressing negative impacts on natural resources,
e.g., drought-related vegetation disturbances [5], devastating
floods [8], active fire detection [9]. Wildfire is the most extreme
natural hazard that has caused serious damages to human safety
and natural ecosystems in recent years, i.e., Australian areas
affected by wildfire in 2019 [10], ravage outbreak of wildfires in
Bolivia in 2019 [11], large fire events in California in 2020 [12].
This disastrous event has an annual cycle in predisposed places,
but new places are constantly appearing around the world due
to climate change. Accurate location at an early stage is of great
importance in fire-fighting strategies. Global coverage charac-
teristics of satellite imagery combined with computer vision
mapping techniques represent one of the preferred alternatives
for operational wildfire surveillance. High-resolution sensors
placed on-board a satellite provide huge amounts of informa-
tion that are impossible to transmit wholly and in real-time to
the ground station. Automatic data processing near the sensor,
immediately after acquisition, can reduce the information flow
and promote early detection of anomalous events.

Space-based missions generate complex computing needs
because limited resources must be used in harsh environments
with big temperature ranges, radiation, vacuum and vibration.
The environmental conditions as well as the limited power
generation capabilities on-board restrict the hardware resources
used and decrease the capability and complexity of the algo-
rithms implemented on-board. Small-satellite (SmallSat) mis-
sions are low-cost platforms that provide programmatic flex-
ibility, monitoring strategy in constellations, and distributed
capacities, all composed in a scalable architecture [13]. Field-
programmable gate arrays (FPGAs) are adaptive devices related
to reconfigurable computing, highly desirable for space appli-
cations, e.g., image processing and image compression [14].
FPGAs empower the utilization of algorithmic parallelism in
application-specific architectures and provide multiple high-
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bandwidth input interfaces at a more energy-efficient cost
than a general-purpose central processing unit (CPU). Hybrid
architectures, e.g., system-on-chip (SoC) devices, pursue mixing
diverse computing technologies in order to achieve cumula-
tive improvements by balancing all incorporated benefits. SoC
devices integrate certain computing architectures by combining
general-purpose blocks, i.e., CPU, with specialized blocks, i.e.,
FPGA, graphic processing unit (GPU), digital signal processor
(DSP). These attractive combinations in the architecture of a
system make it easy to split algorithms into subroutines run
on the most suitable execution blocks, all with performance
gains. Xilinx’s UltraScale architecture broadens FPGA capa-
bility for space applications, enabling high-throughput satellite
services [15].

On-board processing for space applications is currently lim-
ited due to development and qualification cycles. Real-time data
processing is achieved through hybrid processing systems such
as SoC devices, which are essential for small-satellite missions.
PhiSat-1 nanosatellite mission was the first earth observation
satellite with AI on-board, using a CNN model to detect clouds
in images and filter out unusable data to maximize relevant
information downlinked to the ground segment [16], [17].

The challenges of processing data on embedded devices are
significant and require innovative solutions. This article presents
a novel anomaly detection architecture based on the concept
of meta-recognition [18]. By incorporating a postrecognition
classifier that makes predictions on the last activation layer of a
trained DCNN model, the proposed anomaly detector can effec-
tively discover anomalies in multispectral scenes. The proposed
model is assembled as software for an integrated multiprocessor
system-on-chip (MPSoC) device, suitable for small-satellite
missions.

The main contributions of this work are briefly described as
follows:

1) codesign of a hardware-software architecture for natural
anomaly detection in multispectral imagery;

2) verification of the implemented hardware-software parti-
tioned anomaly detection system on a Zynq UltraScale+
MPSoC ZCU102 Evaluation Kit for two real multispectral
datasets with scenes affected by forest fires.

The rest of this article is organized as follows. First, a
comprehensive review of related works is provided in Section
II. Sections III and IV introduce the reader to the proposed
methodology and datasets used in evaluation stage. Results on
the presented datasets are provided in Section V. Finally, Section
VI concludes this article.

II. RELATED WORK

The traditional on-board real-time classification and detection
methods for remote sensing (RS) imagery are almost entirely
based on the computation of the data correlation matrix R or
covariance matrix

∑
and their inverses, with the aim to contin-

uously update the inverses as pixels are being received [19]. For
a known target to be detected d, common features are computed
usingR−1 for data whitening and matched filter dT for detection
or classification. In the case of anomaly detection when the
required target x is unknown, the pixel itself xT serves as the

term to be matched [20]. The most popular anomaly detection
algorithm is Reed-Xiaoli (RX) [20] that computes a background
covariance matrix and its inverse, followed by a distance mea-
surement. This algorithm concentrates on detecting pixels whose
spectral signatures are in contrast with their background by using
Mahalanobis distance. Due to the parallel and distributed nature
of RX algorithm, a recursive variant was deployed on FPGA
fabric [21] for on-board processing convenience. The authors
proposed a framework that used an off-chip memory for data
caching and a processor for two tasks, updating the inverse
matrix R−1 and filtering for anomaly detection.

Progressive line processing methods have shown a growing
interest in anomaly detection applications under real-time con-
straints. In [22], [23], and [24], the authors proposed a line-
by-line fast anomaly detector for hyperspectral imagery (LbL-
FAD) that uses an orthogonal projection strategy to separate the
background distribution. This hardware-friendly anomaly de-
tector variant computes an orthogonal subspace on background
samples in order to better detect anomalous pixels. In [23], the
LbL-AD algorithm is evaluated on real images acquired by a
push-broom sensor mounted on an unmanned aerial vehicle
(UAV). Further, in [24], the LbL-AD algorithm proved an attrac-
tive tradeoff between time performance, energy consumption,
and cost of processing a hyperspectral image of 825 × 1024
× 160 pixels. Zhang et al. [25] suggested a real-time causal
linewise progressive anomaly detection (RCLP-AD) using fast
Cholesky decomposition. Their work improved real-time com-
putational performance and contributed to numerical stability in
the background suppression process.

The current state of RS imaging processing technology
increasingly includes AI components that demand more compu-
tational resources due to increased complexity. Recent advances
in microelectronics offer hardware accelerators with an opti-
mised computation-to-power ratio, allowing AI algorithms to be
deployed close to the sensor. PhiSat-1 mission [16] proved the
utility of AI as a robust and efficient method for accurate cloud
detection on-board. This demonstration mission emphasized the
robustness of the on-board Intel Movidius Myriad 2 hardware
accelerator and the accuracy of the CloudScout convolutional
neural network [17]. The CloudScout classifier achieved a 96%
accuracy when performing cloud detection on live images on-
satellite.

In real-time detection of anomalous targets from on-board
multispectral imagery, the processing speed and the accuracy
are equally important but difficult to achieve simultaneously. Ma
et al. [26] proposed a pruning-quantization-anomaly-detector
(P-Q-AD) that balances accuracy and throughput by shrinking a
neural model by removing the redundant neurons. Lei et al. [27]
proposed a fast spectral-spatial anomaly detection algorithm
called Fast-MGD, which uses morphological reconstruction and
a simplified guided filter to achieve high detection accuracy
with simple filtering techniques. The algorithm utilizes a deeply
pipelined acceleration scheme designed for hardware implemen-
tation on FPGAs that handle hyperspectral images.

Pixel-based anomaly detection algorithms, i.e., RX Detector
[20], extract targets that are spectrally distinct from the image
background with good performance. In order to be effective,
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Fig. 1. Host application for anomaly detection. After training a deep convolutional neural network, the same training set, i.e., observed dataset, is used to obtain
the features of correctly classified samples. The features are further used to compute an activation vector per class containing the mean of the activation vectors
(MAV) of the samples belonging to that class. Next, a distance vector per class is calculated which contains the distances between all samples of that class and the
previously calculated mean, i.e., distances between vectors. Subsequently, the tails of the distance distributions are modeled by Weibull distributions. In the testing
phase, the characteristics of a query sample determine its position in the distance distributions of all classes encountered in the observed dataset. Depending on the
result of the Weibull estimation on the test point, i.e., the query sample, the α top features of the test point are calibrated resulting in a new scalar value, i.e., the
equivalent weight for the anomaly class, in the component of the initial feature vector. The new feature vector generates via a normalized exponential function a
probability distribution. Finally, based on a threshold applied to the probability distribution, a binary decision is obtained, i.e., whether it is an anomaly or not.

the anomalous targets must be sufficiently narrow relative to
the background and expected to follow a Gaussian distribution.
However, in complex multispectral images with convoluted
feature relations, the Gaussian assumption fails in providing
an accurate model for the real data, particularly at the tails
of the distribution. With this in mind, in the proposed method,
open and broad patch-level anomalies were searched for in large
heterogeneous multispectral scenes.

III. PROPOSED METHODOLOGY

In most situations, the trained classifiers are implemented
under closed set conditions, since the classes encountered dur-
ing implementation are known and are exactly the same as
during training. In uncontrolled real-world environments, it
is very likely to encounter instances of classes that have not
been covered by the training data [28]. In remote sensing (RS)
scenes, anomaly detection algorithms address a discovery task of
small-scale portions that do not harmonize with the background.
Considering a collection of observations from a number of
normal classes, e.g., usual land cover classes, a query sample
that does not belong to one of those current classes would be
identified with a new abnormal class, e.g., burned areas.

Consequently, it was proposed an algorithm in which the deep
latent values extracted from an observed dataset are extended to
estimate the probability that a given input is associated with an
abnormal class that was not seen in the training phase. In this
context, it was defined as a framework that involves two consec-
utive stages, the first for implementing, training, and testing the
algorithm on a GPU cluster, followed by an optimization and
deployment phase of the algorithm on a low-resource platform.
For the first stage, Fig. 1 depicts the proposed method as a
host application that uses the deep latent characteristics of a
test sample to determine if it belongs to the abnormal class.
The abnormal class, a new class introduced in the nomenclature
of training classes, characterizes all samples that deviate from
the observed categories, and finally considers anomalies. For the
second stage, Fig. 2 describes the flow used to build the proposed
algorithm as an anomaly detection accelerator and deploy it on
an embedded MPSoC device equipped with an FPGA device. In
this stage, the host application block incorporates the algorithm
described in Fig. 1.

The proposed anomaly detection algorithm contains three
steps, i.e., data preprocessing, background modeling, and simi-
larity measurement. In the preprocessing step, data are prepared
by standardization [29] for use as input to a DCNN classifier.
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Fig. 2. General flowchart for the optimization and deployment of the on-board anomaly detection accelerator. Training a model on a host GPU device generates a
feature extractor working with FP32 data. Quantifying the feature extraction graph in INT8 data and compiling it into a specific instruction set compress the model
for the target platform, i.e., ZCU102. The host application described in Fig. 1 is integrated with the compiled feature extractor and a suite of AI libraries to get the
target application running on the target platform. The hardware component running on the FPGA is obtained by configuring a DPU instance. On the embedded
platform, the proposed algorithm detects anomalies from a set of test samples.

Afterward, the classifier is trained on observed data and used
as a feature extractor, e.g., data reduction. In the second step,
background statistical features are approximated through fitting
Weibull distributions on each observed class in the training
dataset (see Fig. 1). Finally, a distance metric is utilized for
the similarity metric, e.g., Euclidean and Cosine distances, and
a threshold is selected for a binary decision.

A difficult problem in implementing a DCNN on the FPGA
is the long design time as well as the substantial effort in-
volved. Xilinx, Inc. has released a group of parameterizable
intellectual property cores called deep learning processing unit
(DPU) [30], specialized in efficiently implementing various
DCNN architectures on FPGA by supporting diverse deep
learning operations. The DPU has a specialized instruction set
utilized in the DL algorithm implementation. The acceleration
development flow involved a unified software stack called Vitis
AI Framework, provided by Xilinx, to convert, i.e., quantizing
and compiling, a Tensorflow DCNN model into a compatible
format supported by the DPU engine. Moreover, the Vitis soft-
ware permitted concurrent development and test of both the
software component (i.e., the target application), and the hard-
ware component (i.e., the kernel), contained in a heterogeneous
application.

In the optimization and deployment phase of the algorithm
(see Fig. 2), a DCNN model learned with the Tensorflow frame-
work was converted from a floating-point format to a single-
precision format using a quantizer. In addition to the frozen
graph of the DCNN model, the quantizer needed as input a

calibration subset of the observed dataset to evaluate the distri-
bution of activations and to mitigate the accuracy degradation.
Next, a compiler translated from Tensorflow specific format to
DPU engine specific format. Next, the software build step, i.e.,
Build SW, generated for the target platform an inference-only
model that was called by the host application. Thereafter, the
target application effectively used the hardware-built DPU via
a specific library, i.e., AI Library, and AI Runtime, resulting in
an executable file for a specific FPGA target board.

The approach proposed in this article considers a method-
ology that adapts DCNNs for open set recognition [31]. This
methodology introduced a new model layer, i.e., OpenMax,
which estimates the probability of an input belonging to an un-
known class. The OpenMax model is based on meta-recognition
concepts adapted to the activation patterns in the penultimate
layer of a classifier. The OpenMax tier is an extension of the last
activation function, e.g., SoftMax, of a DCNN that normalizes
the output of a network to a probability distribution over the
initial predicted output classes plus an anomalous class. The
resulted likelihood was used to estimate the probability of a given
input belonging to an anomalous class. Further, the activation
vectors from the penultimate layer were utilized to estimate if
the test input is out of distribution from known training data.

A. Meta-Recognition

Meta-recognition [18] is a prediction method that uses sta-
tistical extreme value theory (EVT) for postrecognition score
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analysis. In particular, after a system produces a series of dis-
tances or similarity scores for a particular test sample, a predictor
will produce a decision of recognition success or failure. Dis-
tributional modeling and machine learning, among others, may
be the basis for a postrecognition classifier. Scheirer et al. [18]
proposed a statistical theory of postrecognition score analysis,
i.e., meta-recognition, derived from the extreme value theory.
They developed a statistical classifier based on the Weibull
distribution and demonstrated that a statistical meta-recognition
is substantially better than a standard threshold test over the
original score data.

Multiclass classifiers in deep learning applications are usually
trained on a closed-set dataset. In contrast to the closed set
nature, recognition may be assimilated with the open set attribute
of a real world classifier that rejects unseen classes at query
time. A DCNN classifier applies on the last activation layer a
normalized exponential function, i.e., SoftMax, which generates
a probability distribution over a known and fixed number of class
labels, i.e., k. At test time, this classifier trained only on the
closed set samples may erroneously label with high certainty
an anomalous sample belonging to one of the classes in the
closed set. For an unseen input, it is unlikely to produce such
low probabilities for all known classes that a threshold would
reject the input and classify it as an anomaly. In practice, the
deep network activations are not bounded, ensuing that SoftMax
cannot regulate the open space recognition [32]. Starting from
this hypothesis, the meta-recognition task was involved in this
work to inspect the scores and identify when a DCNN classifier
is possibly incorrect in evaluation.

Extreme value theory holds that the extreme values of a
continuous distribution accept only three types of parametric
forms, specifically Gumbel, Frechet, reversed Weibull distri-
butions [18]. Minimum pairwise distance of a test sample to
the closest sample in the closed set is proved through EVT
that follows a Weibull distribution. The argumentation is that
extreme features in contrast to average ones are the most
essential for discriminating between different objects [33]. This
facilitates the development of an inclusion map to decide if
a test sample is in class with the minimal pairwise distance
or is classified as an anomaly. In this article, building on the
multiclass meta-recognition concept proposed in [31], the mean
scores from the per-class estimation layer, i.e., logit layer, of a
trained deep network classifier is used to predict if an input
sample is separated from the known trained dataset. In the
first stage, EVT is used to fit the postrecognition activations,
i.e., mean activation vectors (MAVs) of the logit layer, of the
known classes to Weibull distributions. For Weibull fitting,
the FitHigh function is used, which is available in the libMR
library [18].

Remote sensing images need a rich characterization through
multilabeling since they contain a huge diversity of semantically
complex content. Starting from this position, a convolutional
classifier must use a sigmoid layer as the last activation layer
in order to classify multilabel samples. A multilabel feature
extractor is trained on normal classes Ci, 1 ≤ i ≤ k to compute
for each class the corresponding MAV, μi = mean(vij), 1 ≤
i ≤ k, 1 ≤ j ≤ |Ci| using the activation vector v, i.e., the logit

values (see Fig. 1). With Sn was noted the set of indexes, in de-
scending order, of the highestn probabilities generated by a final
Sigmoid layer on activation vector v. Next, for each class Ci,
a Weibull model ρCi

= (τCi
, λCi

, κCi
), 1 ≤ i ≤ k with three

parameters, data shifting τ , Weibull scale λ, respectively Weibull
shape κ, is computed. Parameter τ is dynamic and depends on
the data itself, i.e., is the smallest score (distance) on the tested
activation vector v, aiming to shift v in zero (1a). Model ρCi

(x)
provides meta-recognition estimated probability that determines
if query sample x is anomalous or not.

In the second phase, the activations of a query sample x adjust
α top activations, i.e., α top probabilities given by a Sigmoid
layer, by approximating the Weibull distribution function (1a)

wi(x) = 1− f(i)

(
1− e

−
(

x−τi
λi

)κi
)
, 1 ≤ i ≤ k (1a)

f(i) =

{
α+1−ranki(Sα(v))

α if i ∈ Sα(v)

0 otherwise
. (1b)

After computing Weibull CDF on the distance between query
sample x and MAVs of α top activations, revised activation
vector is computed (2a), where operator ◦ is used for the scalar
product between two vector.

v̂(x) = v(x) ◦ w(x) (2a)

v̂k+1(x) =

k∑
i=1

vi(x)(1− wi(x)). (2b)

Afterward, a pseudoactivation for the unseen class Ck+1 is
computed while preserving the total activation level constant
(2b). Finally, the rejection is decided on the revised probabilities
of normal classes Ci, 1 ≤ i ≤ k, with regard to the anomalous
class Ck+1 (3)

pi(x) =
ev̂i(x)∑k+1
j=1 e

v̂j(x)
, 1 ≤ i ≤ k + 1 (3)

wherex is anomalous if pk+1 is the highest in pi, 1 ≤ i ≤ k + 1
or higher than a threshold η.

B. Model Quantization and Compilation

Quantization scales down the bit width of the parameters and
activation values processed in a DCNN. Smaller data types are
appealing for energy efficiency and storage cost area because
they produce a reduced model size with minor deterioration in
accuracy [34]. Another reason for using fixed-point represented
data is that the DSP unit in the FPGA is better at handling
fixed-point numbers. In this work, the quantizer is used to
convert numerical values of model weights from 32-b floating
point to 8-b fixed point precision, reducing computational
complexity. The quantization step included a posttraining
process in which a small calibration subset (see Fig. 2) of
training images, i.e., 1000 calibration images, was used to
analyze the distribution of activations and to limit the accuracy
degradation. Data-free quantization (DFQ) algorithm [35] was
used in posttraining process to equalize the weight ranges and to
correct biases in the errors introduced during quantization. After
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model quantization, each layer is converted by an integrated
Vitis AI compiler into a sequence of associated supported
instructions that actuate the DPU.

C. Data Processing

For continuous land scanning, the carpet mapping imagery
requires a large amount of storage space resulting from the
combination of swath width, spectral channels count, and spatial
resolution of the sensor. For example, Sentinel-2 sensor acquires
1.6 TB of useful data per orbit, resulted from a 290 km swath with
13 spectral channels at a spatial resolution of 10 m. For long-term
acquisitions, imagery is too large to be processed efficiently in
memory by convolutional operations. Thus, a significant latency
between acquisition and result output is generated. To overcome
this problem, the band interleaved by lines (BIL) [36] format is
used for real-time on-board applications.

The line-by-line technique reduces the on-board memory
footprint and output latency making it ideal for satellites
equipped with push-broom sensors. In the BIL data format
approach, combined with push-broom optical sensors such as
those mounted on Sentinel-2 or Landsat 8 satellites, N lines of
pixels need to be received in order to prepare a collection of
quadratic samples. Additionally, super-resolution methods that
enhance spectral measurement by tilting an area sensor instead
of shifting a linear sensor can be adjusted to maximize the
data throughput for our proposed patch-level method [37]. It is
worth noting that although the proposed method is demonstrated
just on data acquired by Sentinel-2, the same approach can be
extended to other optical remote sensing products that acquire
data in the visible, near-infrared and shortwave infrared parts of
the spectrum.

IV. STUDY AREAS AND DATASETS

Fire detection systems combine data from RGB cameras,
by using color information, and InfraRed (IR) cameras, by
measuring the thermal radiation, to achieve a consistent level
of accuracy. Preparing multispectral data for training and test-
ing the proposed algorithm requires building and annotating
datasets based on off-the-self datasets, such as the Sentinel-2
archive. MultiSpectral Instrument (MSI) mounted on Sentinel-2
satellite measures the earth’s reflected radiance in 13 spectral
bands, i.e., B01, B02, B03, B04, B05, B06, B07, B08, B8A,
B09, B10, B11, B12, from visible (RGB) to short-wave IR
(SWIR) [38]. In this study, three datasets from data acquired
by the Sentinel-2 mission were studied, named BigEarthNet,
Zamora, and Bordeaux. BigEarthNet was operated as a genesis
dataset, in different versions, to train a feature extractor model
capable of distill multispectral images. Forwards, two proposed
datasets, i.e., Zamora and Bordeaux, were employed in the
conducted experiments.

Remote sensing images generally incorporate areas with great
semantically complex diversity that usually must be expressed
through multiple class labels. In order to maintain a high in-
terclass variance, a conglomerate scene produces a substantial
collection of samples, i.e., patches. Usually, the samples are

quadratic, with a size directly proportional to the semantic
diversification of the original scene. In this work, the patch size
considered was 120 × 120 pixels with ten spectral bands.

A. BigEarthNet Dataset

The BigEarthNet [39], [40] is a large-scale Sentinel-2 bench-
mark archive, consisting of 590 326 Sentinel-2 image patches.
The image patch size on the ground is 1.2 × 1.2 km2 with
variable image size depending on the channel resolution. This is
a multilabel dataset with 43 imbalanced labels. Each Sentinel-2
image from BigEarthNet dataset was associated with one or
more class labels extracted from the CORINE land cover map of
2018, with an accuracy of around 85% [41]. The solar radiation
reflected from the earth’s surface to the Sentinel-2 sensor is
quantified in bands at different wavelengths [42]. As band B10
does not include surface information, it was not included in the
BigEarthNet dataset nor in the proposed datasets.

B. Proposed Datasets

The Copernicus Open Access Hub1 provides complete, free,
and open access to Sentinel-1, Sentinel-2, Sentinel-3, and
Sentinel-5P user products. From the Copernicus portal, two
separate Sentinel-2 products were downloaded, named Zamora
and Bordeaux due to the fact that the products were acquired in
close proximity to these cities. A Sentinel-2 product includes a
multispectral scene with a size of 10980 × 10980 pixels, with
reference to 10 m bands [42]. For each package, a region of
interest (ROI) was chosen based on in situ information. The
SeNtinel Application Platform (SNAP)2 was used to extract the
ROI from each product. To successfully crop the ROI, the bicubic
method was used on all bands with resolution of 20 and 60 m to
up-sample to 10 m. This step was applied to all the data evaluated
because, in the context of deep learning, it is advisable to use a
homogeneous collection of data to reduce the sensitivity of the
model to variations in the distribution of the input data [43].

Next, each scene derived from each ROI was split into
nonoverlapping patches, generating a dataset. The image patch
size was identical to that in the BigEarthNet dataset, i.e., size
on the ground of 1.2 × 1.2 km2, for compatibility reasons in
using the model originally trained on the BigEarthNet dataset.
Within the proposed datasets, vegetation areas were deemed
as the background of the dataset while forest fires affected
areas were considered as the anomalies. To generate the ground
truth (GT) map, i.e., to identify burned and unburned patches,
necessary to evaluate the proposed method, a classical spectral
indices method was utilized. The way the classical spectral index
method is applied is described in [10]. The proposed datasets
were described below. The total number of samples, the number
of burned samples, and the ratio of burned samples in the entire
dataset were included in Table I. In these datasets, an anomalous
sample contains active fire fronts or vegetation already burned
across the entire footprint, while a normal sample can consist

1https://scihub.copernicus.eu/dhus/#/home
2https://step.esa.int/main/toolboxes/snap/

https://scihub.copernicus.eu/dhus/#/home
https://step.esa.int/main/toolboxes/snap/
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Fig. 3. Zamora scene (Spain, 2022). In (a) is displayed in TCI format (R: Band 4; G: Band 3; B: Band 2) and in (b) is shown in FCI format (R: Band 12; G: Band
11; B: Band 8 A). The burned areas (anomalous samples) are highlighted in brown color in (b).

TABLE I
SUMMARY OF THE USED DATASETS

of any combination of normal classes, i.e., common land cover
classes.

1) Zamora: The Zamora scene contains disastrous wildfires
that took place in Spain during June 2022, in the northwest
province of Zamora, mountain range Sierra de la Culebra. This
scene was recorded on June 28, when over 30 000 hectares of
a highly biodiverse ecosystem were already burnt [44]. During
recording, the scene was completely cloud free. A ROI of 7200×
7200 pixels (with reference to 10 m bands) was cropped using in
situ information. Using an image patch size of 120 × 120 pixels
(with reference to 10 m bands), it results a cardinality of 3600
samples in this dataset. Fig. 3(a) exhibits a true-color image
(TCI), i.e., a combination of three channels that are sensitive
to the red, green, and blue visible light, for the selected ROI
in order to facilitate a quick delineation of surface variety and
atmospheric characteristics. In Fig. 3(b) is shown a false-color
image (FCI) that renders nonvisible parts of the electromagnetic
spectrum, i.e., bands B12, B11, B8A from SWIR range, aiming
to visually analyze different enhanced features in the landscape,
e.g., burned areas in brown color. The scene contains areas of
wheat fields, pastures, vineyards, and wooded hills.

2) Bordeaux: The Bordeaux scene contains devastating
blazes that took place in southwest France during June, July,

and August 2022, in Gironde department, near Bordeaux city.
This scene was recorded on July 17 with clear skies and thin
smoke generated by the still-burning canopy. An ROI of 4800 ×
9600 pixels (with reference to 10 m bands) was cropped using
in situ information [45]. After performing a nonoverlapping
cropping, based on a 120 × 120 pixel patch, a collection of 3200
samples was obtained. Fig. 4(a) and (b) depicts a TCI, respec-
tively, an FCI for the selected ROI. The composition of SWIR
bands in Fig. 4(b) provides a picture of the burned areas and
reveals areas of ongoing fire where smoke is not too opaque, as
in the highlighted sample. Besides the metropolitan area of Bor-
deaux, the terrestrial space scene contains hills, pastures, forests,
orchards, vineyards, all interspersed with hilltop villages.

V. EXPERIMENTS

Deep learning models are powerful feature extraction meth-
ods capable of extracting more abstract and salient features
from data, compared to traditional approaches. To obtain a
powerful spectral-spatial feature extractor, a ResNet model [46]
with 50 convolutional layers was trained on the BigEarthNet
dataset. Subsets of the BigEarthNet dataset were considered
depending on the specifics of the downstream task. Hereinafter,
the ResNet50 model is denoted as a multiclass classifier used
to obtain a feature extractor. ResNet-based networks preserve
representations from degrading toward the end of the network
thanks to the incorporated residual units. The DCNN model
was implemented in the Tensorflow framework due to high
integration with the software stack responsible for quantizing
and compiling the model into DPU instructions. As proposed
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Fig. 4. Bordeaux scene (France, 2022). In (a) is displayed in TCI format (R: Band 4; G: Band 3; B: Band 2) and in (b) is shown in FCI format (R: Band 12; G:
Band 11; B: Band 8 A). The burned areas (anomalous samples) are highlighted in brown color in (b). In the highlighted sample, the fire fronts are visible due to
the long wavelength bands used in the FCI composite.

in [39], the images from the BigEarthNet dataset that were com-
pletely covered by seasonal snow, clouds, and cloud shadows
were removed, resulting in a clean version of BigEarthNet. Here
and throughout, training datasets were derived starting from the
clean version. In the proposed experiments, the studied areas (see
Section IV-B) contain one specific anomaly, i.e., burned areas,
in Zamora and Bordeaux. To detect anomalous burned areas
inside complex land cover multispectral scenes, class Burnt
areas was filtered out from the clean version of BigEarthNet,

resulting in a 42 class-nomenclature [40]. Afterward, the rule
60:20:20 for randomly choosing training, validation, and test
datasets was adopted. During the training, the network received
a frame of 120 × 120 × 10 pixels at the input, considering
only the bands that originally had resolutions of 10 and 20 m.
The GT map used in the training phase was provided by the
creators of the BigEarthNet dataset [39]. The adaptive moment
estimation method, i.e., Adam, was applied to optimize the
trainable network, with a learning rate of1e− 3, 100 epochs, and
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a batch size of 300 samples. The ResNet50 model was trained
on a workstation machine equipped with Intel(R) Xeon(R) CPU
E5-2620v4@2.10 GHz and Tesla K80 12 GB GPU. For a dataset
of 254 812 samples, the training process took approximately
48 h. The loss function used was a sigmoid cross-ntropy loss
function, obtaining a minimum value of 0.0132.

After training the multiclass classifier, the MAVs were calcu-
lated on the training dataset, for each class, taking into account
all samples that were correctly classified (see Fig. 1). Working
with a multilabel dataset, a correctly classified sample can be
included in the MAV calculation of multiple classes, depending
on the number of labels assigned to that sample. After finding the
MAVs, the distance vectors were estimated with cosine distance
as follows:

cos(θ) =
A ·B

‖A‖2 ‖B‖2
(4)

where A is the activation vector of an observed sample and B
is the corresponding MAV of the class. Further, in the Weibull
tail fitting step, the parameter α was fixed to five since 96.80%
of images in BigEarthNet dataset are not associated with more
than five labels [40].

In on-board implementation, a programmable engine opti-
mized for DNN, i.e., DPU, provided by the Vitis AI development
environment for AI inference on Xilinx hardware platforms was
used. DPU component uses a specialized tensor-level instruction
set that efficiently assists the implementation of DL networks
and accelerates the computing workloads of DL inference al-
gorithms. The DL accelerator is placed on FPGA fabric. In the
conducted experiments, the target platform is a Xilinx Zynq Ul-
traScale+ MPSoC ZCU102 evaluation board3 which combines
a powerful processing system (PS) and a user-programmable
logic (PL) into a powerful MPSoC, i.e., Zynq UltraScale+
XCZU9EG-2FFVB1156E MPSoC. This MPSoC runs a custom
light-weight Linux-based operating system, i.e., Petalinux,4 on
the ARM Cortex A53 64-b quad-core multiprocessing CPU.
Additional, this MPSoC incorporates also an ARM Cortex-R5
32-b dual-core real-time processing unit. This CPU-FPGA hy-
brid system was programmed on each part, the CPU with logic
for input and output processing, and the FPGA with execution
of the DCNN architecture.

The target application is run on the CPU with Xilinx runtime
application interface calls to manage runtime interaction with
accelerator. During the on-board deployment phase, the precom-
puted MAVs and distance vectors are downloaded together with
the host application to the target platform and saved on disk (see
Fig. 2). MAVs have a static storage size of approximately 17
KBytes, while the distance vectors storage size vary according
to the cardinality of the observed dataset, i.e., in these experi-
ments, the size is approximately 24 MBytes. Also, the libMR
library [18] was cross-compiled for Arm v8 architecture in order
to be used on the host application running on the Cortex-A53

3https://docs.xilinx.com/v/u/en-US/ug1182-zcu102-eval-bd
4https://docs.xilinx.com/r/en-US/ug1144-petalinux-tools-reference-

guide/Overview

TABLE II
ACCURACY EVOLUTION OF MULTICLASS CLASSIFICATION MODEL ON 1000

TEST SAMPLES

TABLE III
DETECTION TIME OF THE PROPOSED ANOMALY DETECTOR FOR A TEST

COLLECTION OF 60 SAMPLES

application processing unit. The loading time of the locally
saved Weibull model is fixed and is performed only once in
the initialization stage.

At inference time, DPU processes work with the input and
output of fixed-point data. To deploy the GPU-trained model on
an edge hardware, i.e., FPGA platform, for inference, a reduction
in computing complexity was performed. Thus, 32-b full preci-
sion (FP32) weights and activation values were quantizated to
8-b fixed point (INT8) format. Reduction of bit lengths through
quantization, i.e., from 32-b float to 8-b fixed, decreases the
memory usage four times. Fixed-point network model required
less memory bandwidth, providing higher speed and power
efficiency than the floating-point model, but with performance
reduction due to quantization noise. Table II shows the decrease
in accuracy of the multiclass classifier following quantization.
There is a small decrease of 0.068 on the F1-score metric.

Fig. 5 depicts four lines of 60 samples from a line-by-line data
processing flow. One line is evaluated on the Zynq UltraScale+
XCZU9EG-2FFVB1156E MPSoC device in 0.7 s. Table III
shows the evolution of the processing time when testing the
anomaly detection algorithm on a collection of 60 samples.
The first column identifies the device on which the algorithm
is running. The second column, i.e., the number of threads,
identifies the degree of parallelization on the target application
run on the processor and the third column, i.e., the FPS, indicates
the number of frames per second. Since most spaceborne and
airborne spectral systems capture data line-by-line, in the fourth
column, i.e., the run time, is shown the time needed to evaluate a
line of 60 samples, e.g., one line of patches in the Zamora dataset
included in the experiments (see Section IV-B). The values in the
third and fourth columns, i.e., mean and standard deviation, are
obtained over 20 runs. The best time performance is achieved
when the anomaly detection algorithm is run on XCZU9EG MP-
SoC device with 8 threads on the PS side, achieving a processing
speed of 81.018 ns/pixel. Based on the best processing speed
obtained in Table III, the Zamora and Bordeaux datasets are
processed in 42 and 37.3 s, respectively. The running time on the
K80 GPU device is an average of 3.128 s, with standard deviation
of 0.744 s over 20 runs. On the Tesla K80 GPU device, the

https://docs.xilinx.com/v/u/en-US/ug1182-zcu102-eval-bd
https://docs.xilinx.com/r/en-US/ug1144-petalinux-tools-reference-guide/Overview
https://docs.xilinx.com/r/en-US/ug1144-petalinux-tools-reference-guide/Overview
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Fig. 5. Processing Zamora scene in band interleaved by lines format (BIL). Each line contains 60 samples shown in FCI format (R: Band 12; G: Band 11; B:
Band 8 A) extracted from scene displayed in Fig. 3(b). Each sample has a dimension of 120 × 120 pixels and the color label indicates if it is anomalous, i.e., red
color, or not, i.e., white color.

TABLE IV
COMPUTATIONAL RESOURCES UTILIZATION BY THE PROPOSED ANOMALY

DETECTOR ON THE ZCU102 PLATFORM

running time is about 4.46× slower than the best time achieved
on the FPGA device. Furthermore, the power consumed by the
Tesla K80 GPU device alone is 135 W, compared to that of the
entire Zynq UltraScale+ board which is 30 W, resulting in an
efficiency factor of 4.5 for the latter device.

In Table IV is presented the resource utilization of a
DPU (DPUCZDX8G) single core integrated into the proposed
anomaly detection accelerator. The B4096 architecture variant
was utilized for the DPU configuration to obtain the maxi-
mum scaling factor in terms of logic resource utilization and
parallelism, i.e., total number of MACs per DPU clock cycle.
Although the model used is complex and resource-consuming,
it can be limited to using a maximum of one third of the target
board resources.

In the context of binary classification, due to the high im-
balance in the considered datasets (see Table I), i.e., number of
samples in the normal class versus the number of samples in
anomalous class differ by more than one order of magnitude,
three accuracy metrics were studied, i.e., Precision, Recall, and
F1-score. The Precision measure is the rate of predicted anoma-
lous patches that are actual anomalous, while the Recall measure
is the ratio of actual anomalous patches correctly identified.
The F1-score is a harmonic mean between Precision and Recall.
Performance assessment is performed by knowing the GT map
of the anomalous samples within the scene under analysis.

Table V depicts the accuracy of the proposed method on
datasets described in Section IV-B by running the method on
different devices. Due to quantization, there is a small decrease in
the F1-score metric when the algorithm is run on the embedded
platform, i.e., 0.061 for the Zamora dataset and 0.041 for the
Bordeaux dataset. Results in Table V are obtained by setting
the anomaly threshold η to 0.5. This means that if, for a query

TABLE V
ACCURACY ASSESSMENT OF ANOMALY DETECTOR ON TEST DATASETS

sample, the highest probability is that of the unknown class, or
if the probability of the unknown class is greater than η, then
the sample is considered anomalous. Independent of the running
device, the proposed algorithm obtained for the Zamora dataset
an F1-score value of 0.784 and for the Bordeaux dataset an
F1-score value of 0.772. The main parameter that determines
the performance obtained by the proposed algorithm is the level
of false positive (FP) rate, incorporated in Precision metric. The
FP rate, i.e., images that essentially contain no anomalies but are
detected as anomalies, is inversely proportional to the Precision
metric. The Precision metric obtained by running the algorithm
on the FPGA device was 0.727 for the Zamora dataset and 0.787
for the Bordeaux dataset, respectively. In the case of the Zamora
dataset, few burnt areas in hilly areas were included in a known
class, i.e., Peatbogs class. In the case of the Bordeaux dataset,
false alarms occurred mostly in drought areas. The outlined
sample in Fig. 4(b) is a genuine anomaly because it contains
a class that was not seen by the model in the training phase,
i.e., fire fronts class. This sample was evaluated by the proposed
model, returning an unknown class probability greater than 0.9.

From the results of the proposed experiments, one can see
that the proposed algorithm provides a high precision in all
cases, keeping false alarms at a low rate. In terms of sensitivity,
i.e., recall, the proposed algorithm needs to be improved in
background modeling phase. This is a challenging task due
to immense spatial coverage with deeply heterogeneous back-
ground. There is the well-known problem of label noise from
machine learning in remote sensing, which is correlated with the
complexity of different applications. Generating perfect labels in
remote sensing is impossible, so a trade-off between quantity and
quality will always remain in place. One idea for enhancement is
to increase the class nomenclature of the training set resulting in
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a proportional decrease in intraclass variation, thus increasing
the classification accuracy. This improvement, specific to the
proposed algorithm, may increase its sensitivity to anomalies in
general.

A. Comparison

In order to effectively evaluate the performance of the pro-
posed method, we considered two performance criteria, the
hardware resources used, respectively precision and recall met-
rics. Del Rosso et al. [47] proposed a prototype of an on-board
convolutional model for volcanic eruption detection to generate
immediate alerts. To demonstrate the method, the authors used
an experimental hardware, namely, a drone with a payload
composed of a Raspberry Pi 3 Model B processing unit, an
Intel Movidius Neural Compute Stick coprocessor unit and a
Raspberry Pi camera module (RPi-Movidius system). Multi-
spectral data from Sentinel-2 and Landsat-7 satellites were used
in the experiments and each scene was divided into 512 ×
512 pixel patches with three spectral bands. Starting from an
unbalanced dataset, since the hazard of volcanic eruptions is
rare, the augmentation of anomalous samples was used to reach
a balanced dataset, following a binary classification. Ultimately,
the experiments involved flying a drone over a print made with
Sentinel-2 data of an erupting volcano.

The method proposed in this article obtained better results
than the method run on the RPi-Movidius system [47] in terms
of hardware resources usage and processing speed, while de-
creasing in F1-score by 0.099. The FPGA method used less than
30% of the hardware resources, while the comparative method
made limited use of the resources provided by the RPi-Movidius
system. The RPi-Movidius method achieved a processing speed
of seven samples (one sample was 512 × 512 × 3 pixels) per
second, while our proposed FPGA method attained a speed
of 60 samples (one sample was 120 × 120 × 10 pixels) in
0.7 seconds, resulting in an increased speed factor of 2.24×.
Considering a tradeoff between performance and speed, the
proposed method has a high anomaly detection capability in
skewed data collections.

Further, we made a comparison with an anomaly detec-
tion system built specifically for an FPGA platform. In [26],
a lightweight hyperspectral image anomaly detector for real-
time missions was proposed. The authors implemented a
pruning–quantization–anomaly–detector (P-Q-AD) for hyper-
spectral datasets containing anomalies such as ships and planes,
and tested it by running it on the same hardware device used
in this article, namely, the ZCU102 platform. This allows us to
make accurate comparisons in terms of hardware resources used.
Since the complexity of the anomalies in the datasets treated
by the two papers, i.e., ours and [26], differ considerably, we
compared the two methods in terms of detection time per pixel
and the amount of hardware resources consumed. We considered
the best detection time obtained in [26] for the Sandiego dataset.
For a size of 100 × 100 × 166 pixels, the P-Q-AD method re-
quired a detection time of 0.56 s, resulting in a processing speed
of 337.34 ns/pixel. Our method obtained a processing speed

TABLE VI
COMPUTATIONAL RESOURCES CONSUMPTION BY DIFFERENT ANOMALY

DETECTORS ON THE ZCU102 PLATFORM

of 81.018 ns/pixel on the same hardware platform, resulting in
an increased speed factor of 4.16×. A resource consumption
is evaluated in Table VI. Due to the reduced data precision,
with fewer bits per data, P-Q-AD consumes fewer BRAMs,
while more DSPs are employed for 16 b operations and a
large quantity of LUTs for network implementation. Resource
utilization shows that our implementation confers higher space
availability for increased parallelization.

For comparison in terms of precision and recall indicators,
we chose a state-of-the-art anomaly detection algorithm [48]
that detects postdisaster building damage in different natural
disaster contexts, including wildfires. The results of the two
methods have a common denominator for comparison because
the model used for comparison is strongly influenced by the
type and context of the disaster event. In the case of wildfires,
the burned building surroundings had a higher discriminative
power to derive correct classifications for larger patches due to
high anomaly scores, whereas the buildings itself obtained lower
scores. Therefore, the Skip-GANomaly location-based model
obtained an F1-score of 0.807 on the Santa-Rosa dataset after
strict preprocessing, i.e., no vegetation, no shadows, with a patch
size of 32 × 32. Independent of the implementation device, our
method obtained comparable results, achieving an F1-score of
0.784 for the Zamora dataset. However, our results were obtained
on a larger patch size, i.e., 120 × 120, which implies a larger
visual variety and a shorter processing time for the same scene.

VI. CONCLUSION

This work proposed a meta-recognition hardware accelerator
for on-board anomaly detection in multispectral imaging mis-
sions. The experimental results have shown that the proposed
accelerator achieved notable processing speed, i.e., 4.46× in-
crease, with minimal decrease in accuracy, i.e., 0.041 decrease
in F1-score, compared to the equivalent GPU implementation.
Integration of AI algorithms next to the sensor significantly re-
duces the time between image acquisition and image analysis by
transmitting only relevant and informative data to the end user,
making it possible to produce early warnings and interventions
when dangerous events are about to occur.

A future direction for improvement of the proposed solution
is to increase the utilization of the FPGA component by running
multiple instances of the same kernel, i.e., several instances of
the feature extractor that load a set of images simultaneously
or at different timings. In this case, a higher throughput can
be achieved. At the same time, selecting a reduced number of
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multispectral bands used for on-board inference can decrease
the computational resources required while maintaining or even
improving model accuracy.

The European Space Agency has taken the first steps in
deploying AI on-board via the PhiSat-1 nanosatellite mission.
Therefore, an on-ground trained model can be deployed and
engaged on intelligent systems promoting power-efficient pro-
cessing platforms. This proposal focused entirely on the im-
plementation of an anomaly detection application running on
an embedded device, which could be relevant for future PhiSat
missions.
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