
M.Sc. Thesis

Developing an Aircraft Propeller Model for
Real-Time Implementation

Author: Neelabh Jyoti Saharia
Matriculation No.: 1522510

Supervisor 1 Supervisor 2

Prof. Dr. Ing. habil. Christian Hesch Ing./Univ. Nac. Cba. Andrés Lopez Pulzovan

Head of Group Scientific Researcher

Chair of Computational Mechanics Institute of Electrified Aero Engines

Universität Siegen German Aerospace Center

ABSTRACT

In this thesis, a real-time capable propeller model based on blade element momentum
theory is developed to predict the thrust and torque loads experienced by an aircraft
in different environment conditions and flight maneuvers. The progressing landscape
of aerospace engineering demands a high fidelity propeller model that accurately and
efficiently predicts the propeller performance during different flight conditions. An in-
dispensable application of the developed propeller model is to capture any design flaws
earlier during the development phase so as to rectify them before the flight test or pro-
duction of the actual aircraft. Furthermore, it allows the engineers to assimilate the data
and outcomes of the simulations that are physically not achievable or very challenging
in nature. The outcomes of the propeller model has the capability to facilitate the selec-
tion of a suitable kind and size of propellers for a particular aircraft. Software tests are
carried out for the developed software library underpinning the propeller model. Strate-
gies to enhance the code performance are implemented and investigated. Validation of
the developed model is carried out with respect to the available experimental data in
order establish its credibility and commend its ability to imitate real-world scenarios.
The model is adapted to deliver real-time results, thereby sustaining the model based
development and paving the way for future enhancements in aircraft design.

ii

PREFACE

This thesis work represents the final milestone and scores the culmination of the M.Sc.
Mechatronics Engineering program. This scientific thesis is an exploration in the field
of aircraft propellers and the various parameters influencing its performance. The sim-
ulations done in this project delve into the complexities and extremities of the propeller
behavior during numerous flight conditions.

First and foremost, I would like to thank Prof. Dr.-Ing. habil. Christian Hesch, head of
the ‘Chair of Computational Mechanics’ at University of Siegen for supervising this thesis
and providing valuable advice and guidance. I wish to express my heartfelt appreciation
to my second supervisor Ing./Univ. Nac. Cba. Andrés Lopez Pulzovan, an outstanding
Scientific Researcher in the ‘Institute of Electrified Aero Engines’ at German Aerospace
Center. Words cannot express my gratitude for his invaluable mentorship and feedback
throughout all the stages of my thesis. I extend my appreciation to Dr.-Ing. Sascha
Wolff, former team leader of the group ‘Control of Propulsion System’ at this same
institute, who initiated the fascinating topic and established the research gap for my
thesis.

I also want to acknowledge the group members of ‘Control of Propulsion System’ whose
fruitful discussions about the state of the art technologies and software tools in the field
of aerospace engineering, during the team meetings, always upsurges my motivation. I
want to convey my thanks to the individuals in the the student room of the institute
for the moments of laughter and encouragement that made the work experience cer-
tainly delightful. I am indebted to my family for their unconditional love and support
throughout all the stages of my life.

In the thesis, the reader is directed towards 53 references consisting of articles, books,
research papers and dissertations, whose worthwhile work and discoveries has led to the
successful development and validation of this project. These materials would certainly
motivate and expedite the enthusiasts to carry out research and development in the field
of aircraft propellers.

iii

CONTENTS

Abstract ii

Preface iii

Nomenclature 1

1. Introduction 3

2. Theory 5
2.1. Blade Element Theory . 6
2.2. Momentum Theory . 9
2.3. Blade Element Momentum Theory . 11

3. Available Data 13

4. Implementation 18
4.1. Optimization and Initialization . 21
4.2. Software Test . 24

4.2.1. Numerical integration test . 26
4.2.2. Formulae test . 26
4.2.3. Unit Test . 30

5. Optimizing Code Performance 36
5.1. Parallel Computation . 37
5.2. Profile Analyzer . 39

6. Generating Lookup tables 43
6.1. Data generation in cluster . 43
6.2. Exception handling . 45
6.3. Number of blade elements . 46

iv

Contents

7. Results 49
7.1. Model Validation . 50
7.2. Influence of blade angle on propeller characteristics 53
7.3. Non-axial airflow . 57

7.3.1. Advance-retreating blade effect 59
7.4. Induced velocities . 62

8. Conclusions 65

A. Relevant Code 67
A.1. obj func.m . 67
A.2. get geometry.m . 68
A.3. interpolate data.m . 69
A.4. calculate V t prime.m . 69
A.5. calc c L c D . 69
A.6. mainTest.m . 70

v

LIST OF FIGURES

1.1. Do228 research aircraft . 4

2.1. Aerodynamic forces acting on an airfoil 5
2.2. Blade element of thickness dr . 6
2.3. Forces and velocities acting on a blade element airfoil at 0.7R 7
2.4. Components of freestream velocity . 8
2.5. Angular position of the blade in propeller plane 9
2.6. General momentum theory . 10

3.1. Unfiltered aerodynamic data for blade airfoils at rpm = 1 14
3.2. Unfiltered aerodynamic data for blade airfoils at rpm = 1527 14
3.3. Smoothed aerodynamic data for blade airfoils at rpm = 1527 14
3.4. MTV-27 propeller blade geometry data 16
3.5. Velocity vectors for a blade element near the (a) hub and (b) tip 16
3.6. Propeller performance data at 1500 rpm 17
3.7. Large blade angle generating higher torque 17

4.1. Comparison of the search methods . 22
4.2. Initialization strategy for optimization 25
4.3. Convergence of model output to its true value 27
4.4. Comparison of propeller loads from the model against its true values . . 30
4.5. Over- and underestimation of trapezoidal integration rule 31
4.6. Matlab unit testing framework procedure 31

5.1. Profiler function listing . 40
5.2. Improvement in computation time . 41

6.1. Suitable data for validation . 47
6.2. Improvement in model output with increasing number of blade elements . 47
6.3. cT estimation for different number of blade elements 48

vi

List of Figures

6.4. Percentage change in cT estimation with change in the number of elements 48

7.1. Lookup tables of the propeller model in the digital twin 50
7.2. Propeller performance data generated from the model 51
7.3. Effective validation data for different blade angles 52
7.4. Differences between model and available validation data for θ ∈ [15◦, 45◦] 53
7.5. cT and cP map for θ ∈ [5◦, 50◦] . 54
7.6. cT and cP map for θ ∈ [−12◦, 0◦] . 54
7.7. Propeller efficiency map for θ ∈ [−12◦, 50◦] 55
7.8. cT and cP map for extreme blade angles attainable by MTV-27 propeller 57
7.9. Propeller performance for θ = 25◦ in presence of sideslip angle α 57
7.10. Propeller performance for θ = 30◦ in presence of sideslip angle α 59
7.11. Advancing (magenta) and retreating (blue) side of propeller 60
7.12. Advance-retreating blade effect . 60
7.13. Thrust evolution with angular position of the blade for different sideslip

angles . 61
7.14. Induced velocities produced for different advance ratios at (a) θ = 20◦,

(b) θ = 30◦ . 63
7.15. Propeller performance for (a) θ = 20◦ and (b) θ = 30◦ 63
7.16. Forces and velocities acting on an airfoil at high advance ratio 64
7.17. Induced velocities development for each iteration of optimization 64

vii

LIST OF TABLES

3.1. Geometric data of MTV-27 propeller . 15

4.1. Search methods used for finding the induced velocities 22
4.2. Types of tests for the qualification function 33
4.3. Diagnostics results of the qualifications on failure 34
4.4. Data matrix constructed using file fixture 34

5.1. Propeller model input . 37

viii

NOMENCLATURE

α angle of attack of aircraft

αb angle of attack of blade element

β sideslip angle

γ angular position of the blade

σ blade solidity

θ blade angle

cD coefficient of drag

cL coefficient of lift

dD elemental drag

dL elemental lift

dQ elemental torque

dT elemental thrust

F tip-loss factor

Nb number of blades

Q total propeller torque

ri radial distance of the ith blade element from the propeller hub

1

Nomenclature

T total propeller thrust

V∞ freestream velocity

va induced velocity in axial direction

vr induced velocity in tangential direction

Vt air velocity in tangential direction

Vx air velocity in axial direction

η propeller efficiency

ρ freestream density

θ blade angle

AoA angle of attack

BEM Blade Element Momentum

BET Blade Element Theory

FPGA Field programmable gate arrays

LUT Lookup table

NTS Negative torque sensing

OOM Out of memory

RANS Reynolds-averaged Navier-Stokes

SUT System under test

UAV Unmanned aerial vehicle

2

CHAPTER 1

INTRODUCTION

Aviation industry has come a long way since the Wright Brothers made the first con-
trolled and sustained powered flight in 1903. With the progress of aircraft designs, the
propellers have evolved too. The concept and derivation of a propeller dates back to 200
BC when Greek scientist Archimedes discovered and demonstrated the working of his
rotating screw design to lift up water for irrigation purpose [1]. This design is still very
useful to understand the principle of the propellers as a rotating hub that has a set pitch
to form a helical spiral, which when rotated, applies thrust upon a fluid. Hence pro-
pellers are often termed as screw or airscrew when used on ship or aircraft respectively.
In other words, propellers converts rotary motion from a power source into a whirling
airstream which in turn pushes the propeller forwards or backwards. It was the Wright
Brothers who realized that what made the wings of an aircraft produce lift could also be
used to generate thrust, hence the basis of propeller design is same to that of the wings.
Since then propellers of different shapes and sizes proliferated. Modern propellers have
a greater number of blades, are more slender, has more complex geometries and are
made from better materials like aluminum and carbon composite than the paddle-type
wooden propeller on the Wright Brother’s flyer.

In this work, an aerodynamic propeller model that could predict the thrust and torque
loads experienced by an aircraft in different environmental conditions and flight maneu-
vers is developed. The model is based on the blade element momentum (BEM) theory,
which is a combination of the blade element theory (BET) and momentum theory. The
first theory approximates the forces produced by the propeller by assuming its blades
to be subdivided into small elements around which the flow is individually analyzed [2].
The latter theory incorporates the idea of the induced velocities that are introduced by
the physical phenomenon of the rotation of the propeller and the resultant thrust that
it produces [3].

3

1. Introduction

Figure 1.1.: Do228 research aircraft

Demand for higher performance brings the requirement of better aircraft design and
control systems. With this, also a better propeller model that can capture different loads
generated by the propeller depending on its geometry and several other factors comes into
play. In an ideal condition, the propellers are to be operated at its maximum efficiency.
A propeller’s efficiency is the measure of its effectiveness at converting engine power
into propulsive power. The different environment conditions and propeller parameters
that contributes to its efficiency can be derived if we have a quality propeller model
that can provide a good estimation of the generated propeller loads. Furthermore, an
additional requirement in this thesis is that the developed propeller model runs with
minimal computational effort in order to be practically available for real-time testing
and control purposes in a model-based development environment.

The propeller model in this project replicates the MTV-27 propeller, which is further
validated with its available experimental data. This propeller has been used in the
hybrid research aircraft Do228 (see Fig. 1.1), where its right engine is fuel-powered
and the left engine is powered by an electric motor. The developed propeller model
can also be extended to any other commercially available propeller that varies on their
geometry and aerodynamic data. Hence, for the purpose of analyzing the control and
test behaviors of an aircraft, this real-time capable propeller model is vital not only for
this project, but for many more in future.

The model is developed using the Matlab programming language and unit test is carried
out for the developed code, using the testing framework available in Matlab. The outputs
of the model are further validated with the available experimental data. Finally an
effective strategy to have the propeller model inside the simspace environment with low
compile-run time is implemented for a wide range of input variables.

4

CHAPTER 2

THEORY

In this chapter, the mathematical and physical theory required to predict the aerody-
namic loads generated by a propeller is derived. The basis for propeller design is the
same as of aircraft wings. They both consists of airfoils i.e., streamlined bodies with
the capability of generating remarkably more lift than drag [4]. Fig. 2.1 demonstrates a
typical airfoil body. This shape usually, causes higher pressure along its lower surface
than its upper surface. This pressure difference gives rise to a resulting force that pushes
the wing upwards. The point at the front of the airfoil (right side) that has a maximum
curvature is known as the leading edge. The rear edge where the airflow separated by
the leading edge meets is known as the trailing edge [5]. The straight line connecting
the leading and trailing edge is known as the chord line. Its length c is termed as chord
length.

The freestream velocity acting upon the airfoil is depicted as V∞. It forms an angle αb
w.r.t the airfoil’s chord line. This angle is known as the angle of attack (AoA). This
produces a resultant force R which can be decomposed into its components L and D

L

D

V∞

R
N

A
αb

c

Figure 2.1.: Aerodynamic forces acting on an airfoil

5

2. Theory

in a frame with respect to the freestream as the reference, also known as the wind
reference frame. L is known as the “lift” force that acts perpendicular to the direction
of V∞, whereas D is known as the “drag” force, which acts parallel to V∞, as shown in
the Fig. 2.1. The forces acting perpendicular and along the chord of the airfoil can be
derived from these forces as well. The reference frame along the chord of the airfoil is
termed as the body reference frame, where the decomposed forces are shown in blue in
Fig. 2.1 and can be simply derived as follows:

N = L cosαb +D sinαb (2.1)
A = −L sinαb +D cosαb (2.2)

The lift and drag forces in aerodynamics are commonly expressed as dimensionless co-
efficients

cL = L
1
2ρV

2
∞c

(2.3)

cD = D
1
2ρV

2
∞c

(2.4)

Here ρ is the freestream density. One important characteristic of an airfoil is the change
in the cL and cD coefficients w.r.t the αb.

2.1. Blade Element Theory

Blade Element Theory (BET), also known as strip theory, is a model to predict the
performance of a propeller based on its geometry [6, 7]. In BET, the propeller is assumed
to be subdivided into small elements around which the flow is individually analyzed [2].
It is assumed that there is no interference between adjacent blade elements [8]. Fig. 2.2
depicts a blade element of differential thickness dr at a distance r from the hub center
of the propeller. BET is based on the fact that the entire propeller blade of radius R is
built up from these blade elements of differential thickness dr.

r

R

dr

c

Figure 2.2.: Blade element of thickness dr

Fig. 2.3 shows an airfoil section of such a blade element present at a distance of 0.7R.
The airfoil is represented with respect to its propeller plane and axis. The blade section

6

2. Theory

Vx

Vt

Vp φ

αb
θ

Propeller Plane

P
ro

pe
lle

r
A

xi
s

dR

dL

dQ/r
dD

dT

x

Figure 2.3.: Forces and velocities acting on a blade element airfoil at 0.7R

at 0.7R is considered to be the representation of the whole propeller performance [6]. In
this region, highest aerodynamic loads are generally noticed. This is the reason that the
blade angle of a propeller is defined at this section of the blade [9]. By definition, blade
angle θ is the angle that the blade element at 0.7R forms with the propeller plane. Apart
from the radial distance r, each blade element is characterized by its airfoil geometry,
i.e., the chord length c and the twist angle τ . Propeller blades have a twist along their
length to have a better consistent AoA. This twist angle τ refers to the angle that
different blade section forms w.r.t the propeller plane when the blade angle θ is zero.
This varies throughout the blade and along the radius of the propeller [10].

It can be seen in Fig. 2.3 that the airfoil is exposed to a freestream velocity Vp which is
a composition of the velocities in axial direction (Vx) and tangential direction (Vt). It
forms the AoA αb with the chord line of the airfoil. It is important to acknowledge that
the aerodynamic coefficients cL and cD described in Eq. 2.3 and 2.4 will be dependent on
the blade elements, as the value of τ at different blade sections will result in a different
value of αb.

In practice, the propeller advances through the air but equivalently it is more convenient
for the purpose of analysis to consider the propeller disc as stationary in a uniformly
moving stream of air [11]. The rotation of the propeller around the propeller axis x gives
rise to the tangential velocity Vt for a blade element at a distance r from the propeller
hub. Axial velocity Vx arises from the forward velocity of the aircraft. These velocities
are a contribution of mainly two components:

Vx = V ′x + va (2.5)
Vt = V ′t − vr (2.6)

One is the velocity component that arises purely due to the freestream velocity V∞. From
Fig. 2.4, the relations between its velocity components can be derived. The propeller axis
is interpreted in the opposite direction to that of vx. The velocity component due to V∞

7

2. Theory

vx

vz

vy

V∞
α

β

Figure 2.4.: Components of freestream velocity

in the axial direction is:

V ′x = vx = V∞ cos β cosα (2.7)

This velocity depends on the angle of attack of the aircraft α and the sideslip angle β
[12]. The angles α and β correspond to the pitch and yaw sideslip angles respectively.
The velocity component due to V∞ in the tangential direction is represented as V ′t and
is depicted in Fig. 2.5. Here ω is the rotational speed of the propeller [13]. But it is
important to note that from the point of view of the stationary blade element airfoil, the
air stream moves in the opposite direction of ω with the same magnitude. Also angular
position of the blade γ plays a vital role in projecting the velocity components vx and vy
on V ′t . The tangential velocity for a blade element is derived as:

V ′t = ωr + vy sin γ − vz cos γ (2.8)
= ωr + V∞ sin β sin γ − V∞ cos β sinα cos γ (2.9)

The velocities va and vr in Eq. 2.5 and 2.6 are known as induced velocities which is
discussed in detail in the next section. BET is based on the geometry of the propeller
blade elements and does not take into account any induced velocities and hence assumes
them to be zero [14].

According to the definition in Eq. 2.3 and 2.4 , elemental lift and drag forces acting on
the blade element can be written as:

dL = 1
2ρV

2
p cLcNbdr (2.10)

dD = 1
2ρV

2
p cDcNbdr (2.11)

Here, Nb is the number of blades in the propeller. The coefficients cL and cD are function
of the AoA of the blade element αb. From the above equations, the elemental Thrust

8

2. Theory

y

z

r

vz

vy
ω

V ′t
γ

Figure 2.5.: Angular position of the blade in propeller plane

and Torque can be obtained as follows:

dT = dL cosφ− dD sinφ (2.12)
dQ

r
= dL sinφ+ dD cosφ (2.13)

Further substitution and incorporation of dependencies of γ, the above equations be-
comes [6]:

dT = dT (r, γ) = 1
2ρV

2
p [cL cosφ− cD sinφ]cNbdr

dγ

2π (2.14)

dQ = dQ(r, γ) = 1
2ρV

2
p [cL sinφ+ cD cosφ]cNbrdr

dγ

2π (2.15)

The overall performance of the propeller is obtained by integrating the elemental loads
along and over the propeller disk as

T =
∫ R

Rhub

∫ 2π

0
dT (r, γ) dγ dr (2.16)

Q =
∫ R

Rhub

∫ 2π

0
dQ(r, γ) dγ dr (2.17)

where Rhub is the radius of the propeller hub.

2.2. Momentum Theory

Momentum theory is based on the mathematical model of an ideal actuator disk which
produces induced velocities due to the thrust and rotational forces of the disk itself
[2, 3]. It is also known by disk actuator or axial momentum theory. Unlike BET. this

9

2. Theory

theory embraces a macroscopic view to the propeller model. It states that on generation
of thrust from propellers, it produces a motion of air in opposite direction to that of
produced thrust [11]. As a result, it increases the air flow speed at the propeller plane
by va (Eq. 2.5). The rotating disk also causes a rotation in the flow field, which acts in the
same direction of the disk rotation [6]. This leads to reduction in the tangential velocity
of the blade element by vr as seen by the blade (see Eq. 2.6). To predict better and
realistic performance loads, these induced velocities has to be taken into consideration
in the propeller model. Without taking va and vr into account, BET theory is able to
provide just an upper limit of propeller performance.

Propeller Disk

V∞
p∞

V

p′ p′ + ∆p
V1
p∞

Figure 2.6.: General momentum theory

Since, momentum theory considers the propeller as a circular disk, it thereby assumes
that the propeller consists of infinite number of blades. Also the flow is assumed to
be inviscid, uniform and incompressible over the whole disk [6]. To understand the
momentum theory, assume a flow moving with freestream velocity of V∞ and pressure p∞
far before the propeller disk. When the flow passes through the propeller disk, the
pressure is increased from p′ to p′+∆p. Now far behind the propeller disk, the freestram
flows with velocity V1 and pressure p∞ [15]. Using Bernoulli’s principle [16] in front and
behind the disk, and considering the increase in the velocity at the propeller disk as
axial induced velocity va, it can be proven [6] that:

V = V∞ + va (2.18)
V1 = V∞ + 2va (2.19)

This simplified version however does not considers the rotational slipstream motion. This
extension in the theory has been made so that the disk model transmits a rotational
component to the freestream flow represented as vr, in reaction to the generated torque
of the disk [17]. Glauert proposed a mechanism to extend this actuator disk model to
a realistic propeller model with finite number of blades [18]. With this, the elemental
thrust and torque could be written as:

dT (r, γ) = 2rρ(V ′x + va)vaFdrdγ (2.20)
dQ(r, γ) = 2r2ρ(V ′x + va)vrFdrdγ (2.21)

10

2. Theory

Here F is known as the tip-loss factor [19] and is represented as

F = 2
π
cos−1(e−f) (2.22)

(2.23)

where

f = Nb

2
R− r
r sinφ (2.24)

The principle for this tip-loss factor is the generation of vortex at the extremity of blades,
causing a power loss through the circulation of flow around the tip [20, 21].

2.3. Blade Element Momentum Theory

The two different theories discussed above in section 2.1 and 2.2 are combined together
to calculate the induced velocities va and vr. The BEM method couples the momentum
theory together with the local affairs taking place at the blades [22]. Equating the
elemental thrust and torque from section 2.1 and 2.2 results in a system of nonlinear
equations [6]:

f1(va, vr) = 1
2σV

2
p [cL cosφ− cD sinφ]− 2(V ′x + va)vaF = 0 (2.25)

f2(va, vr) = 1
2σV

2
p [cL sinφ+ cD cosφ]− 2(V ′x + va)vrF = 0 (2.26)

where σ is a dimensionless design parameter known as the blade solidity [23]:

σ = cNb

2πr (2.27)

The above nonlinear equations can be solved for the value of induced velocities va and vr
with any iterative procedure such as Newton’s method. Following this, the final thrust
and torque of the overall propeller is to be calculated as shown in Eq. 2.16 and 2.17.

Generally in aerodynamic studies, the dimensionless or normalized coefficients of the
propeller loads are used. The definition of the coefficients according to National Advisory
Committee for Aeronautics (NACA) [24, 25] are

cT = T

ρn2D4 (2.28)

cQ = Q

ρn2D5 (2.29)

cP = P

ρn3D5 (2.30)

11

2. Theory

where cT and cQ are thrust and torque coefficients respectively, and cP is the power
coefficient with P (2πnQ) as the power produced by the propeller. The rotational
velocity of the propeller is n in revolutions per second, and D represents the diameter of
the propeller in meters. The dimensionless form of loads are used because propellers of
same shape but different scaled size behaves similar. Hence these coefficients allow us to
predict the performance of a full scale propeller from the results obtained from a small
scale wind tunnel propeller model. The efficiency of the propeller η is the measure of its
effectiveness in converting engine power into propulsive power, which can be derived as
[24]

η = J
cT
cP

(2.31)

(2.32)

where the dimensionless term J = V∞
nD

is the advance ratio of the aircraft [26].

12

CHAPTER 3

AVAILABLE DATA

In this chapter, the necessary data required to develop the propeller model is stated
and examined. The dimensionless coefficients cL and cD are the important aerodynamic
parameters for the propeller model. Fig. 3.1-3.3 shows the plots of these coefficients with
respect to the AoA. This data was provided by Raichle et al., who generated it using the
Reynolds-averaged Navier-Stokes (RANS) simulations with the help of the DLR TAU
code [27]. The different plots represents the coefficients for the different airfoils of the
MTV-27 propeller blades, starting from the hub position until the tip of the blade. For
the intermediate values, linear interpolation would certainly serve the purpose, as the
data varies quite linearly in regards to the spanwise blade position. Fig. 3.1 represents
the unfiltered aerodynamic data for rpm of 1. Fig. 3.2 depicts the unfiltered experimental
data for the higher rpm of 1527, which exhibits significant amount of noise. This data
is smoothed further to be worthy for the propeller model, as shown in Fig. 3.3.

Apart from the aerodynamic parameters, the necessary data required for the propeller
model is shown in table 3.1. The hub and the tip radius are essential for the sole
purpose of identifying accurately the position r of a differential blade element section
for the BEM implementation as shown in Fig. 2.2. If the propeller blade is divided into
a total number of n elements, the infinitesimal small differential length for each blade
element is

dr = Rtip −Rhub

n
(3.1)

and the radial distance of the ith blade element is derived as

ri = (Rhub + dr

2) + (i− 1)
(Rtip − dr

2)− (Rhub + dr
2)

n− 1 (3.2)

where i advances from 1 to n, with the first and the last elements correspondingly having

13

3. Available Data

-100 -50 0 50 100

-1

-0.5

0

0.5

1

1.5

2

-100 -50 0 50 100

0

0.5

1

1.5

2

Figure 3.1.: Unfiltered aerodynamic data for blade airfoils at rpm = 1

-100 -80 -60 -40 -20 0 20 40 60 80 100

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-100 -50 0 50 100

0

0.5

1

1.5

2

Figure 3.2.: Unfiltered aerodynamic data for blade airfoils at rpm = 1527

-100 -50 0 50 100

-1

-0.5

0

0.5

1

1.5

2

-100 -50 0 50 100

0

0.5

1

1.5

2

Figure 3.3.: Smoothed aerodynamic data for blade airfoils at rpm = 1527

14

3. Available Data

Parameters Abbreviation Value

Number of blades Nb 5

Chord length along the blade span c see Fig. 3.4

Twist along the blade span τ see Fig. 3.4

Hub radius Rhub 0.3 m

Tip radius Rtip 1.25 m

Table 3.1.: Geometric data of MTV-27 propeller

the radial distances of

r1 = (Rhub + dr

2) (3.3)

rn = (Rtip −
dr

2) (3.4)

Depending on the radial positions, other geometrical parameters like the chord length
and twist angle are obtained for the specific blade element. Furthermore, the tangential
velocity of the iit element differs explicitly with respect to ri .

Fig. 3.4 presents the geometrical data of the MTV-27 propeller airfoils with respect to
the propeller radial distance r. It can be seen that the chord lengths are larger near
the hub in comparison to the region near the blade tip. One mechanical reason for this
is to provide the necessary strength to withstand the dynamic equivalent stress which
is observed maximum near the hub of the propeller [28, 29]. Another reason for this
particular shape is to achieve an elliptical lift distribution over the span of the blade,
which is the most efficient and optimal distribution to minimize the drag along the
blade. Theoretically for this, an elliptical platform is the ideal shape [30]. But due to
economic and manufacturing constraints, the blades are generally tapered towards the
tip with straight edges instead. Moreover reduced chord length towards the tip certainly
minimizes the strength of the tip vortices as well [31].

The twist angle τ is maximum near the propeller hub and decreases almost linearly
towards the tip. This specific design of built-in twist exists in order to ideally generate
constant or unchanging thrust along the span of the propeller blade. For a particular
aircraft velocity, the relative wind velocity changes in conjunction with the tangential
velocity, which is minimum at the hub and increases to maximum towards the tip. This
phenomenon is depicted in Fig. 3.5, where the relative wind velocity would have formed
a higher AoA with the chord line, and hence a higher thrust generation for the airfoil
present near the tip, if it had the same twist as that of the airfoil present near the hub.
Besides that, too high AoA induces remarkably less lift in comparison to the drag, which

15

3. Available Data

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

0

5

10

15

20

25

30

35

40

45

0

2

4

6

8

10

12

14

16

18

Figure 3.4.: MTV-27 propeller blade geometry data

Vx

Vt1

Vp1

αb

x

Vx

Vt2

Vp2

αb

x

(a) (b)

Figure 3.5.: Velocity vectors for a blade element near the (a) hub and (b) tip

reduces the propeller thrust and consequently the efficiency. Therefore, to compensate
for these changes, the twist angle is varied from a higher to lower value along the span
of the blade.

Lastly, for the validation of the implemented propeller model, propeller performance
data from the manufacturer is available. Fig. 3.6 show this data, which was generated
from a combination of numerical model and flight-wind tunnel tests. The first plot in
Fig. 3.6 shows the variation of cT and the second shows the blade angle θ of the propeller
at which the corresponding cT is produced with respect to cP and J , for a rotational
speed of 1500 rpm. From the plots, it can be rightly seen that with increase in the
aircraft speed for a fixed rpm and constant cP , θ altogether increases as well. This
phenomenon occurs as the propeller control system seeks to retain the load seen by the
propeller, ultimately maintaining a constant rpm.

Moreover, it is also seen that with the increase in the blade angle for a particular advance
ratio, also the power required to turn the propeller increases. This is because the drag

16

3. Available Data

Figure 3.6.: Propeller performance data at 1500 rpm

Vx

Vt

Vp

αb

x

dR dL

dD

dT

dQ/r

Figure 3.7.: Large blade angle generating higher torque

component of the resultant force increases with increasing blade angle which results in
increasing AoA, eventually putting higher load on the engine. One such case is shown in
Fig. 3.7. For an airfoil, higher blade angle means higher AoA for a particular propeller
rpm and aircraft speed. Needless to say, the drag force always acts parallel to the relative
airflow [32]. With higher AoA, the resultant force generated by the resultant velocity
vector Vp has far larger drag force component than the lift component. This can also
be inferred from the plots of the airfoil aerodynamic data in Fig. 3.1-3.3. As a result of
this, significant amount of load is produced from the resultant force dR.

17

CHAPTER 4

IMPLEMENTATION

This chapter gives the description of the complete implementation of the propeller model
based on the presented BEM theory. For this, a library consisting of several functions
has been implemented using Matlab as a programming language. The complete BEM
implementation consists of six different functions:

1) bem : This function implements the BEM theory to calculate the elemental loads
depending on r and γ, and then ultimately the overall propeller loads based on the
blade angle, sideslip angle, rpm and the advance ratio of the aircraft. The proposed
algorithm for this function is demonstrated in Algorithm 1. This function is also
responsible for performing the optimization to obtain the induced velocities va
and vr. The optimization method and approach is discussed in detail in section 4.1.
Additionally, this function also contains two test cases to validate the implemented
numerical integration that computes the propeller loads. Section 4.2 delve into
these application tests in detail.

2) get_geometry : This function obtains the necessary propeller geometrical data (see
table 3.1) required for the model from the source mat-file data. The code for this
function is provided in appendix A.2.

3) interpolate_data : This function performs a linear interpolation to procure the
parameter values for the required query points from a matrix of data. The first
and the second column of this matrix consists of the data points and the correlated
parameter values respectively. This function is used in two instances in order to
obtain the twist angles and chord lengths for different blade elements. The code
of this function is provided in appendix A.3.

4) calculate_V_t_prime : This function is responsible for calculating the prelimi-
nary tangential velocity Vt′ for each blade element. It does not take into account
the induced velocity vr (Eq. 2.6). Since Vt′ is dependent on both r and γ, this

18

4. Implementation

function is called r × γ times to compute results for one instance of the propeller
loads in the bem function. The code used to implement this function is provided
in appendix A.4.

5) calc_c_L_c_D : This function obtains the blade element aerodynamic data relat-
ing to the AoA and the airfoil position along the blade span. This function requires
cL and cD data table as a matrix along with the given radial positions of the cor-
responding airfoils. The first column of the matrix should include the AoA values
and the rest columns the corresponding coefficient values for the different airfoil
positions in ascending order. The code underpinning this function is depicted in
appendix A.5.

6) obj_fun : This function creates the objective function to be solved for the induced
velocities by the optimization procedure as shown in Eq. 2.25-2.26. The code for
this function is provided in Appendix A.1 .

Algorithm 1 shows the BEM solver implementation realized by the bem function. The
3D matrices Va and Vr stores the induced velocities determined from the optimization
procedure for every advance ratios. This is essential for the initialization procedure which
is explained thoroughly in section 4.1. The matrices are a function of J , r, and γ.

Algorithm 1 BEM solver algorithm
Input: propeller geometric data, cL data, cD data, J , rpm, α, β, V∞, ρ, r, γ, nr, nγ,

[Va, Vr]
Output: T,Q, [va, vr]
options ← optimoptions(algorithm, constraints) . set optimization options
V ′x = V∞ cos β cosα
for (i← 1; i ≤ nr; i← i+ 1) do

for (j ← 1; j ≤ nγ; j ← j + 1) do
objfunc ← @(va, vr) obj func . create objective function
[va0 , vr0]← initialization strategy(i, j, [Va, Vr]) . Section 4.1
[va, vr]← optimize(objfunc, [va0 , vr0], options)
Vx ← Vx′+ va . Eq. 2.5
V ′t ← calc V t prime(V∞, α, β, ri, γj, rpm) . Eq. 2.8
Vt ← Vt′ − vr . Eq. 2.6
Va(J, r, γ), Vr(J, r, γ)← va, vr . store va, vr for initialization
dTj ← 2riρVxvaF . differential thrust Eq. 2.20
dQj ← 2r2

i ρVxvrF . differential torque Eq. 2.21
end for
dTi ←

∫ 2π
0 dTjdγ . integration along γ

dQi ←
∫ 2π

0 dQjdγ
end for
T ←

∫ Rtip
Rhub

dTidr . integration along r
Q←

∫ Rtip
Rhub

dQidr

19

4. Implementation

For numerical integration, equal number of infinitesimal steps for both r and γ are
chosen, i.e., nr = nγ = n. Alternatively, the matrices Va and Vr can be further merged
to form a single matrix V ∈ RnJ×nr×nγ×2.

Regarding the aerodynamic data shown in Fig. 3.1-3.3, it is available from the source
in a combination of .txt and .xlsx file formats, which are imported, arranged and
sorted within Matlab into the matrix form as required by the function component
calc_c_L_c_D .

Additionally, scripts with extra functionalities were created for extracting and visualizing
the parameter history of the induced velocities and the corresponding changes in loss
function during the process of optimization. This is implemented to realize if and how
the loss function is minimized. The process is carried out using a custom function for
the optimization procedure as shown in listing 4.

Listing 4.1: Storing parameter history while optimization

1 function [x_opt , fval , history] = duringOptimization (objfun ,
x0)

2
3 count = 0; % to count the no. of iterations
4 history = []; % store the parameters while optimizing
5
6 options = optimoptions (" fminunc ", " Algorithm ",...
7 "quasi -newton",'Display ','iter - detailed ',...
8 'OutputFcn ',@saveHistory ,...
9 'MaxFunctionEvaluations ', 1e3);
10 [x_opt , fval] = fminunc (objfun , x0 , options);
11
12 function stop = saveHistory (x, optimValues ,state)
13 stop = false;
14 if isequal (state ,'iter ')
15 history = [history ; x optimValues .fval];
16 count = count +1;
17 end
18 end
19
20 end

This function uses the objective function created by obj_func to optimize using the op-
tions set in optimoptions that contains a tailored output function called saveHistory .
To save the data between the iterations of the optimization, saveHistory is a nested
function so that it can access and reform variables that are defined in the parent func-
tion. This function returns the sequence of the iterated variables as a matrix called
history . Each row in history represents each iteration, including the last row that

20

4. Implementation

comprises the final optimized values at which the optimizer stops. Apart from the op-
timized variables, the associated value of the loss function can also be stored similarly
by accessing the Matlab native function optimValues . Herewith, the history matrix
ultimately contains the induced velocities va and vr on the first and second column, and
the loss function values on the last column, for each row of iteration.

Optionally, such nested functions can be also utilized to stop the optimization for a
certain tolerance of the loss function as shown in listing 4.2. Here the output function
is stopOptim .

Listing 4.2: Using nested loops in optimization file

1 function stop = stopOptim (x, optimValues ,state)
2 stop = false;
3 tol = 0.001; % set tolerance
4 if optimValues .fval < tol % check objective function
5 stop = true;
6 end
7 end

4.1. Optimization and Initialization

This section elucidates the optimization methods and initialization strategies used for
obtaining the induced velocities underpinning the propeller model. Nonlinear objective
functions like the one described in section 2.3 generally run into multiple local minima
or discontinuities, and henceforth it is emphasized to have a good starting point for
the optimization process, so as to arrive to a good solution [33]. Arguably, this can be
circumvented by running an optimization process multiple times from a large number of
starting points and eventually selecting the best result, but such global search methods
can take excessive amount of time depending on the solution space size. It should also
be noted that global methods do not guarantee convergence to the global optimum in a
finite time, especially for highly complex and nonlinear search spaces [34]. Additionally, a
prior knowledge of the solution space is required to obtain meaningful solutions. Different
global search methods are scrutinized in this section for the optimization procedure, in
comparison to the local newton’s method with meaningful initial values. These methods
and its types are indicated in table 4.1. A comparison between the search methods are
conducted which is shown in Fig. 4.1. The abbreviation expt represents the experimental
data from the propeller performance curves shown in Fig. 3.6. This data precisely
capture the cT values for airspeeds above 50 m

s
, which construes to J = 0.78 in this

case. Depending on different search methods for optimizing the induced velocities, cT
for the propeller are computed for a range of advance ratio, keeping θ, rpm and sideslip
angle constant. It is seen that the best result obtained from the global search methods
are identical to the one obtained from the local search method. Internally within the

21

4. Implementation

Method Type Abbreviation

Genetic algorithm global ga

Genetic algorithm unconstrained global gaUC

Global search global gs

Quasi-Newton local qn

Particle swarm global ps

Particle swarm unconstrained global psUC

Pattern search global ptrns

Table 4.1.: Search methods used for finding the induced velocities

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

(b)

Figure 4.1.: Comparison of the search methods

mechanism of the gs method, it utilizes the local newton’s method, but starts parallelly
with multiple initial starting points. It then selects the solution that performed the best.
Particle swarm optimization and pattern search are observed to perform poorly in the
domain where the propeller blades incur aerodynamic stall∗.

The global methods provide meaningful solutions only in presence of constraints for the
lower and upper bounds in the solution space. The induced velocities v = [va, vr] were

∗Stall is the reduction in the lift generated by an airfoil as its AoA exceeds a certain critical point
known as the stalling point [35]

22

4. Implementation

subjected to linear inequality-type constraints as follows

Av ≤ b

1 0

0 1

−1 0

0 −1

[va vr] ≤

100

100

50

50

where the velocity values in b are in m

s
.

In absence of the constraints, genetic algorithm and particle swarm optimization method
perform unsatisfactorily as shown in Fig. 4.1(b). This is because these derivative-free
search methods (genetic algorithm and particle swarm) finds better optima in areas
away from the meaningful solution space. This effect is seen the most in unconstrained
particle swarm method that performs very poorly in comparison to the other methods.

Considering these circumstances and the time efficiency factor, it was decided to move
forward with Newton’s method embodying a robust initialization strategy for finding
the induced velocities. The proposed initialization strategy is graphically demonstrated
in Fig. 4.2, comprehending the course of the process.

The utilized initialization strategies are:

1) Solution from the preceding blade station: For the respective blade station, the
one-step earlier computed induced velocities of the predecessor blade element sta-
tion for the same advance ratio is selected as the initial values. The closer the
differential dr is to the infinitesimal, the greater the number of elements n, and
the easier it is for the optimization procedure to find the solution.

2) Solution from the same blade station of the previously iterated J : For a specific
blade station, the already optimized induced velocities for the same blade station
of the previously iterated advance ratio is adopted as the initial values.

3) Initializing with zero: Since the induced velocities are generated in both direction
of the propeller axis, depending on the propeller thrust direction, an initial value of
zero would provide a good staring point for va and vr. The induced velocity values
interrelating the propeller thrust direction are addressed in detail in section 7.4.

4) High air inflow angle assumption (45◦): This condition assumes initialization points
which are proven to be robust against the possibility of running into a trivial
solution [6]. Neglecting vr due to its small magnitude, and considering a high

23

4. Implementation

inflow angle of φ = 45◦, we have

φ = tan−1
(
Vx′+ va
Vt

)
⇒ tan

(
π

4

)
= Vx + va

Vt
⇒ va = Vt − Vx

After having the viable solutions, they are inspected for any trivial case. The trivial
solution for our BEM equations (Eq. 2.25 - 2.26) corresponds to

Vx′ = −va
Vt′ = vt

This case can be practically identified by checking for the resultant wind velocity Vp if

V 2
p = (Vx′+ va)2 + (Vt′ − vr)2 < tol

In this project, a tolerance value of 0.001 is applied. On detection, the trivial case is
removed, and therefore the best solution is selected.

4.2. Software Test

Software testing and validation are vital segments when it comes to aerospace applica-
tions, ensuring the reliability and functionality of the code. Likewise, algorithm and unit
tests are performed for this project in pursuit of validating the implemented propeller
model. The tests are also highly beneficial for reassessing the units of the variables
within a mathematical-physics based model that are prone to unit errors. This sec-
tion documents these implemented test and its results. The BEM implementation takes
place inside the bem function with the purpose of computing the propeller thrust and
torque. To execute this, bem function employs the numerical integration as shown in
Algorithm 1. The first subsection focuses on the functionality test of this algorithm.
For this, functions with known solution are taken and the results are then compared
with the result obtained from the bem function. The second subsection delves into the
formulae used for calculating the propeller loads. Geometric assumptions relating the
propeller were made to have an analytical solution which is then compared to the model
output. The third subsection explores the Matlab unit test framework in order to test
the helper unit functions used in the propeller model.

24

4. Implementation

Start

i > 1

vini = [v(i− 1, j)]

i = blade element number
j = advance ratio number

k = 1 (counter)

vini = [0, 0]

v(i, j, k) = vsol

f(k) = fsol

k = k + 1

v(i, j, k) = vsol

f(k) = fsol

k = k + 1

j > 1

vini = [v(i, j − 1)]

v(i, j, k) = vsol

f(k) = fsol

k = k + 1

vini = [Vt − Vx, 0]

v(i, j, k) = vsol

f(k) = fsol

k = k + 1

v(i, j, k = ktrivial) = []
f(k = ktrivial) = []

v(i, j) = v(i, j, k = kmin(f))

End

optimize

optimize optimize

optimize

check for
trivial solution

select the best
solution

yes

no no

yes

ktrivial = find
(
V 2

P < tol
)

remove trivial
solution if any

Figure 4.2.: Initialization strategy for optimization

25

4. Implementation

4.2.1. Numerical integration test

This test checks the implementation of the double integration used for the calculation of
the propeller loads inside the bem function. Consider a simple 2D function f subjected
to the integral limits and its solution as shown below:

f =
∫ 3

0

∫ 3

0
x2 + y2 dx dy

=
∫ 3

0

(∫ 3

0
x2dx+

∫ 3

0
y2dx

)
dy

=
∫ 3

0

[x3

3

]3

0
+ y2 [x]30

 dy
=
∫ 3

0

(
9 + 3y2

)
dy

= 9 [y]30 + 3
[
y3

3

]3

0
= 54

(4.1)

This integration along x and y is similar to our model in the way that the bem im-
plementation employs double integration throughout the radial distance r and along
the angular position γ of the propeller respectively. To implement this test, the above
limits are set for r and γ inside the bem function. For continuous development and
deployment of the function, this test is placed in bem function using switch cases and
to execute this test a string called ‘test_1’ has to be passed as an argument at the end
in the bem function, which otherwise remains empty (see listing 4.3).

Listing 4.3: Running the test

1 f = bem(prop_data ,c_L_data ,c_D_data ,x,alpha ,beta ,gamma ,...
2 V_free ,pitch ,n_r ,n_gamma ,rpm ,rho ,dr ,dgama ,V_matrix ,...
3 J_number ,'test_1 ');

It is anticipated that with finer numerical steps, the model output converges nearer to
the value of of the true integral, ftrue = 54 . This is the exact response seen with this
test. Fig. 4.3 shows how the model output f̂ approaches the true integral value with
finer step sizes, i.e., higher number of blade sections n.

4.2.2. Formulae test

This subsection is dedicated to scrutinizing the implemented formulae for propeller load
calculations described in chapter 2. The propeller model output is tested by comparing it
with analytically calculated result. This test ensures the faultlessness in the implemented
formula for thrust and torque computation employed in the numerical integration.

26

4. Implementation

20 40 60 80 100 120 140 160 180 200 220

54

54.05

54.1

54.15

54.2

54.25

54.3

Figure 4.3.: Convergence of model output to its true value

To make the analytical calculation easier, following scenarios are postulated:

1) Twist angle is same throughout the blade span.

2) Freestream velocity V∞ = 0 m
s
, i.e., the aircraft is standing still.

3) For a particular AoA, coefficient of lift cL and drag cD are same throughout the
blade span.

4) The propeller is a constant chord propeller.

With the above stated assumptions 1 and 2, the AoA remains constant and indepen-
dent of the angular position of the blade γ and radial position of the blade element r.
Furthermore there arise no sideslip angle for zero freestream velocity.

Henceforth a demo of this test will be carried out. We have

V∞ = 0 (4.2)

From Fig. 2.3, the wind inflow angle

φ = tan−1 Vx
Vt

(4.3)

= tan−1 V∞ cos β cosα
ωr + V∞ sinα sin γ − V∞ cos β sinα (4.4)

= 0 (4.5)

27

4. Implementation

Now a blade angle of 31.8◦ representing the actual available data is taken. With the
fixed twist angle of 7◦, the AoA formed is

αb = (θ + τ)− φ (4.6)

= (31.8 · π180 + 7 · π180)− 0 (4.7)

= 0.6755 rad (4.8)

The model expects all the variables to be in the international system of units. At the
above obtained AoA, we have

cL = 0.8932 (4.9)
cD = 0.7603 (4.10)

Constant chord length of 20.09 cm is chosen, with the propeller running in a constant
rpm of 1527.

Now from the Eq. 2.14 and Eq. 2.16 we have

T =
∫ Rtip

Rhub

∫ 2π

0

1
2ρV

2
t (cL cosφ− cD sinφ)cNbrdr

dγ

2π (4.11a)

=
∫ Rtip

Rhub

∫ 2π

0

1
2ρ (ωr)2 cLcNbrdr

dγ

2π (4.11b)

=
∫ Rtip

Rhub

∫ 2π

0

1
2 · 0.905 ·

(
2π1527

60

)2
· 0.8932 · 0.2009 · 5 · r3dr

dγ

2π (4.11c)

=
∫ Rtip

Rhub

10381 · r3dr
[
γ

2π

]2π

0
(4.11d)

=
∫ Rtip

Rhub

10381 · r3dr (4.11e)

= 10381 ·
[
r4

4

]1.25

0.3
(4.11f)

= 10381 ·
[

1.254 − 0.34

4

]
(4.11g)

= 6315.04 N (4.11h)

28

4. Implementation

Similarly for the Torque, we have

Q =
∫ Rtip

Rhub

∫ 2π

0

1
2ρV

2
t (cL sinφ+ cD cosφ)cNbr

2dr
dγ

2π (4.12a)

=
∫ Rtip

Rhub

∫ 2π

0

1
2ρ (wr)2cDcNbr

2dr
dγ

2π (4.12b)

=
∫ Rtip

Rhub

∫ 2π

0

1
2 · 0.905 ·

(
2π1527

60

)2
· 0.7603 · 0.2009 · 5 · r4dr

dγ

2π (4.12c)

=
∫ Rtip

Rhub

8836.67 · r4dr
[
γ

2π

]2π

0
(4.12d)

=
∫ Rtip

Rhub

8836.67 · r4dr (4.12e)

= 8836.67 ·
[
r5

5

]1.25

0.3
(4.12f)

= 8836.67 ·
[

1.255 − 0.35

5

]
(4.12g)

= 5389.18 Nm (4.12h)

Results

Analogous to the previous test, the last argument of bem function here expects the
string ‘test_2’. The switch case for this test sets the aforementioned assumptions in the
function. It is fairly seen that the thrust and torque values from the model tend towards
the values calculated analytically in Eq. 4.11h and 4.12h, as the number of elements
used in the implementation increases (see Fig. 4.4).

The examination of the two conducted test further sheds a light into the nature of
the function that determine the propeller loads. The function used for ‘test_1’ in sec-
tion 4.2.1 is a recognized convex function, whereas the functions describing the propeller
loads are non-convex in nature, at least within the integral limits. This verdict is inferred
from the method used in the implementation to approximate the integral, namely the
trapezoidal rule. The deployed trapezoidal rule of integration [36] deduce the definite
integral of a function by approximating the area beneath the curve using trapezoids as
shown in Fig. 4.5. This method overestimates the true integral for convex functions,
since the data points in the interior of each trapezoid are greater than the true value
of f(x). This phenomenon is seen in Fig. 4.5 for the limits between x1 and x3. Whereas
between x3 and x5, f(x) imitate a concave functions, leading to underestimation of the
true integral.

29

4. Implementation

0 200 400 600 800 1000

4400

4600

4800

5000

5200

5400

5600

5800

6000

6200

6400

Figure 4.4.: Comparison of propeller loads from the model against its true values

4.2.3. Unit Test

Unit testing is a common accepted practice where developers write test cases together
with and for the regular code under development [37]. Today, almost every single pro-
gramming language includes its own unit testing framework, which empowers the use of
small and automatically executable unit tests. By the same token, Matlab contains its
testing framework package as well, which is based on the prominent open source xUnit
framework architecture [38]. The basic component of this framework comprises:

1) Test runner: It is an executable program that accomplishes the running of the
tests and reporting of the results.

2) Test case: This represents the principal class from where all the unit tests are
inherited.

3) Test fixtures: This component is also customarily known as test context, and is
responsible for setting the preconditions or state required to run a test.

4) Test suites: It can be apprehended as a set or collection of tests that share the
same test fixture. The sequence of the tests is not concerned.

5) Assertions: This function consists of expressions for logical conditions to assert for
verification of the behavior from the unit under test.

The workflow underpinning the unit testing framework of Matlab is represented in
Fig. 4.6. The first step involves creating the test runner, i.e., an executable main file

30

4. Implementation

y

x

f(x)

x1 x2 x3 x4 x5

Figure 4.5.: Over- and underestimation of trapezoidal integration rule

Start

Create test array

Setup file fixtures

Loop over all test functions

Setup fresh fixtures

Run tests

Teardown fresh fixtures

Teardown file fixtures

End

Figure 4.6.: Matlab unit testing framework procedure

31

4. Implementation

consisting of the local functions to be examined. The name of the main function corre-
sponds to the name of the test file, with the mandatory condition that it should start
or end with the word ‘test’, which is case-insensitive. An array of tests is then created
for the local functions existing in the main file. This is achieved by making a call to
functiontests with input argument localfunctions as shown in listing 4.4. This
automatically generates a cell array of function handles to all the local functions present
in the main file. A detailed code of a unit test conducted for this project is represented
in appendix. A.6 which is discussed later in this section.

Listing 4.4: Extracting functions to be tested

1 function tests = mainTest
2 tests = functiontests (localfunctions);
3 end

As seen from Fig. 4.6, the creation of test arrays is then followed by setting up the file fix-
tures using the inherent function setupOnce . This function runs a single time through-
out the execution of the main test file to define the state of the test environment before
the test runs. This functionality is mostly use to set up a priori test state of the system
under test (SUT) or for setting up specific working path before the testing starts. Setup
fixtures are also coveted for creating computationally expensive part of the SUT for one
single instance and then loading independent copies of itself for each test functions. File
fixtures additionally contain an intrinsic teardown function called teardownOnce . This
function is executed one single time after running the test files. It is generally utilized
to execute operations involving cleaning up of the workspace. Both of the aforemen-
tioned file fixtures (setupOnce and teardownOnce) requires a single argument called
testCase . The testCase function inherently consists of a structure called TestData
that allows to pass data between file fixtures and the test functions, hence enabling the
context of the file fixtures to be shared across the test file. Another class of fixtures are
the fresh fixtures which consists of function-level private operations that runs before and
after each test function present in the file. These fresh fixtures functions are called as
setup and teardown respectively. It is recommended to use these fresh fixtures if one
yearns for avoiding inter dependencies between the tests that performs erratically. Simi-
larly to the file fixtures, these functions as well are required to be called with testCase
as the input argument.

The process is finally completed by creation of the test functions, with the condition
of naming convention identical to the main function. Its syntax is represented in list-
ing 4.5.

Listing 4.5: Syntax for creating test function

1 function test_1(testCase)
2 actualSolution = function_to_be_tested (varargin);
3 expectedSolution = 10;
4 verifyEqual (testCase , actualSolution , expectedSolution);
5 end

32

4. Implementation

Here the qualification verifyEqual takes testCase, the actual and the expected solution
as the input arguments. Optionally, display message for diagnostics can be passed in
the test function in case of a failure. This message will appear in the test diagnostic
section of the test report. The framework provides four types of qualification for testing
and responding to failures

1) Verification: This qualification proceeds through the test failure without throwing
an exception. When verification qualification fails, the remaining test continue
running without any disruption.

2) Assumption: These function verifies that a specified condition is qualified. Its
failure marks the test as filtered in the diagnostics report.

3) Assertions: This qualification ensures that the preset conditions are met. In test
failure involving this qualification, it is marked as failed and incomplete. The
subsequent tests are not interrupted by this failure.

4) Fatal assertion: This ensures that the preset condition is valid, whose failure will
lead to abortion of the test session.

The naming convention for implying a qualification test is:
<qualification><type of test>

where the <qualification> can be verify , assume , assert , or fatalAssert
based on the necessity conditions discussed above. Some of the conventional types of
tests available in the framework are shown in table 4.2 with its description and an
example.

<type of test> Description Qualification example

True Value is true verifyTrue

False Value is false verifyFalse

GreaterThan Value is equal to a specified value verifyGreaterThan

LessThan Value is less than the specified value verifyLessThan

NotEmpty Value is not empty verifyNotEmpty

Size Value has the indicated size verifySize

ReturnsTrue Test function returns true verifyReturnsTrue

That Value convene the specified constraint verifyThat

Table 4.2.: Types of tests for the qualification function

The diagnostic results in case of failure, according to the different qualification method
implemented are shown in table 4.3. Here the rerun function is useful to conveniently
run again the failed tests. It is important to note that qualification function assume
does not mark its test as failed when it does not meet the condition.

33

4. Implementation

Totals:

0 passed, 2 failed (rerun), 2 Incomplete.

0.5568 seconds testing time

Failure summary:

Qualification Name Failed Incomplete Reason

verfication exampleTest/testA x Failed by verification

assumption exampleTest/testB x Failed by assumption

assertion exampleTest/testC x x Failed by assertion

Table 4.3.: Diagnostics results of the qualifications on failure

A complete test program for unit testing the calc_c_L_c_D function is demonstrated
in appendix A.6. This function is responsible for procuring the required values of cL
and cD based on the AoA and r from the available aerodynamic data matrix, which
are further used for thrust and torque calculations inside the bem function. To test
the function, a dummy matrix with structure as expected by calc_c_L_c_D function
is setup using the file fixture setupOnce . This matrix can be constructed in a smaller
scale for simplicity but it should certainly mimic the structure of the original data. One
such example is shown in table. 4.4.

αb (in deg)

r (in m)
0 2 4 6 8

30 1 2 3 4 5

31 6 7 8 9 10

32 11 12 13 14 15

32.2 16 17 18 19 20

32.4 21 22 23 24 25

Table 4.4.: Data matrix constructed using file fixture

As discussed earlier, the inherent structure TestData described above can conveniently
group this data matrix and the associated arrays of r and αb into itself as a means to
pass them for the different test functions implemented (see appendix A.6). The actual
and expected solutions were then passed to the qualification functions for the conducted
tests as shown in listing 4.5.

The other helper functions that were described at the starting of this chapter are in-
spected and validated in similar manner as well. All their unit tests involving different

34

4. Implementation

types of the function solutions were deemed as passed, thereupon leading to further
progression of the propeller model and data generation utilizing it.

35

CHAPTER 5

OPTIMIZING CODE PERFORMANCE

This chapter explores the methodologies and tactics utilized to elicit faster and efficient
performance of the code underpinning the propeller model. It is important to bear in
mind that the purpose of developing a propeller model in the software, especially for this
thesis, is to integrate it into the digital twin of the aircraft. A digital twin of a product
is a virtual copy of it with the goal of encompassing the following qualities [39]:

1) Reducing the cost of manufacturing a prototype and performing tests on it.

2) Performing extreme tests on a prototype which are impossible or challenging to
perform experimentally.

3) Assimilating all the information and outcome of the tests, to provide an accurate
picture of the future behavior of the actual product.

4) Monitoring systems in real-time to be alerted about critical design problems.

5) Accessing real-time data of all the components involved in a physical asset, as
well as the details of the asset as a whole to actualize timely, robust and efficient
decisions for its future operations.

For the purpose of testing and simulating various propeller operating conditions, it was
determined that the propeller model in the aircraft digital twin apprehend data in the
range of 60-110 % of its nominal rpm. The nominal rpm of the MTV-27 propeller is
1591 rpm. Furthermore, blade angle of the propeller has consequential effects on the
propeller loads, hence leading to the requirement of thoroughly capturing its outcomes
as well. A digital twin is capable of mimicking flight landing conditions when it can
capture the braking phenomenon of the aircraft. Braking is achieved in a propeller
driven aircraft by turning the blades backwards in order to generate a negative thrust.
In an intend to replicate this effect, negative blade angles are considered for the input
data as well. In order to adhere to the actual mechanical constraints of the blades,

36

5. Optimizing Code Performance

Propeller model input Symbol Range of value Number of data points

Blade angle θ −12◦ to 82◦ nθ = 95

Propeller rotational speed rpm 60-110 % of rpmnominal nrpm = 10

Advance ratio J 0-2 nJ = 101

Sideslip angle α −20◦ to 20◦ nα = 10

Table 5.1.: Propeller model input

data associated with the range of θ = −12◦ going up to 82◦ is taken into account. The
quantitative values of the propeller model input according to the specific requirements of
the digital twin is shown in table 5.1. European Union Aviation Safety Agency (EASA)
determined that the appropriate sideslip angle generally should not exceed 15◦, even
during maximum crosswind take-offs and landings for the transport category aeroplanes
[40]. A study presided by the National Aeronautics and Space Administration (NASA)
was carried out to comprehend the aerodynamic characteristics of light, twin engine,
propeller driven airplanes, where sideslip angle was bounded to a range of −4◦ to 12◦
[41]. Furthermore, higher sideslip angles is equivalent to the helicopter forward flight
condition and in that situation the data is not longer expected to pursue the trend
of normal propeller operation [42]. Hence, from these aforementioned studies and also
additionally from the experience of the aircraft’s pilot, the input range of sideslip angle
as defined in table 5.1 is chosen. The range of the advance ratio described in the table
corresponds to the airspeed of 0 m/s (0 knot) to 133 m/s (258 knots) for the given
nominal rpm and the diameter of the propeller.

With such vast range of model inputs, there arises about a million data points for which
the propeller loads are to be computed. This proffers the motivation to enhance the
code performance by using efficient functions wherever possible and by leveraging the
power of parallel computing.

5.1. Parallel Computation

In the pursuit of generating a large volume of data from the propeller model and simul-
taneously considering the computation time, this section embark on the exploration of
the parallel computing methodology.

In normal sequential programming, operations are performed sequentially one at a time,
where the next instruction has to hold back its operations before the preceding instruc-
tion is completed. Whereas in parallel computing different calculations of the processes
can be executed concurrently. It harnesses the power of the multiple CPU cores of the
computers to achieve the simultaneous calculations. Due to the rapid development and

37

5. Optimizing Code Performance

usage of parallel computation in all aspects of engineering, today’s fast computers are
specified by the number of CPU cores, and not by the independent CPU core speed.

A preliminary study with a reduced dataset was carried out to apprehend the perfor-
mance gain from parallel computation. An increase of 70 % in the computation speed
was noted on reforming sequential programming in the propeller model to parallel pro-
gramming while computing a total of 1200 (12× 1× 1× 100) data points for the input
variables shown in table 5.1. This comparison was done using 12 CPU cores.

The parallel computing toolbox offered by Matlab programming language is used for
this purpose. It equips a function called parfor loop that executes multiple iterations
in parallel. In parallel programming, a distinction between two types of variables has to
be made:

1) Sliced variable: It consists of the variables whose value can be broken up into
segments or slices, which can then be operated on separately, by different workers∗

[43].

2) Broadcast variable: A broadcast variable is any variable, other than the loop
variable or a sliced variable, that does not change inside a loop [43].

Care is to be taken for different broadcast and sliced variables so that there is no oc-
currence of any unnecessary communication overhead. The overhead communication
problem of a variable array inside an inner or nested for loop can be rectified by pass-
ing the entire array to be available for the respective loop. Things to be taken care of
while using nested for loops inside a parfor loop are [43]:

1) The iteration of the parallel loop must be independent. The value created for a
prior iteration should not be in use for calculating the subsequent iteration. For
e.g., we cannot run the loop for different advance ratios, J in parallel. This is
because for each iteration of J , the objective function depends on the values of
induced velocities (va, vr) calculated from the prior advance ratio J−1, as described
in section 4.1.

2) In case of multiple loops, it is recommended to run the outer loop in parallel instead
of the inner loop, so as to avoid parallel overhead.

3) The sliced variable must be enclosed within the corresponding for loop.

4) The range of the for loop variable must be a row vector of positive constant num-
bers or variables and should not consist any operative functions such as length
or size .

5) If the nested for loop variable is changed anywhere in a parfor , the data
contained by the for loop variable is not guaranteed to be available for each
CPU processor or worker.

∗Workers are computational units of a program that work in parallel to perform tasks or computations
simultaneously

38

5. Optimizing Code Performance

A parallel pool is a set of Matlab workers on a cluster or desktop [43]. By default, a
parallel pool starts automatically when required by parallel language features such as
parfor . The parallel pool is started by assigning one worker per physical CPU core
in the system. Alternatively, it is also possible to specify manually the number of CPU
cores to be expended while running a program. This can be done using the commands
as shown in listing 5.1.

Listing 5.1: Specify no. of CPU cores

1 p = parpool ; % number of workers is the number of logical
CPU cores available

2 p = parpool (6); % use 6 workers , i.e., 6 logical CPU cores

The blade angle θ is selected as the input variable through which the computations will
run parallelly. This is because it consists the highest number of data points after the
advance ratio. Because of the dependencies of each iteration of the advance ratio to its
prior iteration, parallel execution of its data is precluded.

5.2. Profile Analyzer

Profilers in programming are powerful tools to analyze statistically the execution time of
different parts of the program. It is helpful for identification of the code sections in which
the program spends the most time, and feasibly evaluate and enhance its performance.
It is also occasionally used as a debugging tool to determine the lines of code which do
not run while an execution. Its output can be further saved and formatted into reports.
Listing 5.2 shows the commands to activate the profiler and save its corresponding
results.

Listing 5.2: Analyze code using profiler

1 profile on % turn on the profiler
2 % place the code to analyze here
3 profile viewer % view the results in a window
4 profsave % save the results as HTML files

Line 4 in listing 5.2 creates a new folder in the current path with the name called
‘profile_results ’and save its results as HTML files. This feature is useful for com-
paring the performance of the program with respect to the different employed functions.
The overall summary is stored in the main file called file0.html. From this file, one
can discretely navigate into different parts of the code.

For the propeller model, the profiler exhibits that bem function rightly takes about
99.7% of the total time. The profiler highlights the part of the function that consumes
the most time. As anticipated, the optimization function for calculating the induced
velocities expends the most time in bem as shown in Fig. 5.1. The first column represents

39

5. Optimizing Code Performance

Figure 5.1.: Profiler function listing

the total time taken in seconds, and the second column represents the total number of
calls, for the corresponding lines of code on the left. The third column represents the
line number of the code itself, inside the respective function or script.

This is followed by the function calc_c_L_c_D . It contains within the matlab function
interp1 which takes the vast majority of the computation time. Though other parts
of the script uses this function, they are not called as often as calc_c_L_c_D , which is
effectuated nθ × nrpm × nJ × nα × nr × nγ times for the calculation of one aerodynamic
coefficient thoughout the course of the program.

Though interp1 is a go-to in-built function for linear interpolation, it is desired that a
more efficient function replaces it so as to increase the code performance. This is achieved
by using the function griddedInterpolant which is faster, as it creates an interpolant
object at the beginning, which is then evaluated for the required query points. With this
aforementioned change in the implementation, the speed of computation is increased by
20 % for the reduced dataset described earlier in section 5.1. Changes in the compu-
tation time of different parts of the script with respect to the employed interpolation
function is shown in Fig. 5.2. Here main represents the overall script which includes
the function bem that does the BEM implementation for the different sets of inputs.
The interpolation happens within the helper function calc_c_L_c_D which calculates
the aerodynamic lift and drag for different airfoils depending on the AoA formed by

40

5. Optimizing Code Performance

interp1 griddedInterpolant
0

50

100

150

200

250

Figure 5.2.: Improvement in computation time

them with the resultant wind velocity vector. The final bar graph in Fig. 5.2 depicts the
time expended by the utilized interpolation method itself. The advantage of using the
griddedInterpolant function excels further with the dimension of the dataset. There
are also external open source functions like qinterp1 that performs faster interpola-
tion as well. But due to the lack of continuous development and support from the first
version, it is decided to implement the in-built function griddedInterpolant .

Apart from the aforementioned improvement, there exist the following general practices
to optimize code performance, that are practiced in the implementation as well:

1) Using functions instead of scripts which are generally faster. The complete BEM
implementation consists of five different helper functions which accomplish differ-
ent specified tasks.

2) Preallocating arrays or matrices instead of continuously resizing them in each
iteration.

3) Vectorization of a loop-based code wherever possible. This accelerates the program
significantly, especially over large data sets.

4) Creating mat-files or .csv files for large data sets in the script. Instead of executing
large number of constant data in the script, loading the variables from the object
file provides better efficiency.

41

5. Optimizing Code Performance

5) Changing the Matlab path during runtime using commands like cd should be
averted as it slows down the program.

6) Frequently printing values in the terminal during runtime slows down the program.
Although displaying certain output values is necessary to understand state of the
program it is currently in, overdoing this results in slowing down the program. This
is because writing outputs to the terminal is done synchronously. In other words
the program awaits for the writing to complete before it pursue the subsequent
commands.

42

CHAPTER 6

GENERATING LOOKUP TABLES

One of the goal of this thesis is the development of a propeller model that is real-time
capable. This cannot be simply accomplished by using simulation blocks in a model
based software to implement the propeller model as a subsystem in the digital twin.
Such subsystem of a complex mathematical model will remarkably hinder the runtime
of the simulation. To assure that the model can be simulated at a rate that is fast
enough to keep up with the real-time system, lookup tables (LUTs) approximating the
propeller model are used. LUT is an array or a matrix that substitutes the runtime
computation with simpler array indexing operations by mapping the input values to the
output values. The LUTs are precalculated and stored in the program storage or in a
hardware like FPGAs. It provides a way of efficiently storing the highly used propeller
data that needs to be looked up by the digital twin very frequently. LUTs are widely
used in computer science applications, as it eliminates the complexity of calculating with
functions which are defined by mathematical recurrence relations [44]. With LUTs being
implemented, the saving in the simulation runtime is consequential, as retrieving a value
from the memory is often significantly faster than carrying out an intense input-output
operation involving optimization.

6.1. Data generation in cluster

To generate the LUTs, the parallel code to generate the propeller model data is run in
a cluster instead of a local computer. A cluster is a single or a group of computers or
nodes which functions together and allow users to use its resources to perform memory
intensive computation. They can be interpreted and managed, as a single system, i.e.
the user log in to one computer, usually known as the head node. Specifics of cluster
access is different according to the institution that is granting the cluster. In this project,

43

6. Generating Lookup tables

the provided cluster is accessed using a virtual machine. The cluster computer runs on
Linux, an open source operating system (OS). It has a total number of 36 Intel(R)
Xeon(R) CPU cores with clock speeds of 3.00 GHz.

During the process of generating the LUTs, a major problem faced was the premature
termination of the Matlab program by the Linux kernel during the runtime. Generally,
this happens in case of extreme resource starvation. In cases of desperate low memory
conditions, Linux’s built-in out of memory (OOM) killer comes into play to kill a process
[45]. One drawback of Linux is that it over-commits memory [46]. This means that
when a process demands more space in RAM, Linux provides or over allocates this space,
even if it is claimed by another process. For example, it may allocate 5.5 GB of RAM to
a process, when a system has physically 5 GB of RAM. This is done under an assumption
that generally processes would actually use less memory than what is asked for. But
when a process actually uses the claimed memory, this would require allocation of more
memory than the system physically has. In this situation, Linux has to kill an another
process, using the OOM killer to free up space. OOM killer also keeps a score of the
different processes, according to its own algorithm (badness function), in order to select
a process or processes to be terminated. Explanation of the badness() function rules is
a whole different chapter in itself, but a simple generalisation is that processes imposing
high memory requirements (greedy processes) are deemed as less safer and are allotted
with less score. OOM comes into play when multiple users run programs in the cluster
that are resource intensive, leading to killing of the processes that have lesser scores.

OOM also kills a process, if it exceeds the system’s exclusive memory (RAM, and SWAP
Memory). SWAP partition or memory is the memory stored in the computer’s local
drives, i.e., a hard drive or SSD, which is used as a supplement to the phyiscal memory
(RAM). Hence, SWAP acts as a virtual memory, when more memory is demanded
than what is available [47]. The lest urgently required data are copied to the disk,
i.e. moved to SWAP. This process is known as swapping out. Since local drives are
substantially slower than RAM, frequently swapping in and out from memory leads to
performance degradation in the system. Therefore, it is recommended to avoid them
whenever possible.

However, the termination of the program by the OOM killer was fixed by implementing
safeguards in regards to the resource usage when multiple users run their programs
on the cluster. This implies that the total memory of the cluster gets divided into
m different parts in the presence of m number of users. Previously in the absence of
such safeguards, the cluster might assign all the resources to a single user’s program
by killing the programs effectuated by other users. The limitation and isolation of
the resource usage can be put into effect by using a linux kernel feature called control
group (cgroup). It is a key component in modern clusters where multiple processes from
multiple users are run simultaneously. It allows the administrator to control how much
of the resources (CPU, memory, network and disk input-output) of a cluster are used
by a process or a collection of processes. Control group provides the following resource
management aspects:

44

6. Generating Lookup tables

1) Resource limiting: Multiple groups can be constructed such that they do not exceed
a configured memory limit, including input-output bandwidth limit, system file
cache, and CPU processors limit.

2) Prioritization: One or multiple groups can be prioritized to use larger shares of
CPU applications.

3) Accounting: The resource usage of the individual groups can be determined, that
can be further used for invoicing purposes.

4) Control: Administrators have complete control of the groups and can freeze, check-
point or restart the processes.

6.2. Exception handling

While generating data for the LUTs, ‘exception handling’ is implemented in the script
to handle unexpected input errors. Exception handling is a methodology to separate
the code that detects and handles exceptional incidences from the rest of the program.
This is implemented as a further add on to the error handling tactics of the BEM
implementation for any input variable or a combination of input variables. The exception
handling statements used in the main script are try and catch . When an error takes
place, the function or methods throw an exception, which the script can catch to handle
the associated repercussions as shown in listing 6.1.

Listing 6.1: Exception handling

1 for b = 1: length(theta)
2 try
3 for s = 1: length(alpha)
4 for r = 1: length(rpm)
5 for j = 1: length(J)
6 % bem implementation
7 % may throw exceptions
8 end
9 end
10 end
11 catch
12 % error handling
13 end
14 end

The b, s, r and j variables are the loop variables for the model input θ, α, rpm and J
respectively. When an exception is thrown in the try block, the program immediately
exits from it and the catch block is executed. Hence, this approach allows the program
to override the default error actions. Inside the catch block, display messages can be

45

6. Generating Lookup tables

printed in the terminal stating the input variables for which the error occurred, leading
to evaluation of the correlated circumstances, after the program has accomplished the
computation for other non-error input variables. One can also alternatively leave the
catch block empty. Due to preallocation of all the output matrices with a known
value, the indices for the not computed data can be identified thereafter. Both exception
handling blocks can further enclose within themselves nested try - catch statements.

6.3. Number of blade elements

To generate the LUTs, the input parameter range of the propeller model has been
adequately determined in chapter 5. One parameter within the propeller model is the
number of blade elements n, that constitutes the propeller blade. This last necessary
parameter is to be derived in this section. To accomplish this, a study is conducted to
comprehend the variation of the model error with respect to the experimental data for
different values of n. The data is generated using the propeller model and the model
errors are calculated for cT and cP . Mean squared error (MSE) and mean absolute
percentage error (MAPE) are analyzed for the generated data. For N number of data
points, MSE measures the average of the squared error for a model output array ŷ with
respect to the expected output array y as

MSE = 1
N

N∑
i=1

(yi − ŷi)2

As a square of Euclidean distance, its value invariably remains positive and decreases
as the error approaches zero. MAPE is another measure of prediction accuracy and is
defined as

MAPE =
∑N
i=1

∣∣∣yi−ŷi
yi

∣∣∣
N

× 100

MAPE is widely used in regression problems due to its intuitive interpretation of the
model error [48].

The experimental data for a particular θ and rpm can be extracted from the available
propeller performance data shown in Fig. 3.6. The performance data does not consider
non-axial airflow, i.e., they correspond to zero sideslip angle.

Fig. 6.1 shows the model output with respect to the experimental data for a propeller
rpm of 1500, and blade angle of 30◦. The suitable data points are shown with markers,
which corresponds the data referring aircraft speed above 50 m/s. This is due to the fact
that the experimental data only above this speed are confirmed from the source to be
accurate and representative of the normal behavior of the aircraft propeller. Additionally
there is also a lack of attempt to accurately measure the value of the propeller loads at
low aircraft speeds for such a high blade angle of 30◦, as this configuration is unusual.

46

6. Generating Lookup tables

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 6.1.: Suitable data for validation

10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

2.5

3

3.5
10

-4

10 20 30 40 50 60 70 80 90 100

0

2

4

6

8

10

12

14

Figure 6.2.: Improvement in model output with increasing number of blade elements

Considering the suitable data, the model errors for both cT and cP are plotted in Fig. 6.2,
with respect to the number of blade elements selected for the propeller model. It can be
rightly seen that model error decreases monotonically as n increases. The model error
decreases remarkably when the number of elements is increased from 10 to 20. The
accuracy improves by more than 50 % in this region. Following that, the estimation
improves gradually. At some point, further increase in n has a smaller impact on the
model accuracy as seen in Fig. 6.3-6.4. The former plot represents the thrust coefficient
estimation for different values of n, and exhibits how very minute improvements takes
place in the domain of n > 40. Fig. 6.4 shows the percentage change for the estimated
cT of the propeller model as the number of blade elements are increased from ni to ni+10.
In the attempt to assimilate the aircraft propeller adequately in the digital twin, an

upper error bound of 3 % for the propeller model is embraced. Corresponding to this
requirement, n = 40 is chosen for the propeller model to generate the data that the
LUTs will enclose in the digital twin.

47

6. Generating Lookup tables

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

Figure 6.3.: cT estimation for different number of blade elements

10-2
0

20-3
0

30-4
0

40-5
0

50-6
0

60-7
0

70-8
0

80-9
0

90-1
00

0

1

2

3

4

5

6

7

8

Figure 6.4.: Percentage change in cT estimation with change in the number of elements

48

CHAPTER 7

RESULTS

This chapter illustrates the outcomes of the propeller model, endowing a detailed explo-
ration of the insights and findings that have emerged out from it. The developed model
is capable of generating the propeller loads for a variety of aircraft and propeller oper-
ating conditions. The results from this model will demonstrate how the propeller loads
are significantly influenced by the airspeed, blade angle, rpm, and the sideslip angle.

Understanding the factors influencing the propeller loads is vital for the aircraft safety
and operation. Thus, discrete analysis of the relationships between the input variables
and their impact on the propeller loads is carried out in this chapter. The assessment
carried out for the results not only gives insights into the parameters affecting the load
variations, but is also capable of assisting design strategies for a propeller, based on
its operating conditions. The results of this study will further establish the potential
of using mathematical models to predict propeller loads according to their geometrical
data. The model can be further utilized to develop a set of recommendation guidelines
for operation of the propeller in a domain of favorable efficiency. The theoretical concepts
are used to develop the governing equations of the model, while the experimental data
is used to validate the developed model.

With the generated LUTs, the propeller model can be effectively implemented in the
digital twin and feedback the necessary load values for different operating scenarios
according to the physical input signals from the aircraft model as shown in Fig. 7.1.
The depicted LUTs are placed as a subsystem within the the aircraft engine model.
The input-output data of the LUTs are the simscape physical signals, which unlike the
simulink signals, have units associated with it.

Building upon the insights from Fig. 2.4, the distinct components of the freestream ve-
locity representing the non-axial airflow can be composed into a single vector, consisting
a single sideslip angle, which is then provided as an input to the propeller model. This

49

7. Results

c_P

c_T

c_Q

3
rpm

2
advance_ratio

1
blade_angle

4
c_p

5
c_t

6
c_q

7
sideslip_angle

Figure 7.1.: Lookup tables of the propeller model in the digital twin

phenomenon is demonstrated in detail in section 7.3. Finally the solution for a real-time
capable propeller model consists of three 4D LUTs for extracting the cT , cQ, and cP data
required during the model based development and testing of the digital twin.

7.1. Model Validation

Before exploring and delving into the results, it is imperative to demonstrate the credi-
bility and accuracy of the developed mathematical model. To substantiate the same for
this thesis, the validation of the propeller model with the real-world data is carried out
in this section.

The propeller performance prediction of the model along with the available validation
data is depicted in Fig. 7.2.

The shown plots represents the data for a range of advance ratios at a blade angle of
31.8◦, rpm of 1527, and no sideslip angle (axial airflow). The plots additionally show the
estimation from the BET model that does not take the induced velocities into account.

50

7.1. MODEL VALIDATION

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-3

-2

-1

0

1

2

3

4

5

6

7
10

3

(e)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
10

3

(f)

Figure 7.2: Propeller performance data generated from the model

51

7. Results

For the same amount of data to be computed, the model based on BET is faster than the
model based on BEM by about 70 %. But due to the exclusion of the induced velocities
it can provide only the upper limit of the propeller performance and should not be
considered as a accurate representation of the load characteristics. BEM model is seen
to be far accurate and representative with respect to the real-world data. Fig. 7.2(e-f)
represents the thrust and torque magnitudes corresponding to its respective coefficients.
Throughout the range of advance ratios, the highest attainable efficiency is 86 %, which
is adequately predicted by the BEM model.

Relevant validation data

While withdrawing the experimental data for a specific blade angle of the propeller from
Fig. 3.6, it is vital to be diligent during the selection of suitable data points representing
that specific blade angle. This is demonstrated in Fig 7.3 where the suitable data points
available for θ = 20◦ and 40◦, with respect to cP and J are marked. Here the data points
representing each blade angles are selected by dissecting the 3D plot of the available
data with 2D planes positioned for the particular blade angles, and then selecting the
intersecting data points. It is evident that for a low blade angle of θ = 20◦, the effective
data available with which we can compare our model is limited. In the region of advance
ratio J > 0.8, there are certainly no more validation data available for θ = 20◦.

Figure 7.3.: Effective validation data for different blade angles

Hence, the goal of the above figure is to imply the fact that while validating the propeller

52

7. Results

0 0.5 1 1.5 2

0

10

20

30

40

50

(a)

0 0.5 1 1.5 2

-0.05

0

0.05

0.1

0.15

0.2

0.25

(b)

Figure 7.4.: Differences between model and available validation data for θ ∈ [15◦, 45◦]

model, only the applicable data points representing the investigated blade angles are to
be taken into consideration.

Fig. 7.4 shows the difference between the model and the actual data for the range of blade
angles θ ∈ [15◦, 45◦]. Although the model is able to predict the propeller loads generated
with negative blade angles, no validation data representing the same is available for this
project.

Fig.7.4(a) exhibits the model error for the generated thrust coefficients. As determined
from Fig. 7.3, the available data for validation is substantially lower in region of low
blade angles. Furthermore the experimental data only above the aircraft speed of 50 m

s

are confirmed from the source to be accurate and representing the normal behavior of
the aircraft propeller, which translates here to the domain of J > 0.8. This implies that
for model validation, data in the region of J > 0.8 is simply not available for θ < 30◦.
Nevertheless, considering the above mentioned factors and analyzing the convenient
region of advance ratios, it is compelling to see that the model error resides below 5 %.
The model error in percentage is calculated as follows:

% cTerror = cTexpt − cTmodel
cTexpt

× 100 (7.1)

Similar trend is seen in Fig. 7.4(b) that depicts the model error in estimating the propeller
efficiency, which remain below 3 % for the convenient region of data.

7.2. Influence of blade angle on propeller characteristics

This section explores the propeller performance maps generated from the propeller model
for a wide range of blade angles. These maps demonstrate a graphical representation

53

7. Results

of the propeller’s performance or behavior across a wide range of aircraft speed and
blade angle. Such maps of propeller data further serve as a decisive tool in selection of
the most qualified propeller for a particular aircraft or assignment. The propeller maps
based on the BEM implementation are shown in Fig. 7.5-7.7.

0 0.5 1 1.5 2

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(a)

0 0.5 1 1.5 2

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(b)

Figure 7.5.: cT and cP map for θ ∈ [5◦, 50◦]

0 0.5 1 1.5 2

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

(a)

0 0.5 1 1.5 2

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

(b)

Figure 7.6.: cT and cP map for θ ∈ [−12◦, 0◦]

The variation of the propeller thrust and power coefficients with respect to a range of
positive blade angles θ ∈ [5◦, 50◦] with a step of ∆θ = 5◦ are shown in Fig. 7.5. As per
the visual demonstration from the previously introduced Fig. 2.3, positive blade angles
implies that the chord line of the airfoil at 0.7R of the blade forms a positive angle with
respect to the propeller plane. The blade angle plays an underlying role in defining
how the propeller interacts with the surrounding airflow, and therefore it remarkably

54

7. Results

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.7.: Propeller efficiency map for θ ∈ [−12◦, 50◦]

influence the performance characteristics. Higher blade angle results in higher AoA for
a given advance ratio, which generally leads to an increase in thrust generation until the
occurrence of aerodynamic stall. A coarser blade angle is suitable for higher airspeed
as seen in Fig. 7.5. This is because with increase in the airspeed for a particular blade
angle, the AoA decreases, and to form an effective AoA with the relative wind velocity
as formed previously at lower speeds, blade angle should be raised.

The power needed to drive the propeller is extensively associated with the blade angle
as well. The power consumption is fundamentally influenced by both drag and lift forces
that gets projected in an orthogonal direction to the direction of flight, while interacting
with the airflow. As seen from Fig. 7.5(b), too coarse blade angle results in a significant
amount of power required to turn the propeller. This is because for a blade airfoil, higher
AoA is form with higher θ, and in such case, the drag component of the resultant force
increases far higher in comparison to the lift component (see Fig. 3.7).

However at low aircraft speeds, finer blade angles are opted to prevent the propeller
from stalling. Therefor, in order to provide adequate low speed acceleration, finer blade
angles are preferred.

Fig. 7.6 represents the variation of the propeller load coefficients for a range of advance
ration J ∈ [0, 2] with respect to a range of negative blade angles θ ∈ [−12◦, 0◦] with steps
of ∆θ = 2◦. This configuration of blade angles is also known as reverse thrust setting. As
the name suggest, reverse thrust is generated when the blade angle is reduced from fine
to negative, thereby facilitating speed deceleration while or after landing. This enables
the aircraft to have shorter landing distance and additionally reduce wear on the brakes.
Reverse thrust is also commonly helpful during taxiing the aircraft in the ground. The
generation of reverse thrust is possible as the relative wind velocity strikes the blade
airfoils from the front, leading to the production of lift component of the force in the

55

7. Results

opposite direction. However, the drag component acts in the same direction as in the
positive blade angle setting, i.e., parallel to the relative airflow. After advance ratio of
about J > 0.7, the rate of change of cT and cP increases significantly and then continues
to change at a higher rate in comparison to the low speed region. This is because with
the increase in the airspeed, the propeller blades increasingly approaches the direction
of incoming wind velocity. This leads to substantial increase of AoA, which in turn leads
to increase in the resultant forces of the airfoil, especially the drag component of the
resultant force as seen from Fig. 3.3. This results in the significant boost of the reverse
thrust.

Fig. 7.7 represents the propeller efficiency map for the range of blade angle θ ∈ [−12◦, 50◦]
with steps of ∆θ ≈ 5◦. The efficiency of a propeller signifies the balance between the
generated propeller thrust and the power that it consumes and is represented as (see
[26])

η = J
cT
cP

A propeller attains its peak efficiency when the blade angle is configured to achieve the
best balance between the thrust generation and the power consumption. It is important
for engineers and pilots to study the propeller efficiency maps as it plays a vital role in
facilitating the strategies for reduction in the fuel consumption and improving aircraft
performance. This map further proves the earlier discussed subject of using coarser
blade angles at higher aircraft speeds to improve the propeller efficiency.

The thrust and power coefficient representing both extreme ends of blade angle for
MTV-27 propeller are represented in Fig. 7.8, along with θ = 30◦ that lies in between
the limits. The MTV-27 propeller is mechanically limited to a reduction of the blade
angle until θ = −12◦. Similarly, highest attainable blade angle for the MTV-27 propeller
is θ = 82◦. At this blade angle, the amount of power required to turn the propeller is
highest. This is because of the high drag component of the resultant force under the
influence of high AoA, thereby increases the load on the propeller. Additionally, low
lift generation of the blade airfoils at this condition leads to less overall thrust being
generated. At this condition, the propeller is known to be in a ‘feathered’ configuration.
Fig. 3.7 depicts the force and velocity vectors acting on such an airfoil.

56

7. Results

0 0.5 1 1.5 2

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 0.5 1 1.5 2

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 7.8.: cT and cP map for extreme blade angles attainable by MTV-27 propeller

7.3. Non-axial airflow

In the domain of propeller performance, research is generally centred around axial air-
flow, i.e, the freestream air velocity vector is oriented in parallel to the propeller axis.
But in real flight conditions, small sideslip angles are encountered. To accurately sim-
ulate the performance of the aircraft flight conditions, the digital twin has to consider
this parameter and its effects on propeller performance. This section sheds light into
the relationship between this parameter and its effects on the propeller behavior.

0 0.2 0.4 0.6 0.8 1 1.2

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1 1.2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Figure 7.9.: Propeller performance for θ = 25◦ in presence of sideslip angle α

Fig. 7.9 demonstrate the effects of the sideslip angle on cT and cP over a range of
advance ratios, for a blade angle θ = 25◦ and at a fixed rpm of 1500. The model
appropriately predicts that sideslip angle of α = ±20◦ produces exactly the same effects
on the propeller performance. This model prediction corroborates the work of Maeda

57

7. Results

et al. who observed the same trend during the wind tunnel test of a rotor under yawed
inflow conditions, where it was concluded that the sign of the sideslip angle does not
have any effect on the performance of the propeller on its own [49].

It can be seen from Fig 7.9 that the thrust coefficients decreases with the increase in the
advance ratio. However, this decrement in the thrust coefficient is less pronounced in
presence of sideslip angle [50]. Echoing this fact, it is seen from the model estimation,
that for a sideslip angle of α = ±20◦, the thrust coefficient at J = 1 is about 2 times
larger to that of its value when there is axial airflow (α = 0◦).

A wind tunnel test of scaled propeller for a regional turboprop aircraft was carried out for
a maximum sideslip angle of 8◦, where the thrust showed minor increment on increasing
the advance ratio, but at lower speeds, the effect was negligible [51].

For a more comprehensive analysis, Fig. 7.10 demonstrate the effects of the magnitude of
the sideslip angle on the propeller performance for the range of advance ratio J ∈ [1, 1.3].
The blade angle and the propeller rotational speed is kept constant at θ = 30◦ and
1500 rpm respectively. The data illustrate that the increment in the thrust and power
coefficients increases with the increase in magnitude of the sideslip angle. Non-axial
airflow with α = ±20◦ at the speed corresponding to J = 1.2 produces 1.7 times of
the thrust that it produces during axial airflow, whereas for the same scenario, power
consumption of the propeller is 1.5 times larger. This finding is in agreement with the
work of Serrano et al. where the authors investigated four small scaled propellers in a
wind tunnel test and observed an increase of the propeller thrust for all the propellers
with increase in the sideslip angle, whereas the power consumption demonstrating lower
sensitivity to change in the sideslip angle [52].

Overall, an increase in the thrust generation is seen for the non stall region of the
propeller, in the presence of sideslip angle. This is because of the imbalance of the loads
on both sides of the propeller that arises due to the advanced-retreating blade effect.
This phenomenon is discussed comprehensively in the following subsection.

58

7. Results

1 1.05 1.1 1.15 1.2 1.25 1.3

0

0.05

0.1

0.15

1 1.05 1.1 1.15 1.2 1.25 1.3

0

0.06

0.1

0.17

Figure 7.10.: Propeller performance for θ = 30◦ in presence of sideslip angle α

7.3.1. Advance-retreating blade effect

In the presence of non-axial airflow, the incoming airflow forms an angle with the pro-
peller axis as demonstrated in Fig- 7.11. The outline for this scenario can be viewed
in the xz plane of the propeller as shown in Fig. 7.12(a), where the freestream V ′∞
approaches the propeller forming a sideslip angle of α with the propeller axis. The
freestream velocity V ′∞ creates an additional component along the z axis (V ′∞ sinα) that
will further influence the tangential velocity of the blades with respect to the air. The
propeller blade that moves forward along the same direction of this freestream com-
ponent is known as retreating blade (see Fig. 7.12(b)), whereas the blade that travels
against this component is called as the advancing blade (see Fig. 7.12(c)). It is evident
that the freestream component leads to an increase in the tangential speed experienced
by the advancing blade as oppose to the retreating blade, that encounters a decrease in
the tangential speed. Additionally, in the presence of sideslip angle, the relative wind
velocity increases for the advancing blade airfoils in contrary to the decrease in the re-
treating side as seen in Fig. 7.12 (b,c). Together these effects results in the increase and
decrease of the AoA for the advancing and retreating sides of the propeller respectively,
corresponding to the differences in the blade performance on both sides. This asymme-
try in the propeller performance was demonstrated in two studies involving analytical
and CFD models which showed that the overall increase of propeller thrust in presence
of sideslip angle is due to the increase of thrust over the advancing blade [52, 53]. The
thrust estimation of the propeller model in this thesis are in alignment with the above
mentioned research.

Fig. 7.13 depicts the evolution of the thrust coefficient generated by a blade airfoil
with respect to the angular position of the blade, in presence of sideslip angles. This
simulation was carried out for a blade angle θ = 30◦ at an advance ratio of J = 0.5,
maintaining a constant rpm of 1500. It is rightly seen that there is an increment in the
thrust generation on the advancing side of the propeller, ie, γ ∈ [π2 ,

3π
2], and decrement

59

7. Results

α

V ′∞

γ

0

π/2

π

3π/2

z

x

Figure 7.11.: Advancing (magenta) and retreating (blue) side of propeller

Vt

αb
α′b α′b

x

α α

Vt

V ′∞ V ′∞
αb

x

(a) (b) (c)

x

z

V ′∞

α
V∞

V∞ V∞

Figure 7.12.: Advance-retreating blade effect

on the retreating side for γ ∈ [3π
2 , 2π], when compared to the axial airflow case (α = 0◦).

This change in the generated thrust is proportional to the magnitude of the sideslip
angle. It is significant to observe that the percentage of increment for the generated
thrust on the advancing side is greater than the decrement on the retreating side, leading
to an overall increase of the thrust generated by the propeller. Conversely, it is evident
that in axial airflow condition, no asymmetry of the forces is seen throughout the blade
angular position, as there is no change in the resultant wind velocity throughout the
blade angular position.

The evolution of the thrust in presence of a sideslip angle can also be postulated by
analysing the components of the freestream velocity demonstrated in Fig. 2.4-2.5 of
chapter 2. Sideslip angle α generates a velocity component along the z axis (vZ),
which acts opposite to the direction of the tangential velocity V ′t at γ = 0◦. In the
range γ ∈ [0, π2], this tangential velocity increases as a result of the projection of vz on
it. From γ ∈ [π2 , π], vZ component acts along the same direction as V ′t , thereby further

60

7. Results

0 /2 3 /2 2

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5
10

-4

27.24%

21.77%

9.76%

8.89%

Figure 7.13.: Thrust evolution with angular position of the blade for different sideslip angles

increasing its value in this range. At γ = π, its magnitude is maximum, since both ve-
locity components acts in parallel along the same direction. Followed by this, a decrease
in V ′t is observed in the range γ ∈ [π, 2π]. The trend of change in the projection of vZ
component at V ′t is same here as in the range of γ ∈ [0, π]. These changes in the V ′t
leads to the differences in the thrust generation along the angular position of the blade.
A higher tangential velocity for the same acting axial velocity would lead to an increase
in the resultant velocity Vp and as a result the AoA experienced by the airfoil.

61

7. Results

7.4. Induced velocities

This section will provide an overview of the induced velocities generated within the
propeller model that significantly contributes to the authentic estimation of the propeller
performance. According to the momentum theory discussed in section 2.2, an induced
velocity va arises in the axial direction of the propeller, that acts along the freestream
velocity. At the same time, a tangential induced velocity vr is introduced due to the
rotary motion of the propeller in the flow field that acts along the same direction of the
rotation.

Fig. 7.14 shows the induced velocities that were estimated by the propeller model for
blade angles θ = 20◦ and 30◦ at 1500 rpm and in axial airflow condition. The corre-
sponding thrust coefficients for the same condition is depicted in Fig. 7.15. In order to
provide a thrust, the propeller must give motion to a mass of air in a direction opposite
to the thrust [11]. This is in alignment with the output of the propeller model. It can be
seen that the instant the direction of the generated thrust reverses, the induced veloc-
ities rightly changes its direction as well. The propeller starts generating thrust in the
opposite side of the flight direction at J = 0.85 for θ = 20◦, and at J = 1.3 for θ = 30◦.
This is because at these advance ratios, the speed of the aircraft is high enough that the
resultant wind velocity strikes the blade airfoil from the suction side, and as a result, the
resultant force from the lift component acts in the opposite side of the flight direction.
This phenomenon is demonstrated visually in Fig. 7.16. As seen from Fig. 7.14, at this
exact instant, also the induced velocities changes its direction due to the motion of the
air in the opposite direction to that of the produced thrust. Though the model is able
to predict this scenario, in practical, the aircraft is never operated in this situation due
to its negative torque sensing (NTS) system, and a higher blade angle is opted for such
high aircraft speed.

As discussed earlier in section 2.3, computing the induced velocities underpinning the
propeller model involves numerical optimization to solve the BEM equations, in order
to find its minima. With the implemented method and strategy as mentioned in sec-
tion 4.1, the development of the induced velocities for each iteration of the optimization
is shown in Fig. 7.17. Consequently, the value of the objective function correspond-
ing to the iterated induced velocities is shown in the subplot below. This optimization
procedure corresponds for the propeller performance at θ = 30◦ and J = 1 depicted in
Fig. 7.15(b); for a blade element present at the spanwise station 0.7R of the blade. With
the final computed value of the induced velocities, the objective function was numerically
minimized to a value of 4× 10−11.

62

7. Results

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-15

-10

-5

0

5

10

15

20

25

30

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-15

-10

-5

0

5

10

15

20

25

30

(b)

Figure 7.14.: Induced velocities produced for different advance ratios at (a) θ = 20◦, (b) θ = 30◦

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-0.3

-0.2

-0.1

0

0.1

0.2

 = 20
°

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-0.3

-0.2

-0.1

0

0.1

0.2

 = 30
°

(b)

Figure 7.15.: Propeller performance for (a) θ = 20◦ and (b) θ = 30◦

63

7. Results

Vx

Vt

Vp

φ

αb

θ

Propeller Plane
P

ro
pe

lle
r

A
xi

s

dR

dL

dQ/r

dD

dT

x

Figure 7.16.: Forces and velocities acting on an airfoil at high advance ratio

0 1 2 3 4 5 6 7 8

4

5

6

0 1 2 3 4 5 6 7 8

0

0.5

1

1.5

2
10

4

Figure 7.17.: Induced velocities development for each iteration of optimization

64

CHAPTER 8

CONCLUSIONS

A mathematical-physics based propeller model has been presented, implemented, de-
veloped, validated and examined in this thesis. The validation of the model showed
commendable agreement with the real-world data. The implementation resides as a
software library, for which various tests has been carried out, which were passed success-
fully. The code was further optimized to increase the computation speed of the model,
using profile analyzer and parallel computation. The propeller model was adapted to
be real-time capable in the form of LUTs. Necessary measures were taken to ensure
the accuracy of this model with respect to the real-world data. Influence of different
variables on the propeller performance has been explored and validated. Behavior of
the propeller in presence of non-axial airflow has been inspected. The induced velocities
that are produced as a result of the thrust and load generation of the propeller itself
were assessed for its alignment with the theory.

As a vital component of aircraft, the developed propeller model plays an imperative
role in establishing the safety and efficiency of aviation. The developed propeller model
as a form of LUTs can be used for different model based development of an aircraft
(model-in-the-loop and hardware-in-the-loop tests). The simulation of the digital twin
encompassing the propeller model can give substantial insights into the aircraft perfor-
mance, load generation, force asymmetries and the pitch control system.

The developed propeller model can be utilized to generate propeller performance maps
for various categories and sizes of propellers, based on their geometry, and then accord-
ingly select the suitable propeller for an aircraft or assignment. Furthermore, extreme
tests can be performed for an aircraft to detect any critical design problems to be recti-
fied before manufacturing of the actual product. New design geometric parameters can
be explored keeping in mind the propeller performance.

65

8. Conclusions

CFD simulation and computation requires very high number of model parameters, in-
cluding the properties of the surrounding airflow, and additionally the 3D geometry
of the propeller blades to accurately predict the propeller performance. This can be
overcome by utilizing the mathematical-physics based propeller model developed in this
thesis, that utilizes the 2D geometry data of the propeller.

Potential future work in the realm of the developed propeller model could be its exten-
sion to incorporate advanced or non-standard blade geometries such as curved blades or
blades having winglets. Enhancing the model to consider turbulent flow, so as to inves-
tigate noise and vibrations generated by a propeller could be a good feature expansion.
These properties are highly sought for the emerging unmanned aerial vehicles (UAVs)
and air taxis, that are lighter than the conventional aircrafts and have specific noise
reduction challenges. Furthermore, material characteristics can be incorporated in the
model to examine the propeller performance and its sustainability with respect to various
newly discovered or emerging materials suitable for propellers.

66

APPENDIX A

RELEVANT CODE

A.1. obj func.m

1 % function to create the objective function
2 % to be solved for the induced velocities
3 function f = obj_func (init , V_x_prime , V_t_prime ,...
4 number_of_blades , tip_radius ,...
5 element_radius , chord , blade_angle ,...
6 element_twist , c_L_data , c_D_data , x)
7
8 v_a = init (1);
9 v_r = init (2);
10 V_x = V_x_prime + v_a;
11 V_t = V_t_prime - v_r;
12 phi_ = atan2(V_x , V_t);
13 theta = blade_angle + element_twist ; % [in rad]
14 alpha_b = theta - phi_; % [in rad]
15 c_L = calc_c_L_c_D (alpha_b , c_L_data , x,

element_radius);
16 c_D = calc_c_L_c_D (alpha_b , c_D_data , x,

element_radius);
17
18 % blade solidity
19 sigma = chord * number_of_blades / (2 * pi *

element_radius);
20 % a variable for the main formula
21 f = number_of_blades / 2 * ...

67

A. Relevant Code

22 (tip_radius - element_radius) / (element_radius *
sin(phi_));

23 % a variable for the main formula
24 F = 2 / pi * acos(exp(-f));
25
26 % equation 1
27 f_1 = 1 / 2 * sigma * ((V_x)^2+(V_t)^2) * ...
28 (c_L * cos(phi_) - c_D * sin(phi_)) ...
29 - 2 * (V_x_prime + v_a) * v_a * F;
30
31 % equation 2
32 f_2 = 1 / 2 * sigma * ((V_x)^2+(V_t)^2) * ...
33 (c_L * sin(phi_) + c_D * cos(phi_)) ...
34 - 2 * (V_x_prime + v_a) * v_r * F;
35
36 f = f_1 ^2 + f_2 ^2;
37
38 end

A.2. get geometry.m

1 % Function to get the geometry data of the propeller
2 function [tip_radius , hub_radius , number_of_blades] = ...
3 get_geometry (prop_data)
4 % Blade tip radius [in m]
5 tip_radius = prop_data . tip_radius ;
6 % Blade hub radius [in m]
7 hub_radius = prop_data . hub_radius ;
8 % number of blades
9 number_of_blades = prop_data . number_of_blades ;
10 end

68

A. Relevant Code

A.3. interpolate data.m

1 % Function to do a simple linear interpolation from a given
2 % 2D table of form [element_radius , values], in order to
3 % find the 'values ' at different 'element_radius '
4 function required_table = ...
5 interpolate_data (given_table , radial_position_table)
6 interpTableObj = griddedInterpolant (

given_table (: ,1) , given_table (: ,2));
7 required_table = interpTableObj (

radial_position_table);
8 end

A.4. calculate V t prime.m

1 % Function to calculate V_tangential without
2 % taking account the induced velocity v_r
3 function V_t_prime = calculate_V_t_prime (V_free , alpha ,...
4 beta , gama , element_radius , rpm)
5 % tangential velocity due to the inflow angles only
6 v_t = V_free * (sin(beta) * sin(gama) - ...
7 cos(beta) * sin(alpha) * cos(gama));
8 % total tangential velocity [in m/s]
9 V_t_prime = v_t + (element_radius ...
10 * 2 * pi * rpm / 60);
11 end

A.5. calc c L c D

1 % function to extract the required c_L and c_D data
2 function c = calc_c_L_c_D (alpha_b , c_data , x, r)
3 V = (alpha_b * 180 / pi) ';
4 N = c_data (: ,1);
5 A = repmat(N ,[1 length(V)]);
6 [~ , closestIndex] = min(abs(A-V'));
7 c_closest = c_data(closestIndex , 2: end) ';
8 interpObj = griddedInterpolant (x, c_closest);
9 c = interpObj (r);
10 end

69

A. Relevant Code

A.6. mainTest.m

1 % Unit test for the helper function 'calc_c_L_c_D ',
2 % which gives us the value of c_L or c_D dependiong on AoA
3 % and r
4
5 % main function
6 function tests = mainTest
7 tests = functiontests (localfunctions);
8 end
9
10 % function to be tested
11 % alpha_b = AoA
12 % x = radial positions for which the data are available
13 % r = radial positions for which the data are required
14 function c = calc_c_L_c_D (alpha_b , c_data , x, r)
15 V = (alpha_b * 180 / pi) ';
16 N = c_data (: ,1);
17 A = repmat(N ,[1 length(V)]);
18 [~ , closestIndex] = min(abs(A-V'));
19 c_closest = c_data(closestIndex , 2: end) ';
20 interpObj = griddedInterpolant (x, c_closest);
21 c = interpObj (r);
22 end
23
24 % setup file fixture
25 % create the data once for all the tests
26 function setupOnce (testCase)
27 testCase . TestData .angle = [30 31 32 32.2 32.4] ';
28 testCase . TestData .x = [0 2 4 6 8];
29 testCase . TestData .values = ...
30 zeros(length(testCase . TestData .angle),...
31 length(testCase . TestData .x));
32 testCase . TestData .values (:) = ...
33 1:(length(testCase . TestData .angle)*...
34 length(testCase . TestData .x));
35 testCase . TestData .values = testCase . TestData .values ';
36 testCase . TestData .Data = ...
37 [testCase . TestData .angle , testCase . TestData .values];
38 end
39
40 % test function 1
41 % checks for no function return

70

A. Relevant Code

42 function test_1(testCase)
43 actSolution = calc_c_L_c_D (32* pi /180 ,...
44 testCase . TestData .Data , testCase . TestData .x ,7);
45 fatalAssertNotEmpty (testCase , actSolution);
46 end
47
48 % test function 2
49 % check correction of the function
50 function test_2(testCase)
51 actSolution = calc_c_L_c_D (32* pi /180 , ...
52 testCase . TestData .Data , testCase . TestData .x ,7);
53 expSolution = 14.5;
54 verifyEqual (testCase ,actSolution ,expSolution ,...
55 'Solution does not match ');
56 end
57
58 % test function 3
59 % check order for multiple solution
60 function test_3(testCase)
61 actSolution = calc_c_L_c_D ([31 31.8]* pi /180 ,...
62 testCase . TestData .Data , testCase . TestData .x, 7);
63 expSolution = [9.5 14.5];
64 assumeEqual (testCase ,size(actSolution),...
65 size(expSolution),'Size mismatch for multiple input ')
66 verifyEqual (testCase ,actSolution ,expSolution ,...
67 'Multiple solutions does not match ');
68 end
69
70 % test function 4
71 % check for the solution sequence order
72 function test_4(testCase)
73 import matlab. unittest . constraints . IsEqualTo
74 actSolution = calc_c_L_c_D ([31 31.8]* pi /180 ,...
75 testCase . TestData .Data , testCase . TestData .x, 7);
76 expSolution = [9.5 14.5];
77 verifyThat (testCase , actSolution (1) ,...
78 IsEqualTo (expSolution (1)),'Index mismatch ');
79 verifyThat (testCase , actSolution (2) ,...
80 IsEqualTo (expSolution (2)),'Index mismatch ');
81 end
82
83 % test function 5
84 % check for solution bound
85 function test_5(testCase)

71

A. Relevant Code

86 import matlab. unittest . constraints . IsLessThanOrEqualTo
87 actSolution = calc_c_L_c_D (33* pi /180 ,...
88 testCase . TestData .Data , testCase . TestData .x ,8);
89 expSolution = testCase . TestData .values(end ,end);
90 assertThat (testCase ,actSolution ,...
91 IsLessThanOrEqualTo (expSolution));
92 end
93
94 % teardown file fixture
95 % replace the parameter values for further use
96 function teardownOnce (testCase)
97 testCase . TestData .angle = [60 70 80 90 100] ';
98 testCase . TestData .x = [0.5 1.5 2.5 4.5 6];
99 end

72

BIBLIOGRAPHY

[1] Chris Rorres. The turn of the screw: Optimal design of an archimedes screw.
Journal of Hydraulic Engineering, 2000.

[2] William Froude. The elementary relation between pitch, slip, and propulsive effi-
ciency. Inst. Naval Architects, 1878.

[3] W.J. Macquorn Rankine. On the mechanical principles of the action of propellers.
Transactions of the Institute of Naval Architects, 6:13–39, 1865.

[4] L.J. Clancy. Aerodynamics. London: Pitman, 1975.

[5] Dale Crane. Dictionary of Aeronautical Terms, volume 3. Aviation Supplies Aca-
demics, 1997.

[6] Mario Heene. Aerodynamic propeller model for load analysis, 2012.

[7] Emmanuel Branlard. Blade element theory (BET). Research topics in wind energy,
Jan 2017.

[8] Q.R. Wald. The aerodynamics of propellers. Progress in Aerospace Sciences,
42(2):85–128, 2006.

[9] Usama T Toman, Abdel-Karim SO Hassan, Farouk M Owis, and Ahmed SA Mo-
hamed. Blade shape optimization of an aircraft propeller using space mapping
surrogates. Advances in Mechanical Engineering, 11(7), 2019.

[10] Jianwei Sun, Koichi Yonezawa, Yasutada Tanabe, Hideaki Sugawara, and Hao Liu.
Blade twist effects on aerodynamic performance and noise reduction in a multirotor
propeller. Drones, 7(4), 2023.

[11] F.E. Weick. Aircraft propeller design. McGraw-Hill Book Company, 1930.

73

Bibliography

[12] T. Sinnige, D. Ragni, A.M.N. Malgoezar, Georg Eitelberg, and Leo L. M. Veldhuis.
APIAN-INF: an aerodynamic and aeroacoustic investigation of pylon-interaction
effects for pusher propellers. CEAS Aeronaut, 9:291–306, 2018.

[13] Gianluca Ciattaglia, Grazia Iadarola, Linda Senigagliesi, Susanna Spinsante, and
Ennio Gambi. UAV propeller rotational speed measurement through FMCW radars.
Remote Sensing, 15(1), 2023.

[14] H. Glauert. Aerofoil and Airscrew Theory. Cambridge University Press, 1926.

[15] R.D. Knight. Physics for Scientists and Engineers: A Strategic Approach. Pearson
Education, Limited, 2007.

[16] L.J. Clancy. Aerodynamics. A Halsted Press book. Wiley, 1975.

[17] Robert S. Merrill. Nonlinear aerodynamic corrections to blade element momentum
model with validation experiments. Utah State University, 2011.

[18] H. Glauert. Airplane propellers. Springer, Aerodynamic Theory, 4:169–360, 1935.

[19] Emmanuel Branlard. Wind turbine tip-loss corrections. Master’s thesis, September
2013.

[20] Emmanuel Branlard and Mac Gaunaa. Development of new tip-loss corrections
based on vortex theory and vortex methods. Journal of Physics: Conference Series,
555(1):012012, dec 2014.

[21] Robert E. Wilson and B.S. Lissaman. Applied Aerodynamics of Power Wind Ma-
chines. National Science Foundation, Oregon State University, 1974.

[22] Jeremy Ledoux, Sebastián Riffo, and Julien Salomon. Analysis of the Blade Ele-
ment Momentum Theory. SIAM Journal on Applied Mathematics, 81(6):2596–2621,
December 2021.

[23] M. Bourhis, M. Pereira, and F. Ravelet. Experimental investigation of the effect of
blade solidity on micro-scale and low tip-speed ratio wind turbines. Experimental
Thermal and Fluid Science, 140:110745, 2023.

[24] Edwin P Hartman and David Biermann. The aerodynamic characteristics of full-
scale propellers having 2, 3, and 4 blades of Clark Y and R.A.F. 6 airfoil sections.
Work of the US Gov., NACA-TR-640, 01 1938.

[25] P. Burgers. A thrust equation treats propellers and rotors as aerodynamic cycles and
calculates their thrust without resorting to the blade element method. International
Journal of Aviation, Aeronautics, and Aerospace, 6(5), 2019.

[26] John Watkinson, Curtis Howard D., Antonio Filippone, Michael V. Cook, T.H.G
Megson, Mike Tooley, David Wyatt, Lloyd R. Jenkinson, Jim Marchman, and Fil-
ippo De Florio. Aerospace Engineering Desk Reference. Butterworth-Heinemann,
an imprint of Elsevier, 2009.

74

Bibliography

[27] Axel Raichle, Stefan Melber-Wilkending, and Jan Himisch. A new actuator disk
model for the TAU code and application to a sailplane with a folding engine. 11
2006.

[28] Kai Yu, Peikai Yan, and Jian Hu. Numerical analysis of blade stress of marine
propellers. Journal of Marine Science and Application, 19:436–443, 09 2020.

[29] W Garner. Model Airplane Propellers. 01 2009.

[30] NASA Glenn Research Center. Induced drag coefficient.

[31] J. Johansen and Niels N. Sørensen. Numerical investigation of three wind turbine
blade tips. Number 1353(EN) in Denmark. Forskningscenter Risoe. Risoe-R. 2002.

[32] Pilot’s Handbook of Aeronautical Knowledge, chapter 5, pages 5.1–5.51. Federal
Aviation Administration, United States, 2023.

[33] Manfred Gilli and Enrico Schumann. A note on ‘good starting values’ in numerical
optimisation. June 2010.

[34] Vagelis Plevris, Nikolaos P. Bakas, and German Solorzano. Pure random orthogonal
search (pros): A plain and elegant parameterless algorithm for global optimization.
Applied Sciences, 11(11), 2021.

[35] E.L. Houghton, P.W. Carpenter, Steven H. Collicott, and Daniel T. Valentine.
Chapter 1 - basic concepts and definitions. In E.L. Houghton, P.W. Carpenter,
Steven H. Collicott, and Daniel T. Valentine, editors, Aerodynamics for Engineer-
ing Students (Sixth Edition), pages 1–68. Butterworth-Heinemann, Boston, seventh
edition edition, 2013.

[36] R.W. Hamming and R.W. Hamming. Numerical Methods for Scientists and Engi-
neers. Dover books on engineering. Dover, 1986.

[37] Ermira Daka and Gordon Fraser. A survey on unit testing practices and problems.
In 2014 IEEE 25th International Symposium on Software Reliability Engineering,
pages 201–211, 2014.

[38] Gerard Meszaros. xUnit Test Patterns, Refactoring Test Code. Addison-Wesley,
2002.

[39] Angira Sharma, Edward Kosasih, Jie Zhang, Alexandra Brintrup, and Anisoara
Calinescu. Digital twins: State of the art theory and practice, challenges, and open
research questions. Journal of Industrial Information Integration, 30:100383, 2022.

[40] European Union Aviation Safety Agency. Review of aeroplane performance require-
ments for air operations and regular update of CS-25, amendment 27. 01 2023.

[41] C. H. Wolowicz and R. B. Yancey. Longitudinal aerodynamic characteristics of light,
twin-engine, propeller-driven airplanes. NASA Flight Research Center Edwards,
CA, United States, June 1972.

75

Bibliography

[42] H. Clyde McLemore and Michael D. Cannon. Aerodynamic investigation of a four-
blade propeller operating through an angle-of-attack range from 0◦ to 180◦. NACA
Langley Aeronatical Laboratory, 1954.

[43] The MathWorks Inc. Parallel computing toolbox documentation, 2022.

[44] Richard Fateman. Lookup tables, recurrences and complexity. pages 68–73, 01
1989.

[45] Goldwyn Rodrigues. Taming the OOM killer. LWN.net, 2009.

[46] Gunnar Kudrjavets, Jeff Thomas, Aditya Kumar, Nachiappan Nagappan, and
Ayushi Rastogi. When malloc() never returns null – reliability as an illusion. 08
2022.

[47] Geunsik Lim, Donghyun Kang, Myungjoo Ham, and Young Ik Eom. SWAM: Revis-
iting swap and OOMK for improving application responsiveness on mobile devices.
In Proceedings of the 29th Annual International Conference on Mobile Computing
and Networking. ACM, july 2023.

[48] Arnaud de Myttenaere, Boris Golden, Bénédicte Le Grand, and Fabrice Rossi.
Mean absolute percentage error for regression models. Neurocomputing, 192:38–48,
2016. Advances in artificial neural networks, machine learning and computational
intelligence.

[49] Takao Maeda, Yasunari Kamada, Jun Suzuki, and Hideyasu Fujioka. Rotor Blade
Sectional Performance Under Yawed Inflow Conditions. Journal of Solar Energy
Engineering, 130(3):031018, 07 2008.

[50] Yuchen Leng, Heesik Yoo, Thierry Jardin, Murat Bronz, and Jean-Marc Moschetta.
Aerodynamic Modeling of Propeller Forces and Moments at High Angle of Inci-
dence. In AIAA Scitech 2019 Forum, AIAA Scitech 2019 Forum, San Diego, United
States, January 2019. AIAA.

[51] Danilo Ciliberti and Fabrizio Nicolosi. Design, analysis, and testing of a scaled
propeller for an innovative regional turboprop aircraft. Aerospace, 9(5), 2022.

[52] David Serrano, Max Ren, Ahmed Jawad Qureshi, and Sina Ghaemi. Effect of disk
angle-of-attack on aerodynamic performance of small propellers. Aerospace Science
and Technology, 92:901–914, 2019.

[53] Tom C. A. Stokkermans and Leo L. M. Veldhuis. Propeller performance at large
angle of attack applicable to compound helicopters. AIAA Journal, 59(6):2183–
2199, 2021.

76

DECLARATION OF AUTHORSHIP

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources, and that I have explicitly marked all material which
has been quoted either literally or by content from the used sources.

— Place, Date — — Neelabh Jyoti Saharia —

77

saha_ne
Typewriter
Cottbus, 02.11.2023

saha_ne
Typewriter
Neelabh Jyoti Saharia

