
1. Introduction
The structure and properties of the Martian crust are important for understanding the evolution of Mars and rocky 
planets. In this context, the InSight mission (Banerdt et al., 2020), which landed on Elysium Planitia in November 
2018, aims to study the interior of Mars by means of one seismological station placed on the Martian surface 
(Lognonné et al., 2019).

After more than 3 years of data collection, the Martian crust has been studied by a thorough analysis of the 
InSight seismological data. Locally at the InSight landing site, early analysis of P-to-s receiver functions (RFs) 
allowed to derive a shallow layer with low seismic velocities in the first 8–11 km of the Martian crust (Lognonné 
et al., 2020). Further investigation including more marsquakes suggests a layered local Martian crust with two 
discontinuities at 8 ± 2 km and 20 ± 5 km, and a bimodal estimation of the crust thickness of either 20 ± 5 or 
39 ± 8 km (Knapmeyer-Endrun et al., 2021). Subsequently, the analysis of further seismic events and the identi-
fication of other secondary phases (PPs, Sp and three new crustal multiples) favor a 3-layer crustal model (Joshi 
et al., 2023; Kim et al., 2021), for which the crust-mantle boundary would be located at ∼40 km depth. The shal-
low discontinuity around 8 km depth has been confirmed by the detection of SsPp phases (J. Li, Beghein, Davis, 
et al., 2022) and SH-wave reflections (J. Li, Beghein, Wookey, et al., 2022). Recently, Shi et al. (2023) proposed a 
shallow discontinuity at around 2 km depth, based on the analysis of high-frequency RFs. Further properties and 
characteristics of the Martian crust at regional scales (e.g., Kim, Banerdt, et al., 2022; Beghein et al., 2022; Kim, 
Stähler, et al., 2022; J. Li, Beghein, Lognonné, et al., 2022), as well as at global scale and away from the lander 
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(e.g., J. Li, Beghein, McLennan, et al., 2022; Wieczorek et al., 2022; Durán et al., 2022), have been derived from 
the analysis of the InSight seismic data using different approaches. Table S1 in Supporting Information S1 details 
some representative models for the Martian crust.

Besides RFs, the analysis and inversion of the ellipticity of direct Rayleigh waves is a single-station technique 
that, when measured at intermediate and long periods (>10 s), allows investigating the local underground struc-
ture down to crustal depths (Tanimoto & Rivera, 2008; Yano et al., 2009). The ellipticity, understood as the ratio 
between the radial (R) and the vertical (Z) ground-motion of the Rayleigh wave (Figure 1a), has been shown to 
be invariant to the seismic source, the wave propagation path or the epicentral distance and rather depend on the 
local structure directly beneath the receiver (e.g., Ferreira & Woodhouse, 2007). Even though this methodology 
was proposed in the 1970s, it has gained popularity only in recent years and with successful applications on Earth 
(e.g., Lin et al., 2012; G. Li et al., 2016; Berbellini et al., 2017), but it has not been applied on Mars so far due to 
the lack of observation of direct Rayleigh waves. Hence, the ellipticity analysis of direct Rayleigh waves is still 
a pending task that could provide further constraints on the structure of the Martian crust at the InSight landing 
site, as proposed by Panning et al. (2017).

On 4 May 2022, the InSight lander recorded the S1222a event, which had a moment magnitude estimated as 
MW 4.7 and thus corresponds to the largest seismic event ever recorded on Mars (Kawamura et al., 2022). This 
event exhibits clear surface waves (both Love and Rayleigh) that can be used for studying lithospheric properties 
along the source-receiver path (e.g., Beghein et al., 2022; J. Li, Beghein, Lognonné, et al., 2022; Kim, Stähler, 
et al., 2022; Xu et al., 2023), but is also a unique opportunity to investigate the local crustal structure through 
ellipticity analysis of Rayleigh waves. Similarly, the events S1000a and S1094b are two other good-quality seis-
mic events, which are related to the impact of meteorites on the Martian surface, 126° and 58° away from the 
InSight lander, and had magnitudes estimated as MW 4.1 and 4.0, respectively (Posiolova et al., 2022). For these 
two events, Rayleigh waves have also been observed (Kim, Banerdt, et al., 2022). These three large events, whose 
source locations are shown in Figure 1b, are thus excellent candidates to perform a Rayleigh wave ellipticity (also 
referred to as ɛ) analysis.

The analysis of ɛ data can be used as an independent observation to characterize the Martian crust at the InSight 
landing site. The inversion of RFs is affected by the non-uniqueness phenomenon and, although these data are 
highly sensitive to discontinuities, the addition of ɛ data can provide constraints on long-wavelength velocity 
features (Chong et al., 2016). As both data sets map the local structure at similar local scales, a joint inversion of 
ɛ and P-to-s RFs can be performed. Similarly, the autocorrelation times (hereafter Ta) obtained from the analysis 
of seismic ambient noise, such as those by Schimmel et al.  (2021), are sensitive to the local crustal structure 
and therefore can be used as an independent data set to constrain the inversion. In fact, the predicted Ta for the 
crustal models in Table S1 in Supporting Information S1 differs from the measurements (Table S3 in Supporting 
Information S1) whereas, as shown in Figure 2a, the corresponding predicted ellipticity curves fail to match the 
measured ɛ. These mismatches further encourage a joint inversion of the three data sets.

In this work, we analyze the ellipticity and phase shift of the Rayleigh waves related to the large seismic events 
S1000a, S1094b and especially S1222a, to obtain further constraints on the structure of the Martian crust. In 
particular, we perform a joint inversion of Rayleigh wave ellipticity, P-to-s RFs and Ta, aiming to obtain a consol-
idated local crustal model.

2. Data Processing and Methods
2.1. Rayleigh Wave Ellipticity

To retrieve the characteristic ɛ at the InSight site, we performed a time-domain analysis in a similar way as has 
been performed on Earth (e.g., Berbellini et al., 2016; Ferreira et al., 2020; Ferreira & Woodhouse, 2007), follow-
ing the steps shown in Figures 1c–1f. First, the time windows where the Rayleigh waves arrive are roughly esti-
mated by manual inspection, following the identification by Kim, Banerdt, et al. (2022) for S1000a and S1094b 
and the time estimates by the Marsquake Service (MQS) for S1222a (Kawamura et al., 2022), and assuming they 
correspond to the fundamental mode (0R1). These arrival time windows are shown in Figure 1c.

The raw data (InSight Mars SEIS Data Service, 2019) have been deglitched using the UCLA method (Scholz 
et al., 2020), restituted to ground motion (displacement) and transferred into the ZNE coordinates system. The 
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data are then rotated into a ZRT coordinates system by using the back azimuth (BAZ) of each event. As S1000a 
and S1094b have been identified as impacts with source locations confirmed by orbital images (Posiolova 
et al., 2022), their BAZs are well constrained at around 36° and 51°, respectively. For S1222a, even though there 
are estimates for the location of the source (e.g., Kawamura et al., 2022), there is no ground-truth location as for 
S1000a and S1094b.

We applied an independent methodology to estimate the BAZ of S1222a, based on the fact that the Rayleigh 
waves propagate in the ZR plane. Thus, we look for the maximization of the ground-motion amplitudes on the Z 
and R components while minimizing the ground motion on the T component. Further details on this methodol-
ogy are provided in Section S2 (Supporting Information S1). For S1222a, our estimated BAZs are in the range 
114°–137°, with a median value of 129°, which is used in this work. This BAZ is in the range obtained from the 
analysis of multi-orbit Rayleigh waves (Panning et al., 2022) and differs by ∼30° from the BAZ derived from 
body waves by the MQS (Kawamura et al., 2022). After rotating into the ZRT coordinates system, the Z and R 

Figure 1. Rayleigh wave ellipticity from large marsquakes. (a) Schematic representation of Rayleigh wave ellipticity using 
the radial (R) and vertical (Z) ground motion. (b) Topographic map of Mars, from the Mars Orbiter Laser Altimeter (Smith 
et al., 2001), showing the epicenter of events S1000a, S1094b, S1222a and the InSight lander. Below the map, from left 
to right, columns correspond to events S1000a, S1094b, and S1222a, respectively. From top to bottom: (c) S-transform 
spectrogram of the Z component, where the fundamental mode and first overtone of the Rayleigh waves are highlighted; 
(d) shifted Z and R waveforms using the optimal phase shift ϕ. The Z and R components are bandpass-filtered with a 30% 
bandwidth around the central period T0, as indicated. The SNRZ and SNRR are given at the top right corner of each plot; (e) 
cross-correlation factor between shifted Z and R components (blue), normalized envelope η(t) (yellow) and characteristic 
function χ(t) (dashed black). The red dot-dashed line denotes a threshold at 0.8; (f) ellipticity ɛ(t). For each event and each 
central period, the average ellipticity 𝐴𝐴 (�̄�𝜀) is computed over the time window where χ ≥ 0.8 (gray box).
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components are bandpass-filtered, with a 30% bandwidth, around different central periods T0 (Figure 1d). In this 
way, every T0 will be associated with one ellipticity value.

Subsequently, we obtained the optimal phase shift (ϕ) by maximizing the cross-correlation between the Z and R 
components. Examples of resulting ϕ and optimally shifted waveforms are shown in Figure 1d. Once optimally 
shifted, we computed the cross-correlation factor ν(t) between the shifted Z and R components (Figure 1e). The 
normalized envelope η(t), also shown in Figure 1e and given by the multiplication of the Z and R envelopes, 
is calculated in order to find the specific time window where the energy is maximized. In order to discard 
low-amplitude signals with high cross-correlation (or vice versa), a characteristic function χ(t) = ν(t)η(t) is calcu-
lated (Figure 1e). The final ellipticity for the central period T0, computed as the R/Z quotient, is the average of 
the ellipticities in the time window where the characteristic function χ is larger than 0.8, as shown in Figure 1f.

These processing steps are performed on the 0R1 of events S1000a, S1094b and S1222a. In order to combine these 
measurements, even though radial and azimuthal anisotropy may be present, we assume that these would affect 
ellipticity to a lesser extent than the underlying crustal structure. To get a single characteristic ellipticity curve at 
the InSight landing site, only pairs of event-T0 with actual Rayleigh wave signal are considered, that is, when the 
signal-to-noise ratio (SNR) is larger than a given threshold in both Z and R components. We use SNRZ ≥ 10 and 
SNRR ≥ 5 (given the higher noise levels on the horizontals). The final Rayleigh ellipticity curve for the InSight 

Figure 2. Rayleigh wave ellipticity and phase shift results. (a) Rayleigh wave ellipticity (ɛ) curve for events S1000a (red 
cross), S1094b (blue square) and S1222a (yellow star). Colored markers correspond to periods where the SNR criteria are 
fulfilled. Background light gray markers did not meet the minimum SNR threshold. The final ellipticity curve for the InSight 
site is denoted by the black circles, and a 15% uncertainty range has been imposed (gray area). Synthetic ellipticity curves are 
illustrated for characteristic crustal models from Knapmeyer-Endrun et al. (2021), Durán et al. (2022), Joshi et al. (2023), and 
Shi et al. (2023). (b) Phase shift ϕ between Z and R components of 0R1 for the same events and with the same color code as in 
(a). The light red area corresponds to ϕ in the range 90 ± 10°. (c) Vp and Vs models for the InSight crust used for synthetic 
calculation of ɛ in (a).
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site is then calculated as the smoothed median of the valid ɛ values, obtained by means of a Savitzky-Golay filter 
(Savitzky & Golay, 1964).

2.2. Joint Inversion of Ellipticity, P-To-S RFs and Ta

As the trade-off between the layer velocities and the depth of the discontinuities is a well-known feature of the 
ellipticity inversion, the incorporation of independent measurements such as RFs and Ta can help to further 
constrain the possible models (Chong et al., 2016). We thus retrieved the 1D crustal structure underneath the 
InSight landing site by jointly inverting the ɛ measurements (this work) with the mean P-to-s RF by Joshi 
et al. (2023), obtained by stacking radial-component low-frequency RFs for eight high-quality marsquakes mainly 
originating in the Cerberus Fossae region (see Joshi et al. (2023) for further details). Additionally, we included 
the Ta obtained by Schimmel et al. (2021), which are understood as the two-way travel times of P waves bouncing 
back from the first (∼6.15 s) and second (∼10.6 s) strong discontinuity within the crust.

For every model, the RF forward calculation is performed via a Python implementation of the code by Shibutani 
et al. (1996), using a fixed ray parameter p* = 6.9 s/deg, suitable for events in the Cerberus Fossae region (Joshi 
et al., 2023). In the RF, four peaks at around 0, 2.4, 4.8, and 7.2 s are observed, which are related to the direct 
P phase and three converted phases P1s, P2s, P3s, where the subscript indicates the interface where each phase 
is generated. The predicted ellipticity curves are obtained via the gpell toolbox included in the Geopsy package 
(Wathelet, 2005). Lastly, the Ta are computed assuming two-way vertical travel paths of the P waves.

The inversion scheme utilized is the Neighborhood Algorithm (NA), first introduced by Sambridge  (1999) 
and widely used for multiple geophysical applications, including subsurface characterization (e.g., Carrasco 
et al., 2022; Ferreira et al., 2020; Hobiger et al., 2013). We applied a modified version of the NA, where the 
parameters space can be constrained by physical conditions and prior information (Wathelet, 2008). The parame-
ter space is configured as 3-uniform-layers over a half-space (3LOH), where the depths of the discontinuities are 
constrained by Joshi et al. (2023). We inverted for shear-wave velocity Vs, P-wave velocity Vp and bottom depth 
z of each layer. Density was linked to Vp by using the empirical relationship by Brocher (2005), as suggested 
by Lin et al. (2012) for handling the trade-off with Vp/Vs, which was allowed to vary between 1.45 and 2.2. The 
upper mantle is modeled as a half-space with Vs between 4 and 5 km/s, following the results for the surrounding 
region using surface waves (Kim, Stähler, et al., 2022) and teleseismic phases (e.g., Drilleau et al., 2022; Durán 
et al., 2022). See Table S4 in Supporting Information S1 for further parameterization details.

The NA is based on a fully non-linear, self-adaptive Monte Carlo approach, which efficiently explores the param-
eters space in order to find the model m that minimizes the global misfit function Ψ between the observed and 
theoretical data. The global misfit depends on the misfit of each data set and their weighting. In this case, we used 
0.45, 0.45, and 0.1 as the weights of ɛ, RFs and Ta, respectively. Further details and other combinations of weights 
can be found in Sections S8 and S9 in Supporting Information S1.

3. Results and Discussion
3.1. Ellipticity and Phase-Shift Observations

The resulting ɛ and ϕ values are shown in Figures 2a and 2b, respectively. Besides the limited number of events 
analyzed, there is a lack of valid ellipticity measurements due to the low-amplitude energy on the radial compo-
nent. The valid ɛ values define an ellipticity curve between 15 and 35 s and two points at 8 and 9 s (Figure 2a). For 
the purpose of this paper, we focus on the period range between 15 and 35 s, where the horizontal contribution 
of the tilt induced by Rayleigh waves can be neglected. Due to the lack of further observations, a common 15% 
uncertainty is utilized, which properly covers our observations.

On Earth, the ellipticity curve of one specific site is obtained from the recordings of a large number of earth-
quakes. In our work, even though three events were initially investigated, the ellipticity curve is mainly ruled by 
S1222a and, therefore, the lack of observations can be disadvantageous for further analysis and interpretation. 
Ellipticity data can have a large spread (e.g., Attanayake et al., 2017; Berbellini et al., 2016), which might be 
associated with complex Rayleigh wave propagation effects (Pedersen et al., 2015; Sexton et al., 1977) or due 
to local-scale heterogeneities near the receiver, as suggested by Ferreira and Woodhouse (2007) after analyzing 
two close stations in California. Considering the lower tectonic activity and smooth topography in the local 
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surrounding of InSight, as compared to the terrestrial case, we assume that the ellipticity measurements from this 
event can be a good representation.

Besides, the 0R1 of S1222a has a high SNR in both Z and R components, so the final smoothed ɛ is expected to be 
a good representation of the local structure. For a better assessment, the same ellipticity analysis was performed 
for one station on Earth (station BQ.DREG in Germany, see Section S4 in Supporting Information S1). These 
measurements suggest that well-recorded events can show some variation with respect to the characteristic 
smoothed ellipticity curve of the site, but the broad shape of the curve remains similar. In particular, some events 
show different slopes and trends at specific period ranges, with respect to what is observed for the median ellip-
ticity (Figures S3 and S4 in Supporting Information S1), but the general trend is the same. Thus, we conclude that 
small oscillations on the ellipticity curve should not be over-interpreted.

The resulting Z-R phase shifts, mainly ruled by S1222a, suggest ϕ values between 60° and 70° (Figure 2b), which 
are persistently lower than the theoretical phase shift for Rayleigh waves under isotropic and homogeneous condi-
tions (90°). On Earth, large deviations up to ±30° have been found and have been related to small-scale heteroge-
neities (e.g., Ferreira & Woodhouse, 2007). From our observations on Earth, low ϕ (60–75°) were measured for 
some events at specific period ranges (see Figure S5 in Supporting Information S1). These observations suggest 
that anomalous ϕ might be related to the Rayleigh-wave path, or even the source, rather than the characteristics of 
the receiver site. Tanuma and Man (2008) also proposed that variations of ϕ with respect to the isotropic theoret-
ical value depend on the perturbation of the initial stress conditions of the medium. Although crustal anisotropy 
was reported along the path of S1222a (Beghein et al., 2022; Kim, Stähler et al., 2022), its influence on the phase 
shift is unclear and should not be discarded. Thus, the low ϕ measured at the InSight landing site might be due 
to a combination of path or source effects with the initial stress conditions at this site, but not directly related to 
the mechanical properties of the crust at the InSight landing site. In any case, low ϕ values have previously been 
observed on Earth to occur in some cases. Further analysis of this phenomenon is beyond the scope of this work.

3.2. Local Crust Structure at the InSight Landing Site

In order to derive a consolidated crustal structure for the InSight landing site, the joint inversion detailed in 
Section 2.2 was performed. It is worth noting that the inversion of ellipticity data alone does not properly constrain 
the layering of the crustal structure, as different settings between one and four layers over a half-space can equally 
well explain the ɛ observations (Figure S8 in Supporting Information S1).

The initial joint inversion results suggest that these local measurements can be well explained by a three-layer 
model, with an overall good fitting of the three data sets (see Figure S11 in Supporting Information  S1). 
However, the amplitude of the P-phase (first peak on the RFs), which is not normalized as it provides infor-
mation on the near-surface velocities (e.g., Ammon,  1991), is clearly overestimated. As shown by synthetic 
forward modeling (Figure S12 in Supporting Information S1), lower amplitudes for this arrival can be achieved 
by having lower velocities in the first layer. Because of this, we performed a second inversion where we allowed 
a shal low  low-velocity layer (4LOH, see Table S5 in Supporting Information S1 for details on the parameter 
space). These new resulting models are preferred as they explain the three independent data sets reasonably well 
(Figures 3a–3d), and especially the amplitude of the direct P-phase arrival is well retrieved.

Our inversion results show that a 4-layer crust structure (Figures 3e–3g), including a shallow low-velocity layer 
(sLVL) close to the surface, can explain the local-scale measurements well. The sLVL presents velocities between 
1.6 and 1.8 km/s and extends down to 2–3 km depth. Its origin is unclear, but previous works on the shallow-
est structure of Mars have proposed the presence of sedimentary and heavily fractured basalt layers in the first 
hundreds of meters (Carrasco et al., 2022; Hobiger et al., 2021), where Vs < 1 km/s were derived. Furthermore, 
Pan et al. (2020) suggested the presence of a sedimentary layer extending from 200 to 300 m up to kilometers in 
depth, whereas Warner et al. (2022) showed evidence for heavily fractured basalt units in the surrounding area. 
Thus, we interpret this shallow discontinuity to be the bottom of this large-scale unit.

The sLVL results from combining the different data sets through the joint inversion, rather than from a specific 
feature of the RF. Indeed, Shi et al. (2023) showed that the ∼1 s signal in the high-frequency RFs, related to the 
sLVL, is absent in the low-frequency RFs. Despite observing a similar 1 s signal in the low-frequency RF used 
in this work, the RF-only inversion with 3LOH shows that it is not necessarily related to an sLVL (Figure S9 
in Supporting Information S1). Instead, given the mantle velocity, the ellipticity data allows a range of average 
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crustal VS to fit the data, which leads to too high velocities near the surface for the RF, so a top layer with lower 
velocities is required.

In general, below the sLVL, our models have a similar structure and the discontinuities at ∼10 and ∼20 km 
depth are in good agreement with previously reported models for the local crust (e.g., Joshi et  al.,  2023; 
Knapmeyer-Endrun et al., 2021). The discontinuity around 37 km depth is interpreted as the crust-mantle bound-
ary, where the sharpest velocity contrast is observed. Even though the ellipticity data has low sensitivity at this 
depth, it can properly constrain the shallow Vs structure (Figure 3h), which directly affects the deeper structure 
as they are strongly tied through the RFs. Thus, as the shallow part is well constrained, the joint inversion can 
provide reliable depths for the Moho.

Overall, crustal Vp and Vs are lower than 5 and 3 km/s, respectively (Figures 3e and 3f). Vp/Vs is around 1.8 in 
the first 20 km of the crust and, even though large variation is observed, it seems to decrease in the bottom layer 
of the crust (Figure 3g). In particular, Vs are lower than in other regions on Mars, such as along the path between 
Amazonis Planitia and the InSight site in the lowlands (Kim, Banerdt, et al., 2022), or between S1222a and the 
lander, along the dichotomy region (J. Li, Beghein, Lognonné, et al., 2022). Although an increase in density is 
derived from the inversion, the inverted data sets are poorly sensitive to this parameter, as shown for the ellipticity 
(Figure 3h), so further interpretation is avoided. At a local scale, our proposed Vs are also slightly lower than those 
previously reported for the InSight site (Joshi et al., 2023; Knapmeyer-Endrun et al., 2021). Therefore, consider-
ing that porosity plays an important role in decreasing the velocity of the seismic waves (e.g., Heap, 2019), these 
lower velocities might be related to an even larger porosity or stronger alteration of the whole crust at the InSight 
site than previously thought.

4. Conclusions
For the first time, the ellipticity of the fundamental mode of direct Rayleigh waves was measured on Mars for 
periods between 15 and 35 s, especially thanks to S1222a. The obtained ellipticity curve is interpreted as a good 

Figure 3. Joint-inversion results and resulting Martian crustal models using a 4LOH parameter space. The measurements and the synthetic modeling of 200 best-fitting 
crustal models are shown for (a) Rayleigh wave ellipticity, (b) P-to-s RFs from Joshi et al. (2023), and (c) first and (d) second P-wave reflection times from Schimmel 
et al. (2021). The light gray dashed line and area correspond to the measured data and their uncertainty, respectively, whereas the synthetic data are colored by their 
misfit. The corresponding crustal models are shown in terms of (e) Vs, (f) Vp, and (g) Vp/Vs, as a function of depth. (h) Depth absolute sensitivity kernels of ellipticity 
data for the best-fitting model, calculated at 15 s (dashed line) and 35 s (filled area) for Vs, Vp, and ρ. Light red box in (b) shows the time window where the data was 
fitted.
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representation of the characteristic ellipticity at the InSight landing site. Anomalously low phase shifts were 
measured, which seem to be unrelated to the local crust structure. In order to consolidate the local crustal model, 
we performed a joint inversion of local-scale observations (ellipticity, P-to-s RFs and P-wave reflection times). 
Our results suggest that a four-layer crustal model, with a shallow low-velocity layer of about 2–3 km thickness 
at the InSight landing site explains the observations well. Other discontinuities around 10, 20 and 37 km depth 
correlate well with previously reported models. We propose lower P- and S-wave velocities for the corresponding 
crustal layers, which might be related to a higher porosity or alteration of the Martian crust at the InSight landing 
site.

Data Availability Statement
The event information of the Martian seismic events can be found in the InSight seismic event catalog version 
13 (InSight Marsquake Service,  2023). The waveform data and station metadata are available from IPGP's 
MSDC as well as from IRIS MDC (InSight Mars SEIS Data Service, 2019). Seismic data for station DREG 
(BQ network, 2016) are publicly available via EIDA (http://eida.gfz-potsdam.de/webdc3/). The GCMT catalog 
is available here https://www.globalcmt.org/CMTsearch.html, whereas the events analyzed for the Earth case 
and the codes utilized for the processing of the events can be found under https://github.com/scarrascom/Rellipy. 
Observed data used for the joint inversion, a Python implementation and preferred crustal models shown in 
Figure 3 can be found at https://doi.org/10.5281/zenodo.8051337 (Carrasco, 2023). The NA was implemented 
via the dinverext plugin, which can be obtained from http://www.geopsy.org/.
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