Spontaneous Raman spectroscopy for the standoff detection of Cl₂ & H₂ gas

Arne Walter¹, Frank Wilsenack², Frank Duschek¹

¹DLR (German Aerospace Center) Institute of Technical Physics, Im Langen Grund 1, 74239 Hardthausen, Germany ² Bundeswehr Research Institute for Protective Technologies and CBRN Protection, Humboldstraße 200, 29633 Munster, Germany

Poster No. A02-032

INTRODUCTION & REQUIREMENTS

- 200 liquid chlorine (6.7 bar) Moderate wind (30 km/h) Release:
- > 200 mbar chlorine in few meters and seconds
- 1000 m from observer
- Time for counter measures (protection): 2 min

Industrial hydrogen transport and storage facilities

Both H₂ and Cl₂ can hardly be detected by existing infrared standoff spectroscopic methods

APPROACH AND METHODS

Chlorine

Toxic threat (see e. g. Akaba Port (Jordan, 2020) and misuse as warfare agent)

Modeling

Propagation of spontaneous Raman signal (and exciting laser light) with existing standard equipment in terms of

- Excitation wavelength

Hydrogen

- Reduction of hydrogen losses in pipelines
- Increase of safety (H₂ forms combustible and explosive mixtures with atmospheric oxygen over a range of concentrations in the range 4.0%–75% and 18%–59%, respectively.)
- Improved maintenance in H₂ infrastructures

Experimental

- Application of pulsed Raman spectroscopy to Cl₂ and H₂
- in a 1 m gas cell emulating a more realistic (larger) cloud
- in open space (optical test range, 20-60 m)

Remote detection distance

Optical setup (266 nm, 100 Hz DPSS, 760 ns)

RESULTS

SUMMARY

Chlorine

- Standoff model approved
- Distances of 60 m

Hydrogen

Cl₂ standoff model valid for H₂

Verschiebung / cm⁻¹

Scheme of signal propagation model

Raman signal of air/ and chlorine at 59.4 and 60 m, respectively.

Distanz / m

Raman signal intensity of chlorine (200 mbar) for pulse energies from 2-10 mJ at distances from 20-60 m

Raman signal of hydrogen for partial pressures of 40 to 200 mbar at 200 uJ pulse energy and 100 m distance

Extrapolated detection limit: 4 Vol.-%

REFERENCES

A. Walter et al., JINST 18 (2023), C05008, DOI 10.1088/1748-0221/18/05/C05008

