Influence of Fiber Type on the Properties of Short-Fiber Based C/C-SiC

Bernhard Heidenreich, Daniel Cepli, Felix Vogel, Raouf Jemmali

Institute of Structures and Design, German Aerospace Center, Stuttgart, Germany

Content

- Introduction
- Manufacture of short fiber based C/C-SiC materials
- Material properties
- Mechanical properties in tension and 4-pt- bending
- Conclusion
- Outlook

www.DLR.de · Chart 3

New Approach

Increase of mechanical properties of C/C-SiC SF by:

- Replacing standard HT fibers by high performance carbon fibers
- Orientation of the fibers in load direction
- Homogeneous fiber distribution by defined mould loading strategy

Manufacture of C/C-SiC SF via Liquid Silicon Infiltration (LSI)

Carbon Fiber Types

DLR

1 µm

Fibro		HTA	Т800	YS 90			
FIDIE		(Tenax HTA 40 E13)	(T800H)	(Granoc YS-90A-30S)			
Fiber grade		1K / 6K	12K	ЗК			
Manufacturer		Tejin	Toray Composite Materials America	Nippon Graphite Fibres (NGF)			
Fibre precursor		PAN	21.0/ PAN	Pitch			
Tensile strength	[GPa]	4.1	5.49	3.53			
Young's modulus	[GPa]	240	294	880			
Ultimate strain	[%]	1.7	1.9	0.3			
Filament diameter	[µm]	7	5	7			
Fiber cost (2022)	[€/kg]	50 / 260	145	1 200			

1 µm

www.DLR.de · Chart 7

1 µm

Carbon Fiber Types

Fibro		НТА	Т800	YS 90 (Granoc YS-90A-30S)			
FIDIE		(Tenax HTA 40 E13)	(T800H)				
Fiber grade		1K / 6K	12K	ЗК			
Manufacturer		Tejin	Toray Composite Materials America	Nippon Graphite Fibres (NGF)			
Fibre precursor		PAN	PAN	Pitch			
Tensile strength	[GPa]	4.1	5.49	3.53			
Young's modulus	[GPa]	240	<u>294</u>	880			
Ultimate strain	[%]	1.7	1.9	0.3			
Filament diameter	[µm]	7	5	7			
Fiber cost (2022)	[€/kg]	50 / 260	145	1 200			
DLR		t μm	t μm	1 µm			

Carbon Fiber Types

Fibro		HTA	Т800	YS 90				
FIDIE		(Tenax HTA 40 E13)	(T800H)	(Granoc YS-90A-30S)				
Fiber grade		1K / 6K	12K	ЗК				
Manufacturer		Tejin	Toray Composite Materials America	Nippon Graphite Fibres (NGF)				
Fibre precursor		PAN	PAN	Pitch				
Tensile strength	[GPa]	4.1	5.49	3.53				
Young's modulus	[GPa]	240	294	880				
Ultimate strain	[%]	1.7	1.9	0.3				
Filament diameter	[µm]	~ 7	5	7				
Fiber cost (2022)	[€/kg]	<mark>50)</mark> 260	X 2-3 X 6 - 8	3 1 200				
DLR		1 μm	t μm	1 µm				

Mould Loading and Fiber Orientation

- Small moulds are filled with one press mass batch in whole area (100 x 100 mm²).
- Bigger moulds are difficult to fill homogeneously \rightarrow splitting mould area in multiple loading cells.
- Reduce fiber alignment by multiple layers and overlapping loading cells.
- Orientation of short fibers by using narrow loading cells (w = 10 mm).

Loading Methods - Randomly Oriented Fibers

Loading Methods - Multiple Batches with Overlap

- 4 layers
- Grid turned after each layer

- 50 % overlap of cells
 - small cells 29 x 29 mm²

Loading Methods - Unidirectional Oriented Fibers

Sample overview

		нт	1K	HT 6K	HT 1K			UHT			UHM			
Fiber type	[-]	HTA 40						T800HB 12000-40B			YS-90A-30S			
Fiber manufacturer		Tejin Carbon						Toray			NGF			
CFRP plate geometry	[mm]	100 ² x 4 200 ² x 6							100² x 4	200	² x 6	100² x 4	² x 4 200 ² x 6	
Fiber orientation	[-]	random			0°90°	0°			random		random			
Filling method														
Grid size	[mm]	100 x 100	100 67 x 67		29 x 29		10 x 200		100 x 100	67 x 67	29 x 29	100 x 100	67 x 67	29 x 29
Number of layers	[-]	1		4	4	1		1		4	1		4	
Number of portions	[-]	1	9	9	64	80	20	20	1	9	64	1	9	64
Fiber content in CFRP	[Vol%]	49.4	47.5	48.4	47.5	47.9	47.5	48.3	49.0	46.7	46.9	48.8	48.0	40.6

C/C-SiC Material properties – Porosity and Density

Material properties – Microstructures and Phase Contents (SiC / Si / C)

HTA (1K) 26 / 10 / 64

T 800 28 / 8 / 64

YS 90 49 / 4 / 47

www.DLR.de • Chart 16

Coupon Testing

- 4-Pt. Bending
 - 100 x 18 x 2.8 mm³ $L_A = 76 mm; L_S = 20 mm$ $(L_A L_S)/d = 20$ 110 x 20 x 4 mm³ $L_A = 100 mm; L_S = 20 mm$ $(L_A L_S)/d = 20$

- Tension
 - 120 x 20 x 4 mm³

Influence of Fiber Grade (HTA 1K / 6K) and Fiber Orientation

- 6 K fibers offer similar mechanical performance as 1K (67²).
- Fiber orientation leads to up to 2 x higher strength and modulus but lower fracture strain.

4-Pt. Bending

Influence of Loading Method

Tension

Tension: • Overlap leads to higher strength (18 - 47 %) and modulus (13 - 30 %) for all fiber types.

- Highest strength and modulus for UD material (0°)
- Bending: Lowest strength / modulus for multiple batches without overlap.
 - Highest values for single batch and UD crossply (0°/90°).

Influence of Fibre Type (29²)

Tension

- T 800: no significant increase of mechanical performance, compared to HTA.
- YS 90: Increase of strength and modulus (89 300 %).
- Influence on fracture strain not clear.

www.DLR.de · Chart 21

Stress / Strain Behaviour (29²)

Conclusions

- Mechanical strength and modulus could be increased significantly (89 300 %) by using pitch based UHM fibers, instead of HTA and T800 fibers.
- T800 fibers showed no advantages compared to standard HTA fibers.
- 1K HTA showed no advantages compared to standard HTA 6K fibers, 1K advantageous for the near net shape manufacture of tiny parts.

 \rightarrow HTA (6K) for moderately loaded, YS 90 for high performance parts

- For small plates (100 x 100 mm²) single batch filling sufficient. For larger plates, multiple batch filling with overlapping cells is favourable.
- Mechanical properties can be influenced by fiber orientation (UD) → Strength and modulus can be tailored in highly loaded parts, manufactured in near net shape.

www.DLR.de • Chart 24

Thank You for Your Attention

Results from C/C-SiC based on endless fiber and 0°/90° Grossply Laminate

DLR.de · Chart 26

Fracture Behaviour

PAN based C-fiber

Pitch based C-fiber (UHM)

