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Abstract—Lower bounds on the mean square error (MSE)
are of fundamental importance to know the ultimate achievable
estimation performance of any unbiased estimator. Even if the
Cramér-Rao bound (CRB) is the most popular one, mainly due
to its simplicity of calculation, other bounds are of interest in
several applications. In this communication, we derive a new
intrinsic McAulay-Seidman bound (IMSB) for the estimation of
unknown deterministic parameters lying on Lie groups, which
generalize known results on the intrinsic CRB. The validity of
the proposed IMSB is shown for the Gaussian observation model
with unknown deterministic parameters belonging to SO(3) by
comparing the IMSB with the intrinsic MSE.

I. INTRODUCTION

It is well-known that for the characterization of estimation
techniques it is fundamental to know the ultimate achievable
performance in the the mean square error (MSE) sense. This
information can be brought by lower bounds on the MSE [1].
The Cramér-Rao bound (CRB) [2], [3] is the most popular,
mainly due to its simplicity of calculation, and because it gives
an accurate estimation of the MSE of the maximum likelihood
estimator (MLE) in the asymptotic region of operation, i.e.,
in the large sample regime and/or high signal-to-noise (SNR)
regime of the Gaussian conditional signal model [4], [5].

In the last decade there has been an increasing interest in
the derivation of intrinsic lower bounds [6]–[10], where the
parameters of interest live in a manifold, which appears in
many signal processing applications. For instance, in vision-
based problems the transformation between two images be-
longs to the manifold SO(3), in simultaneous localization and
mapping one must estimate the pose transformation belonging
to SE(3), and in several applications the parameters of interest
belong to the manifold of Hermitian positive definite matrices
[10]. For all these problems, it is crucial to obtain a lower
bound that takes into account the manifold properties. Notice
that the contributions cited above focus on the derivation
of intrinsic CRBs (ICRBs). In the context of Lie groups
(LGs), the corresponding ICRB has also been studied in some
contributions. For instance, [9] proposed an inequality on the
intrinsic MSE for LGs, and provided a tractable approximated
CRB on SO(3).

In this article, we propose a new intrinsic bound on LGs,
so-called intrinsic McAulay-Seidman bound (IMSB), which is
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a generalization of both the classical MSB and CRB. Indeed,
in the Euclidean formalism, the MSB is an approximation of
the general Barankin bound [11], [12], then we first generalize
this bound for parameters evolving on LGs. This is achieved
by rigorously defining the notion of intrinsic MSE (IMSE) and
bias for estimators on LGs, that leads to an intrinsic Barankin
bound (IBB) on LGs. Then, by specifying the notion of test
points with respect to the group operations, we can obtain
an approximation of such IBB that yields the IMSB on LGs.
Because the IMSB only depends on the group exponential and
logarithm operators, it admits a closed-form expression for
Gaussian observation models where the parameters of interest
belong to a matrix LG. Thus, the validity of the proposed
IMSB is shown for the Gaussian observation model with
unknown deterministic parameters belonging to SO(3) by
comparing the IMSB with the IMSE obtained through Monte
Carlo simulations.

The communication is organized as follows: in Sec. II we
introduce some background of LG theory. In Sec. III we
detail the expression of the proposed IMSB. Furthermore, we
compute an analytical expression for the LG SO(3). Then, in
Sec. IV we confirm by numerical simulations the consistency
of the proposed bound.

II. BACKGROUND ON LIE GROUPS

A. Definition

A matrix LG G ⊂ Rn×n is a matrix space with a structure
of smooth manifold and group [13] [14].
• Its smooth manifold nature means that it is possible

to define the operations of integration and derivation.
Particularly, we can specify the notion of tangent space
according to each element of G.

• Its group nature involves the existence of an internal law
connecting between each element of G. Thus, it exists a
neutral element (identity matrix) allowing the inversion
of each element. Moreover, its internal law allows to link
each element of the neutral element tangent space to the
tangent space of any element, as shown in Fig. 1.

B. Lie algebra

The tangent space TIG is denoted Lie algebra and can
be written as g. Each element of the Lie group can be
projected to an element of the Lie algebra by using the
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Fig. 1. Relation between the space tangent to X ∈ G and the space tangent
to the neutral element I. The element a belonging to g = TIG is transported
to TXG thanks to the left application defined by Xa.

Fig. 2. Relation between Rm, G and g

logarithm and exponential applications defined, respectively,
by ExpG : g → G and LogG : G → g, as illustrated
in Fig. 2. What’s more, as g is isomorph to Rm, we can
specify two bijections [.]∧ : Rm → g and [.]∨ : g → Rm.
In this way, we can denote the exponential and logarithm
applications such as: ∀ a ∈ Rm, Exp∧G (a) = Exp ([a]∧G)
and ∀ X ∈ G, [LogG (X)]

∨
G = Log∨G (X) .

C. Case of the LG SO(3)

As previously emphasized, we focus our attention on the LG
SO(3). It is the group of rotation matrices in 3D dimension.
X ∈ SO(3) verifies the following properties : XX⊤ = I
and |X| = 1. Its Lie algebra corresponds to the set of skew-
symmetric matrices and so(3) = {[w]×|w ∈ R3} where
[.]× denotes the operator transforming a vector to a skew-
symmetric matrix. ∀X close to I, X can be written as
Exp∧

SO(3) (w) (with w ∈ R3) and can be developed with

the Rodrigues formula [15]:

Exp∧
SO(3) (w) =

I3×3 +
[w]×
∥w∥

sin(∥w∥) +
[w]

2
×

∥w∥2
(1− cos(∥w∥)) . (1)

Conversely, the logarithm operator computed in X is provided
by:

Log∨SO(3) (X) =
∥w∥

[
X−X⊤]∨

2 sin (∥w∥)
. (2)

where [.]
∨ is the operator transforming a skew-symmetric

matrix to a vector.

D. Estimation on Lie groups

In the Euclidean framework, an estimator x̂ of the unknown
parameter x ∈ Rp, gathered from the likelihood of observa-
tions z, p(z|x), can be described by three relevant statisti-
cal indicators1: its intrinsic mean mx̂ verifying

∫
z∈Rm(x̂ −

mx̂)p(z|x)dz = 0, its bias
∫
z∈Rm(x − x̂)p(z|x) dz and its

estimation error covariance
∫
z∈Rm(x− x̂) (x− x̂)⊤ p(z|x)d z.

Now, consider the LG framework. Let us assume that a
random observation Z, belonging to a LG G′, is disponible
and is function of an unknown parameter X ∈ G. Both are
linked by the likelihood p(Z|X).

Intrinsically, the gap between X and some LG estimator
X̂ can be evaluated by the error norm ∥Log∨

G

(
X−1X̂

)
∥.

It is worth noticing that this error is not a geodesic distance
mathematically speaking since it is not built from a LG metric.
Nevertheless, it specifies a good way to assess the intrinsic
path traveled from X to X̂, and it is classically used in the
LG estimation literature [16] [17].

Fig. 3. Illustration of the intrinsic gap between X and X̂, which takes into
account the curvature of the group.

Analogously to the Euclidean case, three intrinsic indicators
can be designed from the estimator X̂ ≜ X̂(Z) :

• Its mean MX̂ ∈ G such that:∫
G′

lG

(
X̂,MX̂

)
p(Z|X)λG(dZ) = 0 (3)

1Note that other indicators could be used (for instance the median or the
consistency).
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• its intrinsic bias bZ|X ∈ Rm given by [16]:

bZ|X(X, X̂) =

∫
G′

lG

(
X, X̂

)
p(Z|X)λG(dZ) (4)

≜ Ep(Z|X)

(
lG

(
X, X̂

))
(5)

• its intrinsic estimation error covariance CZ|X ∈ Rm×m

defined by [18]:

CZ|X(X, X̂) =∫
G′

lG

(
X, X̂

)
lG

(
X, X̂

)⊤
p(Z|X)λG(dZ) (6)

≜ Ep(Z|X)

(
lG

(
X, X̂

)
lG

(
X, X̂

)⊤
)

(7)

where lG(X,Y) = Log∨
G

(
X−1 Y

)
∀X,Y ∈ G×G.

III. INTRINSIC BARANKIN AND MCAULAY-SEIDMAN
BOUNDS ON LIE GROUPS

A. Background on the Euclidean Barankin and the McAulay-
Seidman bounds

We consider a set of Euclidean observations z =
{z1, . . . , zN} ∈

(
Rd

)N
depending of x0 ∈ Rp, an unknown

parameter vector, and characterized by p(z|x0). Let g : Rp →
Rs be a smooth function. The BB on the estimator ĝ(x0) is
given by:

PBB = min
ĝ(x0)

Ep(z|x0)

((
ĝ(x0)− g(x0)

) (
ĝ(x0)− g(x0)

)⊤
)

w.r.t. Ep(z|x)

(
ĝ(x0)− g(x0)

)
= g(x)− g(x0)

∀x ∈ Rp (8)

This uniform unbiasedness constraint can be seen as a con-
tinuum of constraints, consequently, solving the minimiza-
tion problem (8) is difficult. To overcome this issue, PBB

can be approached by using a set of test points, x(1:L) =
{x(1), . . . ,x(L)}, verifying the unbiasedness condition in (8).
Then, the latter can be written as:

Ep(z|x0)

(
vx0(x

(1:L))
(
g(x0)− ĝ (x0)

)⊤
)

=


(
g(x(1))− g(x0)

)⊤
...(

g(x(L))− g(x0)
)⊤

 (9)

with vx0
(x(1:L)) =

[
p(z|x(1))

p(z|x0)
, . . . ,

p(z|x(L))

p(z|x0)

]⊤
. This new

matrix condition allows to obtain [19, Lemma 1]

Ep(z|x0)

((
ĝ(x0)− g(x0)

) (
ĝ(x0)− g(x0)

)⊤
)

⪰ ∆R−1
vx0

∆⊤, (10)

where ⪰ is defined such that ∀A,B, A ⪰ B means that
A−B is a positive definite matrix.
The right-hand term of the inequality is the MSB,∆ =

[
g(x(1))− g(x0), . . . ,g(x

(L))− g(x0)
]
, (11)

Rvx0
= Ep(z|x0)

(
vx0

(x(1:L))vx0
(x(1:L))⊤

)
. (12)

If the test points are written in the following form:

x(1) = x0 (13)

x(l) = x0 + ilδl ∀l ∈ {1, . . . , L− 1} (14)

with

il =

0, . . . , 1︸︷︷︸
lthcomponent

. . . , 0

⊤

∈ Rp, (15)

B. Development of the intrinsic McAulay-Seidman bound

Now, let be G, G′ and G′′ three matrix Lie groups. We
assume a set of random measurements Z ∈ G′′ depending on
a smooth application H(·) : G → G′ function of an unknown
parameter X0 ∈ G. If the statistical relation between Z and X0

is modelled by the likelihood p(Z|X0), then the IBB PIBB on
X0 can be defined as the minimum of the intrinsic covariance
error estimation:

PIBB = min
Ĥ(X0)

CZ|X0
(H(X0), Ĥ(X0))

s.t. bZ|X

(
H(X0), Ĥ(X0)

)
= lG′′ (H(X0),H(X))

∀ X ∈ G (16)

In order to approximate PIBB, we can define an intrinsic
unbiasedness condition under the following form,

bZ|X

(
H(X0), Ĥ(X0)

)
=lG′′

(
H(X0),H(X(l))

)
,

∀ l ∈ {1, . . . , L} (17)

where {X(l)}Ll=1 are a set of test points belonging to G.
According to [19], we can show that this condition provides
the following approximation of PIBB, called IMSB,

PIMSB = ∆G R−1
vX0

∆⊤
G (18)

∆G =[
lG′′

(
H(X0),H(X(1))

)
, . . . ,lG′′

(
H(X0),H(X(L))

)]
(19)

RvX0
=

Ep(Z|X0)

(
vX0

(
Z;X(1:L)

)
, vX0

(
Z;X(1:L)

)⊤
)
, (20)

C. Closed-form expression

In order to obtain a tractable expression of PIMSB, we place
ourselves in the case where G = G′ = SO(3) , G′′ = R3 and
H = I3. Then, we consider the following observation model,
also known as the Wahba’s problem:

zi = X0 pi + ni ∀i ∈ J1, NK (21)

73

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on December 18,2023 at 11:56:28 UTC from IEEE Xplore.  Restrictions apply. 



where X0 ∈ SO(3) , {zi}Ni=1 and {pi}Ni=1 are a set of
3D known points, and ni is a white Gaussian noise with
covariance Σ. Thus, we can establish the analytical expression
of the IMSB for the unknown parameter X0.
• First, we consider a set of L test points {X(l)}Ll=1 ∈

SO(3) and p =
[
p⊤
1 , . . . ,p

⊤
N

]⊤
. In this way, the term

[P]i,j can be written with the following form ∀(i, j) ∈
J1, LK2,

[P]i,j =exp
(
0.5

(
m⊤

ij (I3 ⊗Σ)mij − δij
))

(22)

mij =(I3 ⊗Σ)
−1 (

I3 ⊗X(i)

)
p+ (I3 ⊗Σ)

−1(
I3 ⊗X(j)

)
p− (I3 ⊗Σ) (I3 ⊗X0) p (23)

δij =
((
I3 ⊗X(i)

)
p
)⊤

(I3 ⊗Σ)
−1 ((

I3 ⊗X(i)

)
p
)

+
((
I3 ⊗X(j)

)
p
)⊤

(I3 ⊗Σ)
−1 ((

I3 ⊗X(j)

)
p
)

− ((I3 ⊗X0) p)
⊤

(I3 ⊗Σ)
−1

((I3 ⊗X0) p)
(24)

with ⊗ the Kronecker product.

• ∆ can be easily computed because Log∨SO(3) (.) corre-
sponds directly to the logarithm matrix.

IV. NUMERICAL SIMULATIONS

In this section, we propose to validate numerically the
IMSB by studying the influence of the noise of the covariance
observation matrix and the number of observations on its
behaviour.

A. Simulation parameters

• The test points are defined according to the following
relation,

X(l) = X0 Exp∧
SO(3) (δl) ∀l ∈ {1, . . . L} (25)

with L = 100 and δl a zero-mean Gaussian random vec-
tor with covariance σ2

l I3. This generative model allows to
browse the whole group, especially when σl is sufficiently
high.

• The estimator is gathered by searching the likelihood
maximum of p(z|X0). It amounts to find the minima of

the criterion
N∑
i=1

∥zi −X0 pi∥2Σ. To obtain a sufficiently

accurate estimator, a Gauss-Newton algorithm on LGs is
used [20].

• The IMSE is given by the trace of the covariance esti-
mation error:

Ep(Z|X0)

(∥∥∥Log∨
SO(3)

(
X−1

0 X̂0

) ∥∥∥2)
where X̂0 is an estimator of X0 in the maximum likeli-
hood sense. Such estimator is built with a Gauss-Newton
algorithm dedicated to LGs [20]. In order to evaluate it,
we approximate it by Monte Carlo,

1

Nmc

Nmc∑
i=1

∥∥∥Log∨
SO(3)

(
X−1

0

(
X̂0

)
i

) ∥∥∥2 ,

where Nmc is the number of realizations of the
algorithm, fixed to 500, and

(
X̂0

)
i

the estimator for the
i-th realization.

B. Influence of the observation noise
First, we implement the IMSB by considering N = 3 with

with p1 = [1, 2, 2]⊤, p2 = [3, 4, 5]⊤ and p3 = [0.1, 0.2, 2]⊤

and Σ = σ2 I3. In Fig. 5, we show the IMSB evolution as
function of the noise variance σ2. Particularly, we observe
that the IMSB admits a stable behaviour with respect to the
IMSE. When the noise becomes high, the IMSE and the IMSB.
It is consistent because the covariance error of the estimator
depends of Σ. We can also notice that more the variance is
low, the closer the two are. Such convergence of the IMSE
to the IMSB in the high SNR regime (asymptotic efficiency)
validates the proposed bound.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-3

10
-2

10
-1

10
0

Fig. 4. Evolution of the proposed IMSB and IMSE for different σ2 values.

C. Influence of the number of observations

0 10 20 30 40 50 60 70 80

0

0.5

1

1.5

2

2.5

3

Fig. 5. Evolution of the proposed IMSB and IMSE for different number of
observations with σ2 = 0.5

In order to evaluate the impact of the number of observa-
tions, we simulate N random points {pi}Ni=1 in the following
way:

pi ∼ NR3(pm, σ2
m I3) ∀i ∈ {1, . . . N} (26)
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where pm = [1, 1, 1]⊤ and σm = 0.5m. Then, {zi}Ni=1 are
generated with the model (21)

As in the previous case, we observe in Fig. 5 the consistency
of the bound for different number of observations. Indeed,
when this number becomes high (≃ 65), so when the maxi-
mum likelihood estimator becomes more accurate, the IMSE
decreases and gets closer and closer to the bound. This allows
to confirm that the proposed bound behaves as theoretically
expected.

V. CONCLUSIONS

In this communication, we proposed a new intrinsic bound
on Lie groups called intrinsic McAulay-Seidman bound.
This new bound is inspired by the Euclidean Barankin and
McAulay-Seidman bounds derivation. The bound was com-
puted with a closed-form expression in the case of the Gaus-
sian Euclidean observation model. The latter was tested and
validated by numerical simulations. The perspectives of this
work are multiple. Two of them would be to compute the
proposed bound for other Lie groups of interest (for instance
SE(3)) and to derive an intrinsic Cramér-Rao bound from the
intrinsic McAulay-Seidman bound in a similar fashion as in
the Euclidean case.
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