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Abstract

To increase the autonomy of future air taxis, machine learning is necessary for a lot of areas such as vision-based tasks.
However, the safety aspect of any machine learning application is of significant concern for users, experts, and certification
authorities. To mitigate the risk to passengers or people on the ground, any machine learning-enabled component requires
demonstration of rigorous compliance to safety and development assurance standards. Standardization organizations and
authorities are currently developing and establishing new guidelines for the safe use of machine learning applications in the
aviation domain. This work showcases the concept of runtime monitoring for enabling the safe integration of an example
machine learning application in the urban air mobility context: the detection of humans during a landing approach of an
air taxi via an onboard camera. Such an application may be useful in the context of autonomous landing to ensure that no
person on the ground is endangered. In particular, the concept of operational design domain monitoring is discussed in the
context of the recent European Union Aviation Safety Agency guidance and demonstrated in flight testing. The operational
design domain monitor is composed of several sub-monitors that supervise different parameters in the operational domain
and detect out-of-distribution inputs. Through the development of this component, this work further extends our work on safe
operation monitor and runtime assurance for machine learning applications. The flight test results indicate that monitoring
the operational design domain can support performance as well as the safety of the operation.
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SOM Safe operation monitor
SSH Secure shell

UA Unmanned aircraft

UAM Urban air mobility

UAS Unmanned aircraft system
VPU Vision processing unit
WGS-84  World Geodetic System 1984

1 Introduction

With recent advances in artificial intelligence (AI) and
machine learning (ML) there is an increasing appeal for
their use even for safety-critical applications in the aviation
domain. But the safety of any ML application is still a huge
concern for experts. In the DLR project, "HorizonUAM"
[1, 2], the safe autonomy work package [3, 4] targets the
research of safety aspects of ML in the context of Urban Air
Mobility (UAM)), i.e. transportation services via air taxis in
urban environments. This paper further extends our research
on that topic [5].

A key research question is how ML-enabled autonomy
can be safely applied in the context of UAM [6]. This poses
a particular challenge for ML algorithms, including deep
neural networks since standards like DO-178 are not suit-
able in this context. In particular, they do not account for the
dependency on data. New guidance is required to enable the
safe integration of ML in the aviation domain. Such safety
standards for ML applications are currently under develop-
ment. The European Union Aviation Safety Agency (EASA)
has developed a first guidance for the certification of ML
[7, 8]. In this paper, we utilize some of the key concepts of
these guidelines to safeguard an ML component, the focus
will be on operational domain (OD) and operational design
domain (ODD). Additionally, the concept of out of distribu-
tion (OOD) will be discussed. These concepts will be used
and explained with a UAM use case and evaluated in flight
tests using a demonstrator Unmanned Aircraft (UA). Addi-
tionally, the relevant objectives of the EASA guidance will
be detailed and explained in the context of the use case.

1.1 Use case

In our HorizonUAM project, the use case involves an air taxi
landing on a vertiport. An ML component uses an onboard
camera to detect if there are any persons on the vertiport.
This algorithm is a state-of-the-art object detector for detect-
ing humans on images [46] captured by an UA’s onboard
camera. The landing can not be initiated if there are any
persons that could be harmed on the vertiport. In that case
the landing has to be aborted and for example an alternative
vertiport has to be used.
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This use case was demonstrated in in flight tests at the
DLR National Experimental Test Center for Unmanned Air-
craft Systems in Cochstedt. Fig. 1 which shows the demon-
stration of an aborted landing during our flight tests of the
simulated air taxi using our demonstrator UA.

1.2 Paper structure

The remainder of this paper is structured as follows. After
the introduction, related work is discussed in Sect. 2, spe-
cifically the concepts of OD and ODD that have been intro-
duced by the new EASA documents. Sect. 3 is dedicated
to an explicit definition of the ODD. This is followed by
the presentation of the software setup, specifically the ML
component and architecture of the monitoring architecture
in Sect. 4. Then, Sect. 5 presents the setup and the descrip-
tion for the flight test. In Sect. 6, results of the flight test are
shown, including an evaluation of the ML component and
an evaluation of the ML safety aspects. Next, Sect. 7 dis-
cusses OD and ODD objectives from the EASA guidelines
for certification in context with the use case. Finally, Sect. 8
summarizes the work and gives a future perspective.

2 Related work
2.1 ML safety assurance

Recently, a literature review on the topic of ML safety
[9] and an analysis of the existing and new regulations
and guidance on ML safety have been published [10] by
the authors. This work is a follow-up and extension to that
aforementioned research. This field has a lot of interest from

Fig. 1 Demonstration of an aborted landing at a vertiport, due to per-
sons on the ground during our HorizonUAM project. The persons are
simulated by puppets
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researchers, standardization groups and also certification
authorities. The overall framework and the main context
for verification and safety of ML in aviation is set by the
following documents. The EASA published a number of
documents regarding the safe use of ML, starting with the
Al roadmap [11, 56], and following up with more details
on different aspects of ML safety with Concepts of Design
Assurance for Neural Networks (CoDANN) [12], as well as
CoDANN II [13, 55], and a resulting Concept Paper First
Usable Guidance for Level 1 Machine Learning Applica-
tions [7]. Finally, in 2024, EASA updated the guidelines
with the Concept Paper First Usable Guidance for Level 1 &
2 Machine Learning Applications [8]. Furthermore, recently
a report was published by the Federal Aviation Adminis-
tration (FAA), Neural Network Based Runway Landing
Guidance for General Aviation Autoland [14]. In addition
to authorities such as EASA and FAA, also standardization
organizations are currently working on standardization of Al
in aviation, such as the joint SAE/EUROCAE working group
WG-114 [15]. The output of this working group will be the
document SAE ARP 6983 / EUROCAE ED 324. Some pre-
liminary concepts detailing partial compliance regarding
ODD definition and data design is shown in [16].

Research, specifically regarding the certification of ML in
relation to existing traditional standards, such as DO-178C,
has also been done recently [17-19]. Here, a combination
of architectural mitigations and a mapping of DO-178C
objectives to ML specific customizations are used to achieve
design assurance level C. More recently [20] argues, that
for most low-risk applications of ML the existing compli-
ance framework should be enough to establish certification
approval.

2.2 Operational domain

The concept of the operational domain (OD) was intro-
duced only in the latest version of the EASA guidelines
[8]. It should be noted, that the definition of OD is given
in the context of the system and the Concept of Operations
(ConOps). Since we are using the concept of OD and ODD
in this paper, we will directly quote the definition from the
EASA document:

Operational domain (OD) — Operating conditions
under which a given Al-based system is specifically
designed to function as intended, in line with the
defined ConOps. For instance, in the airworthiness
domain, the Certification Specification for large trans-
port aircraft, CS 25.1309 requires the identification
of ‘the aeroplane operating and environmental condi-
tions’. A definition of ‘foreseeable conditions’ can be
found under AMC 25-11 and generalised: ‘Foreseeable
Conditions - The full environment that the [...] system

is assumed to operate within, given its intended func-
tion. This includes operating in normal, non-normal,
and emergency conditions.” ( [8], sect. G.1, page 246)

The document further acknowledges the fact that cap-
turing the operating conditions is already a practice in the
aviation domain, i.e. ConOps. However, this process is not
formal enough for the development of ML. An additional
aspect for differentiation between OD and ODD is that the
OD may be formulated on a higher abstraction level (air-
craft level), while the ODD (definition, see below) might
be refined to additional, derived parameters, or parameter
boundaries might be more stringent. The idea of a formal
description of aspects of the ConOps for unmanned aircraft
has been discussed in [21-23].

2.3 Operational design domain

Moreover, there is research regarding the specific topic of
the operational parameters, also called ODD for the safety
during operation. The concept of ODD was first used in
the automotive domain [24]. Additionally, taxonomies for
operational design domains are discussed in various auto-
motive standards [25, 26]. Therefore, there is a lot of related
research on this concept and specifically in relation to safety
[27-32] in the automotive domain. There is recently also
a growing interest in research of the concept of ODD in
the aviation domain. Since our earlier work, beginning of
2023 [5], several works have been published. The path from
ODD to scenario generation and simulation was proposed
[23]. Also a data centric approach to characterize the ODD
is given by [33]. Their framework discusses the categories
of data relevant to defining and testing ML systems, such
as Nominal, Outlier, Edge Case, Corner Case, Inlier, and
Novelty data.

This paper is an example of a direct application of the
ODD concept in the aviation domain on a demonstrator UA.
This concept will be utilized to check the inputs of the ML
algorithm in Sect. 6.2 and further discussed in Sect. 7. The
first usage of ODD in the aviation domain was that the defi-
nition of ODD is given in the EASA document [7]. However,
the latest version of the EASA document gave an updated
definition for the concept of ODD:

Operational design domain (ODD) — Operating condi-
tions under which a given AI/ML constituent is spe-
cifically designed to function as intended, including
but not limited to environmental, geographical, and/
or time-of-day restrictions. The ODD defines the set
of operating parameters, together with the range and
distribution within which the AI/ML constituent is
designed to operate, and as such, will only operate
nominally when the parameters described within the
ODD are satisfied. The ODD also considers dependen-

@ Springer



976

C.Torens et al.

cies between operating parameters in order to refine
the ranges between these parameters when appropriate;
in other words, the range(s) for one or several operat-
ing parameters could depend on the value or range of
another parameter. ( [8], sect. G.1, page 246)

The definition from EASA utilizes the term constituent,
however for clarity we will use the term ML component
throughout the paper.

2.4 Out of distribution

A similar concept is that of OOD. The concept of OOD
is a commonly researched metric for assessing inputs that
have variance along a distribution. Analyzing the OOD can
increase the reliability of Al algorithms [34, 35]. In gen-
eral, the basic idea of OOD monitoring is to check if the
input data during operation is consistent with the trained
data. The training data is analyzed on specific scalar metrics
of (multidimensional) inputs. A simple example of such a
metric is the value of the current altitude of the UAS. For
more complex inputs, such as images, one example metric
would be the brightness of an image. For all training inputs
of this parameter, the number of occurrences of any value
of the corresponding metric is counted and thus a distribu-
tion is established. Then, during operation the new input is
compared to this distribution. For the safety of the ML com-
ponent it is important to supervise ODD and OOD aspects.
In fact the EASA guidance document [8] requires with its
objectives to supervise both concepts, as discussed in the
following sections.

Out of distribution (data) — Data which is sampled
from a different distribution than the one of the train-
ing data set. Data collected at a different time, and
possibly under different conditions or in a different
environment, than the data collected to create the ML
model are likely to be out of distribution.

Additionally, the EASA CoDANNII report [36, 55]
details the aspects of out of distribution (OOD) detection.

2.5 Runtime assurance

Finally, there is research on safety monitoring and Runt-
ime assurance (RTA), which is an underlying principle, also
for verifying the ODD during the operation [37, 38]. From
EASA, the ForMuLA report [39] discusses the runtime
monitoring of ODD as a formal method. In combination,
these concepts can be used to safeguard the ML compo-
nent against unsafe inputs. The idea is to supervise if the
input that is fed to the ML component is consistent with
the intended operating conditions and limitations. RTA,
as described in ASTM F3269-21 [37], can be used as an
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alternate certification strategy when a complex function
cannot be assured at designtime, i.e. proven to be safe prior
to operational deployment through compliance to standards
for system, hardware and software development assurance
such as ARP 4754A, DO-254 and DO-178C. In the archi-
tecture proposed by the ASTM standard practice, a safety
monitor supervises the outputs of the complex function to
ensure they do not lead the system to unsafe states. If the
outputs exceed a certain threshold, defined a priori, the
safety monitor switches control of the system to a suitable
recovery function through an RTA switch. Nagarajan et al.
[38] discuss the concepts that went into the development of
the standard practice as well as some challenges and gaps
yet to be addressed. Most applications of the standard deal
with the control function aspect of the architecture [40—43],
yet there is little discussion in literature on the use of RTA
for securing the inputs to complex functions. Any discourse
on input monitoring is usually limited to the concepts of
dynamic consistency checking and data conditioning. Even
where there is work on the use of RTA for Al-based systems
using video [44] or image [45] inputs for monitoring the
complex controller, there is no explicit discussion of the
concept of ODD monitoring within an RTA architecture. In
this paper, we present how the concepts of RTA as presented
in the ASTM architecture can be expanded to include input
monitoring, especially using ODD and OOD monitoring to
ensure safe operation.

In [44], Cofer et al. demonstrate an automatic aircraft tax-
iing system called TaxiNet, which uses a learning-enabled
runway centerline tracking controller bounded by an RTA
architecture. Here, they use computer vision (CV) along
with position and inertial reference sensors to monitor large
deviations from the centerline, however they do not provide
many details on the validity checking of the video inputs
they process for the CV-based monitor. In a more recent
application of the ASTM F3269 architecture, He and Schu-
mann et al. [45] demonstrate the application of a deep neu-
ral network based autonomous centerline tracking system
through the use of images from cameras mounted on the air-
craft. Here, there is more discussion of how parameters such
as time of day, image fuzziness, dirt etc. could affect the
performance of the image-based deep neural network. They
use a temporal logic-based runtime monitor called R2U2
to then detect the performance degradation and switch to
either a different neural network or a traditional reversion-
ary controller. However, they specify fixed bounds on the
above-mentioned parameters in their formal specification
of the R2U2 monitor and do not use the concepts of ODD
and OOD explicitly. In our work, we intend to show how
ODD monitoring and OOD monitoring can be used both
offline during the training process to determine the limits of
performance for the ML-based components as well as how
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these concepts can be used in runtime for safe operation
monitoring Fig. 2.

3 Definition of OD, ODD and OOD

In this section we define an OD/ODD that will be super-
vised by our monitor for our specific use case. Below we
provide the boundary values for the ODD properties during
the flight tests, along with observations of their effects on
ML performance for human detection. The ODD was set
up to these values based on the available training data and
engineering judgment.

3.1 Definition of OD

OD

Altitude: Om - 100m

Velocity: 0 m/s - 15 m/s

Camera angle: -45° - +45°
Geofence: Cochstedt airport airfield
Daylight conditions

Good weather

The OD defines the operating conditions of the operation.
For simplicity reasons the operating conditions are defined
to daylight conditions in good weather at the airfield of the
Cochstedt airport. The flights take place below the attitude
of 100 m at a maximum speed of 15m/s. To differentiate
between OD and ODD, it should be noted that the OD define
the operating conditions of the aircraft, while the ODD
define the operating conditions of the ML component.

3.2 Definition of ODD

ODD

Altitude: 20 m to 50 m

Velocity: 0 m/s to 10 m/s

Camera angle: — 10° to +10°

Geofence: 4 partly overlapping geofences, depending on
the mission phase. Cochstedt airport airfield.

(a) Altitude

(b) Velocity (c) Camera angle

Fig.2 Visual explanation of the concept of the ODD

Altitude: Our design idea was to take image data for alti-
tudes between 20 to 50 m. The altitude is important, since
it impacts the ground sample distance (GSD), which in turn
determines the resolution of the images captured. At higher
altitudes, objects such as people appear smaller and are rep-
resented by fewer pixels, which can impact the ability to
identify and analyze them.

Velocity: We operate our drones regularly with veloci-
ties between 0 m/s (hover) and 10 m/s. First tests resulted
in clear images, therefore we went with this range for the
ODD. The velocity of the aircraft during data collection is
a key factor that influences image quality. High speeds can
lead to motion blur, which may degrade the image resolution
and accuracy of object detection. Conversely, lower speeds
can yield clearer images but may reduce the area covered
during the flight. It is essential to balance velocity with the
need for precise imagery to ensure optimal data collection
for analysis.

Camera angle: Our drone is equipped with a downward-
facing camera, which is optimal for capturing overhead
imagery. Despite this fixed position, the drone’s movements,
including acceleration and deceleration, can cause the cam-
era angle to vary. Our first estimates were to expect a range
of —10° to +10°. The camera angle has a huge impact on
the captured images for person detection, since it alters the
angle and thus the pixels of persons visible to the camera
on the image.

Geofence: The geofence is a mitigation for operational
safety [57]. Therefore, there is a safety benefit directly from
utilizing a geofence. However, it can also affect the image
in the sense that for the purpose of these tests flights, the
geofence was edited to contain only a small area on the air-
field of the Cochstedt airport. Here, we could assume con-
sistent, monotonic background. A known limited operating
area can support the image processing and analysis tasks.
As soon as the airfield is left and grass and trees as well as
streets, cars and houses are entering the image, the training
and image processing obviously become more complex.

3.3 Definition of OOD

Image quality (Static limits on image parameters)
Brightness

Saturation

Entropy

Edges

OOD (Training distribution of image parameters)
Brightness

Saturation

Entropy

Edges
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Flight Controller
(Pixhawk)

T e —

Onboard Camera

Sensor Data Cameral:j:

ML Algorithm ‘ OOD Monitor

\

‘ ODD Monitor
ML Output
- Monitoring Output

Monitoring Output (" )
\—>{ Safety Switch }1—‘

Companion Computer :
Safe ML Output (NVIDIA Jetson Orin AGX):

Payload GCS
(Laptop)

Fig.3 Hardware (angular) and high-level software (rounded) compo-
nents of flight test setup

Image quality: We considered four main image proper-
ties, such as brightness, separation, entropy, and edges. The
idea was to simply cut off images on a fixed limit of these
values to ensure uniform image quality. The images taken
during test flights were within good daylight conditions.
Brightness impacts the overall visibility within the image,
while contrast affects the distinction between objects and
their surroundings. Entropy measures the level of disorder
or complexity in the image, and edges can similarly give a
metric on image complexity.

Image training: Static boundary values for image param-
eters as discussed in the ODD aspect of "Image quality"
can already help to filter out extreme cases, dark images, or
extremely blurred images, see Fig. 13. However, the OOD is
also important, this means to consider the specific ML com-
ponent and the training it received. Images that are outside
of the training distribution should be filtered out, similar to
the other parameters of the ODD.

4 Software setup

To increase the safety of the ML-based person detection,
a software architecture that incorporates additional moni-
toring has been developed. A high-level overview of the
software architecture is depicted in Fig. 3. The main goal
of this setup is to feed the images from the onboard camera
into a ML algorithm which is able to detect humans on the
ground. Then, the output from the ML algorithm is transmit-
ted to the payload Ground Control Station (GCS) as a video
stream. Additionally, two monitoring components as well
as a safety switch have been added to increase the safety
and trustworthiness of the ML algorithm. A more detailed
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explanation of the individual software components follows
in the subsequent sections.

4.1 ML onboard person detection

The ML algorithm is a core component of the software
architecture and is responsible for the onboard detection of
humans in aerial images. As depicted in Fig. 3, the ML algo-
rithm directly reads frames from the connected camera and
uses object detection to determine bounding boxes for each
person present in the current frame. The object detection is
implemented via a neural network based on the YOLOv7-
tiny architecture [46], a reduced version of the YOLOv7
architecture with lower performance requirements. This
network is trained using aerial images from the HERIDAL
database [47]. Additionally, recorded images from previous
flight tests with a similar use case are added to the training
data. The size of the input images has been customized to
1280 x 960 pixels. All of the training has been done using
the darknet framework!' for a better integration into exist-
ing inference source code, which enables support for older
YOLO versions, such as YOLOv4 [48], and alternative infer-
ence hardware, e.g., Neural Compute Stick 2 (NCS2). The
darknet weight and configuration files are directly supported
by OpenCV,? allowing to load and execute the trained model
with OpenCV directly. The neural network runs on the buil-
tin GPU of the companion computer. During inference, the
trained model achieves to process frames at a frame rate of
up to 15 FPS. In many real-life scenarios where an onboard
human detection could be deployed, e.g. to assess a potential
landing area or a cargo drop zone, such a frame rate should
be more than sufficient as the UA could hover above the tar-
get area for a few seconds before proceeding with the actual
flight task. In that scenario, the onboard ML algorithm could
assess the scene multiple times and should be able detect any
relevant objects.

4.2 ODD monitor

This component monitors the operating conditions based
on a specified ODD. This ODD monitor utilizes the sensor
data from the payload Pixhawk to monitor operating condi-
tions such as geofence, altitude, velocity and camera angle.
As shown in Fig. 4, the ODD monitor consists of multiple
low-level software components, which are subsequently
described in more detail.

The ODD described in Sect. 3 states that altitude, velocity
and camera angle are part of the ODD.

L https://github.com/Alexey AB/darknet.
2 https://opencv.org/
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4.2.1 Monitoring system state

This subsection describes the monitors for altitude, velocity
and camera angle. In this case, for each parameter, simple
boundary values are specified. The data comes from data
streams, see Sect. (4.2.2) that are fed into a module that
wraps a RTLola interpreter into the ROS2 environment.
RTLola is a framework for monitoring of stream-based data
[49].

4.2.2 MicroRTPS messaging

All the software components are implemented as Robot
Operating System 2 (ROS2) modules. This enables a mod-
ular structure as well as reliable communication between
the software components. By default, the Micro Air Vehi-
cle Link (MAVLink) messages generated by the payload
Pixhawk can not be distributed as ROS2 messages. How-
ever, the PX4 software includes a Data Distribution Service
(DDS) interface which is also referred to as the microRTPS
bridge. This bridge implements the Real-Time Publish Sub-
scribe (RTPS) protocol which provides publisher-subscriber
communication similar to the messages in ROS2. The usage
of the microRTPS bridge requires to run a software called
microRTPS client on the payload Pixhawk and its counter-
part, the microRTPS agent, on the companion computer.
The microRTPS agent receives sensor data from the payload
Pixhawk and provides it as ROS2 messages for the other
software components. The message types that should be sup-
ported by the microRTPS bridge can be specified according
to the use case. For the geofence and altitude monitoring we
require the message types containing the global position in
(NED) coordinates and the local position in (NED) coordi-
nates. In contrast, the velocity monitor and the camera angle
monitor require messages with the current velocity vector
and the attitude of the aircraft, respectively.

Sensor Data

0DD Monitor

MicroRTPS
Bridge
GPS Position
HAG
Estimation ‘
i Velocity Attitude
Altitude
v
Geofence Altitude Velocity Camera Angle

Monitor Monitor Monitor Monitor

v

Monitoring Output

Fig.4 Low-level software components of the ODD monitor

4.2.3 HAG estimation

The neural network is trained with images that have been
taken at specific altitudes. To ensure the safe functional-
ity of the object detection algorithm, the current altitude is
compared with the altitudes of the images that have been
used in the training process. For example, if images with
altitudes between 20 and 50 m have been used in the train-
ing process, the object detection might not work properly
below 20 m and above 50 m. As mentioned in Sect. 4.2.2
the payload Pixhawk outputs a global position in WGS-84
coordinates. However, the altitude in this global position
is given in reference to the WGS-84 ellipsoid and does not
represent the distance to the ground. To obtain the altitude
above ground, the altitude monitor loads a terrain elevation
map from the flight area. With this map, the altitude above
ground can be computed by subtracting the terrain elevation
at the current position from the WGS-84 altitude. The result-
ing height above ground is then provided for the altitude
monitor as shown in Fig. 4.

4.2.4 Geofence monitor

Information about the operating environment are essential
for composing an adequate dataset to train a neural net-
work. For instance, training data showing humans on grass
or fields would not be well suited to train for the detection
of humans in an urban environment. Yet, if assumptions
about the operating environment are made, they need to be
checked at runtime to prevent entering a flight area where
unforeseen features might occur. To reduce the likelihood of
these unforeseen features and a shift in input distribution, the
geofence monitor is used.

A geofence represents virtual barriers in space that the
system under scrutiny is not allowed to cross. If the opera-
tion consists of different tasks that can be spatially sepa-
rated it makes sense for an improved situational awareness
to have overlapping geofences where a crossing represents
the traversal from one task to another. Figure 5 depicts four
overlapping geofences that were used for the flight test, see
Sect. 5. Geofence 1 contains the first vertiport, Geofence
2 contains the second vertiport, Geofence 3 contains the
container cluster, and in Geofence 4 the waypoint mis-
sion stopped. Each subplot represents the point of view of
a respective geofence highlighted in blue. The flight path
is depicted in green, orange, and red referring to inside
geofence, close to geofence violation, and outside geofence,
respectively. The figure shows that the waypoint mission
was correctly tracked by the geofence monitor. The mission
first started in Geofence I, moved to Geofence 2, then to
Geofence 4, then to Geofence 3, and finally ended up in the
initial geofence.
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Fig.5 Top-view of the overlapping geofences used for the flight test. In each subfigure, the monitor’s outputs are given for the respective
geofence highlighted in blue where green, orange, and red represent inside, close to crossing, and crossed monitor evaluations

Complementing the geofence of the operation area,
geofencing of the planned waypoint mission was also
used, which we refer to as tubes. Figure 6 shows the tub-
ing results for our flight test. The pre-planned waypoint
mission is depicted in blue. The flight is indicated by a
colour varying line where green, orange, and red indicate
when the UA was inside, near to the border of the tube,
and outside of the tube, respectively. The numbers in the
figure that range from zero to nine reflect the order of the
waypoints. After the last waypoint is reached the waypoint
mission stops. The figure shows that we were able to follow
the pre-planned waypoint mission, i.e. , we stayed inside
the tube. Only when the last waypoint was reached and the
UA returned to the home position we did leave the tube.
Besides tracking the position within the tube, we also noti-
fied when too much time expires until the next waypoint
was reached in respect to a e distance to the position of the
waypoint. This ensures progress towards reaching the target
waypoint, where e provides a margin of tolerance around it,
i.e.,|UAS.position — waypoint.position| < e. When the UAS
reaches the current target waypoint, the timer resets to track
the next waypoint thereafter. If the timer expires, the current
target waypoint was not reached in time. This can be seen
in Fig. 7 where brighter colours indicate a larger value of
the timer. For instance, the timer was reset at Waypoint 3
but it took too long to reach Waypoint 4. Further, the timer
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Fig.6 Top-view of the tubing results. We remained within the tube
(green) until the waypoint mission stopped at Waypoint 9. Then, the
UA left the tube to fly to the home position

at Waypoint 9 was never reset since the waypoint were not
reached within the e distance. Yet, all other waypoints were
sufficiently reached, resetting the timer.

Geofencing of the operation area as well as the pre-
planned flight trajectory allows to reduce the likelihood of
unforeseen features a neural network might encounter. It is
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Fig.7 Top-view of the tubing timer. At each waypoint, a timer is
started that is reset when the next waypoint is reached within an e dis-
tance. The brighter colours of the flight show that we did not reach
Waypoint 4 in time and Waypoint 9 was outside the e distance to reset
the timer. All other waypoints reset the timer in time

one means of many to assure that the input distribution of a
neural network is similar to the one during training.

4.3 00D monitor

The images that are being fed into the neural network could
suffer from multiple negative effects such as low contrast,
blur, under- and overexposure or noise from a damaged cam-
era sensor. Depending on the intensity of these effects, a
reliable detection might become impossible. To filter out
images with such effects the OOD monitor reads the cur-
rent image frame from the connected camera and computes
several properties of the frame. These properties include the
brightness, the saturation, the entropy and the amount of
edges in the frame. To derive the set of image properties, an
interview with experts on environment perception was con-
ducted. The computation of these properties is as follows.

Measuring the brightness of an image could be used to
check if under- or overexposure exist in an image. It can
be computed by converting the image to grayscale and cal-
culating the mean value of all pixels. To get a value range
between 0 and 1 the mean value is divided by 255. A very
low value could indicate underexposure while a high value
would indicate overexposure.

An image with low saturation could be an indicator for
an reduced set of distinct features in an image, e.g. in case
of hazy weather. To compute the saturation, the image is
converted to the Hue Saturation Value (HSV) colour space
before the mean value of the saturation channel is calculated.
Again the saturation is normalized by dividing by 255.

Low contrast could also have a negative impact on the
detection performance of the neural network. As there is no

standardized method to compute the contrast of an image
[50], we use the entropy instead as a low contrast also results
in a low entropy measure [51]. The first step for the entropy
computation is a conversion to grayscale. After that, the his-
togram of the image is computed. The probability of each
pixel value can be determined by dividing the number of
pixels with the same value by the total amount of pixels.
With these probabilities we can compute the entropy with
Eq. 1 where H corresponds to the entropy and p(i) to the
probability of one pixel value i.

255

H =~ p(i) - log, p(i) (1)
i=0

To normalize the entropy, its value is divided by the
maximum possible entropy H,,, which corresponds to
H,,. = —log, ﬁ

Similar to the other metrics, the amount of edges in a
frame is determined by first converting the image to gray-
scale. After that, a Laplace filter with a kernel size of 3
is applied to the grayscale image. Then the histogram of
the filtered image is computed. The bright pixel values in
the histogram correspond to edges while the dark pixels are
areas without edges. We defined that all pixel values below
25 in the histogram are areas without edges while everything
else corresponds to an edge. So the edge value would be O if
all values in the histogram are below 25 or 1 if all values in
the histogram would be above 25.

In addition to these general thoughts on image param-
eters, it is helpful to look at the characteristics of trained
images. Specifically, we take a look at the above training
distribution for the image parameters. Per image in the train-
ing data, a scalar value is calculated for each image param-
eter. This results in a training distribution for these param-
eters. We currently analyze this distribution in two steps:
first, we determine a matching beta distribution and second
we determine a quantile threshold where not enough data
is currently present for sufficient trust in the ML network.
However, this approach is one-dimensional. Therefore, if
assessing multiple parameters and therefore dimensions,
another step is required to handle the multiple dimensions.
One example would be to declare the image as OOD if just
one of the parameters is OOD. To directly assess OOD for
multiple dimensions, we utilize the Mahalanobis distance
metric. In contrast to Euclidean distance, the Mahalanobis
distance takes into account the correlation between the dif-
ferent dimensions. A cut of distance is determined, where
not enough data points are available to trust the ML network.
The cutoff value is a trade-off between ML performance and
availability of the ML network. The ML performance should
increase with more images filtered out of the datastream.
However, if a lot of images are filtered out, the present
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Fig.8 Software demonstrator prototype of the Safe Operation Moni-
tor (SOM), showing a screenshot of streaming an image from the
onboard camera

detection is not available. Therefore, the determination of
the cutoff value has an important impact.

4.4 Safety switch

Combined with the results from the ODD monitor and the
OOD monitor, the bounding boxes from the ML algorithm
are fed into a safety switch, which determines whether the
results generated by the ML algorithm are trustworthy or
not by combining the results of both monitors. Only when
the monitors indicate that the ODD has not been violated
and specify that an input image is in distribution, the results
are considered to be trustworthy. The bounding boxes and
the monitoring results are then drawn onto the frame. After-
wards, this annotated frame is streamed to the payload GCS
where it can be analyzed by a payload operator. The visu-
alization of such an annotated frame is depicted in Fig. 8.
The annotations include information about the operational
conditions such as the current altitude, velocity, camera
angle and the geofence status. Additionally, the number of
detected persons and potential out of distribution samples
are displayed as well. The frames with annotations are then
processed by a streaming component which converts them
to an h.264 video stream that is transmitted to the payload
GCS via UDP. The conversion and the streaming have both
been implemented with the GStreamer framework.” To avoid
a heavy CPU usage for the h.264 conversion, the built-in
hardware encoding of the Nvidia Jetson Orin AGX is uti-
lized. This enables an efficient video stream between the
companion computer and the payload GCS.

3 https://gstreamer.freedesktop.org/
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5 Flight test

The objective of the flight test was to generate sets of images
that are within and outside the ODD as well as to investigate
the impact of ODD filtering. Note that, our monitoring archi-
tecture focuses on the performance impact of filtering ML
output, while excluding hardware guidelines important for
certification such as having independent hardware compo-
nents for ML and monitoring. Relevant operational param-
eters for the flight test are altitude, velocity, camera angle,
and image metadata such as brightness or entropy. The flight
campaign was held on the first week of October 2022 at the
National Experimental Test Center of Unmanned Aircraft
Systems near Cochstedt. The test area includes two vertiports
and a container cluster of six units, which mimic buildings
(see Fig. 9). The humans to be detected were represented by
mannequins which look very similar to real humans on aerial
images. Using the mannequins alleviated the need to fly over
humans and thus allowed for safer and more flexible flight
testing. The mannequins are attached to a base plate that
prevents them from falling over. Due to its grey colour, the
base plate blends in with the concrete surface at the airport
and is barely visible on aerial images. In total, twelve flights
have been completed during the flight tests, see Table 1.
All flights were conducted with the same waypoint coordi-
nates. However, the altitude, flight speed, camera angle and
positioning of the mannequins have been changed between
flights. Additionally, three layers of transparent adhesive
tape have been added onto the camera lens to simulate a blur
effect during the last flight. Across all flights 6993 images
have been recorded with the onboard camera.

5.1 Unmanned aircraft

For these flight tests, the City-ATM Demonstrator (CDO)
hexacopter (Fig. 10) was used as the payload carrier for this
new flight campaign. Originally built for City-ATM project
[52] it serves as a versatile and reliable vehicle for the flight
testing. For more detailed description of CDO please refer
to our previous paper [5].

5.2 Modifications to unmanned aircraft

The payload was modified with new hardware components.
Major modifications were made to the companion com-
puter. The Raspberry Pi 4 and Intel NCS2 were replaced
by the NVIDIA Jetson Orin. This boosted the onboard
processing significantly through the increase in computa-
tional power. The previously used Raspberry Pi Camera
Module 2 was changed to an industrial camera, with better
optics and internal sensors. The camera chosen was the
JAI-GO-2400 M-USB. The data link for communication
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(a) Container cluster

(b) Top view of vertiports and container cluster

Fig.9 On the left (a), the container cluster surrounded with mannequins and UA in mid air. On the right (b), top view of the vertiports and the

container cluster

Table 1 Table of performed flight tests with variations in ODD parameters, altitude, velocity and camera angle

Altitude Velocity Camera angle Mannequins Notes
Ist flight 40 m Sm/s Vertical None
2nd flight 40 m Sm/s Vertical Position 1
3rd flight 20 m 5 m/s Vertical Position 1 Route to last waypoint at altitude of 30 m
4th flight 20 m 15 m/s Vertical Position 1
5th flight 80 m 5 m/s Vertical Position 1
6th flight 10 m 5 m/s Vertical Position 1
7th flight 40 m Sm/s Vertical Position 2 Aborted after 2 min due to power issues
8th flight 40 m 5 m/s Vertical Position 2
9th flight 40 m 5 m/s 45° tilted forward Position 2
10th flight 40 m 5 m/s 45° tilted backward Position 2
11th flight 15m 15 m/s Vertical Position 2
12th flight 40 m 5 m/s Vertical Position 2 Adhesive tape for blurr effect

Additionally, the first flight was performed without mannequins, and the position of the mannequins was switched with the 7th flight and follow-

ing flights

Fig. 10 The UA CDO 002 Hexacopter

with the payload and the Pixhawk were unchanged from
the previous flight campaign. Because of the bigger dimen-
sions of the Jetson in comparison to a Raspberry Pi, the
Payload rail was redesigned to fit all the components for
the flight test under the UA. Additional peripheral devices
such as a network switch and Battery Eliminator Circuit
(BEC) were also integrated. The payload is completely
powered by the UA’s battery and protected against over-
currents through a fuse box. The modified placement of
key components is shown in Fig. 11. The LiDAR seen
mounted on the front of the UA in the pictures is used for
another project.

A non-stable version of the PX4 software stack on the
Pixhawk was needed to enable the MicroRTPS Messaging
described in Sect. 4.2.2. However, this posed a safety risk,
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W-Lan Link

Fig. 11 The UA after full integration of the components

as the Pixhawk might fail in mid air, resulting in a loss of the
UA and the payload. Therefore, we used two concurrent Pix-
hawks for the flight tests. One Pixhawk for the actual flight
controls and another Pixhawk for the payload as described
in Sect. 4.2. Similarly, two separate GCSs have been uti-
lized for the flight tests. The first GCS was used by the UA
operator to supervise the individual flight missions, while
the second GCS allowed the payload operator to monitor the
performance of the onboard ML algorithm.

6 Results

A total amount of 6993 images has been recorded across
flights. These images have been used to evaluate the over-
all software setup. First, some of the recorded images have
been used to evaluate the performance of the ML component
and the influence of the ODD on the detection performance.
Second, the properties of the recorded images have been
analyzed to determine if filtering of blurred images using
the input monitor could be feasible.

6.1 Evaluation of ODD monitoring

To evaluate the performance of the ML algorithm, 587
images were randomly selected from the recorded images as
a test set. The 587 images in the test set have been labelled
manually and have been used to compute the precision and

recall scores of the ML component for the flight tests. The
7P

TP+FP
respectively, where TP corresponds to the num-

and

precision P and the recall R are defined as P =

P
= TP+FN
ber of true positives, FP to the number of false positives and
FN to the number of false negatives.
In the context of object detection, a true positive exists
when the bounding box of a detected object is similar to the
bounding box of a ground truth object to a certain degree. A
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Fig. 12 Comparison of recall and precision between all flights and all
flights within the ODD

metric that evaluates the similarity of two bounding boxes
is the Intersection over Union (IoU) which is defined as
IoU = ﬁ%g with A as the first bounding box and B as the
second bounding box. Typically, an IoU threshold is used to
determine whether two bounding boxes match each other. In
this paper, a threshold of 0.5 is being used, which means that
two bounding boxes are evaluated as true positive when their
IoU score is larger or equal to 0.5. False positives on the
other hand are bounding boxes that have been detected by
the object detection algorithm, but can not be matched with
a ground truth bounding box. In contrast, false negatives are
the amount of ground truth bounding boxes that have not
been matched with any detected bounding box.

In total, the ground truth annotations contain 684 objects.
The resulting precision of the object detection algorithm
is 0.74 and the recall is 0.51, see Fig. 12. However, if the
images with altitudes higher than 50 m or lower than 20 m
as well as images with other camera angles and velocities
higher than 10 ms™' are ignored, only the images within
the ODD remain. In that case, the precision increases to
0.96 and the recall increases to 0.87. In summary, a posi-
tive impact of filtering out images outside the ODD for the
detection performance is clearly visible.

6.2 Evaluation of 00D monitoring

For their showcase of this methodology, a specific failure
mode, a sensor error has been emulated. For the last flight,
three layers of transparent adhesive tape have been used to
simulate a blur effect. To check whether the blur can be
detected using image properties, the recorded images have
been analyzed using the input monitor described in Sect. 4.3.
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These properties for the recorded images are displayed in
two box plots which can be seen in Fig. 13. The first box
plot refers to the images from the flight with the adhesive
tape and the second box plot refers to the images from the
other flights without the adhesive tape. In both plots the
distributions of the brightness, the saturation and the entropy
are fairly similar. Therefore these properties would not be
suitable to distinguish between normal images and blurred
images. However, the edges property differs significantly
between the two plots. The highest edges value for the
images with blur is 0.01 while 0.1 is the lowest recorded
value for the remaining images. This demonstrates that a
detection of blur in images using information about the
amount of edges in an image might be feasible. This can
safeguard the ML component and significantly improve the
overall performance of the ML component.

6.3 Summary and limitations

From the results it shows that there is a significant difference
in precision and recall over all images compared to the preci-
sion and recall over the images that are specifically inside
the ODD. Therefore, the object detection algorithm has bet-
ter results for images that comply with the ODD compared to
images that violate the ODD. By monitoring the ODD dur-
ing the operation, we safeguard the ML component against
input images that would not result in an adequate perfor-
mance and for which the ML algorithm is not intended for,
such as discussed within the current EASA guidelines, see
also Sect. 7.1. In addition the OOD monitoring was utilized
to assess the data from the flight test demonstration. The
analysis shows that there is a specific distribution from the
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(a) 12th flight with blur effect. (b) Flights within ODD

Fig. 13 Image properties of flight test data

gathered image data. The simulated sense of failure could
be easily detected via OOD analysis. For more details on the
OOD monitoring, a master thesis is available [53].

7 Al certification considerations

For the use case, selected objectives will be analyzed and
discussed from the EASA guidance document [7, 8]. A spe-
cial focus will be on OD, ODD, and OOD.

7.1 Al trustworthiness analysis

This building block ensures that there is an adequate high-
level view on the ML component of the aircraft. It requires
a characterization of Al, a safety assessment, a information
security assessment, and an ethics-based assessment. In
the following subsections the breakdowns and compliance
rationale for these objectives is detailed.

7.1.1 Objective CO-04

"CO-04: The applicant should define and document the
ConOps for the Al-based system, including the task allo-
cation pattern between the end user(s) and the Al-based
system. A focus should be put on the definition of the OD
and on the capture of specific operational limitations and
assumptions.”5 [8]

This objectives requires the development of a ConOps
document for the system. The objective states that a focus
should be made on the definition of the OD and specific
operational limitations and assumptions. For our use case,
we define the OD to the daylight conditions, good weather
conditions at the airfield of the Cochstedt airport. Additional
details on the definition of OD and ODD are described in
Sect. 3.

7.1.2 Objective CL-01

"CL-01: The applicant should classify the Al-based system,
based on the levels presented in Table 2, with adequate jus-
tifications." [8]

This objective is for determining the Al level of the sys-
tem, according to the EASA guidelines. The use case would
be classified as level 1B Al: Automation support to decision-
making. The human would look at the camera image and
inspect the image and also the output of the ML constituent
and detected bounding boxes of persons. However, it should
be noted that the Al level is actually a question of system
design. The human detection can be used to alert the pilot, it
can be used to automatically abort the landing approach and
utilize an alternative or emergency landing site. This deci-
sion could be designed to be overridable or non overridable
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by the pilot. In our use case design the pilot gets informed
and can then act as a fallback layer.

7.1.3 Objective SA-01

"SA-01: The applicant should perform a safety (support)
assessment for all Al-based (sub)systems, identifying and
addressing specificities introduced by AI/ML usage." [8]

For this objective a safety (support) assessment for all
Al-based (sub)system should be performed. In addition to
this, the objectives on safety risk mitigation also require this
functionality to be evaluated as part of the safety assessment.
While a complete safety assessment is out of the scope of
this paper, some considerations of design time assurance
are discussed here. Some thoughts on the safety risk mitiga-
tion during runtime, especially through operational design
domain monitoring, are discussed in Sect. 7.4. The architec-
tural mitigations at the system level to reduce the critical-
ity of the Al-based components already at design time are
discussed briefly in Sect. 7.3.1.

During the design process, the safety assessment required
is essentially performed at a system level through a func-
tional hazard analysis. Furthermore, the utilization of our
human detection can have an impact on the safety of the
operation. The risks arising from the introduction of the Al-
based system to detect humans is assessed at the Concept of
Operations level through a specific operational risk assess-
ment . Particularly, the assumptions of controlled ground
area in such an operation to reduce the number of uninvolved
people on the ground are affected. E.g. if the Al-based sys-
tem fails to detect the human, then the controlled ground
area would be compromised.

In our context, the following two failures would be pos-
sible: a false positive detection of a human and a false nega-
tive detection of a human. A false positive detection would
mean that the system would not be able to land on the verti-
port automatically. This would not immediately result in an
unsafe situation, as long as there is a feasible contingency
procedure for this situation. Possible solutions would include
landing on an alternative landing site, requesting human sup-
port from a pilot or remote pilot, waiting in a safe hover
position and re-evaluating the situation after some time.
However, it should be noted that a false detection might also
lead to an unsafe situation, if there is no adequate mitigation
or the mitigation is exhausted. For example, a false negative
detection could also be an attack scenario and can effectively
resemble a denial of service attack for a high rate of such
occurrences, or at the same time in multiple locations (we
thank our reviewers for pointing this out). A false-negative
detection would mean that the system would execute an
automated landing, although a human is in the vicinity. This
would immediately result in an unsafe situation. Therefore,
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to increased safety in both cases, it is necessary to monitor
the input and detect if the data are outside the ODD.

7.2 Al assurance

This building block of Al assurance is about the learning
assurance as well as the explainability aspects during devel-
opment and also post operation.

7.2.1 Objective DA-02

"DA-02: Based on (sub)system requirements that have been
allocated to the AI/ML constituent, the applicant should
capture the following minimum requirements for the AI/ML
constituent:

— safety requirements allocated to the AI/ML constituent;

— information security requirements allocated to the Al/
ML constituent;

— functional requirements allocated to the AI/ML constitu-
ent;

— operational requirements allocated to the AI/ML con-
stituent, including AI/ML constituent ODD monitoring
and performance monitoring, detection of OoD input
data and data-recording requirements;

— other non-functional requirements allocated to the Al/
ML constituent; and interface requirements." [8]

This objective discusses the requirements documenta-
tion and also underlines the importance of ODD and also
OOD monitoring by establishing this as specific operational
requirements for the Al constituents. Although important in
the context of ODD, this is not in the scope of this paper.

7.2.2 Objective DA-03

"DA-03: The applicant should define the set of parameters
pertaining to the AI/ML constituent ODD, and trace them
to the corresponding parameters pertaining to the OD when
applicable." [8]

This objectives requires the definition of the set of ODD
parameters of the Al constituent. Furthermore, ODD param-
eters should be traced to the corresponding parameters of the
OD, when applicable. The discussion of OD/ODD param-
eters for our use case is described in Sect. 3.

7.3 Human factors for Al
The building block of Human factors for Al is about opera-

tional explainability, human Al teaming, and modality of
interaction.
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7.3.1 Objective EXP-05, EXP-06, EXP-07, EXP-09

"EXP-05: The applicant should design the Al-based system
with the ability to monitor that its inputs are within the spec-
ified operational boundaries (both in terms of input param-
eter range and distribution) in which the AI/ML constituent
performance is guaranteed" [8]

"EXP-06: The applicant should design the Al-based sys-
tem with the ability to monitor that its outputs are within the
specified operational performance boundaries" [8]

"EXP-07: The applicant should design the Al-based sys-
tem with the ability to monitor that the AI/ML constituent
outputs (per Objective EXP-04) are within the specified
operational level of confidence." [8]

"EXP-09: The applicant should provide the means to
record operational data that is necessary to explain, post
operations, the behaviour of the Al-based system and its
interactions with the end user, as well as the means to
retrieve this data." [8]

These objectives on monitoring inputs and outputs may
also be fulfilled by the use of runtime assurance principles as
described in Sect. 2.5. However, neither the ASTM F3269-
21 [37] nor the accompanying explanatory article by Naga-
rajan et al [38] go into specific detail on the design of the
warning and mitigation boundaries other than generic guid-
ance on safety monitor switching thresholds. The responsi-
bility lies on the user to interpret where these thresholds lie
for their systems, and there are no requirements on when or
how to switch from the complex function to the recovery
function as this is considered to be implementation-specific.
Schierman et al [42] provide a formal definition for three
safety regions, i.e. Type I/II/IIl Safety Regions, which is
more useful for designing warning and switching bounda-
ries, see Fig. 14.

7.3.2 Objective EXP-19

"EXP-19: Information concerning unsafe Al-based system
operating conditions should be provided to the end user to
enable them to take appropriate corrective action in a timely
manner." [8]

Since the safety properties of the system are clearly
defined in each of these regions, a designer could adapt them
for their system based on the mitigation strategies available
to them. Warning boundaries could also be implemented
while accounting for the time taken by a human operator or
the recovery function to trigger a contingency action in order
to prevent an excursion into unsafe regions.

For the purpose of explainability of the ML component,
the pilot should be aware if the current system state is cur-
rently inside or outside of ODD parameters. Furthermore,
the pilot should be trained to handle situations of exiting the
ODD. Basically, as soon as the system is leaving the ODD,
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Fig. 14 Type I, II and III safety regions for run time assurance as
defined in [42]

the ML functionality can no longer be trusted. However, it
is possible to include multiple boundaries or warning levels
before exiting the ODD completely. This would give the
pilot additional time as well as information on how to handle
the current situation and thus improve situational awareness.
The ODD monitoring will result in images being fil-
tered from the datastream of the ML model. In these cases,
a warning light will light up. Furthermore, a counter will
count the overall ODD images as well as the ODD images
with in the last 30 s. With this information, the pilot can
determine further actions and possibly decide to abort the
flight if necessary. The pilot will always see the image so
that he himself can assess if there is a person in the image.

7.4 Safety risk mitigation
The last building block is the Al safety risk mitigation.
7.4.1 Objective SRM-01

"SRM-01: Once activities associated with all other building
blocks are defined, the applicant should determine whether
the coverage of the objectives associated with the explain-
ability and learning assurance building blocks is sufficient
or if an additional dedicated layer of protection, called here-
after safety risk mitigation, would be necessary to mitigate
the residual risks to an acceptable level." [8] "SRM-02: The
applicant should establish safety risk mitigation means as
identified in Objective SRM-01" [8]

This objective states that an analysis of the coverage of
objectives from the building block of explainability and
learning assurance should be performed to assess if there
are remaining risks that would need to be mitigated. In this
work, the ODD aspects are focussed on. The coverage of
explainability and learning assurance objectives cannot be
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analyzed in the scope of this paper. However, the guidance
states that with higher Al-level and higher criticality of
the AI constituent the likelihood that SRM will be needed
increases. Therefore, SRM is an essential part of the safety
assurance strategy. In particular, for our use case we iden-
tified SRM to be required for the monitoring of the OD
of the operation, the ODD of the ML model, specifically
the quality of the image and training distribution of image
parameters.

7.4.2 Objective SRM-02

”SRM-02: The applicant should establish safety risk miti-
gation means as identified in Objective SRM-01" [x] This
objective describes the actual utilization of runtime monitor-
ing and runtime assurance for the purpose of SRM. It is very
important that runtime monitoring and runtime assurance
are recognized as concepts for the mitigation of safety risks.
The details of this will be discussed in the next subsection.

7.4.3 Anticipated MOC SRM-02-1

The RTA architecture as discussed in Sect. 2.5 can be used
to fulfil the requirements in the anticipated MOC SRM-02-
01. In the context of this reference architecture, the AI/ML
constituent is the complex function, backed up by the tradi-
tional system (e.g. safety net) as a recovery function. Here,
the requirement says to passivate the AI/ML constituent.
Furthermore a recovery system is required. The question is,
if the AI/ML constituent could be reactivated after recovery,
or if the complex function is only allowed to have erroneous
outputs once, i.e. as soon as the function is detected to be out
of its operational design domain. If the AI/ML constituent
is essential for mission performance, this would result in a
low availability for the system if it receives inputs outside of
the ODD frequently. This imposes implicit requirements on
the user to build a more reliable AI/ML constituent or have
a suitable safety net that can perform the same function to
nearly the same standards. Otherwise it would be necessary
to reduce the allowed operational scope for which the AI/ML
constituent is allowed, in order to prevent frequent erroneous
outputs due to inputs out of the ODD. In [38], the authors
discuss the switching between complex and recovery func-
tions with an emphasis on consideration of stable switching
and chattering aspects to avoid frequently switching between
the two functions. Graceful degradation of functionality is
recommended as a best practice to prevent large instantane-
ous changes in performance (e.g. loss of function without
prior warning of degrading performance).

In this research, the monitoring is done on additional sen-
sor data, such as altitude, see Sect. 4.2.3, GNSS geofence
as well as GPS tunnel, see Sect. 4.2.4. Therefore, there is
a redundancy in sensors. In case of any geofence/ODD
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violation, control would be escalated to a human pilot as
a fallback/recovery system. Regarding the Al use case, the
image is being analyzed for person detection, see Sect. 4.3.
A possible mitigation in this case would be to passivate any
output from the ML function. The automated landing would
be disabled completely and control would again be escalated
to a human pilot as a fallback/recovery system.

The third requirement of the anticipated MOC above
prescribes the evaluation of the SRM functions as part of
a safety assessment and the need for establishing independ-
ence between the different SRM architectural mitigations.
While Nagarajan et al [38] briefly discuss development
assurance attributes in their work explaining the develop-
ment of ASTM F3269, the concept of development assur-
ance levels arising from a functional hazard assessment
(FHA) is not explored in detail. This is a major gap in the
ASTM standard practice, as there is a lack of guidance on
how the architecture would align with current systems engi-
neering guidelines such as SAE ARP 4754 A in supporting a
traditional certification process. Here, the reader is referred
to the work by Peterson et al [54], who demonstrate the
application of RTA in the context of a development assur-
ance process for safety critical airborne applications with the
example of a VTOL aircraft.

8 Conclusion and outlook

This work evaluated runtime monitoring techniques to
enhance the safety and efficacy of ML components for
UAM. Key focus areas included monitoring the ODD, OOD
detection, and their integration into UAM scenarios. The
use case in this case is the automated detection of persons
in an onboard camera image. A total of 6993 images were
collected across twelve flights, and these images were used
to evaluate the systems performance under varied condi-
tions. The results confirm that runtime monitoring plays an
important role in ensuring operational safety by filtering
inputs that fall outside the training distribution or designed
parameters. This filtering process enhanced the reliability of
the onboard ML algorithms. This can be used to safeguard
the landing approach for an airtaxi.

The integration of runtime monitoring aligns with recent
EASA guidance, particularly in leveraging the ODD frame-
work for defining operational boundaries. This work dem-
onstrates compliance with important objectives of safety
and performance monitoring, while showcasing a real-world
use case of person detection for air taxi landing. While full
adherence to EASA guidelines was beyond the scope of
this paper, select objectives were discussed in the context
of ODD.

The integration of ML in the safety-critical domain of
UAM is an ongoing effort. Standardization groups and
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authorities are currently working hard to develop and
establish new guidance for the safe integration of ML into
aircraft. Based on the EASA guidance, all objectives that
are related to ODD have been analyzed. This shows that
the seemingly simple concept of ODD is utilized in all
of the four building blocks of the EASA guidance. For
selected objectives the compliance rationale as discussed
in the context of our UAM use case. Additionally, the
ODD for this use case is presented and discussed together
with a brief discussion on safety considerations. How-
ever, not all of the related objectives could be discussed
in detail.

Furthermore, the effects of monitoring exemplary ODD
properties are evaluated. Although, achieving full compli-
ance to EASA guidelines was outside the scope of this
work, selected objectives could be analyzed, implemented
and flight tested. Future work will build on this and deepen
and/or broaden the discussion of the ODD concept to a
larger extent. Further research and formalization of the
concept of ODD can support the verification, safety assur-
ance, and automation of future airtaxi operation. In the
experimental setup of this work, the ODD monitoring and
assurance are not yet integrated with the autopilot. Future
work should aim to close the operational loop by integrat-
ing runtime monitoring outputs directly into automated
decision-making systems.

In addition to that, it should be noted that the focus
of this paper was on OD, ODD and OOD of Al systems.
However, these concepts are not limited to Al systems.
In fact, every complex system that cannot be sufficiently
assured at design time can benefit from runtime monitor-
ing and runtime assurance framework and from modelling
on formalizing the operating conditions in this manner.
Future work will bring these parts together into an overall
framework as extension of our Operation Monitor.

Acknowledgements This work was partially supported by the Aviation
Research Program LuFo of the German Federal Ministry for Economic
Affairs and Energy as part of “Volocopter Sicherheits-Technologie zur
robusten eVTOL Flugzustandsabsicherung durch formales Monitoring”
(No. 20Q1963C). This paper is an updated and extended version of:
Torens, Juenger, Schirmer, Schopferer, Zhukov, Dauer, Ensuring Safety
of Machine Learning Components Using Operational Design Domain,
AIAA SciTech Forum 2023, https://arc.aiaa.org/doi/10.2514/6.2023-
1124 [5].

Funding Open Access funding enabled and organized by Projekt
DEAL.

Data availability The raw data supporting the conclusions of this arti-
cle are available from the corresponding author on reasonable request.

Declarations

Conflict of interest The authors have no competing interests to de-
clarethat are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Schuchardt, B. 1., Becker, D., Becker, R.-G., End, A., Gerz,
T., Meller, F., Metz, 1. C., NiklaB, M., Pak, H., Shiva Prakasha,
P., Schier-Morgenthal, S., Schweiger, K., Siilberg, J. D., Swaid,
M., Torens, C., Zhu, C.: “Urban air mobility research at the
DLR German aerospace center - getting the horizonUAM pro-
ject started,” in AIAA Aviation and Aeronautics Forum and
Exposition, AIAA AVIATION Forum 2021, (2021). [Online].
Available: https://elib.dlr.de/143647/

2. Pak, H., Asmer, L., Kokus, P., Schuchardt, B. 1., End, A., Mel-
ler, F., Schweiger, K., Torens, C., Barzantny, C., Becker,
D., Ernst, J. M., Jager, F., Laudien, T., Naeem, N., Pap-
enfull, A., Pertz, J., Shiva Prakasha, P., Ratei, P., Reimer,
F., Sieb, P., Zhu, C., Abdellaoui, R., Becker, R.-G., Bertram,
0., Devta, A., Gerz, T., Jaksche, R., Konig, A., Lenz, H., Metz,
I. C., Naser, F., Schalk, L. M., Schier-Morgenthal, S., Stolz,
M., Swaid, M., Volkert, A., Wendt, K.: “Can urban air mobil-
ity become reality? opportunities and challenges of UAM as
innovative mode of transport and DLR contribution to ongo-
ing research,” CEAS Aeronaut. J., (2024). [Online]. Available:
https://elib.dlr.de/205131/

3. Schuchardt, B. I., Torens, C.: “Horizonuam - safety and secu-
rity considerations,” in Optics2 Workshop Towards SAFE and
SECURE Urban air mobility, (2021). [Online]. Available:
https://elib.dlr.de/143650/

4. Torens, C., Volkert, A., Becker, D., Gerbeth, D., Schalk, L. M.,
Crespillo, O. G., Zhu, C., Stelkens-Kobsch, T. H., Gehrke, T.,
Metz, 1. C., Dauer, J.: “Horizonuam: Safety and security con-
siderations for urban air mobility,” in AIAA Aviation and Aero-
nautics Forum and Exposition, AIAA AVIATION Forum 2021,
(2021). [Online]. Available: https://elib.dlr.de/143012/

5. Torens, C., Juenger, F., Schirmer, S., Schopferer, S., Zhukov, D.,
Dauer, J. C.: Ensuring Safety of Machine Learning Components
Using Operational Design Domain. ATIAA, (2023). [Online].
Available: https://doi.org/10.2514/6.2023-1124

6. Torens, C., Volkert, A., Becker, D., Gerbeth, D., Schalk, L.,
Crespillo, O. G., Zhu, C., Stelkens-Kobsch, T., Gehrke, T.,
Metz, 1. C., Dauer, J.: HorizonUAM: Safety and Security Con-
siderations for Urban Air Mobility. ATIAA, (2021). [Online].
Available: https://doi.org/10.2514/6.2021-3199

7. EASA, “Concept Paper First Usable Guidance for Level 1
Machine Learning Applications”. (2021). [Online]. Available:
https://www.easa.europa.eu/en/newsroom-and-events/news/
easa-releases-its-concept-paper-first-usable-guidance-level-1-
machine-0

8. EASA, “EASA Concept Paper: guidance for Level 1 & 2 machine
learning applications Issue 02,” Mar. (2024). [Online]. Available:
https://www.easa.europa.eu/en/document-library/general-publi
cations/easa-artificial-intelligence-concept-paper-issue-2

@ Springer


http://creativecommons.org/licenses/by/4.0/
https://elib.dlr.de/143647/
https://elib.dlr.de/205131/
https://elib.dlr.de/143650/
https://elib.dlr.de/143012/
https://doi.org/10.2514/6.2023-1124
https://doi.org/10.2514/6.2021-3199
https://www.easa.europa.eu/en/newsroom-and-events/news/easa-releases-its-concept-paper-first-usable-guidance-level-1-machine-0
https://www.easa.europa.eu/en/newsroom-and-events/news/easa-releases-its-concept-paper-first-usable-guidance-level-1-machine-0
https://www.easa.europa.eu/en/newsroom-and-events/news/easa-releases-its-concept-paper-first-usable-guidance-level-1-machine-0
https://www.easa.europa.eu/en/document-library/general-publications/easa-artificial-intelligence-concept-paper-issue-2
https://www.easa.europa.eu/en/document-library/general-publications/easa-artificial-intelligence-concept-paper-issue-2

990

C.Torens et al.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Torens, C., Juenger, F., Schirmer, S., Schopferer, S., Maienschein,
T. D., Dauer, J. C.: Machine Learning Verification and Safety for
Unmanned Aircraft - A Literature Study. AIAA (2022). [Online].
Auvailable: https://doi.org/10.2514/6.2022-1133

Torens, C., Durak, U., Dauer, J. C.: Guidelines and Regulatory
Framework for Machine Learning in Aviation. AIAA (2022).
[Online]. Available: https://doi.org/10.2514/6.2022-1132
EASA, “Artificial Intelligence Roadmap, A Human-Centric
Approach to Al in Aviation, Version 1.0” (2020). [Online].
Available: https://www.easa.europa.eu/en/document-library/
general-publications/easa-artificial-intelligence-roadmap-10
EASA, “Concepts of Design Assurance for Neural Networks
(CoDANN)” (2020). [Online]. Available: https://www.easa.
europa.eu/en/document-library/general-publications/concepts-
design-assurance-neural-networks-codann

EASA, “Concepts of Design Assurance for Neural Networks
(CoDANN) I1” (2021). [Online]. Available: https://www.easa.
europa.eu/document-library/general-publications/concepts-
design-assurance-neural-networks-codann-ii

FAA, “Neural Network Based Runway Landing Guidance for
General Aviation Autoland” Federal Aviation Agency (FAA) and
Daedalean, Tech. Rep. (2021). [Online]. Available: https://doi.org/
10.21949/1524481

SAE G-34, Artificial Intelligence in Aviation, “Artificial Intel-
ligence in Aeronautical Systems: Statement of Concerns,” SAE
International, Tech. Rep. (2021). [Online]. Available: https://
www.sae.org/standards/content/air6988/

Belcaid, M., Bonnafous, E., Crison, L., Faure, C., Jenn, E., Pagetti,
C.: “Certified ml object detection for surveillance missions,”
(2024) [Online]. Available: arXiv:https://arxiv.org/abs/2406.
12362

Dnmitriev, K., Schumann, J., Holzapfel, F.: “Toward certification
of machine-learning systems for low criticality airborne appli-
cations,” in 40th Digital Avionics Systems Conference, DASC
2021 - Proceedings, ser. AIAA/IEEE Digital Avionics Systems
Conference - Proceedings. Institute of Electrical and Electron-
ics Engineers Inc., 2021, publisher Copyright: 2021 IEEE.; 40th
IEEE/AIAA Digital Avionics Systems Conference, DASC 2021
; Conference date: 03-10-2021 Through 07-10-2021. [Online].
Available: https://doi.org/10.1109/DASC52595.2021.9594467
Dmitriev, Konstantin, Schumann, Johann, Holzapfel, Florian:
Toward Design Assurance of Machine-Learning Airborne Sys-
tems. AIAA (2022). [Online]. Available: https://doi.org/10.
2514/6.2022-1134

Dnmitriev, K., Schumann, J., Holzapfel, F.: “Towards design assur-
ance level ¢ for machine-learning airborne applications,” in 2022
1IEEE/AIAA 41st Digital Avionics Systems Conference (DASC),
(2022), pp. 1-6. [Online]. Available: https://doi.org/10.1109/
DASC55683.2022.9925741

Wasson, K. S., Voros, R.: “Deobfuscating machine learning assur-
ance and approval,” in 2024 AIAA DATC/IEEE 43rd Digital Avi-
onics Systems Conference (DASC), pp. 1-10 (2024)

Torens, C., Durak, U., Nikodem, F., Dauer, J. C., Adolf, F.-M.,
Dittrich, J. S.: “Adapting Scenario Definition Language for For-
malizing UAS Concept of Operations,” in AIAA Modeling and
Simulation Technologies (MST) Conference. Kissimmee, FL,
USA: ATAA, pp. 1-8 (2018). [Online]. Available: https://doi.org/
10.2514/6.2018-0127

Torens, C., Durak, U., Nikodem, F., Schirmer, S.: “Formally
Bounding UAS Behavior to Concept of Operation with Operation-
Specific Scenario Description Language,” in AIAA SciTech Forum
- 55th AIAA Aerospace Sciences Meeting. San Diego, California:
AIAA, pp. 1-11 (2019). [Online]. Available: https://doi.org/10.
2514/6.2019-1975

@ Springer

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Stefani, T., Girija, A., Mut, R., Hallerbach, S., Kriiger, T.: “From
the Concept of Operations Towards an Operational Design
Domain for Safe Al in Aviation,” (2023). [Online]. Available:
https://elib.dlr.de/197957/

SAE International, “Taxonomy and Definitions for Terms Related
to Driving Automation Systems for On-Road Motor Vehicles. Sur-
face Vehicle Recommended Practice J3016” (2016)

The British Standards Institution, Center for Connected and
Autonomous Vehicles, “PAS 1883:2021 Operational Design
Domain (ODD) Taxonomy for an Automated Driving System
(ADS) ??? Specification,” (2021). [Online]. Available: https://
www.bsigroup.com/globalassets/localfiles/en-th/cav/bsi-cav-
safety-benchmarking-report-2021-th.pdf

1. S. 33, “Road Vehicles — Test scenarios for automated driving
systems — Specification for operational design domain,” Interna-
tional Organization for Standardization Standard (2023)
Colwell, I.: “Runtime Restriction of the Operational Design
Domain: A Safety Concept for Automated Vehicles,” Master’s
thesis, UWSpace (2018). [Online]. Available: http://hdl.handle.
net/10012/13398

Gyllenhammar, M., Johansson, R., Warg, F., Chen, D., Heyn,
H.-M., Sanfridson, M., Soderberg, J., Thorsén, A., Ursing, S.:
“Towards an Operational Design Domain That Supports the
Safety Argumentation of an Automated Driving System,” in /0th
European Congress on Embedded Real Time Software and Sys-
tems (ERTS 2020), TOULOUSE, France (2020). [Online]. Avail-
able: https://hal.science/hal-02456077

Yu, W, Li, J., Peng, L.-M., Xiong, X., Yang, K., Wang, H.: Sotif
risk mitigation based on unified odd monitoring for autonomous
vehicles. J. Intell. Connect. Veh. 5(3), 157-166 (2022). https://
doi.org/10.1108/JICV-04-2022-0015

Koopman, P., Fratrik, F.: “How many operational design domains,
objects, and events?” in Workshop on Artificial Intelligence Safety
2019 co-located with the Thirty-Third AAAI Conference on Arti-

ficial Intelligence 2019 (AAAI-19), Honolulu, Hawai, January

27, 2019, ser. CEUR Workshop Proceedings, H. Espinoza, S. O.
hEigeartaigh, X. Huang, J. Hernandez-Orallo, and M. Castillo-
Effen, Eds., vol. 2301. CEUR-WS.org (2019). [Online]. Available:
https://ceur-ws.org/Vol-2301/paper_6.pdf

Mehlhorn, M.A., Richter, A., Shardt, Y.A.: Ruling the operational
boundaries: a survey on operational design domains of autono-
mous driving systems. IFAC-PapersOnLine 56(2), 2202-2213
(2023)

Weissensteiner, P., Stettinger, G., Khastgir, S., Watzenig, D.:
Operational design domain-driven coverage for the safety argu-
mentation of automated vehicles. IEEE Access 11, 12263-12284
(2023)

Kaakai, F., Adibhatla, S. S., Pai, G., Escorihuela, E.: “Data-centric
operational design domain characterization for machine learning-
based aeronautical products,” in Computer Safety, Reliability,
and Security, J. Guiochet, S. Tonetta, and F. Bitsch, Eds Cham:
Springer Nature Switzerland, 227-242 (2023). [Online]. Avail-
able: https://doi.org/10.1007/978-3-031-40923-3_17

Lee, K., Lee, K., Lee, H., Shin, J.: “A simple unified framework
for detecting out-of-distribution samples and adversarial attacks,”
(2018). [Online]. Available: arXiv:https://arxiv.org/abs/1807.
03888

Yang, J., Zhou, K., Li, Y., Liu, Z.: Generalized out-of-distribution
detection: a survey. Int. J. Comput. Vision 132(12), 5635-5662
(2024). https://doi.org/10.1007/s11263-024-02117-4

EASA and Daedalean, Concepts of Design Assurance for Neural
Networks (CoDANN) II with Appendix B, European Union Avia-
tion Safety Agency (EASA) and Daedalean (2024)

ASTM F38, “Standard Practice for Methods to Safely Bound
Behavior of Aircraft Systems Containing Complex Functions


https://doi.org/10.2514/6.2022-1133
https://doi.org/10.2514/6.2022-1132
https://www.easa.europa.eu/en/document-library/general-publications/easa-artificial-intelligence-roadmap-10
https://www.easa.europa.eu/en/document-library/general-publications/easa-artificial-intelligence-roadmap-10
https://www.easa.europa.eu/en/document-library/general-publications/concepts-design-assurance-neural-networks-codann
https://www.easa.europa.eu/en/document-library/general-publications/concepts-design-assurance-neural-networks-codann
https://www.easa.europa.eu/en/document-library/general-publications/concepts-design-assurance-neural-networks-codann
https://www.easa.europa.eu/document-library/general-publications/concepts-design-assurance-neural-networks-codann-ii
https://www.easa.europa.eu/document-library/general-publications/concepts-design-assurance-neural-networks-codann-ii
https://www.easa.europa.eu/document-library/general-publications/concepts-design-assurance-neural-networks-codann-ii
https://doi.org/10.21949/1524481
https://doi.org/10.21949/1524481
https://www.sae.org/standards/content/air6988/
https://www.sae.org/standards/content/air6988/
http://arxiv.org/2406.12362
http://arxiv.org/2406.12362
https://doi.org/10.1109/DASC52595.2021.9594467
https://doi.org/10.2514/6.2022-1134
https://doi.org/10.2514/6.2022-1134
https://doi.org/10.1109/DASC55683.2022.9925741
https://doi.org/10.1109/DASC55683.2022.9925741
https://doi.org/10.2514/6.2018-0127
https://doi.org/10.2514/6.2018-0127
https://doi.org/10.2514/6.2019-1975
https://doi.org/10.2514/6.2019-1975
https://elib.dlr.de/197957/
https://www.bsigroup.com/globalassets/localfiles/en-th/cav/bsi-cav-safety-benchmarking-report-2021-th.pdf
https://www.bsigroup.com/globalassets/localfiles/en-th/cav/bsi-cav-safety-benchmarking-report-2021-th.pdf
https://www.bsigroup.com/globalassets/localfiles/en-th/cav/bsi-cav-safety-benchmarking-report-2021-th.pdf
http://hdl.handle.net/10012/13398
http://hdl.handle.net/10012/13398
https://hal.science/hal-02456077
https://doi.org/10.1108/JICV-04-2022-0015
https://doi.org/10.1108/JICV-04-2022-0015
https://ceur-ws.org/Vol-2301/paper_6.pdf
https://doi.org/10.1007/978-3-031-40923-3_17
http://arxiv.org/1807.03888
http://arxiv.org/1807.03888
https://doi.org/10.1007/s11263-024-02117-4

Runtime monitoring of operational design domain to safeguard machine learning components 991

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Using Run-Time Assurance” (2021). [Online]. Available: https://
www.astm.org/f3269-21.html

Nagarajan, P., Kannan, S. K., Torens, C., Vukas, M. E., Wilber,
G. F.: ASTM F3269 - An Industry Standard on Run Time Assur-
ance for Aircraft Systems AIAA, (2021). [Online]. Available:
https://doi.org/10.2514/6.2021-0525

EASA and Collins Aerospace, Formal Methods use for Learning
Assurance (ForMulLA), European Union Aviation Safety Agency
(EASA) and Collins Aerospace (2023)

Hook, L. R., Clark, M., Sizoo, D., Skoog, M. A., Brady, J.: “Cer-
tification strategies using run-time safety assurance for part 23
autopilot systems,” in 2016 IEEE Aerospace Conference, 1-10
(2016). [Online]. Available: https://doi.org/10.1109/AERO.2016.
7500817

Torens, C., Nikodem, F., Dauer, J.C., Schirmer, S., Dittrich, J.S.:
Geofencing requirements for onboard safe operation monitoring.
CEAS Aeronaut. J. 11(3), 767-779 (2020). https://doi.org/10.
1007/s13272-020-00451-0

Schierman, J.D., DeVore, M.D., Richards, N.D., Clark, M.A.:
Runtime assurance for autonomous aerospace systems. J. Guid.
Control. Dyn. 43(12), 2205-2217 (2020). https://doi.org/10.
2514/1.G004862

Skoog, M. A., Hook, L. R., Ryan, W.: “Leveraging astm indus-
try standard £3269-17 for providing safe operations of a highly
autonomous aircraft,” in 2020 IEEE Aerospace Conference, pp.
1-7 (2020). [Online]. Available: https://doi.org/10.1109/AERO4
7225.2020.9172434

Cofer, D., Amundson, ., Sattigeri, R., Passi, A., Boggs, C., Smith,
E., Gilham, L., Byun, T., Rayadurgam, S.: “Run-time assurance
for learning-based aircraft taxiing,” in 2020 AIAA/IEEE 39th
Digital Avionics Systems Conference (DASC), pp. 1-9 (2020).
[Online]. Available: https://doi.org/10.1109/DASC50938.2020.
9256581

He, Y., Schumann, J.: “Statistical Analysis and Runtime Monitor-
ing for an Al-based Autonomous Centerline Tracking System,”
PHM Society Asia-Pacific Conference, 4, no. 1, (2023). [Online].
Available: https://doi.org/10.36001/phmap.2023.v4i1.3738
Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y. M.: “Yolov7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detec-
tors,” in 2023 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 74647475 (2023). [Online].
Available: https://doi.org/10.1109/CVPR52729.2023.00721
Bo7ié-Stuli¢, D., Marusié, Z, Gotovac, S.: Deep learning approach
in aerial imagery for supporting land search and rescue missions.
Int. J. Comput. Vision 127(9), 12561278 (2019). https://doi.org/
10.1007/s11263-019-01177-1

Bochkovskiy, A., Wang, C., Liao, H. M.: “Yolov4: Optimal speed
and accuracy of object detection,” CoRR, vol. abs/2004.10934,
(2020). [Online]. Available: https://doi.org/10.48550/arXiv.2004.
10934

49.

50.

S1.

52.

53.

54.

55.

56.

57.

Baumeister, J., Finkbeiner, B., Kohn, F., Lohr, F., Manfredi, G.,
Schirmer, S., Torens, C.: Monitoring unmanned aircraft: specifica-
tion, integration, and lessons-learned. In: Gurfinkel, A., Ganesh,
V. (Eds.) Computer Aided Verification, pp. 207-218. Springer
Nature Switzerland, Cham (2024)

Rizzi, A., Algeri, T., Medeghini, G., Marini, D.: “A proposal for
contrast measure in digital images,” in Conference on Colour in
Graphics, Imaging, and Vision, vol. 2004, no. 1. Society for Imag-
ing Science and Technology, 2004, pp. 187-192

Mello Roman, J. C., Vazquez Noguera, J. L., Legal-Ayala, H.,
Pinto-Roa, D. P., Gomez-Guerrero, S., Garcia Torres, M.:
“Entropy and contrast enhancement of infrared thermal images
using the multiscale top-hat transform,” Entropy, 21, no. 3,
(2019). [Online]. Available: https://www.mdpi.com/1099-4300/
21/3/244

Kern, S., Geister, D., Korn, B.: “City-atm — demonstration of traf-
fic management in urban airspace in case of bridge inspection,”
in 2019 IEEE/AIAA 38th Digital Avionics Systems Conference
(DASC), pp. 1-10 (2019). [Online]. Available: https://doi.org/10.
1109/DASC43569.2019.9081663

Kardatzke, S.:“Laufzeitiiberwachung neuronaler netze fiir die
kameragestiitzte umgebungswahrnehmung autonomer drohnen,”
Hochschule Osnabriick, Tech. Rep (2023). [Online]. Available:
https://elib.dlr.de/202952/

Peterson, E. M., DeVore, M., Cooper, J., Carr, G.: “Run Time
Assurance as an Alternate Concept to Contemporary Develop-
ment Assurance Processes,” NASA, Tech. Rep. NF1676L-36112
(2020). [Online]. Available: https://ntrs.nasa.gov/citations/20200
003114

EASA and Daedalean, Concepts of Design Assurance for
Neural Networks (CoDANN) II with Appendix B, Euro-
pean Union Aviation Safety Agency (EASA) and Dae-
dalean, Jan. 2024. [Online]. Available: https://www.easa.
europa.eu/en/documentlibrary/general-publications/
concepts-design-assurance-neuralnetworks-codann-ii

EASA, “Artificial Intelligence Roadmap, A Human-Centric
Approach to Al in Aviation, Version 2.0” (2023). [Online].
Available: https://www.easa.europa.eu/en/document-library/
general-publications/easa-artificial-intelligence-roadmap-20
EASA, “Easy access rules for unmanned air-
craft systems (regulations (eu) 2019/947 and (eu)
2019/945),” 2021. [Online]. Available: https://www.
easa.europa.eu/en/document-library/easyaccess-rules/
easy-access-rules-unmanned-aircraft-systemsregulations-eu

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer


https://www.astm.org/f3269-21.html
https://www.astm.org/f3269-21.html
https://doi.org/10.2514/6.2021-0525
https://doi.org/10.1109/AERO.2016.7500817
https://doi.org/10.1109/AERO.2016.7500817
https://doi.org/10.1007/s13272-020-00451-0
https://doi.org/10.1007/s13272-020-00451-0
https://doi.org/10.2514/1.G004862
https://doi.org/10.2514/1.G004862
https://doi.org/10.1109/AERO47225.2020.9172434
https://doi.org/10.1109/AERO47225.2020.9172434
https://doi.org/10.1109/DASC50938.2020.9256581
https://doi.org/10.1109/DASC50938.2020.9256581
https://doi.org/10.36001/phmap.2023.v4i1.3738
https://doi.org/10.1109/CVPR52729.2023.00721
https://doi.org/10.1007/s11263-019-01177-1
https://doi.org/10.1007/s11263-019-01177-1
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.48550/arXiv.2004.10934
https://www.mdpi.com/1099-4300/21/3/244
https://www.mdpi.com/1099-4300/21/3/244
https://doi.org/10.1109/DASC43569.2019.9081663
https://doi.org/10.1109/DASC43569.2019.9081663
https://elib.dlr.de/202952/
https://ntrs.nasa.gov/citations/20200003114
https://ntrs.nasa.gov/citations/20200003114

	Runtime monitoring of operational design domain to safeguard machine learning components
	Abstract
	1 Introduction
	1.1 Use case
	1.2 Paper structure

	2 Related work
	2.1 ML safety assurance
	2.2 Operational domain
	2.3 Operational design domain
	2.4 Out of distribution
	2.5 Runtime assurance

	3 Definition of OD, ODD and OOD
	3.1 Definition of OD
	3.2 Definition of ODD
	3.3 Definition of OOD

	4 Software setup
	4.1 ML onboard person detection
	4.2 ODD monitor
	4.2.1 Monitoring system state
	4.2.2 MicroRTPS messaging
	4.2.3 HAG estimation
	4.2.4 Geofence monitor

	4.3 OOD monitor
	4.4 Safety switch

	5 Flight test
	5.1 Unmanned aircraft
	5.2 Modifications to unmanned aircraft

	6 Results
	6.1 Evaluation of ODD monitoring
	6.2 Evaluation of OOD monitoring
	6.3 Summary and limitations

	7 AI certification considerations
	7.1 AI trustworthiness analysis
	7.1.1 Objective CO-04
	7.1.2 Objective CL-01
	7.1.3 Objective SA-01

	7.2 AI assurance
	7.2.1 Objective DA-02
	7.2.2 Objective DA-03

	7.3 Human factors for AI
	7.3.1 Objective EXP-05, EXP-06, EXP-07, EXP-09
	7.3.2 Objective EXP-19

	7.4 Safety risk mitigation
	7.4.1 Objective SRM-01
	7.4.2 Objective SRM-02
	7.4.3 Anticipated MOC SRM-02-1


	8 Conclusion and outlook
	Acknowledgements 
	References




