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Abstract
To increase the autonomy of future air taxis, machine learning is necessary for a lot of areas such as vision-based tasks. 
However, the safety aspect of any machine learning application is of significant concern for users, experts, and certification 
authorities. To mitigate the risk to passengers or people on the ground, any machine learning-enabled component requires 
demonstration of rigorous compliance to safety and development assurance standards. Standardization organizations and 
authorities are currently developing and establishing new guidelines for the safe use of machine learning applications in the 
aviation domain. This work showcases the concept of runtime monitoring for enabling the safe integration of an example 
machine learning application in the urban air mobility context: the detection of humans during a landing approach of an 
air taxi via an onboard camera. Such an application may be useful in the context of autonomous landing to ensure that no 
person on the ground is endangered. In particular, the concept of operational design domain monitoring is discussed in the 
context of the recent European Union Aviation Safety Agency guidance and demonstrated in flight testing. The operational 
design domain monitor is composed of several sub-monitors that supervise different parameters in the operational domain 
and detect out-of-distribution inputs. Through the development of this component, this work further extends our work on safe 
operation monitor and runtime assurance for machine learning applications. The flight test results indicate that monitoring 
the operational design domain can support performance as well as the safety of the operation.
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1  Introduction

With recent advances in artificial intelligence (AI) and 
machine learning (ML) there is an increasing appeal for 
their use even for safety-critical applications in the aviation 
domain. But the safety of any ML application is still a huge 
concern for experts. In the DLR project, "HorizonUAM" 
[1, 2], the safe autonomy work package [3, 4] targets the 
research of safety aspects of ML in the context of Urban Air 
Mobility (UAM), i.e. transportation services via air taxis in 
urban environments. This paper further extends our research 
on that topic [5].

A key research question is how ML-enabled autonomy 
can be safely applied in the context of UAM [6]. This poses 
a particular challenge for ML algorithms, including deep 
neural networks since standards like DO-178 are not suit-
able in this context. In particular, they do not account for the 
dependency on data. New guidance is required to enable the 
safe integration of ML in the aviation domain. Such safety 
standards for ML applications are currently under develop-
ment. The European Union Aviation Safety Agency (EASA) 
has developed a first guidance for the certification of ML 
[7, 8]. In this paper, we utilize some of the key concepts of 
these guidelines to safeguard an ML component, the focus 
will be on operational domain (OD) and operational design 
domain (ODD). Additionally, the concept of out of distribu-
tion (OOD) will be discussed. These concepts will be used 
and explained with a UAM use case and evaluated in flight 
tests using a demonstrator Unmanned Aircraft (UA). Addi-
tionally, the relevant objectives of the EASA guidance will 
be detailed and explained in the context of the use case.

1.1 � Use case

In our HorizonUAM project, the use case involves an air taxi 
landing on a vertiport. An ML component uses an onboard 
camera to detect if there are any persons on the vertiport. 
This algorithm is a state-of-the-art object detector for detect-
ing humans on images [46] captured by an UA’s onboard 
camera. The landing can not be initiated if there are any 
persons that could be harmed on the vertiport. In that case 
the landing has to be aborted and for example an alternative 
vertiport has to be used.

This use case was demonstrated in in flight tests at the 
DLR National Experimental Test Center for Unmanned Air-
craft Systems in Cochstedt. Fig. 1 which shows the demon-
stration of an aborted landing during our flight tests of the 
simulated air taxi using our demonstrator UA.

1.2 � Paper structure

The remainder of this paper is structured as follows. After 
the introduction, related work is discussed in Sect.  2, spe-
cifically the concepts of OD and ODD that have been intro-
duced by the new EASA documents. Sect. 3 is dedicated 
to an explicit definition of the ODD. This is followed by 
the presentation of the software setup, specifically the ML 
component and architecture of the monitoring architecture 
in Sect. 4. Then, Sect. 5 presents the setup and the descrip-
tion for the flight test. In Sect. 6, results of the flight test are 
shown, including an evaluation of the ML component and 
an evaluation of the ML safety aspects. Next, Sect. 7 dis-
cusses OD and ODD objectives from the EASA guidelines 
for certification in context with the use case. Finally, Sect. 8 
summarizes the work and gives a future perspective.

2 � Related work

2.1 � ML safety assurance

Recently, a literature review on the topic of ML safety 
[9] and an analysis of the existing and new regulations 
and guidance on ML safety have been published [10] by 
the authors. This work is a follow-up and extension to that 
aforementioned research. This field has a lot of interest from 

Fig. 1   Demonstration of an aborted landing at a vertiport, due to per-
sons on the ground during our HorizonUAM project. The persons are 
simulated by puppets
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researchers, standardization groups and also certification 
authorities. The overall framework and the main context 
for verification and safety of ML in aviation is set by the 
following documents. The EASA published a number of 
documents regarding the safe use of ML, starting with the 
AI roadmap [11, 56], and following up with more details 
on different aspects of ML safety with Concepts of Design 
Assurance for Neural Networks (CoDANN) [12], as well as 
CoDANN II [13, 55], and a resulting Concept Paper First 
Usable Guidance for Level 1 Machine Learning Applica-
tions [7]. Finally, in 2024, EASA updated the guidelines 
with the Concept Paper First Usable Guidance for Level 1 & 
2 Machine Learning Applications [8]. Furthermore, recently 
a report was published by the Federal Aviation Adminis-
tration (FAA), Neural Network Based Runway Landing 
Guidance for General Aviation Autoland [14]. In addition 
to authorities such as EASA and FAA, also standardization 
organizations are currently working on standardization of AI 
in aviation, such as the joint SAE/EUROCAE working group 
WG-114 [15]. The output of this working group will be the 
document SAE ARP 6983 / EUROCAE ED 324. Some pre-
liminary concepts detailing partial compliance regarding 
ODD definition and data design is shown in [16].

Research, specifically regarding the certification of ML in 
relation to existing traditional standards, such as DO-178C, 
has also been done recently [17–19]. Here, a combination 
of architectural mitigations and a mapping of DO-178C 
objectives to ML specific customizations are used to achieve 
design assurance level C. More recently [20] argues, that 
for most low-risk applications of ML the existing compli-
ance framework should be enough to establish certification 
approval.

2.2 � Operational domain

The concept of the operational domain (OD) was intro-
duced only in the latest version of the EASA guidelines 
[8]. It should be noted, that the definition of OD is given 
in the context of the system and the Concept of Operations 
(ConOps). Since we are using the concept of OD and ODD 
in this paper, we will directly quote the definition from the 
EASA document:

Operational domain (OD) – Operating conditions 
under which a given AI-based system is specifically 
designed to function as intended, in line with the 
defined ConOps. For instance, in the airworthiness 
domain, the Certification Specification for large trans-
port aircraft, CS 25.1309 requires the identification 
of ‘the aeroplane operating and environmental condi-
tions’. A definition of ‘foreseeable conditions’ can be 
found under AMC 25-11 and generalised: ‘Foreseeable 
Conditions - The full environment that the [...] system 

is assumed to operate within, given its intended func-
tion. This includes operating in normal, non-normal, 
and emergency conditions.’ ( [8], sect. G.1, page 246)

The document further acknowledges the fact that cap-
turing the operating conditions is already a practice in the 
aviation domain, i.e. ConOps. However, this process is not 
formal enough for the development of ML. An additional 
aspect for differentiation between OD and ODD is that the 
OD may be formulated on a higher abstraction level (air-
craft level), while the ODD (definition, see below) might 
be refined to additional, derived parameters, or parameter 
boundaries might be more stringent. The idea of a formal 
description of aspects of the ConOps for unmanned aircraft 
has been discussed in [21–23].

2.3 � Operational design domain

Moreover, there is research regarding the specific topic of 
the operational parameters, also called ODD for the safety 
during operation. The concept of ODD was first used in 
the automotive domain [24]. Additionally, taxonomies for 
operational design domains are discussed in various auto-
motive standards [25, 26]. Therefore, there is a lot of related 
research on this concept and specifically in relation to safety 
[27–32] in the automotive domain. There is recently also 
a growing interest in research of the concept of ODD in 
the aviation domain. Since our earlier work, beginning of 
2023 [5], several works have been published. The path from 
ODD to scenario generation and simulation was proposed 
[23]. Also a data centric approach to characterize the ODD 
is given by [33]. Their framework discusses the categories 
of data relevant to defining and testing ML systems, such 
as Nominal, Outlier, Edge Case, Corner Case, Inlier, and 
Novelty data.

This paper is an example of a direct application of the 
ODD concept in the aviation domain on a demonstrator UA. 
This concept will be utilized to check the inputs of the ML 
algorithm in Sect. 6.2 and further discussed in Sect. 7. The 
first usage of ODD in the aviation domain was that the defi-
nition of ODD is given in the EASA document [7]. However, 
the latest version of the EASA document gave an updated 
definition for the concept of ODD:

Operational design domain (ODD) – Operating condi-
tions under which a given AI/ML constituent is spe-
cifically designed to function as intended, including 
but not limited to environmental, geographical, and/
or time-of-day restrictions. The ODD defines the set 
of operating parameters, together with the range and 
distribution within which the AI/ML constituent is 
designed to operate, and as such, will only operate 
nominally when the parameters described within the 
ODD are satisfied. The ODD also considers dependen-
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cies between operating parameters in order to refine 
the ranges between these parameters when appropriate; 
in other words, the range(s) for one or several operat-
ing parameters could depend on the value or range of 
another parameter. ( [8], sect. G.1, page 246)

The definition from EASA utilizes the term constituent, 
however for clarity we will use the term ML component 
throughout the paper.

2.4 � Out of distribution

A similar concept is that of OOD. The concept of OOD 
is a commonly researched metric for assessing inputs that 
have variance along a distribution. Analyzing the OOD can 
increase the reliability of AI algorithms [34, 35]. In gen-
eral, the basic idea of OOD monitoring is to check if the 
input data during operation is consistent with the trained 
data. The training data is analyzed on specific scalar metrics 
of (multidimensional) inputs. A simple example of such a 
metric is the value of the current altitude of the UAS. For 
more complex inputs, such as images, one example metric 
would be the brightness of an image. For all training inputs 
of this parameter, the number of occurrences of any value 
of the corresponding metric is counted and thus a distribu-
tion is established. Then, during operation the new input is 
compared to this distribution. For the safety of the ML com-
ponent it is important to supervise ODD and OOD aspects. 
In fact the EASA guidance document [8] requires with its 
objectives to supervise both concepts, as discussed in the 
following sections.

Out of distribution (data) – Data which is sampled 
from a different distribution than the one of the train-
ing data set. Data collected at a different time, and 
possibly under different conditions or in a different 
environment, than the data collected to create the ML 
model are likely to be out of distribution.

Additionally, the EASA CoDANNII report [36, 55] 
details the aspects of out of distribution (OOD) detection.

2.5 � Runtime assurance

Finally, there is research on safety monitoring and Runt-
ime assurance (RTA), which is an underlying principle, also 
for verifying the ODD during the operation [37, 38]. From 
EASA, the ForMuLA report [39] discusses the runtime 
monitoring of ODD as a formal method. In combination, 
these concepts can be used to safeguard the ML compo-
nent against unsafe inputs. The idea is to supervise if the 
input that is fed to the ML component is consistent with 
the intended operating conditions and limitations. RTA, 
as described in ASTM F3269-21 [37], can be used as an 

alternate certification strategy when a complex function 
cannot be assured at designtime, i.e. proven to be safe prior 
to operational deployment through compliance to standards 
for system, hardware and software development assurance 
such as ARP 4754A, DO-254 and DO-178C. In the archi-
tecture proposed by the ASTM standard practice, a safety 
monitor supervises the outputs of the complex function to 
ensure they do not lead the system to unsafe states. If the 
outputs exceed a certain threshold, defined a priori, the 
safety monitor switches control of the system to a suitable 
recovery function through an RTA switch. Nagarajan et al. 
[38] discuss the concepts that went into the development of 
the standard practice as well as some challenges and gaps 
yet to be addressed. Most applications of the standard deal 
with the control function aspect of the architecture [40–43], 
yet there is little discussion in literature on the use of RTA 
for securing the inputs to complex functions. Any discourse 
on input monitoring is usually limited to the concepts of 
dynamic consistency checking and data conditioning. Even 
where there is work on the use of RTA for AI-based systems 
using video [44] or image [45] inputs for monitoring the 
complex controller, there is no explicit discussion of the 
concept of ODD monitoring within an RTA architecture. In 
this paper, we present how the concepts of RTA as presented 
in the ASTM architecture can be expanded to include input 
monitoring, especially using ODD and OOD monitoring to 
ensure safe operation.

In [44], Cofer et al. demonstrate an automatic aircraft tax-
iing system called TaxiNet, which uses a learning-enabled 
runway centerline tracking controller bounded by an RTA 
architecture. Here, they use computer vision (CV) along 
with position and inertial reference sensors to monitor large 
deviations from the centerline, however they do not provide 
many details on the validity checking of the video inputs 
they process for the CV-based monitor. In a more recent 
application of the ASTM F3269 architecture, He and Schu-
mann et al. [45] demonstrate the application of a deep neu-
ral network based autonomous centerline tracking system 
through the use of images from cameras mounted on the air-
craft. Here, there is more discussion of how parameters such 
as time of day, image fuzziness, dirt etc. could affect the 
performance of the image-based deep neural network. They 
use a temporal logic-based runtime monitor called R2U2 
to then detect the performance degradation and switch to 
either a different neural network or a traditional reversion-
ary controller. However, they specify fixed bounds on the 
above-mentioned parameters in their formal specification 
of the R2U2 monitor and do not use the concepts of ODD 
and OOD explicitly. In our work, we intend to show how 
ODD monitoring and OOD monitoring can be used both 
offline during the training process to determine the limits of 
performance for the ML-based components as well as how 
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these concepts can be used in runtime for safe operation 
monitoring Fig. 2.

3 � Definition of OD, ODD and OOD

In this section we define an OD/ODD that will be super-
vised by our monitor for our specific use case. Below we 
provide the boundary values for the ODD properties during 
the flight tests, along with observations of their effects on 
ML performance for human detection.  The ODD was set 
up to these values based on the available training data and 
engineering judgment. 

3.1 � Definition of OD

•	 OD
•	 Altitude: 0m - 100m
•	 Velocity: 0 m/s - 15 m/s
•	 Camera angle: -45° - +45°
•	 Geofence: Cochstedt airport airfield
•	 Daylight conditions
•	 Good weather

The OD defines the operating conditions of the operation. 
For simplicity reasons the operating conditions are defined 
to daylight conditions in good weather at the airfield of the 
Cochstedt airport. The flights take place below the attitude 
of 100 m at a maximum speed of 15m/s. To differentiate 
between OD and ODD, it should be noted that the OD define 
the operating conditions of the aircraft, while the ODD 
define the operating conditions of the ML component.

3.2 � Definition of ODD

•	 ODD
•	 Altitude: 20 m to 50 m
•	 Velocity: 0 m/s to 10 m/s
•	 Camera angle: − 10° to +10°
•	 Geofence: 4 partly overlapping geofences, depending on 

the mission phase. Cochstedt airport airfield.

Altitude: Our design idea was to take image data for alti-
tudes between 20 to 50 m. The altitude is important, since 
it impacts the ground sample distance (GSD), which in turn 
determines the resolution of the images captured. At higher 
altitudes, objects such as people appear smaller and are rep-
resented by fewer pixels, which can impact the ability to 
identify and analyze them.

Velocity: We operate our drones regularly with veloci-
ties between 0 m/s (hover) and 10 m/s. First tests resulted 
in clear images, therefore we went with this range for the 
ODD. The velocity of the aircraft during data collection is 
a key factor that influences image quality. High speeds can 
lead to motion blur, which may degrade the image resolution 
and accuracy of object detection. Conversely, lower speeds 
can yield clearer images but may reduce the area covered 
during the flight. It is essential to balance velocity with the 
need for precise imagery to ensure optimal data collection 
for analysis.

Camera angle: Our drone is equipped with a downward-
facing camera, which is optimal for capturing overhead 
imagery. Despite this fixed position, the drone’s movements, 
including acceleration and deceleration, can cause the cam-
era angle to vary. Our first estimates were to expect a range 
of −10° to +10°. The camera angle has a huge impact on 
the captured images for person detection, since it alters the 
angle and thus the pixels of persons visible to the camera 
on the image.

Geofence: The geofence is a mitigation for operational 
safety [57]. Therefore, there is a safety benefit directly from 
utilizing a geofence. However, it can also affect the image 
in the sense that for the purpose of these tests flights, the 
geofence was edited to contain only a small area on the air-
field of the Cochstedt airport. Here, we could assume con-
sistent, monotonic background. A known limited operating 
area can support the image processing and analysis tasks. 
As soon as the airfield is left and grass and trees as well as 
streets, cars and houses are entering the image, the training 
and image processing obviously become more complex.

3.3 � Definition of OOD

•	 Image quality (Static limits on image parameters)
•	 Brightness
•	 Saturation
•	 Entropy
•	 Edges

•	 OOD (Training distribution of image parameters)
•	 Brightness
•	 Saturation
•	 Entropy
•	 EdgesFig. 2   Visual explanation of the concept of the ODD
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Image quality: We considered four main image proper-
ties, such as brightness, separation, entropy, and edges. The 
idea was to simply cut off images on a fixed limit of these 
values to ensure uniform image quality. The images taken 
during test flights were within good daylight conditions. 
Brightness impacts the overall visibility within the image, 
while contrast affects the distinction between objects and 
their surroundings. Entropy measures the level of disorder 
or complexity in the image, and edges can similarly give a 
metric on image complexity.

Image training: Static boundary values for image param-
eters as discussed in the ODD aspect of "Image quality" 
can already help to filter out extreme cases, dark images, or 
extremely blurred images, see Fig. 13. However, the OOD is 
also important, this means to consider the specific ML com-
ponent and the training it received. Images that are outside 
of the training distribution should be filtered out, similar to 
the other parameters of the ODD.

4 � Software setup

To increase the safety of the ML-based person detection, 
a software architecture that incorporates additional moni-
toring has been developed. A high-level overview of the 
software architecture is depicted in Fig. 3. The main goal 
of this setup is to feed the images from the onboard camera 
into a ML algorithm which is able to detect humans on the 
ground. Then, the output from the ML algorithm is transmit-
ted to the payload Ground Control Station (GCS) as a video 
stream. Additionally, two monitoring components as well 
as a safety switch have been added to increase the safety 
and trustworthiness of the ML algorithm. A more detailed 

explanation of the individual software components follows 
in the subsequent sections.

4.1 � ML onboard person detection

The ML algorithm is a core component of the software 
architecture and is responsible for the onboard detection of 
humans in aerial images. As depicted in Fig. 3, the ML algo-
rithm directly reads frames from the connected camera and 
uses object detection to determine bounding boxes for each 
person present in the current frame. The object detection is 
implemented via a neural network based on the YOLOv7-
tiny architecture [46], a reduced version of the YOLOv7 
architecture with lower performance requirements. This 
network is trained using aerial images from the HERIDAL 
database [47]. Additionally, recorded images from previous 
flight tests with a similar use case are added to the training 
data. The size of the input images has been customized to 
1280 x 960 pixels. All of the training has been done using 
the darknet framework1 for a better integration into exist-
ing inference source code, which enables support for older 
YOLO versions, such as YOLOv4 [48], and alternative infer-
ence hardware, e.g., Neural Compute Stick 2 (NCS2). The 
darknet weight and configuration files are directly supported 
by OpenCV,2 allowing to load and execute the trained model 
with OpenCV directly. The neural network runs on the buil-
tin GPU of the companion computer. During inference, the 
trained model achieves to process frames at a frame rate of 
up to 15 FPS. In many real-life scenarios where an onboard 
human detection could be deployed, e.g. to assess a potential 
landing area or a cargo drop zone, such a frame rate should 
be more than sufficient as the UA could hover above the tar-
get area for a few seconds before proceeding with the actual 
flight task. In that scenario, the onboard ML algorithm could 
assess the scene multiple times and should be able detect any 
relevant objects.

4.2 � ODD monitor

This component monitors the operating conditions based 
on a specified ODD. This ODD monitor utilizes the sensor 
data from the payload Pixhawk to monitor operating condi-
tions such as geofence, altitude, velocity and camera angle. 
As shown in Fig. 4, the ODD monitor consists of multiple 
low-level software components, which are subsequently 
described in more detail.

The ODD described in Sect. 3 states that altitude, velocity 
and camera angle are part of the ODD.

Monitoring Output

ODD Monitor

Monitoring Output

OOD Monitor

Camera Images

Onboard Camera

Sensor Data

Flight Controller
(Pixhawk)

ML Output

ML Algorithm

Safe ML Output

Safety Switch

Payload GCS
(Laptop)

Companion Computer
(NVIDIA Jetson Orin AGX)

Fig. 3   Hardware (angular) and high-level software (rounded) compo-
nents of flight test setup

1  https://github.com/AlexeyAB/darknet.
2  https://opencv.org/
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4.2.1 � Monitoring system state

This subsection describes the monitors for altitude, velocity 
and camera angle. In this case, for each parameter, simple 
boundary values are specified. The data comes from data 
streams, see Sect. (4.2.2) that are fed into a module that 
wraps a RTLola interpreter into the ROS2 environment. 
RTLola is a framework for monitoring of stream-based data 
[49].

4.2.2 � MicroRTPS messaging

All the software components are implemented as Robot 
Operating System 2 (ROS2) modules. This enables a mod-
ular structure as well as reliable communication between 
the software components. By default, the Micro Air Vehi-
cle Link (MAVLink) messages generated by the payload 
Pixhawk can not be distributed as ROS2 messages. How-
ever, the PX4 software includes a Data Distribution Service 
(DDS) interface which is also referred to as the microRTPS 
bridge. This bridge implements the Real-Time Publish Sub-
scribe (RTPS) protocol which provides publisher-subscriber 
communication similar to the messages in ROS2. The usage 
of the microRTPS bridge requires to run a software called 
microRTPS client on the payload Pixhawk and its counter-
part, the microRTPS agent, on the companion computer. 
The microRTPS agent receives sensor data from the payload 
Pixhawk and provides it as ROS2 messages for the other 
software components. The message types that should be sup-
ported by the microRTPS bridge can be specified according 
to the use case. For the geofence and altitude monitoring we 
require the message types containing the global position in 
(NED) coordinates and the local position in (NED) coordi-
nates. In contrast, the velocity monitor and the camera angle 
monitor require messages with the current velocity vector 
and the attitude of the aircraft, respectively.

4.2.3 � HAG estimation

The neural network is trained with images that have been 
taken at specific altitudes. To ensure the safe functional-
ity of the object detection algorithm, the current altitude is 
compared with the altitudes of the images that have been 
used in the training process. For example, if images with 
altitudes between 20 and 50 m have been used in the train-
ing process, the object detection might not work properly 
below 20 m and above 50 m. As mentioned in Sect. 4.2.2 
the payload Pixhawk outputs a global position in WGS-84 
coordinates. However, the altitude in this global position 
is given in reference to the WGS-84 ellipsoid and does not 
represent the distance to the ground. To obtain the altitude 
above ground, the altitude monitor loads a terrain elevation 
map from the flight area. With this map, the altitude above 
ground can be computed by subtracting the terrain elevation 
at the current position from the WGS-84 altitude. The result-
ing height above ground is then provided for the altitude 
monitor as shown in Fig. 4.

4.2.4 � Geofence monitor

Information about the operating environment are essential 
for composing an adequate dataset to train a neural net-
work. For instance, training data showing humans on grass 
or fields would not be well suited to train for the detection 
of humans in an urban environment. Yet, if assumptions 
about the operating environment are made, they need to be 
checked at runtime to prevent entering a flight area where 
unforeseen features might occur. To reduce the likelihood of 
these unforeseen features and a shift in input distribution, the 
geofence monitor is used.

A geofence represents virtual barriers in space that the 
system under scrutiny is not allowed to cross. If the opera-
tion consists of different tasks that can be spatially sepa-
rated it makes sense for an improved situational awareness 
to have overlapping geofences where a crossing represents 
the traversal from one task to another. Figure 5 depicts four 
overlapping geofences that were used for the flight test, see 
Sect. 5. Geofence 1 contains the first vertiport, Geofence 
2 contains the second vertiport, Geofence 3 contains the 
container cluster, and in Geofence 4 the waypoint mis-
sion stopped. Each subplot represents the point of view of 
a respective geofence highlighted in blue. The flight path 
is depicted in green, orange, and red referring to inside 
geofence, close to geofence violation, and outside geofence, 
respectively. The figure shows that the waypoint mission 
was correctly tracked by the geofence monitor. The mission 
first started in Geofence 1, moved to Geofence 2, then to 
Geofence 4, then to Geofence 3, and finally ended up in the 
initial geofence. 

ODD Monitor

Altitude

HAG
Estimation

Altitude
Monitor

Velocity
Monitor

Camera Angle
Monitor

Geofence
Monitor

Velocity Attitude

GPS Position

Monitoring Output

MicroRTPS
Bridge

Sensor Data

Fig. 4   Low-level software components of the ODD monitor
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Complementing the geofence of the operation area, 
geofencing of the planned waypoint mission was also 
used, which we refer to as tubes. Figure 6 shows the tub-
ing results for our flight test. The pre-planned waypoint 
mission is depicted in blue. The flight is indicated by a 
colour varying line where green, orange, and red indicate 
when the UA was inside, near to the border of the tube, 
and outside of the tube, respectively. The numbers in the 
figure that range from zero to nine reflect the order of the 
waypoints. After the last waypoint is reached the waypoint 
mission stops. The figure shows that we were able to follow 
the pre-planned waypoint mission, i.e. , we stayed inside 
the tube. Only when the last waypoint was reached and the 
UA returned to the home position we did leave the tube. 
Besides tracking the position within the tube, we also noti-
fied when too much time expires until the next waypoint 
was reached in respect to a � distance to the position of the 
waypoint. This ensures progress towards reaching the target 
waypoint, where � provides a margin of tolerance around it, 
i.e., |UAS.position − waypoint.position| < 𝜖 . When the UAS 
reaches the current target waypoint, the timer resets to track 
the next waypoint thereafter. If the timer expires, the current 
target waypoint was not reached in time. This can be seen 
in Fig. 7 where brighter colours indicate a larger value of 
the timer. For instance, the timer was reset at Waypoint 3 
but it took too long to reach Waypoint 4. Further, the timer 

at  Waypoint 9 was never reset since the waypoint were not 
reached within the � distance. Yet, all other waypoints were 
sufficiently reached, resetting the timer. 

Geofencing of the operation area as well as the pre-
planned flight trajectory allows to reduce the likelihood of 
unforeseen features a neural network might encounter. It is 

Fig. 5   Top-view of the overlapping geofences used for the flight test. In each subfigure, the monitor’s outputs are given for the respective 
geofence highlighted in blue where green, orange, and red represent inside, close to crossing, and crossed monitor evaluations

Fig. 6   Top-view of the tubing results. We remained within the tube 
(green) until the waypoint mission stopped at Waypoint 9. Then, the 
UA left the tube to fly to the home position
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one means of many to assure that the input distribution of a 
neural network is similar to the one during training.

4.3 � OOD monitor

The images that are being fed into the neural network could 
suffer from multiple negative effects such as low contrast, 
blur, under- and overexposure or noise from a damaged cam-
era sensor. Depending on the intensity of these effects, a 
reliable detection might become impossible. To filter out 
images with such effects the OOD monitor reads the cur-
rent image frame from the connected camera and computes 
several properties of the frame. These properties include the 
brightness, the saturation, the entropy and the amount of 
edges in the frame. To derive the set of image properties, an 
interview with experts on environment perception was con-
ducted. The computation of these properties is as follows.

Measuring the brightness of an image could be used to 
check if under- or overexposure exist in an image. It can 
be computed by converting the image to grayscale and cal-
culating the mean value of all pixels. To get a value range 
between 0 and 1 the mean value is divided by 255. A very 
low value could indicate underexposure while a high value 
would indicate overexposure.

An image with low saturation could be an indicator for 
an reduced set of distinct features in an image, e.g. in case 
of hazy weather. To compute the saturation, the image is 
converted to the Hue Saturation Value (HSV) colour space 
before the mean value of the saturation channel is calculated. 
Again the saturation is normalized by dividing by 255.

Low contrast could also have a negative impact on the 
detection performance of the neural network. As there is no 

standardized method to compute the contrast of an image 
[50], we use the entropy instead as a low contrast also results 
in a low entropy measure [51]. The first step for the entropy 
computation is a conversion to grayscale. After that, the his-
togram of the image is computed. The probability of each 
pixel value can be determined by dividing the number of 
pixels with the same value by the total amount of pixels. 
With these probabilities we can compute the entropy with 
Eq. 1 where H corresponds to the entropy and p(i) to the 
probability of one pixel value i.

To normalize the entropy, its value is divided by the 
maximum possible entropy Hmax which corresponds to 
Hmax = − log2

1

256
.

Similar to the other metrics, the amount of edges in a 
frame is determined by first converting the image to gray-
scale. After that, a Laplace filter with a kernel size of 3 
is applied to the grayscale image. Then the histogram of 
the filtered image is computed. The bright pixel values in 
the histogram correspond to edges while the dark pixels are 
areas without edges. We defined that all pixel values below 
25 in the histogram are areas without edges while everything 
else corresponds to an edge. So the edge value would be 0 if 
all values in the histogram are below 25 or 1 if all values in 
the histogram would be above 25.

In addition to these general thoughts on image param-
eters, it is helpful to look at the characteristics of trained 
images. Specifically, we take a look at the above training 
distribution for the image parameters. Per image in the train-
ing data, a scalar value is calculated for each image param-
eter. This results in a training distribution for these param-
eters. We currently analyze this distribution in two steps: 
first, we determine a matching beta distribution and second 
we determine a quantile threshold where not enough data 
is currently present for sufficient trust in the ML network. 
However, this approach is one-dimensional. Therefore, if 
assessing multiple parameters and therefore dimensions, 
another step is required to handle the multiple dimensions. 
One example would be to declare the image as OOD if just 
one of the parameters is OOD. To directly assess OOD for 
multiple dimensions, we utilize the Mahalanobis distance 
metric. In contrast to Euclidean distance, the Mahalanobis 
distance takes into account the correlation between the dif-
ferent dimensions. A cut of distance is determined, where 
not enough data points are available to trust the ML network. 
The cutoff value is a trade-off between ML performance and 
availability of the ML network. The ML performance should 
increase with more images filtered out of the datastream. 
However, if a lot of images are filtered out, the present 

(1)H = −

255∑

i=0

p(i) ⋅ log2 p(i)

Fig. 7   Top-view of the tubing timer. At each waypoint, a timer is 
started that is reset when the next waypoint is reached within an � dis-
tance. The brighter colours of the flight show that we did not reach 
Waypoint 4 in time and Waypoint 9 was outside the � distance to reset 
the timer. All other waypoints reset the timer in time
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detection is not available. Therefore, the determination of 
the cutoff value has an important impact.

4.4 � Safety switch

Combined with the results from the ODD monitor and the 
OOD monitor, the bounding boxes from the ML algorithm 
are fed into a safety switch, which determines whether the 
results generated by the ML algorithm are trustworthy or 
not by combining the results of both monitors. Only when 
the monitors indicate that the ODD has not been violated 
and specify that an input image is in distribution, the results 
are considered to be trustworthy. The bounding boxes and 
the monitoring results are then drawn onto the frame. After-
wards, this annotated frame is streamed to the payload GCS 
where it can be analyzed by a payload operator. The visu-
alization of such an annotated frame is depicted in Fig. 8. 
The annotations include information about the operational 
conditions such as the current altitude, velocity, camera 
angle and the geofence status. Additionally, the number of 
detected persons and potential out of distribution samples 
are displayed as well. The frames with annotations are then 
processed by a streaming component which converts them 
to an h.264 video stream that is transmitted to the payload 
GCS via UDP. The conversion and the streaming have both 
been implemented with the GStreamer framework.3 To avoid 
a heavy CPU usage for the h.264 conversion, the built-in 
hardware encoding of the Nvidia Jetson Orin AGX is uti-
lized. This enables an efficient video stream between the 
companion computer and the payload GCS.

5 � Flight test

The objective of the flight test was to generate sets of images 
that are within and outside the ODD as well as to investigate 
the impact of ODD filtering. Note that, our monitoring archi-
tecture focuses on the performance impact of filtering ML 
output, while excluding hardware guidelines important for 
certification such as having independent hardware compo-
nents for ML and monitoring. Relevant operational param-
eters for the flight test are altitude, velocity, camera angle, 
and image metadata such as brightness or entropy. The flight 
campaign was held on the first week of October 2022 at the 
National Experimental Test Center of Unmanned Aircraft 
Systems near Cochstedt. The test area includes two vertiports 
and a container cluster of six units, which mimic buildings 
(see Fig. 9). The humans to be detected were represented by 
mannequins which look very similar to real humans on aerial 
images. Using the mannequins alleviated the need to fly over 
humans and thus allowed for safer and more flexible flight 
testing. The mannequins are attached to a base plate that 
prevents them from falling over. Due to its grey colour, the 
base plate blends in with the concrete surface at the airport 
and is barely visible on aerial images. In total, twelve flights 
have been completed during the flight tests, see Table 1. 
All flights were conducted with the same waypoint coordi-
nates. However, the altitude, flight speed, camera angle and 
positioning of the mannequins have been changed between 
flights. Additionally, three layers of transparent adhesive 
tape have been added onto the camera lens to simulate a blur 
effect during the last flight. Across all flights 6993 images 
have been recorded with the onboard camera.

5.1 � Unmanned aircraft

For these flight tests, the City-ATM Demonstrator (CDO) 
hexacopter (Fig. 10) was used as the payload carrier for this 
new flight campaign. Originally built for City-ATM project 
[52] it serves as a versatile and reliable vehicle for the flight 
testing. For more detailed description of CDO please refer 
to our previous paper [5]. 

5.2 � Modifications to unmanned aircraft

The payload was modified with new hardware components. 
Major modifications were made to the companion com-
puter. The Raspberry Pi 4 and Intel NCS2 were replaced 
by the NVIDIA Jetson Orin. This boosted the onboard 
processing significantly through the increase in computa-
tional power. The previously used Raspberry Pi Camera 
Module 2 was changed to an industrial camera, with better 
optics and internal sensors. The camera chosen was the 
JAI-GO-2400 M-USB. The data link for communication 

Fig. 8   Software demonstrator prototype of the Safe Operation Moni-
tor (SOM), showing a screenshot of streaming an image from the 
onboard camera

3  https://gstreamer.freedesktop.org/
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with the payload and the Pixhawk were unchanged from 
the previous flight campaign. Because of the bigger dimen-
sions of the Jetson in comparison to a Raspberry Pi, the 
Payload rail was redesigned to fit all the components for 
the flight test under the UA. Additional peripheral devices 
such as a network switch and Battery Eliminator Circuit 
(BEC) were also integrated. The payload is completely 
powered by the UA’s battery and protected against over-
currents through a fuse box. The modified placement of 
key components is shown in Fig. 11. The LiDAR seen 
mounted on the front of the UA in the pictures is used for 
another project.

A non-stable version of the PX4 software stack on the 
Pixhawk was needed to enable the MicroRTPS Messaging 
described in Sect. 4.2.2. However, this posed a safety risk, 

Fig. 9   On the left (a), the container cluster surrounded with mannequins and UA in mid air. On the right (b), top view of the vertiports and the 
container cluster

Table 1   Table of performed flight tests with variations in ODD parameters, altitude, velocity and camera angle

Additionally, the first flight was performed without mannequins, and the position of the mannequins was switched with the 7th flight and follow-
ing flights

Altitude Velocity Camera angle Mannequins Notes

1st flight 40 m 5 m/s Vertical None
2nd flight 40 m 5 m/s Vertical Position 1
3rd flight 20 m 5 m/s Vertical Position 1 Route to last waypoint at altitude of 30 m
4th flight 20 m 15 m/s Vertical Position 1
5th flight 80 m 5 m/s Vertical Position 1
6th flight 10 m 5 m/s Vertical Position 1
7th flight 40 m 5 m/s Vertical Position 2 Aborted after 2 min due to power issues
8th flight 40 m 5 m/s Vertical Position 2
9th flight 40 m 5 m/s 45° tilted forward Position 2
10th flight 40 m 5 m/s 45° tilted backward Position 2
11th flight 15 m 15 m/s Vertical Position 2
12th flight 40 m 5 m/s Vertical Position 2 Adhesive tape for blurr effect

Fig. 10   The UA CDO 002 Hexacopter



984	 C. Torens et al.

as the Pixhawk might fail in mid air, resulting in a loss of the 
UA and the payload. Therefore, we used two concurrent Pix-
hawks for the flight tests. One Pixhawk for the actual flight 
controls and another Pixhawk for the payload as described 
in Sect. 4.2. Similarly, two separate GCSs have been uti-
lized for the flight tests. The first GCS was used by the UA 
operator to supervise the individual flight missions, while 
the second GCS allowed the payload operator to monitor the 
performance of the onboard ML algorithm.

6 � Results

A total amount of 6993 images has been recorded across 
flights. These images have been used to evaluate the over-
all software setup. First, some of the recorded images have 
been used to evaluate the performance of the ML component 
and the influence of the ODD on the detection performance. 
Second, the properties of the recorded images have been 
analyzed to determine if filtering of blurred images using 
the input monitor could be feasible.

6.1 � Evaluation of ODD monitoring

To evaluate the performance of the ML algorithm, 587 
images were randomly selected from the recorded images as 
a test set. The 587 images in the test set have been labelled 
manually and have been used to compute the precision and 
recall scores of the ML component for the flight tests. The 
precision P and the recall R are defined as P =

TP

TP+FP
 and 

R =
TP

TP+FN
 respectively, where TP corresponds to the num-

ber of true positives, FP to the number of false positives and 
FN to the number of false negatives.

In the context of object detection, a true positive exists 
when the bounding box of a detected object is similar to the 
bounding box of a ground truth object to a certain degree. A 

metric that evaluates the similarity of two bounding boxes 
is the Intersection over Union (IoU) which is defined as 
IoU =

A∩B

A∪B
 with A as the first bounding box and B as the 

second bounding box. Typically, an IoU threshold is used to 
determine whether two bounding boxes match each other. In 
this paper, a threshold of 0.5 is being used, which means that 
two bounding boxes are evaluated as true positive when their 
IoU score is larger or equal to 0.5. False positives on the 
other hand are bounding boxes that have been detected by 
the object detection algorithm, but can not be matched with 
a ground truth bounding box. In contrast, false negatives are 
the amount of ground truth bounding boxes that have not 
been matched with any detected bounding box.

In total, the ground truth annotations contain 684 objects. 
The resulting precision of the object detection algorithm 
is 0.74 and the recall is 0.51, see Fig. 12. However, if the 
images with altitudes higher than 50 m or lower than 20 m 
as well as images with other camera angles and velocities 
higher than 10 ms−1 are ignored, only the images within 
the ODD remain. In that case, the precision increases to 
0.96 and the recall increases to 0.87. In summary, a posi-
tive impact of filtering out images outside the ODD for the 
detection performance is clearly visible. 

6.2 � Evaluation of OOD monitoring

For their showcase of this methodology, a specific failure 
mode, a sensor error has been emulated. For the last flight, 
three layers of transparent adhesive tape have been used to 
simulate a blur effect. To check whether the blur can be 
detected using image properties, the recorded images have 
been analyzed using the input monitor described in Sect. 4.3. 

Fig. 11   The UA after full integration of the components

All flights Flights within ODD
0

0.2

0.4

0.6
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Fig. 12   Comparison of recall and precision between all flights and all 
flights within the ODD
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These properties for the recorded images are displayed in 
two box plots which can be seen in Fig. 13. The first box 
plot refers to the images from the flight with the adhesive 
tape and the second box plot refers to the images from the 
other flights without the adhesive tape. In both plots the 
distributions of the brightness, the saturation and the entropy 
are fairly similar. Therefore these properties would not be 
suitable to distinguish between normal images and blurred 
images. However, the edges property differs significantly 
between the two plots. The highest edges value for the 
images with blur is 0.01 while 0.1 is the lowest recorded 
value for the remaining images. This demonstrates that a 
detection of blur in images using information about the 
amount of edges in an image might be feasible. This can 
safeguard the ML component and significantly improve the 
overall performance of the ML component.

6.3 � Summary and limitations

From the results it shows that there is a significant difference 
in precision and recall over all images compared to the preci-
sion and recall over the images that are specifically inside 
the ODD. Therefore, the object detection algorithm has bet-
ter results for images that comply with the ODD compared to 
images that violate the ODD. By monitoring the ODD dur-
ing the operation, we safeguard the ML component against 
input images that would not result in an adequate perfor-
mance and for which the ML algorithm is not intended for, 
such as discussed within the current EASA guidelines, see 
also Sect. 7.1. In addition the OOD monitoring was utilized 
to assess the data from the flight test demonstration. The 
analysis shows that there is a specific distribution from the 

gathered image data. The simulated sense of failure could 
be easily detected via OOD analysis. For more details on the 
OOD monitoring, a master thesis is available [53].

7 � AI certification considerations

For the use case, selected objectives will be analyzed and 
discussed from the EASA guidance document [7, 8]. A spe-
cial focus will be on OD, ODD, and OOD.

7.1 � AI trustworthiness analysis

This building block ensures that there is an adequate high-
level view on the ML component of the aircraft. It requires 
a characterization of AI, a safety assessment, a information 
security assessment, and an ethics-based assessment. In 
the following subsections the breakdowns and compliance 
rationale for these objectives is detailed.

7.1.1 � Objective CO‑04

"CO-04: The applicant should define and document the 
ConOps for the AI-based system, including the task allo-
cation pattern between the end user(s) and the AI-based 
system. A focus should be put on the definition of the OD 
and on the capture of specific operational limitations and 
assumptions."5 [8]

This objectives requires the development of a ConOps 
document for the system. The objective states that a focus 
should be made on the definition of the OD and specific 
operational limitations and assumptions. For our use case, 
we define the OD to the daylight conditions, good weather 
conditions at the airfield of the Cochstedt airport. Additional 
details on the definition of OD and ODD are described in 
Sect. 3.

7.1.2 � Objective CL‑01

"CL-01: The applicant should classify the AI-based system, 
based on the levels presented in Table 2, with adequate jus-
tifications." [8]

This objective is for determining the AI level of the sys-
tem, according to the EASA guidelines. The use case would 
be classified as level 1B AI: Automation support to decision-
making. The human would look at the camera image and 
inspect the image and also the output of the ML constituent 
and detected bounding boxes of persons. However, it should 
be noted that the AI level is actually a question of system 
design. The human detection can be used to alert the pilot, it 
can be used to automatically abort the landing approach and 
utilize an alternative or emergency landing site. This deci-
sion could be designed to be overridable or non overridable 
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(b) Flights within ODD

Fig. 13   Image properties of flight test data
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by the pilot. In our use case design the pilot gets informed 
and can then act as a fallback layer.

7.1.3 � Objective SA‑01

"SA-01: The applicant should perform a safety (support) 
assessment for all AI-based (sub)systems, identifying and 
addressing specificities introduced by AI/ML usage." [8]

For this objective a safety (support) assessment for all 
AI-based (sub)system should be performed. In addition to 
this, the objectives on safety risk mitigation also require this 
functionality to be evaluated as part of the safety assessment. 
While a complete safety assessment is out of the scope of 
this paper, some considerations of design time assurance 
are discussed here. Some thoughts on the safety risk mitiga-
tion during runtime, especially through operational design 
domain monitoring, are discussed in Sect. 7.4. The architec-
tural mitigations at the system level to reduce the critical-
ity of the AI-based components already at design time are 
discussed briefly in Sect. 7.3.1.

During the design process, the safety assessment required 
is essentially performed at a system level through a func-
tional hazard analysis. Furthermore, the utilization of our 
human detection can have an impact on the safety of the 
operation. The risks arising from the introduction of the AI-
based system to detect humans is assessed at the Concept of 
Operations level through a specific operational risk assess-
ment . Particularly, the assumptions of controlled ground 
area in such an operation to reduce the number of uninvolved 
people on the ground are affected. E.g. if the AI-based sys-
tem fails to detect the human, then the controlled ground 
area would be compromised.

In our context, the following two failures would be pos-
sible: a false positive detection of a human and a false nega-
tive detection of a human. A false positive detection would 
mean that the system would not be able to land on the verti-
port automatically. This would not immediately result in an 
unsafe situation, as long as there is a feasible contingency 
procedure for this situation. Possible solutions would include 
landing on an alternative landing site, requesting human sup-
port from a pilot or remote pilot, waiting in a safe hover 
position and re-evaluating the situation after some time. 
However, it should be noted that a false detection might also 
lead to an unsafe situation, if there is no adequate mitigation 
or the mitigation is exhausted. For example, a false negative 
detection could also be an attack scenario and can effectively 
resemble a denial of service attack for a high rate of such 
occurrences, or at the same time in multiple locations (we 
thank our reviewers for pointing this out). A false-negative 
detection would mean that the system would execute an 
automated landing, although a human is in the vicinity. This 
would immediately result in an unsafe situation. Therefore, 

to increased safety in both cases, it is necessary to monitor 
the input and detect if the data are outside the ODD.

7.2 � AI assurance

This building block of AI assurance is about the learning 
assurance as well as the explainability aspects during devel-
opment and also post operation.

7.2.1 � Objective DA‑02

"DA-02: Based on (sub)system requirements that have been 
allocated to the AI/ML constituent, the applicant should 
capture the following minimum requirements for the AI/ML 
constituent:

–	 safety requirements allocated to the AI/ML constituent;
–	  information security requirements allocated to the AI/

ML constituent;
–	 functional requirements allocated to the AI/ML constitu-

ent;
–	 operational requirements allocated to the AI/ML con-

stituent, including AI/ML constituent ODD monitoring 
and performance monitoring, detection of OoD input 
data and data-recording requirements;

–	 other non-functional requirements allocated to the AI/
ML constituent; and interface requirements." [8]

This objective discusses the requirements documenta-
tion and also underlines the importance of ODD and also 
OOD monitoring by establishing this as specific operational 
requirements for the AI constituents. Although important in 
the context of ODD, this is not in the scope of this paper.

7.2.2 � Objective DA‑03

"DA-03: The applicant should define the set of parameters 
pertaining to the AI/ML constituent ODD, and trace them 
to the corresponding parameters pertaining to the OD when 
applicable." [8]

This objectives requires the definition of the set of ODD 
parameters of the AI constituent. Furthermore, ODD param-
eters should be traced to the corresponding parameters of the 
OD, when applicable. The discussion of OD/ODD param-
eters for our use case is described in Sect. 3.

7.3 � Human factors for AI

The building block of Human factors for AI is about opera-
tional explainability, human AI teaming, and modality of 
interaction.
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7.3.1 � Objective EXP‑05, EXP‑06, EXP‑07, EXP‑09

"EXP-05: The applicant should design the AI-based system 
with the ability to monitor that its inputs are within the spec-
ified operational boundaries (both in terms of input param-
eter range and distribution) in which the AI/ML constituent 
performance is guaranteed" [8]

"EXP-06: The applicant should design the AI-based sys-
tem with the ability to monitor that its outputs are within the 
specified operational performance boundaries" [8]

"EXP-07: The applicant should design the AI-based sys-
tem with the ability to monitor that the AI/ML constituent 
outputs (per Objective EXP-04) are within the specified 
operational level of confidence." [8]

"EXP-09: The applicant should provide the means to 
record operational data that is necessary to explain, post 
operations, the behaviour of the AI-based system and its 
interactions with the end user, as well as the means to 
retrieve this data." [8]

These objectives on monitoring inputs and outputs may 
also be fulfilled by the use of runtime assurance principles as 
described in Sect. 2.5. However, neither the ASTM F3269-
21 [37] nor the accompanying explanatory article by Naga-
rajan et al [38] go into specific detail on the design of the 
warning and mitigation boundaries other than generic guid-
ance on safety monitor switching thresholds. The responsi-
bility lies on the user to interpret where these thresholds lie 
for their systems, and there are no requirements on when or 
how to switch from the complex function to the recovery 
function as this is considered to be implementation-specific. 
Schierman et al [42] provide a formal definition for three 
safety regions, i.e. Type I/II/III Safety Regions, which is 
more useful for designing warning and switching bounda-
ries, see Fig. 14.

7.3.2 � Objective EXP‑19

"EXP-19: Information concerning unsafe AI-based system 
operating conditions should be provided to the end user to 
enable them to take appropriate corrective action in a timely 
manner." [8]

Since the safety properties of the system are clearly 
defined in each of these regions, a designer could adapt them 
for their system based on the mitigation strategies available 
to them. Warning boundaries could also be implemented 
while accounting for the time taken by a human operator or 
the recovery function to trigger a contingency action in order 
to prevent an excursion into unsafe regions.

For the purpose of explainability of the ML component, 
the pilot should be aware if the current system state is cur-
rently inside or outside of ODD parameters. Furthermore, 
the pilot should be trained to handle situations of exiting the 
ODD. Basically, as soon as the system is leaving the ODD, 

the ML functionality can no longer be trusted. However, it 
is possible to include multiple boundaries or warning levels 
before exiting the ODD completely. This would give the 
pilot additional time as well as information on how to handle 
the current situation and thus improve situational awareness.

The ODD monitoring will result in images being fil-
tered from the datastream of the ML model. In these cases, 
a warning light will light up. Furthermore, a counter will 
count the overall ODD images as well as the ODD images 
with in the last 30 s. With this information, the pilot can 
determine further actions and possibly decide to abort the 
flight if necessary. The pilot will always see the image so 
that he himself can assess if there is a person in the image.

7.4 � Safety risk mitigation

The last building block is the AI safety risk mitigation.

7.4.1 � Objective SRM‑01

"SRM-01: Once activities associated with all other building 
blocks are defined, the applicant should determine whether 
the coverage of the objectives associated with the explain-
ability and learning assurance building blocks is sufficient 
or if an additional dedicated layer of protection, called here-
after safety risk mitigation, would be necessary to mitigate 
the residual risks to an acceptable level." [8] "SRM-02: The 
applicant should establish safety risk mitigation means as 
identified in Objective SRM-01" [8]

This objective states that an analysis of the coverage of 
objectives from the building block of explainability and 
learning assurance should be performed to assess if there 
are remaining risks that would need to be mitigated. In this 
work, the ODD aspects are focussed on. The coverage of 
explainability and learning assurance objectives cannot be 

Fig. 14   Type I, II and III safety regions for run time assurance as 
defined in [42]
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analyzed in the scope of this paper. However, the guidance 
states that with higher AI-level and higher criticality of 
the AI constituent the likelihood that SRM will be needed 
increases. Therefore, SRM is an essential part of the safety 
assurance strategy. In particular, for our use case we iden-
tified SRM to be required for the monitoring of the OD 
of the operation, the ODD of the ML model, specifically 
the quality of the image and training distribution of image 
parameters.

7.4.2 � Objective SRM‑02

”SRM-02: The applicant should establish safety risk miti-
gation means as identified in Objective SRM-01” [x] This 
objective describes the actual utilization of runtime monitor-
ing and runtime assurance for the purpose of SRM. It is very 
important that runtime monitoring and runtime assurance 
are recognized as concepts for the mitigation of safety risks. 
The details of this will be discussed in the next subsection.

7.4.3 � Anticipated MOC SRM‑02‑1

The RTA architecture as discussed in Sect. 2.5 can be used 
to fulfil the requirements in the anticipated MOC SRM-02-
01. In the context of this reference architecture, the AI/ML 
constituent is the complex function, backed up by the tradi-
tional system (e.g. safety net) as a recovery function. Here, 
the requirement says to passivate the AI/ML constituent. 
Furthermore a recovery system is required. The question is, 
if the AI/ML constituent could be reactivated after recovery, 
or if the complex function is only allowed to have erroneous 
outputs once, i.e. as soon as the function is detected to be out 
of its operational design domain. If the AI/ML constituent 
is essential for mission performance, this would result in a 
low availability for the system if it receives inputs outside of 
the ODD frequently. This imposes implicit requirements on 
the user to build a more reliable AI/ML constituent or have 
a suitable safety net that can perform the same function to 
nearly the same standards. Otherwise it would be necessary 
to reduce the allowed operational scope for which the AI/ML 
constituent is allowed, in order to prevent frequent erroneous 
outputs due to inputs out of the ODD. In [38], the authors 
discuss the switching between complex and recovery func-
tions with an emphasis on consideration of stable switching 
and chattering aspects to avoid frequently switching between 
the two functions. Graceful degradation of functionality is 
recommended as a best practice to prevent large instantane-
ous changes in performance (e.g. loss of function without 
prior warning of degrading performance).

In this research, the monitoring is done on additional sen-
sor data, such as altitude, see Sect. 4.2.3, GNSS geofence 
as well as GPS tunnel, see Sect. 4.2.4. Therefore, there is 
a redundancy in sensors. In case of any geofence/ODD 

violation, control would be escalated to a human pilot as 
a fallback/recovery system. Regarding the AI use case, the 
image is being analyzed for person detection, see Sect. 4.3. 
A possible mitigation in this case would be to passivate any 
output from the ML function. The automated landing would 
be disabled completely and control would again be escalated 
to a human pilot as a fallback/recovery system.

The third requirement of the anticipated MOC above 
prescribes the evaluation of the SRM functions as part of 
a safety assessment and the need for establishing independ-
ence between the different SRM architectural mitigations. 
While Nagarajan et al [38] briefly discuss development 
assurance attributes in their work explaining the develop-
ment of ASTM F3269, the concept of development assur-
ance levels arising from a functional hazard assessment 
(FHA) is not explored in detail. This is a major gap in the 
ASTM standard practice, as there is a lack of guidance on 
how the architecture would align with current systems engi-
neering guidelines such as SAE ARP 4754A in supporting a 
traditional certification process. Here, the reader is referred 
to the work by Peterson et al [54], who demonstrate the 
application of RTA in the context of a development assur-
ance process for safety critical airborne applications with the 
example of a VTOL aircraft.

8 � Conclusion and outlook

This work evaluated runtime monitoring techniques to 
enhance the safety and efficacy of ML components for 
UAM. Key focus areas included monitoring the ODD, OOD 
detection, and their integration into UAM scenarios. The 
use case in this case is the automated detection of persons 
in an onboard camera image. A total of 6993 images were 
collected across twelve flights, and these images were used 
to evaluate the systems performance under varied condi-
tions. The results confirm that runtime monitoring plays an 
important role in ensuring operational safety by filtering 
inputs that fall outside the training distribution or designed 
parameters. This filtering process enhanced the reliability of 
the onboard ML algorithms. This can be used to safeguard 
the landing approach for an airtaxi.

The integration of runtime monitoring aligns with recent 
EASA guidance, particularly in leveraging the ODD frame-
work for defining operational boundaries. This work dem-
onstrates compliance with important objectives of safety 
and performance monitoring, while showcasing a real-world 
use case of person detection for air taxi landing. While full 
adherence to EASA guidelines was beyond the scope of 
this paper, select objectives were discussed in the context 
of ODD.

The integration of ML in the safety-critical domain of 
UAM is an ongoing effort. Standardization groups and 
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authorities are currently working hard to develop and 
establish new guidance for the safe integration of ML into 
aircraft. Based on the EASA guidance, all objectives that 
are related to ODD have been analyzed. This shows that 
the seemingly simple concept of ODD is utilized in all 
of the four building blocks of the EASA guidance. For 
selected objectives the compliance rationale as discussed 
in the context of our UAM use case. Additionally, the 
ODD for this use case is presented and discussed together 
with a brief discussion on safety considerations. How-
ever, not all of the related objectives could be discussed 
in detail.

Furthermore, the effects of monitoring exemplary ODD 
properties are evaluated. Although, achieving full compli-
ance to EASA guidelines was outside the scope of this 
work, selected objectives could be analyzed, implemented 
and flight tested. Future work will build on this and deepen 
and/or broaden the discussion of the ODD concept to a 
larger extent. Further research and formalization of the 
concept of ODD can support the verification, safety assur-
ance, and automation of future airtaxi operation. In the 
experimental setup of this work, the ODD monitoring and 
assurance are not yet integrated with the autopilot. Future 
work should aim to close the operational loop by integrat-
ing runtime monitoring outputs directly into automated 
decision-making systems.

In addition to that, it should be noted that the focus 
of this paper was on OD, ODD and OOD of AI systems. 
However, these concepts are not limited to AI systems. 
In fact, every complex system that cannot be sufficiently 
assured at design time can benefit from runtime monitor-
ing and runtime assurance framework and from modelling 
on formalizing the operating conditions in this manner. 
Future work will bring these parts together into an overall 
framework as extension of our Operation Monitor.
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