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• In-field demonstration  of entire process from 

H2O and CO2 to kerosene in a solar tower using a 

50 kW solar reactor with 18 kg of CeO2 [3].

• Achieved consecutive cycling for 55 h. Per cycle, 

50 L of H2 and 25 L of CO were produced [4]. 

• Record demonstrated Solar-to-syngas 

efficiency of 4.1% at 50 kW.

• Step 1: a redox material (here ceria) is 
reduced under los oxygen partial pressures 
(1 mbar) and  high temperatures (1500 °C), 
achieved by concentrated solar heat.
Oxygen evolves from the redox material. 

• Step 2: After lowering the temperature to 
800 °C, CO2 and H2O are feed into the 
reactor and split into CO and H2 while O2 is 
taken up by the redox material.

• The product CO and H2 mixture (syngas) can 
be further processed to synthetic fuels.

• To regenerate the oxidized ceria the 
reduction step is repeated, creating a 
cycle. 

• Renewable fuels offering near zero  

Greenhouse Gas (GHG) emissions are key 

in achieving sustainable long-haul 

transportation, particularly in aviation.

• Synthetic kerosene produced through 

solar pathways represents a clean 

alternative to fossil fuels and is fully 

compatible with the existing 

infrastructure.

• Solar kerosene reduces GHG-emissions by

more than 80% at prices of 1.72-1.97 €/L

(Fig. 3) [1]. These higher fuel prices are only 

expected to increase airfares by 10-15% [2].
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R2Mx receiver-reactor

• Mobile redox material assemblies (RMA)
are vertically moved between a continuously 
irradiated solar receiver, where reduction 
occurs, and separate oxidation reactors.

• Heat recovery systems intermediately store 
heat from the redox material by using wall 
elements. 

• The atmospheres of the two reaction spaces
are separated by a gate. 

Fig. 1: GHG emissions and prices of solar kerosene

Fig. 2: Solar tower in Jülich, DLR ©

Fig. 6: MW-scale vision of R2Mx concept, reproduced from [6]

Fig. 4: Schematic of thermochemical cycle for CO2 / H2O splitting 

Fig. 5: Cavity receiver-reactor by ETH, reproduced from [4] 

• Batch operation: Reticulated porous ceramic 

(RPC) ceria bricks are directly exposed to 

concentrated solar radiation during the 

reduction step (1500 °C). During the oxidation

step (800 °C) solar input is stopped. Inert 

reactor parts have to be heated/cooled cyclically.

• No heat recovery. Concepts exist but their 

implementation is challenging. With heat 

recovery, efficiencies up to 51% are expected [5].

• Scale–up of technology is challenging due to 

quartz window size limitations. Also there is a 

reduced efficiency increase with scale-up.  

• Commercial scale foresees arrays of solar 

reactors being irradiated simultaneously. Leading 

to off-design point operation, which is poor.

Cavity receiver-reactor

SUN-to-LIQUID Project

Outlook
• 3 kW laboratory-scale proof of concept 

comprising one RMA - 2024
• 10 kW reactor with solar interface - 2025

Fig. 3: Solar and conventional kerosene price and GHG 
emissions, data from [1]

Fig. 1: Schematic of solar thermochemical kerosene production 

Limitations

Operation

Fig. 7: Relative efficiency increase with reduction cycles for 
R2Mx vs the State of the Art, reproduced from [6]

• No thermal cycling of inert reactor 
components translates to lower heat losses.

• High theoretical efficiency 12-14%, considering 
a non optimized model without heat recovery [6].

• Predicted heat recovery rate of ~20%, would 
result in ~17% efficiency [6].

• Independent RMA operation: good part-load 
operation and further optimization potential.

Two step thermochemical cycles

Advantages
• Continuous on-sun operation and fuel 

production -> improved solar field efficiency.

https://www.sun-to-liquid.eu/

