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Two-step thermochemical redox cycles
Chemical reaction and state-of-the-art reactor technology 
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Characteristics of a next generation receiver-reactor
Receiver-reactor wish list
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High efficiency~

Modular system

Good scalability

▪ Solid-solid heat recovery 

▪ Avoid cyclic heating of inert reactor

components

▪ Continous reduction reaction 

Strategies



Characteristics of a next generation receiver-reactor
Receiver-reactor wish list
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High efficiency~

Modular system

Good scalability

▪ Defined component interfaces

▪ Fast and simultaneous

development of  reactor 

components 

▪ Uncomplicated adaptation 

to new redox material 

Images adapted from Hoes. M et al. Energy Technology, 2018



Characteristics of a next generation receiver-reactor
Receiver-reactor wish list
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High efficiency~

Modular system

Good scalability
▪ Avoid batched array operation

Receiver-reactor



R2Mx receiver-reactor
Receiver-reactor cavity system with multiple mobile redox units
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MW scale vision of the R2Mx receiver-reactor
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▪ Simplified model without optimizations or heat recovery

Theoretical efficiency 12-14%

Reactor features:



R2Mx receiver-reactor prototype

▪ Experimental demonstration of 

R2Mx working principle at DLR
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R2Mx test stand FE simulation

▪ 2D axisymmetric transient heat transfer 
simulation in ANSYS Mechanical

▪ Includes chemical reaction and internal 
radiation heat transfer in the porous redox 
material

▪ Simulates 5 consecutive cycles (reduction, 
transport, cooling, oxidation and transport)
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Goals of the study: 

✓ Understanding of temperature distribution and loads 
during cyclic operation 

✓ Derivation of reasonable duration of reaction steps

✓ Proof initial material selection 

✓ Sizing of components (electrical heater and vacuum 
pump)

Heating

element



Geometries
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Variable  Value 

Heating element temperature  1500 °C 

Partial pressure of oxygen in 

reduction reactor  
1 mbar 

Cooling duration 5.5 min  

Oxidation duration 8 min 



Simulation workflow
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Simulation workflow (Oxidation)

▪ In reality, steam flows through the oxidation reactor 

for ~8min 

▪ The effect of fluid exchange approximated by a 

complete replacement of the fluid with a cold 

steam several (10) times

▪ Simulated by a series of transient simulations 

coupled to each other

▪ The solution from a previous simulation is used as 

initial condition for the next
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Base case results
Reduction step duration
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Duration of reduction step remains fairly constant throughout the cycles

▪ When the maximum 

energy conversion ratio 

(𝑟econv) is achieved, the 

reduction is stopped

𝑟econv =
𝑛H2

HHVH2

𝑄Heating element



Base case results
Temperature distribution
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Converged min vol. avg. TRPC ≈ 760°C after 10 cycles



Parametric analysis of operation modes
Changing oxidation length
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Duration of reduction step remains fairly constant regardless of operation mode

Reduction step duration 

▪ When the maximum 

energy conversion ratio 

(𝑟𝑒conv) is achieved, the 

reduction is stopped

𝑟econv =
𝑛H2

HHVH2

𝑄Heating element



Summary and Outlook

✓ Development of model including RMA movement and cyclic operation

✓ Derived approximate step durations for reasonable operation

✓ Estimated maximum expected temperatures of components

✓ Evaluated material selection

✓ Performed component (heater and vacuum pump) sizing 

Start of experimental campaign of test stand at the end of 2023
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BACK UP SLIDES
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Base case results
Component sizing

✓ Heating unit of the reduction

reactor = 1450 W

✓ Vacuum pump’s maximum 

pumping speed = 17 m3/h 
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Characteristics of a next generation receiver-reactor
Receiver-reactor wish list
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High efficiency~

Modular system

Good scalability

Energy demand during reduction [1] 

[1] Data from Zoller, S. et al. Journal of Solar Energy Engineering, 2018



Motivation
Production of fuels and chemicals
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Solar pathway for sustainable aviation fuel



Cavity receiver-reactor – Challenges  
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▪ Cyclic heating and cooling of reactor components  

Batch operation

No solid-solid heat recovery

▪ Solid-solid heat recovery difficult to implement 

▪ Use of a heat transfer fluid poses an engineering challenge 

▪ Inhomogeneous flux distribution

▪ Limited off-design performance of receiver-reactors

Limited efficiency improvement of scaled-up system

Receiver-reactor array efficiency penalty

▪ Relates to usage of redox material – mostly the surface is 

relevant   

Flux distribution of a 10 MW receiver-reactor array

Brendelberger et al. (2020)

Zoller et al. (2019)

Brendelberger et al. (2019) Kyrimis et al. (2019)



R2Mx – 1st Numerical Assessment

▪ Simplified model without

optimizations or heat recovery
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Theoretical efficiency 12-14%

Solid-solid heat recovery

▪ Predicted recovery rate of ~15%

▪ Good part-load operation and 

further optimization potential

Improved solar field efficiency

Independent RMA operation

▪ Continous on-sun operation
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Brendelberger, S.; 
Holzemer-Zerhussen, P.; 

Vega Puga E. et al. Solar 
Energy, 2022



Governing Equation

Heat conduction through a solid (3D) given by: 

▪ Boundary Conditions: 
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𝑞conv = ℎ 𝐴 (𝑇𝑠 − 𝑇𝑎𝑚𝑏)

𝐴 = surface area (in m2)

ℎ = film coefficient ( in W/K m2)𝑞rad_amb = 𝜀𝑠 𝜎 (𝑇𝑠
4 − 𝑇𝑎𝑚𝑏

4)

Convection to ambient 

Radiation to ambient 

Radiation between surfaces
𝐹𝑠𝑗 = View factor from surface s to

surface j 

𝜀𝑠 = Material emissivity𝑞rad_out,s = 𝜀𝑠 𝜎 𝑇𝑠
4 + 𝜌𝑠 ෍

𝑗=1

𝑁

𝐹𝑠𝑗𝑞rad_out,j



Parametric analysis of aperation modes
Changing oxidation lenght
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