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Abstract A general and local reactive boundary condition (RBC) for studying first‐order equilibrium
reactions using the lattice Boltzmann method is presented. Its main characteristics are accurate reproduction of
wall diffusion, invariance to the wall and grid orientation, and absence of nonphysical artifacts. The scheme is
successfully tested for different benchmark cases considering diffusion, advection, and reactions of fluids at
solid‐liquid interfaces. Unlike other comparable RBCs from the literature, the novel scheme is valid for a large
range of Péclet and Damköhler numbers, and shows realistic pattern formation during precipitation. In addition,
quantitative results are in good accordance with analytical solutions and values from literature. Combining the
new RBC with the rest fraction method, Péclet‐Reynolds ratios of up to 1,000 can be achieved. Overall, the
novel RBC accurately models first‐order reactions, is applicable for complex geometries, and allows efficiently
simulating dissolution and precipitation phenomena in fluids at the pore scale.

1. Introduction
Dissolution and precipitation of solid solutes occur in a broad range of natural phenomena and technological
applications. Typical examples are dissolution of minerals in subsurface hydrology (Andrews et al., 2023;
Baqer & Chen, 2022; Přikryl et al., 2017), biofilm growth in nutrient rich environments (Jung & Meile, 2021),
etching into substrates (Cui et al., 2019), and conversion of active material in energy storage systems (Danner &
Latz, 2019; Fang et al., 2021).

Despite their omnipresence, a detailed experimental analysis of such processes is often lacking due to the
dominant small length and short time scales on which they occur. As such, computational methods and more
specifically continuum approaches are used to describe these phenomena on the macroscale. But even they are
stretched to their limits, when dissolution and precipitation occur in structurally complex porous media where the
relevant physics happen at the microscopic pore scale.

A computational method that has proven to give insight into such mesoscopic phenomena—between micro‐ and
macroscales—is the lattice Boltzmann method (LBM). It can be applied to predict flow, transport, and reactions
in porous media (Guiltinan et al., 2021; Lautenschlaeger et al., 2023; Liu et al., 2021). Especially over the last
decade, LBM has gained importance both technically and application‐wise. On the one hand, the ease of meshing
and parallelization makes LBM extremely favorable for high‐performance computing (Kellers et al., 2023;
Krause et al., 2021; Latt et al., 2021). On the other hand, it can be applied to a broad variety of application fields.
In the context of porous media these are for example,: oil and gas flow in underground formations (H. Li
et al., 2015; Ren et al., 2015), oil recovery with in situ combustion (Lei & Luo, 2022), pore structure evolution in
cement manufacturing (Patel et al., 2014, 2021), combustion of porous solid rocket fuel (Wang & Zhu, 2018),
water transport and reactions in fuel cells (Sarkezi‐Selsky et al., 2022), multi‐phase flow in batteries (Danner
et al., 2016; Lautenschlaeger, Prifling, et al., 2022; Lautenschlaeger, Weinmiller, et al., 2022), and dissolution and
precipitation reactions in stone formations (Chen et al., 2014; Kang & Lichtner, 2013; Tian & Wang, 2017; L.
Zhang et al., 2019).

In most of these cases, dissolution and precipitation play an important role. Using LBM, such reactions are
typically modeled as heterogeneous reactive boundary conditions (RBC). Different approaches to translate
macroscopic reaction behavior into mesoscopic schemes are known from literature. They range from simple
modified bounce‐back schemes (Kang et al., 2002, 2007), over pseudo‐homogeneous reactions (Patel
et al., 2014), and schemes based on interpolation using the wall normal (Chen et al., 2013; L. Li et al., 2017;

RESEARCH ARTICLE
10.1029/2023WR034770

Key Points:
• An extensively validated new general

local reactive boundary condition
(RBC) is presented

• A comprehensive comparison of this
RBC with other existing general local
RBC was performed

• Our RBC is combined with the rest
fraction and applied to simulate
dissolution and precipitation
phenomena

Supporting Information:
Supporting Information may be found in
the online version of this article.

Correspondence to:
J. Weinmiller,
julius.weinmiller@dlr.de

Citation:
Weinmiller, J., Lautenschlaeger, M. P.,
Kellers, B., Danner, T., & Latz, A. (2024).
General local reactive boundary condition
for dissolution and precipitation using the
lattice Boltzmann method. Water
Resources Research, 60,
e2023WR034770. https://doi.org/10.1029/
2023WR034770

Received 20 JUN 2023
Accepted 26 JAN 2024

Author Contributions:
Conceptualization: T. Danner
Data curation: J. Weinmiller
Formal analysis: J. Weinmiller
Funding acquisition: T. Danner, A. Latz
Investigation: J. Weinmiller
Methodology: J. Weinmiller,
M. P. Lautenschlaeger
Project administration: T. Danner
Resources: M. P. Lautenschlaeger,
T. Danner, A. Latz
Software: J. Weinmiller
Supervision: T. Danner, A. Latz
Validation: J. Weinmiller,
M. P. Lautenschlaeger, B. Kellers
Visualization: J. Weinmiller
Writing – original draft: J. Weinmiller
Writing – review & editing:
M. P. Lautenschlaeger, B. Kellers

© 2024. The Authors.
This is an open access article under the
terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

WEINMILLER ET AL. 1 of 19

https://orcid.org/0000-0002-5380-6791
https://orcid.org/0000-0003-3266-4218
https://orcid.org/0000-0001-9791-2724
mailto:julius.weinmiller@dlr.de
https://doi.org/10.1029/2023WR034770
https://doi.org/10.1029/2023WR034770
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2023WR034770&domain=pdf&date_stamp=2024-02-22


Walsh & Saar, 2010; Xie et al., 2021), up to general local boundary schemes for first‐order (Ju et al., 2020;
Patel, 2016; Verhaeghe et al., 2006) and higher‐order reactions (Hiorth et al., 2013; Kashani et al., 2022). Two
important scheme characteristics are generality and locality. Here, general means that the underlying scheme is
the same regardless of the surrounding cells, that is, corners, edges and flat boundaries use the same scheme.
Whereas local means that only information of the current boundary cell is used. In combination, they are a
necessary basis for versatile and computationally efficient RBCs applicable to complex geometries.

Several approaches have been considered to derive such general local boundary schemes, of which three are
discussed in more detail in this paper: (a) Verhaeghe et al. (2006) was amongst the first to develop such a model
for multi‐component LBM using the momentum transfer analysis of Bouzidi et al. (2001). (b) Patel (2016)
developed an approach that bases on bouncing back the non‐equilibrium part and including the flux as a con-
centration gradient while correctly capturing the macroscopic wall diffusion. (c) Ju et al. (2020) extended an
approach, which was originally developed for finite differences (T. Zhang et al., 2012) and then converted to a
local scheme (Meng & Guo, 2016), to also consider the correct macroscopic wall diffusion. All aforementioned
RBC schemes show robust behavior in cases where the RBC normal is aligned with the lattice. However, cases
different from these benchmarks are either missing in the corresponding papers or they show a nonphysical
behavior of the corresponding scheme there.

Therefore, in this paper, a novel RBC scheme is presented which is based on the work of Verhaeghe et al. (2006),
Ju et al. (2020), and Patel (2016). It is shown to overcome most deficiencies of these methods. It captures the
correct wall diffusion and wall normal behavior, and is applicable to a broad range of reaction regimes. It is shown
that the new RBC scheme can be combined with the rest fraction method (Sullivan, Johns, et al., 2005) to enable
numerically stable simulations even at large ratios between the solute diffusivity and solvent viscosity.

The new RBC scheme as well as the RBC schemes of Verhaeghe et al. (2006), Ju et al. (2020), and Patel (2016)
are tested using numerous benchmark cases that vary in complexity. For the sake of comparability, all schemes are
reformulated to a common notation. The test cases include: (a) A robust reaction‐diffusion verification case for
which analytical solutions exists. (b) Pattern formation in a precipitation process. (c) A sophisticated benchmark
case from the literature (Molins et al., 2020), considering reactions in channel flow. The latter setup is used to
demonstrate the new RBC scheme's capability to handle complex media as well. All simulations are conducted in
2D. They can, however, be easily extended to 3D.

The paper is organized as follows: In Section 2, LBM basics, the rest fraction method, as well as the coupling of
LBM to dissolution and precipitation are introduced. This section also covers the reformulation of the afore-
mentioned RBC schemes. The verification and validation of the different schemes are compared and discussed in
Section 3. Finally, the findings are summarized and conclusions are given in Section 4.

2. Numerical Methods
All LBM simulations presented in this work were conducted using an extended version of the LBM simulation
package Palabos (Latt et al., 2021). There, the rest fraction method, reactive boundary conditions, and dissolution
and precipitation were implemented.

2.1. LBM Fundamentals

For classical fluid flow, LBM solves the Boltzmann equation discretized in the phase‐space mostly on a uniform
grid. The velocity space is represented by the so‐called lattice. It consists of a set of velocities {ei}, weights {wi}
and a specific lattice speed of sound cs. It forms the framework to distribute a set of particles that are represented
by a particle distribution function, typically called population. In the following, it is indicated by either fi or gi,
where i is the lattice direction. Fluid flow emerges through local collision and subsequent streaming of the
populations. For reactive flows, the hydrodynamic carrier fluid and the advected scalar field are distinguished
using separate lattices and equations. They are coupled by the fluid velocity, determined from the carrier fluid,
which enters the advected scalar field.

2.1.1. Hydrodynamic Equations

The dynamics of the carrier fluid described by the Navier‐Stokes (NS) equations are solved using the lattice
Boltzmann equation combined with the well‐known BGK collision operator (Krüger et al., 2017)
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fi (x + eiΔt, t + Δt) = fi(x, t) −
1
τNS

( fi(x, t) − f eq
i (x, t)), (1)

where τNS is the relaxation time which is determined by the fluid viscosity ν = c2
s (τNS − 0.5) and f eq

i is the
equilibrium population

f eq
i (ρ, u) = wiρ(1 +

ei ⋅ u
c2
s
+
(u ⋅ ei)2

2c4
s

−
u ⋅ u
2c2

s
). (2)

The fluid density ρ and the fluid velocity u are determined from fi as

ρ =∑
i
fi, ρu =∑

i
fiei. (3)

In the following, the D2Q9 lattice is applied to solve the hydrodynamic equations in 2D. Further details are given
in Appendix A.

At high relaxation times, the BGK collision operator introduces numerical slip at bounce‐back walls leading to
inaccuracies and instabilities. To overcome these artifacts, the two relaxation time (TRT) collision operator
(Ginzburg et al., 2008; d’Humières & Ginzburg, 2009) is used in such cases. It is given as

fi (x + eiΔt, t + Δt) = fi(x, t) −
1
τ+NS

( f+i (x, t) − f eq+
i (x, t))

−
1
τ−NS

( f −i (x, t) − f eq‐
i (x, t));

(4)

f±i =
fi ± f ī

2
, f eq±

i =
f eq
i ± f eq

ī
2

. (5)

Here, ī is the direction opposite to i, that is, eī = − ei. The values of τ+NS and τ−NS are defined as

ν = c2
s (τ

+
NS −

1
2
), Λ± = (τ±NS −

1
2
) (6)

from the viscosity of the fluid ν and Λ = Λ+Λ− , the product of the two eigenvalue functions Λ+ and Λ− . This
product characterizes the numerical truncation error and stability of the TRT model. In the following, Λ = 3

16, if
not specified otherwise. This value ensures that walls implemented via the bounce‐back scheme are located
exactly halfway between a solid and a fluid node. Other values can cancel higher order spatial errors, or ensure
resilient simulation (Ginzburg et al., 2008; d’Humières & Ginzburg, 2009; Khirevich et al., 2015).

2.1.2. Advection‐Diffusion Equations

Advection and diffusion (AD) of a scalar field are described in a similar manner as the hydrodynamic equations
given by Equation 1. In the following, AD populations are indicated by gi.

gi (x + eiΔt, t + Δt) = gi(x, t) −
1
τAD

(gi(x, t) − geq
i (x, t)). (7)

Here, τAD is determined by the diffusivity of the scalar D = c2
s (τAD − 0.5) and geq

i is

geq
i (C, u) = Cwi[1 +

u ⋅ ei
c2

s
]. (8)

Here, u is the local advection velocity of the corresponding fluid field (cf. Equation 3). From Equation 7, the
concentration C of the scalar field is determined as
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C =∑
i
gi. (9)

Note, that using this local advection velocity, the first moment of gi, that is, momentum, is not conserved.
Therefore, Equation 7 solves only the AD equation but not the NS equations (cf. Equation 1). With fewer degrees
of freedom, it is sufficient to use a reduced D2Q5 lattice (cf. Appendix A) and a linear equilibrium function (cf.
Equation 8) to solve Equation 7 which significantly decreases computational efforts.

The scalar field can also be solved using the TRT collision operator, for both accuracy and stability reasons. The
corresponding set of equations reads

gi (x + eiΔt, t + Δt) = gi(x, t) −
1
τ−AD

(g+i (x, t) − geq+
i (x, t))

−
1
τ+AD

(g−i (x, t) − geq‐
i (x, t))

(10)

g±i =
gi ± g ī

2
, geq±

i =
geq
i ± geq

ī
2

. (11)

Analogous to the hydrodynamic equations, τ+AD and τ−AD depend on both the diffusivity and the product of the two
eigenvalues Λ+ and Λ− . By default, Λ = 3

16 for the same reasons as stated in the hydrodynamic equations.

D = c2
s (τ

+
AD −

1
2
), Λ± = (τ±AD −

1
2
). (12)

2.2. Rest Fraction Method

Coupling NS and AD via the advection velocity requires the same spatial and temporal discretization of both
fields. Together with the two facts that (a) τj should be within the range of τj ≈ [0.6, 1.4] to ensure numerical
stability and accuracy (He et al., 1997; Krüger et al., 2017, p. 188) and (b) τj is proportional to ν or D (and
therefore also to the Reynolds or Péclet number) this strongly limits the range of applicable Reynolds‐to‐Péclet
ratios.

Using the TRT method where τj ≈ [0.6, 4.0] can slightly extend this range. However, a technique to significantly
increase the range is the rest fraction method. It decouples the discretization and relaxation time by redefining the
equilibrium function of the scalar field (Sullivan, Johns, et al., 2005; Sullivan, Sani, et al., 2005). Following
(Looije et al., 2018), here, the original formulation is interpreted as a method to change c2

s as well as the weights wi

by the rest fraction J0

wi (J0) = {
J0 if i = 0,

c2
s/2 otherwise;

(13)

c2
s =

1 − J0

dim
, (14)

where “dim” is 2 for D2Q5 and 3 for D3Q7. This approach does not affect the other equations, that is, Equa-
tions 1–12, unlike the original formulation. Note that setting the free parameter J0 = 1/3 for D2Q5 or J0 = 1/4 for
D3Q7 results in the commonly used values for c2

s and wi.

The rest fraction method allows for tuning the relation between diffusivity and relaxation time, with
D = (1 − J0)

dim (τAD − 0.5) . Therefore, Reynolds‐to‐Péclet ratios of up to 1,000 can be achieved by adjusting solely
J0, while keeping τ ≈ 1.
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2.3. Reactive Boundary Conditions

All RBC schemes discussed in this paper macroscopically describe a first‐order equilibrium reaction given as

JR = kr (Ceq − Cwall). (15)

Here, JR is the reaction rate, interpretable as a population flux. kr is the reaction rate coefficient and Ceq and Cwall

are the equilibrium concentration and concentration at the wall, respectively. The AD scalar field can also
represent temperature, in which case the population flux JR describes a heat flux, instead of a reaction.

The macroscopic flux JR cannot be directly used in LBM due to its mesoscopic character, where the flux is
determined using the populations. In addition, Cwall is unknown and needs to be estimated using an appropriate
mesoscopic scheme. Details of how to transform the macroscopic first‐order equilibrium reaction (cf. Equa-
tion 15) into a mesoscopic boundary condition (cf. Equation 16) are given in Text S1.1 in Supporting
Information S1.

Figure 1 schematically shows the functioning principle of the set of RBC schemes discussed in this paper. It starts
with the population g∗

i = gi (x, t0) pointing toward the wall and before streaming. After streaming this population
becomes g̃i = gi (x + eiΔt, t0 + Δt) . The actual main step of the RBC scheme determines the unknown popu-
lation ḡi from the known g̃i. For the next streaming step ḡi is required, and it is the final outcome of an RBC
scheme.

The RBC schemes of Verhaeghe et al. (2006), Patel (2016) and Ju et al. (2020), and the new RBC scheme are
presented in the following. For brevity, in the following only the first authors are mentioned and the corre-
sponding schemes are abbreviated to S.V., S.P.J. and S.New, respectively. For comparability they are refor-
mulated to a similar notation.

It is shown in detail in Supporting Information S1 (cf. Text S1) that they can be expressed in the form

Figure 1. Schematic representation of the first‐order RBC. Fluid nodes (circles) are depicted on the left side. Solid nodes
(squares) are depicted on the right side. The top and the bottom rows only differ in time, but not in space. The streaming of
population g∗

i = gi (x, t0) to g̃i = gi (x + eiΔt, t0 + Δt) are indicated by the orange arrows; the result of the RBC
gī = ḡi (x + eiΔt, t0 + Δt) with the blue arrow. In addition, the top right quadrant shows the D2Q5 velocity set (ei for i ∈ {0, 1,
2, 3, 4}).
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gī =
ki

1 + ki
2wiCeq +

1 − ki
1 + ki

g̃i. (16)

The difference of the schemes only enters by the definition of the term ki

k(S.V.)i = c− 2
s kr ⋅ (eī ⋅n) (17)

k(S.P.J.)i = c− 2
s γkr/ (eī ⋅n) (18)

k(S.New)
i = c− 2

s γkr ⋅ (eī ⋅n), (19)

and more specifically by the incorporation of the wall normal term (eī ⋅n) and the correction factor γ = τAD/
(τAD − 0.5). This reformulation approach also allows cross‐implementation of already developed features from
one RBC to the other, for example, moving walls. Here, it is used to highlight the differences of the schemes.

In the scheme of Verhaeghe the wall normal term is included in the numerator and γ is not considered. In the
schemes of Patel and Ju the wall normal term is included in the denominator and γ is considered. Compared to the
scheme of Verhaeghe, in the schemes of Patel and Ju the γ can be interpreted as a shift in the effective reaction
rate. The novel scheme proposed here is only slightly different and combines elements from both the scheme of
Verhaeghe and the schemes of Patel and Ju. This, however, significantly improves both accuracy and applicability
for complex geometries, and overcomes the τ‐dependent wall diffusion as is shown in Section 3.

For all three schemes, the limits of the reaction rate are similar (Ju et al., 2020; Patel, 2016; Verhaeghe
et al., 2006): At high reactivity (kr → ∞), the schemes simplify to the anti bounce‐back scheme (anti‐BB)
gī = 2wiCeq − g̃i, which sets the wall concentration to the equilibrium concentration. If no reactions occur
(kr = 0), the schemes simplify to the common bounce‐back method, that is, gī = g̃i.

2.4. Dissolution and Precipitation

Finally, simulating phase changes such as dissolution and precipitation at solid surfaces is built up on the RBC
scheme. After the determination of the reaction flux using the RBC scheme, the flux enters a method that de-
termines the amount of phase being changed as well as the direction of this process. In this paper, the so‐called
adjacent growth method (Kang & Lichtner, 2013; Kang et al., 2010) is used. It keeps track of the solid fraction ϕ
for each cell during the simulation, where the change of ϕ, that is, Δϕ, is determined as

Δϕ = Vmam(∑
i
gī − g̃i)Δt. (20)

Here, Vm is the dimensionless molar volume and am is the specific surface area. The summation term represents
the reaction flux determined from the RBC scheme (cf. Figure 1). In this study and as proposed by Kang
et al. (2006), Δt = 1 and am = 1 are used.

During the run time of the simulation ϕ is dynamically updated. If ϕ in a cell exceeds a certain threshold, the phase
type of this cell is changed from solid to fluid for dissolution, or vice versa for precipitation. In this study,
threshold values of Kang et al. (2006) and Pedersen et al. (2014) are used. They used ϕ = 0 for dissolution and
ϕ = 1 for precipitation. This mimics a phase change hysteresis. For precipitation, the local concentration is
converted to ϕ and any excess is distributed to the surrounding fluid cells. The amount being distributed is
weighted by the reaction rate of the cell. For dissolution, an initial concentration equal to the average concen-
tration of the surrounding fluid cells is set and an the corresponding amount of ϕ is removed from the surrounding
solid cells.

3. Results
The RBC schemes of Verhaeghe, Patel and Ju, and the new scheme are compared and verified using a variety of
simulation tests. These concern the accuracy of the schemes using a robust 2D reaction‐diffusion verification case
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with analytical solution, pattern formation during precipitation, and an encompassing case study with a reactive
circular object inside a channel flow proposed by Molins et al. (2020).

The different simulation tests are conducted for a broad range of advection, diffusion, and reaction regimes. They
are characterized by the non‐dimensional Reynolds (Re), Péclet (Pe), Damköhler (Da), and Péclet‐Damköhler
(PeDa) number, which are given as

Re =
U L
ν

, Pe =
U L
D

, Da =
kr

U
, PeDa =

krL
D

. (21)

Here, U and L are the characteristic velocity and length, respectively. Note that the Péclet‐Damköhler number,
which opposes reaction and diffusion rates, defines the behavior of pure reaction‐diffusion problems. For PeDa →
∞ diffusion is limiting and for PeDa → 0 it is reaction.

Figure 2. Simulation setup of the 2D reaction‐diffusion problem. The boundary conditions are constant concentration (left),
zero concentration gradient (right and bottom), and first‐order equilibrium reaction (top). An exemplary concentration field
and its analytical solution are indicated by the background and the contour lines, respectively. Two variants of this setup are
studied; one where the boundaries are aligned with the D2Q5 grid (configuration A) and another which is rotated clockwise
by a 45° angle (configuration B).
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3.1. Analytical Reaction‐Diffusion Verification

A simple 2D reaction‐diffusion problem is studied, for which also an
analytical solution exists (cf. Equation 22). The corresponding simulation
setup is shown in Figure 2. The bulk is solved using the BGK collision
operator. The simulation considers pure diffusion of a concentration field
within a rectangular domain, thus u = 0. At the left boundary, a constant
concentration C0 is defined. The bottom and right boundaries are set to
∇C = 0. At the top boundary a first‐order equilibrium reaction is modeled
using either the scheme of Verhaeghe, the schemes of Patel and Ju, or the new
scheme.

The analytical solution to this problem (Carslaw & Jaeger, 1986, p. 167) using
the formulation of Kang et al. (2006) is

C (analyt)(x,y) = (C0 − Ceq)∑
∞

n=1
(

sin (βnb)
N2

n βn

cosh (βn(x − a))
cosh (βna)

⋅ cos (βn y)) + Ceq, (22)

where C(analyt)(x, y) is the local analytical concentration, Ceq the equilibrium concentration at the top boundary,
and a and b are the width and height, respectively. In this paper, the sum in Equation 22 is evaluated up to n= 100.
The parameters N2

n is given as

N2
n =

b
2
(1 +

sin (2βnb)
2βnb

), (23)

and βn are the solutions to the following transcendental

(βnb) tan (βnb) =
krb
D
= PeDa. (24)

Simulations are conducted for PeDa numbers in the range of PeDa = [10− 1, 105] and for the two different
configurations shown in Figure 2: (a) Configuration A with walls that are perfectly aligned with the grid
orientation. (b) Configuration B in which the setup is rotated by 45° with respect to the grid. This enables the
isolated analysis of the correction factor γ and the impact of the wall normal term (eī ⋅ n) on the simulation result.

The accuracy of the simulations, that is, the deviation of the simulation data and the analytical solution, is
quantified using the mean absolute error (MAE)

MAE =∑
a

x=0
∑
b

y=0

⃒
⃒C (sim)(x, y) − C (analyt)(x, y)

⃒
⃒. (25)

If not stated otherwise, the values given in Table 1 are used for the simulation. Values are given in non‐
dimensional units, that is, lattice meter [lm], lattice second [ls], and lattice concentration [lc]. The value of
PeDa is varied by changing the Da number only, while keeping τAD constant in all simulations.

3.1.1. Configuration A: Aligned System

In configuration A, the term ei · n in Equations 17− 19 simplifies to 1 for e2 pointing toward the simulation
domain, and 0 otherwise. Thus, the implementation of the wall normal does not affect ki (cf. Equation 17− 19)
such that the schemes of Patel and Ju, and the new scheme are identical; only the scheme of Verhaeghe differs by
the factor γ.

The simulation results of the concentration field are shown in Figure 3 for PeDa = 1 and PeDa = 100. The colors
show the concentration. The analytical solution is depicted by the black contour lines for the distinct values given
in the plot. In addition, the corresponding absolute error is shown in Figure 4.

Table 1
Parameter Set for the 2D Reaction‐Diffusion Case

Parameter Value Unit

Width a 100 lm

Height b 80 lm

Péclet number Pe 1 −

Inlet concentration C0 1 lc

Equilibrium concentration Ceq 0 lc

Resolution N 80 lm

Lattice velocity U 0.001 lm ls− 1
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Figure 3. Simulation results of configuration A of the reaction‐diffusion problem using the schemes of Verhaeghe (S.V.), Patel and Ju (S.P.J.), and the new scheme (S.
New) for PeDa= 1 and PeDa = 100. The concentration field is shown by the color code given in the legend. The analytical solution (cf. Equation 22) is indicated by the
black contour lines for the distinct values given in the plot.

Figure 4. Absolute error of configuration A of the reaction‐diffusion simulations using the schemes of Verhaeghe (S.V.), Patel and Ju (S.P.J.), and the new scheme (S.
New) for PeDa = 1 and PeDa = 100. The error is shown by the color code given in the legend.

Water Resources Research 10.1029/2023WR034770

WEINMILLER ET AL. 9 of 19

 19447973, 2024, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
034770 by D

tsch Z
entrum

 F. L
uft-U

. R
aum

 Fahrt In D
. H

elm
holtz G

em
ein., W

iley O
nline L

ibrary on [23/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



For the predominantly diffusion‐limited case (PeDa = 100), shown in Figures 3 and 4d–4f, all RBC schemes are
at least in good agreement with the analytical solution. While for the scheme of Verhaeghe the absolute error is
<10− 2 over large areas of the simulation domain, the schemes of Patel and Ju, and the new scheme are even more
accurate (absolute error <10− 3). This is, however, different for the predominantly reaction‐limited case
(PeDa = 1), shown in Figures 3 and 4a–4c. There, the scheme of Verhaeghe shows a significant deviation from
the analytical solution, while the schemes of Patel and Ju, and the new scheme are again in almost perfect
agreement with the analytical solution.

For configuration A, the difference from the scheme of Verhaeghe compared to the schemes of Patel and Ju, and
the new scheme is solely attributed to the absence of γ. As described in the literature (Ju et al., 2020; Patel, 2016),
including γ ensures that the macroscopic diffusivity at the wall is captured correctly. Multiplying the PeDa
number in Equation 24 by a factor of 1/γ results in no error when using the scheme of Verhaeghe, confirming the
shift in effective PeDa number simulated.

Additionally, this setup is used to confirm that integrating RBC with the rest fraction method and TRT collision
operator is valid. The resultant MAE increase is less than 1% (cf. Text S2 in Supporting Information S1), and thus
does not result in significant additional errors.

3.1.2. Configuration B: Rotated System

In configuration B, primarily the influence of the wall normal on ki (cf. Equation 17− 19) is tested. The simulation
setup is similar to configuration A, with the only difference that it is rotated clockwise by 45°. This leads to the
term ei · n in Equation 17− 19 being equal to −

̅̅̅
2

√
/2 for e1,2, that is, pointing toward the simulation domain. Thus,

Figure 5. Simulation results of configuration B of the reaction‐diffusion problem using the schemes of Verhaeghe (S.V.), Patel and Ju (S.P.J.), and the new scheme (S.
New) for PeDa= 1 and PeDa = 100. The concentration field is shown by the color code given in the legend. The analytical solution (cf. Equation 22) is indicated by the
black contour lines for the distinct values given in the plot.
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none of the three schemes compared here are identical anymore. Deviations from the configuration A predom-
inately originate from the implementation of the wall normal.

Again, for PeDa = 1 and PeDa = 100, the simulation results and corresponding absolute error are shown in
Figures 5 and 6, respectively. The meaning of the colors and lines is identical to those from Figures 3 and 4.

Figure 6. Absolute error of configuration A of the reaction‐diffusion simulations using the schemes of Verhaeghe (S.V.), Patel and Ju (S.P.J.), and the new scheme (S.
New) for PeDa = 1 and PeDa = 100. The error is shown by the color code given in the legend.

Figure 7. MAE analysis of configuration A and B of the reaction‐diffusion simulations using the schemes of Verhaeghe (S.
V.), Patel and Ju (S.P.J.), and the new scheme (S.New) with extended PeDa range (10− 1 to 105). The MAE of the schemes of
Patel and Ju, and the new scheme are identical for configuration A.
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The simulation results of the scheme of Verhaeghe and the new scheme are similar to those from configuration A.
Again, multiplying the PeDa number in Equation 24 by a factor of 1/γ, to match the analytical PeDa to the
simulated PeDa, results in no error of the scheme of Verhaeghe. However, a large deviation from the analytical
solution is observed for the schemes of Patel and Ju especially at low PeDa values.

3.1.3. Configuration A and B for Extended PeDa Range

The MAE (cf. Equation 25) of the RBC schemes are summarized in Figure 7 for both configuration A and B over
a vast range of PeDa values. When PeDa → ∞, the RBC schemes approach the anti‐BB method. This was shown
in the literature (Ju et al., 2020; Verhaeghe et al., 2006) and is further elaborated in Text S1.3 in Supporting
Information S1. Note, that the anti‐BB sets the equilibrium concentration at the boundary. Therefore, this
approximation is expected to have significant errors at low PeDa values. Still, it is included as reference in the
extended MAE plots.

For configuration A (cf. Figure 7a), it clearly shows how the scheme of Verhaeghe has significant errors for
10− 1 ≲ PeDa ≲ 102, with an decreasing error for when PeDa → ∞. On the other hand, the schemes of Patel and Ju,
and the new scheme are barely affected by the choice of PeDa. This highlights the impact of γ. The MAE de-
creases for all schemes in the reaction‐limited case, that is, PeDa < 1, which has the trivial solution of C(x,
y) = C0, with the RBC approaching bounce‐back behavior.

For configuration B (cf. Figure 7b), the scheme of Verhaeghe and the new scheme behave the same as in
configuration A (cf. Figure 7a). However, the scheme of Patel and Ju shows a significant error, due to their wall‐
normal implementation. In contrast, the new scheme developed in the current study, is almost not affected by the
choice of PeDa for both configuration A and B.

The MAE values for RBC and anti‐BB schemes converge for PeDa > 103 in configuration A and for PeDa > 104

in configuration B. Thus, simulations with PeDa > 104 show similar results for all aforementioned RBC schemes,
that is, anti‐BB, the schemes of Verhaeghe, Patel and Ju, and the new scheme.

3.2. Pattern Formation During Precipitation

This test case is motivated by the work of Pedersen et al. (2014). They investigated pattern formation of grain
growth during precipitation and its dependence on the grid orientation. For their study they used the scheme of
Verhaeghe.

The simulation domain is circular with a diameter of 300 grid cells. This is realized by adding boundary cells
along this circle in a square domain of size 300 lm × 300 lm cells. On the boundary the concentration is constant,
that is, Ccirc = 1. An initial seed is placed in the center of the domain. Its shape is defined by the parametric
equation

x(s) = [0.1 + 0.02 cos(8πs)] cos(2πs),

y(s) = [0.1 + 0.02 cos(8πs)] sin(2πs),
(26)

with s as the parameter. Two variants of this setup are simulated: One where the initial seed is aligned with the
grid orientation, and another where the initial seed is rotated clockwise by 19°. The boundaries of the seed are
defined by a RBC with Ceq = 0 and kr = 0.0014 (cf. Equation 16). The bulk is solved using the BGK collision
operator. Pure diffusion is considered such that u = 0 within the domain. To compute the wall normal, the simple
and efficient isotropic finite difference method (Kumar, 2004) is used.

The results determined with the scheme of Verhaeghe, the schemes of Patel and Ju, and the new scheme are shown
in Figure 8. The resulting patterns when using the scheme of Verhaeghe and the new scheme are similar, as shown
in Figures 8a, 8d and 8c, 8f, respectively. However, for the scheme of Verhaeghe the growth is less pronounced
which is due to the effective PeDa shift. A correction of this shift further improves the accordance of both
schemes. In contrast, the pattern resulting from the schemes of Patel and Ju shows dendritic behavior and grid
dependence, shown in Figures 8b and 8e. The reason is due to the implementation of the wall normal in k(S.P.J.)i (cf.
Equation 18), leading to faster reactions in diagonal walls compared to straight walls.
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3.3. Reaction in a Channel Flow

This case study considers a reactive object in a channel flow, that is, under the influence of advection. It is
motivated by the extensive comparison paper by Molins et al. (2020) in which they compared five different
simulation methods (Chombo‐Crunch, dissolFoam, LBM, OpenFoam, and Vortex). Both Molins et al. (2020) and
Ju et al. (2020) used the same dissolution experiment of Soulaine et al. (2017) to validate their methods.

Figure 8. Pattern formation during precipitation using the schemes of Verhaeghe (S.V.), Patel and Ju (S.P.J.), and the new scheme (S.New) for PeDa = 10. The final
grains are shown in black. The initial grain seeds and the simulation domain are indicated by the white line and the gray‐shaded background, respectively.

Figure 9. Simulation setup of the 2D reactive object in channel flow from Molins et al. (2020). The boundary conditions for
(1) the fluid lattice are constant plug flow (left), constant density (right) and bounce‐back walls (top, bottom, object), and for
(2) the scalar lattice are constant concentration (left), zero concentration gradient (right), bounce‐back walls (top, bottom)
and RBC (object).
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The simulation setup is shown in Figure 9. It is 2D and consists of a channel with height H = 0.05 cm and width
W = 0.1 cm, simulated with resolution 600 lm × 1,200 lm and a lattice velocity of ULB = 0.001 lm ls− 1. The
channel is initially filled with a fluid at rest and with constant concentration equal to that of the inlet. A circular
reactive object with diameter D= 0.02 cm is placed in the middle of the channel. The boundary conditions for the
carrier fluid are (a) bounce‐back walls at the top, bottom, and at the object's surface, (b) plug velocity profile
uin = 0.12 cm/s at the inlet on the left, and (c) fixed density ρout = 1 at the outlet on the right. The boundary
conditions for the concentration field are (a) bounce‐back walls at the top and bottom, (b) constant concentration
at the inletCin= 10 mol/m3, (c) zero concentration gradient at the outlet, and (d) a RBC at the object's surface. The
RBC is varied between the three schemes and the anti‐BB. Large ratios of Pe to Re are realized using the TRT
collision operator and rest fraction method for the concentration lattice. The following values are chosen:
J0 = 0.99 for Pe = 600 and J0 = 1/3 for Pe = 6. First, the flow of the carrier fluid, that is, the NS lattice, was
simulated until steady state was achieved. Then, the concentration field, that is, the AD lattice, was solved and the
average reaction rate of the object was determined as

Ravg =
1
πD

(∫
outlet

Cux ⋅ dy − CinuinH). (27)

Here the integral is performed on the outlet.

Simulations were conducted for Re = 0.6 and different combinations of Pe = [6, 600] and Da = [0.178, 17,800].
These are: Case (1) Pe = 600, Da = 178 (diffusion limited); Case (2) Pe = 600, Da = 17,800 (diffusion limited);
Case (3) Pe = 6, Da = 178 (advection‐diffusion limited); and Case (4) Pe = 6, Da = 0.178 (advection‐reaction‐
diffusion limited). As is shown in the following, the Cases (1) to (3) are not suited to differentiate the schemes,
since they are not reaction limited.

A qualitatively comparison of the results of Case 4) for the schemes is given in Figure 10. A comparison between
the Cases (1) to (4) for the new scheme is shown in Figure S1 in Supporting Information S1. In Case (4) when
using the scheme of Verhaeghe (cf. Figure 10a), the simulation is strongly reaction limited, as indicated by the
high concentration around the object's surface. In contrast, the anti‐BB scheme (cf. Figure 10d) shows the case

Figure 10. Concentration field in the vicinity of a reactive object (gray circle) in a channel flow simulated for Case (4) with
Pe= 6, Da= 0.178. Using (a) the scheme of Verhaeghe, (b) the schemes of Patel and Ju, (c) the new scheme, and (d) the anti‐
BB scheme, which sets the concentration to the equilibrium concentration. The concentration is shown by the color code
given in the legend.
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where reaction is not limiting at all. Both the new scheme and the schemes of Patel and Ju (cf. Figures 10b and
10c, respectively) fall between the two extremes.

The numerical results of Ravg are given in Table 2 together with the values from Molins et al. (2020). There,
ranges are given as different methods were used to determine Ravg (cf. Text S3 in Supporting Information S1).
Overall, the RBC schemes agree well with the results of Molins et al. (2020), where available, indicating good
integration of the RBC schemes with the rest fraction method.

Table 2 shows that for the Cases (1) to (3), the simulations are not reaction limited, resulting in the RBCs behaving
similar to the anti‐BB. Thus, cases in which the PeDa ≥ 1,000 are not suited for validation of RBC schemes. The
experiment of Soulaine et al. (2017) has a PeDa = 3,000. In Case (4), the reaction is not limiting anymore, as
indicated by the much higher anti‐BB result. Here, the result of the various RBC schemes diverge. Compared to
the new scheme, the scheme of Verhaeghe underestimates and the schemes of Patel and Ju overestimates Ravg by
the significant factors of 0.43 and 1.6 respectively.

The capability of the new scheme to handle complex media is demonstrated in Figure 11. The simulation setup
remains the same (cf. Figure 9), just with multiple objects. Alongside the concentration field, the velocity field is
indicated using black arrows. Notably, the downstream particles have the familiar low concentration tail, whereas
the upstream particles do not due to mixing of the flow. This demonstration showcases how the new RBC scheme
is applicable to arbitrary geometries due to its general and local properties.

Table 2
Results of Ravg of a Reactive Object in a Channel Flow

Input Ravg [10− 8 mol/(cm2·s)]

Case Pe Da Molins et al. (2020) SVe SP.J. SNew Anti‐BB

(1) 600 178 [4.18, 4.57] 4.48 4.66 4.64 4.71

(2) 600 17,800 [3.88, 4.79] 4.70 4.70 4.70 4.71

(3) 6 178 [58.6, 90.5] 75.5 75.9 75.8 76.0

(4) 6 0.178 N/A 8.05 29.1 18.5 76.0

Figure 11. Concentration field in the vicinity of heterogeneous porous media in a channel flow simulated with Case (4)
parameters with Pe= 6, Da= 0.178, using the new scheme. The concentration is shown by the color code given in the legend,
and the velocity field is depicted using black arrows.
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4. Conclusion
A new general local reactive boundary condition (RBC) scheme was presented that accurately captures first‐order
equilibrium reactions for a wide range of Péclet (Pe) and Damköhler (Da) numbers and is applicable to complex
geometries. It combines aspects of previous RBCs from Verhaeghe et al. (2006), Ju et al. (2020), and Patel (2016),
but overcomes their deficiencies. This means, the new RBC scheme does not suffer from a τ‐dependent wall
diffusion and accurately considers the wall normal for complex geometries and surfaces that are not aligned with
the simulation grid.

In this study, all aforementioned RBC schemes were first reformulated to a similar notation. Then, all RBC
schemes were tested and compared using three different verification cases. These were chosen such that they were
relevant, representative, and covered important features of RBCs and their applications: (a) A robust 2D reaction
setup purely driven by diffusion. The problem has an analytical solution and the RBC schemes were studied over a
wide range of PeDa values as well as under grid rotation. (b) Pattern formation in a precipitation process. Here,
especially the impact of rotational variance and the behavior of the wall normal was studied. (c) An advanced
reaction setup including advection around a reactive object in a channel flow. The RBC schemes were coupled to
the rest fraction method, a wide range of PeDa values was studied, and the results were compared to results from
the literature.

The test cases demonstrate a broad applicability and high accuracy of the new RBC scheme. For the 2D reaction
setup, the new RBC scheme shows the best accordance with the analytical solutions. Additionally, it was shown
that it correctly simulates wall diffusion and is invariant with respect to relaxation time and grid orientation. For
the simple precipitation case, the new RBC scheme showed physically sound pattern formations. Moreover, in
contrast to the other RBC schemes, it was not affected by grid rotation. For the advection case, large ratios of
Péclet and Reynolds number (≤1,000) were successfully simulated. Reaction rates determined using the new
RBC scheme are in general accordance with results from the literature (Molins et al., 2020).

All in all, the new RBC accurately describes first‐order reactions and can be applied to simulate precipitation and
dissolution phenomena even for complex geometries. This is a strong advantage over other RBCs previously
described in the literature. In addition, as a general and local scheme, it is easy to implement for both 2D and 3D
simulations, it is computationally efficient and facilitates parallel computation. The new RBC scheme is missing
some advanced features, for example, moving walls, or interpolated sub‐grid wall locations. However, the pre-
sented general reformulation allows those already developed features to be incorporated easily.

The new RBC can be used to study reaction processes in a broad range of research fields. Potential applications
might be reactive flows through porous media, with and without dissolution and precipitation (Jiang et al., 2021;
Pereira, 2022; Xu et al., 2018; L. Zhang et al., 2019; D. Zhang et al., 2021; C. Zhang et al., 2021), pore structure
evolution in cement manufacturing (Patel et al., 2021), or morphological changes due to the conversion of active
material in energy storage systems (Fang et al., 2021). Especially the last topic will be in the focus of our future
work.

Appendix A: LBM Velocity Sets
This paper discusses the 2D implementation of the RBC only, as the extensions to 3D are simple and straight-
forward. The velocity sets used for the 2D implementations are D2Q9 and D2Q5 and are given in the following:

D2Q9

{ei} = {e0, e1, e2, e3, e4, e5, e6, e7, e8}

=
Δx
Δt

⎧⎨

⎩

0 − 1 − 1 − 1 0 1 1 1 0

0 1 0 − 1 − 1 − 1 0 1 1

⎫⎬

⎭

(A1)

{wi} = {
4
9

,
1
36

,
1
9

,
1
36

,
1
9

,
1
36

,
1
9

,
1
36

,
1
9
}

D2Q5
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{ei} = {e0, e1, e2, e3, e4}

=
Δx
Δt

⎧⎨

⎩

0 − 1 0 1 0

0 0 − 1 0 1

⎫⎬

⎭

(A2)

{wi} = {
1
3

,
1
6

,
1
6

,
1
6

,
1
6
}

In both Equations A1 and A2 the speed of sound is cs = 1/
̅̅̅
3

√
Δx/Δt. When using the rest fraction method, both

weights and speed of sound change (cf. Section 2.2).

Data Availability Statement
An extended version of the Parallel Lattice Boltzmann Solver (version 2.3.0)—short Palabos—was used for all
LBM simulations in this study. The original version of Palabos is preserved at https://palabos.unige.ch/, available
via GNU Affero General Public License version 3 without login required and developed openly at https://gitlab.
com/unigespc/palabos (Latt et al., 2021). The reactive boundary conditions and the rest fraction method were
implemented separately.
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