SFERA-III Solar Facilities for the European Research Area

4th Doctoral Colloquium Cologne, Germany, September 11th-13th 2023

Solar Facilities for the European Research Area

Development of a Redox Material Assembly for Solar Thermochemical Fuel Production Louis Thomas, DLR Institute of Future Fuels louis.thomas@dlr.de

NETWORKING

Examiner: Prof. Dr. Christian Sattler Supervisor: Dr.-Ing. Stefan Brendelberger

Motivation

2 Modeling Approach

3 First Results

4 Summary and Outlook

Louis Thomas

Solar Fuel Production

Thermochemical Redox Cycle

State of the Art Reactor Concept and Redox Material

- Redox material: Ceria RPC (reticulated porous ceramic) structure
- RPC blocks mounted at reactor cavity walls
- Batch operation with temperature / pressure swing between reduction and oxidation step

S. Zoller, E. Koepf, D. Nizamian, M. Stephan, A. Patané, P. Haueter, M. Romero, J. González-Aguilar, D. Lieftink, E. de Wit, S. Brendelberger, A. Sizmann, and A. Steinfeld, Joule 6, 1606 (2022).

R2Mx Reactor Reactor Features of MW-Scale Vision

- Separate reduction and oxidation reactor cavities
- Receiver reactor cavity stays at high temperature, continuous on-sun operation
- Multiple movable Redox Material Assembly (RMA) units

S. Brendelberger, P. Holzemer-Zerhusen, E. Vega Puga, M. Roeb, and C. Sattler, Solar Energy 235, 118 (2022).

R2Mx Reactor Proof-of-Concept Test Rig

- Separate reactor cavities with cylindrical shape for practical implementation and manufacturing
- Cylindrical Redox Material Assembly (RMA), which is moved between reduction and oxidation reactor via linear transport unit
- Uniform thermal irradiation of RPC cylinder via electrical heating (no solar interface)

Modeling Goal Radiation Attenuation and Absorption in RPC Cylinder

- Understanding the behavior of an RPC cylinder inside the R2Mx test-rig
- Intensity attenuation and absorption characteristics in radial direction
- Compare to flat RPC plate and collimated irradiation

Intensity Attenuation of Radiation In $CeO_{2-\delta}$ RPC Structure

Intensity attenuation in $CeO_{2-\delta}$ RPC structure (Beer-Lambert-Law):

$$\frac{I(x)}{I_0} = \exp(-\beta x)$$

Extinction coefficient:
$$\beta \propto \frac{\Phi^2}{d_m}$$

Mean pore diameter: $d_m \propto \frac{\Phi}{n_{ppi}}$

RPC porosity: Pores per inch:

 n_{ppi}

Φ

12

[1]

[1]

[1] S. Ackermann, M. Takacs, J. Scheffe, and A. Steinfeld, International Journal of Heat and Mass Transfer 107, 439 (2017).

Louis Thomas

Absorption of Radiation In $CeO_{2-\delta}$ RPC Structure

Radiation absorption of $CeO_{2-\delta}$ RPC structure:

$$\alpha = 1 - r = \varepsilon$$

Total hemispherical reflectivity:

$$r_{CeO_{2-\delta}}(\delta,T) = \frac{b}{(\delta+\delta^*)^a} + c * \delta_{[2]}$$

Reduction extent: $\delta(T, p_{O_2})$ Fitting parameters: a(T), b(T), c(T)For continuity (at $\delta = 0$): $\delta^* = 10^{-10}$

Modeling Approach RPC Geometry and Irradiation Type

- Compare 4 modeling cases:
- 1. RPC cylinder
 - Collimated irradiation
 - Diffuse irradiation
- 2. RPC plate
 - Collimated irradiation
 - Diffuse irradiation

Model Implementation

Monte Carlo Simulation (Python)

Modeling Results: Intensity attenuation Variation of Extinction Coefficient β (n_{ppi} variation)

- Intensity attenuation for diffuse irradiation stronger due to steep incident angles
- For high extinction coefficients differences between collimated and diffuse irradiation decrease

Louis Thomas

Modeling Results: Intensity attenuation Variation of Cylinder Radius / Material Thickness

• For smaller cylinder $(r_{cylinder} \leq 0.01 \, m)$ rays reach inner radial segments in 2nd cylinder half, resulting in increased intensity counts in inner segments

Modeling Results: Intensity attenuation Variation of Cylinder Radius / Material Thickness

- For smaller cylinder radii the range of incident angles for rays reaching inner radial segments decreases
- For cylinder a larger fraction of total volume is located in outer segments compared to plate

Louis Thomas

Summary and Outlook

- Intensity attenuation related to parameter variation of RPC cylinder:
 - Diffuse irradiation is stronger attenuated in RPC structure compared to collimated irradiation
 - Cylinder with $r_{cylinder} \ge 0.02 \text{ m}$ exhibits intensity attenuation similar to plate
 - Cylinder with $r_{cylinder} \leq 0.015$ m intensity attenuation is influenced by radial symmetry
- Outlook on further modeling tasks:
 - Include additional technical reactor boundary conditions into model (e.g. distance between hot cavity and RPC cylinder)
 - Set up thermal model of cylindrical RMA unit inside R2Mx reactor

SFERA-III Solar Facilities for the European Research Area

4th Doctoral Colloquium WP1 Capacity building and training activities Cologne, Germany, September 11th-13th 2023

 $\boldsymbol{S} olar \ \boldsymbol{F} acilities$ for the European Research Area

Backup Slides

NETWORKING

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO 823802

16

Challenges Reactor Design / Operation and RPC Structure

- Temperature swing operation requires reheating of reactor components after each cycle
- Direct irradiation of RPC structure from one site results in significant temperature gradient along material thickness:
 - $\hfill \hfill \hfill$
 - Overheating of RPC front can cause higher reradiation losses and structural damage

M. Hoes, S. Ackermann, D. Theiler, P. Furler, and A. Steinfeld, Energy Technol. 7, 1900484 (2019).

Louis Thomas

Modeling Results Variation of Extinction Coefficient β (n_{ppi} variation)

Louis Thomas

Modeling Results: Intensity attenuation Variation of Cylinder Radius / Material Thickness

- For smaller cylinder radii the range of incident angles for rays reaching inner radial segments decreases
- For cylinder a larger fraction of total volume is located in outer segments compared to plate

Louis Thomas

Modeling Results Variation of Extinction Coefficient β (ϕ variation)

Louis Thomas

Modeling Results Variation of Absorptivity α (δ variation)

- For large cylinder absorption characteristics follows similar trend as intensity attenuation
- For smaller extinction coefficients radiation can scatter more easily out of RPC structure

Modeling Results Variation of Absorptivity α (δ variation) – Small Cylinder

 Rays scatter more easily out of small cylinder due to radial confinement, effect decreases with increasing absorptivity

Louis Thomas

Imprint

Торіс:	Development of a Redox Material Assembly for Solar Thermochemical Fuel Production Presentation at the Doctoral Colloquium in Cologne
Date:	12.09.2023
Author:	Louis Thomas
Institute:	DLR Institute of Future Fuels
Credits:	Stefan Brendelberger, Christian Sattler
Disclaimer:	This project has received funding from the European Union's Horizon 2020 Research and Innovation program under grant agreement n°823802

