# Performance of Ca<sub>1-x</sub>Sr<sub>x</sub>MnO<sub>3-δ</sub>-Foams and -Granules in Thermochemical Oxygen Pumping

#### <u>Mathias Pein<sup>1,2</sup></u>, Christos Agrafiotis<sup>1</sup>, Martin Roeb<sup>1</sup>, Christian Sattler<sup>1,2</sup>

<sup>1</sup> German Aerospace Center (DLR), Institute of Future Fuels

<sup>2</sup> RWTH Aachen University, Faculty of Engineering, Professorship of Solar Fuel Production



# **Thermochemical Energy Conversion with Metal Oxides**





Based on: C. Agrafiotis et al., J. Sol. Energy Eng., 2019, 141(2): 021010

## Principle of Thermochemical Oxygen Pumping in CSP



### **TCOP vs. Mechanical Pumping**





S. Brendelberger et al., Solar Energy, Volume 141, 2017, Pages 91-102

## **Material Screening**

- 14 compositions experimentally screened
- Powder samples
- CaMnO<sub>3</sub> performed best



M. Pein et al., Solar Energy, Vol. 198, 2020, Pages 612-622



Phase transition at ~890°C



M. Pein et al., Adv. Energy Mater. 2022, 12, 2102882

- Large influence on thermal expansion
- 5% 10% of Sr-doping for optimized expansion behavior

L. Klaas and M. Pein et al., Phys. Chem. Chem. Phys., 2022,24, 27976-27988

## **RPC Fabrication Process : PU replica method**





6







(4) De-binding & Sintering



- 30 ppi foams withstand a load of 1 bar
- Mechanically stable and easy to handle

M. Pein, C. Agrafiotis, M. Roeb, C. Sattler, German Aerospace Center (DLR), Institute of Future Fuels

## Cyclic stability of foam specimens – CaMnO<sub>3</sub>







- ble allei
- Stable thermodynamics over 46 cycles 300-1100°C
- No deformation of the foam sample

Pein et al. "Reticulated Porous Perovskite Structures forThermochemical Solar Energy Storage", *Advanced Energy Materials* (2022), p. 2102882. DOI: <u>https://doi.org/10.1002/aenm.202102882</u>.

# Cyclic stability of foam specimens – Ca<sub>0.9</sub>Sr<sub>0.1</sub>MnO<sub>3</sub>





Fully reversible reduction and oxidation
over 80 cycles



## **Oxygen Pumping Setup**





M. Pein, C. Agrafiotis, M. Roeb, C. Sattler, German Aerospace Center (DLR), Institute of Future Fuels

#### **Experimental Principle**





Pein et al., Solar Energy, Volume 198, 2020, Pages 612-622

#### **Results - Oxygen Pumping with Foams and Granules** Seperate Temperature Swing



- Evacuated to 10<sup>-2</sup> mbar
- Temperature swing applied
  - 1<sup>st</sup>: Pumping 800 °C 700 °C
  - 2<sup>nd</sup>: Splitting 1500 °C 1000 °C
  - Time for equilibration ~ 30 min
  - Pumping reactor disconnected

- Average increase of  $\Delta\delta$  by 95% with  $Ca_{0.9}Sr_{0.1}MnO_3$
- Foams and granules of Ca<sub>0.9</sub>Sr<sub>0.1</sub>MnO<sub>3</sub> perform equally good
- For CaMnO<sub>3</sub> trend towards foam

### **Conclusions and Takeaways**



- TCOP with Perovskites is a valid option to increase STCH efficiency
- Possible implementation of waste heat recovery
- Ca<sub>1-x</sub>Sr<sub>x</sub>MnO<sub>3-δ</sub>-Foams and Granules are suitable for TCOP applications
- Small amounts of A-site Sr-substitution beneficial for structure stability and TCOP performance
- Perovskites have high potential also for other thermochemical cyclic processes
- Fabrication of rigid, stable and efficient 3D-structures remains to be crucial
  - RPC, 3D-printing, Extrusion

#### Acknowledgements



#### Funding Authorities



Bundesministerium für Wirtschaft und Klimaschutz Colleagues at DLR:

- Dr. Christos Agrafiotis
- Lena Klaas
- Dr. Asmaa Eltayeb
- Dr. Martin Roeb
- Prof. Dr. Christian Sattler

**Relevant publications:** 

- S. Brendelberger et al., Solar Energy, Volume 141, 2017, Pages 91-102
- M. Pein et al., Solar Energy, Vol. 198, 2020, 612-622
- M. Pein et al., Adv. Energy Mater. 2022, 12, 2102882
- L. Klaas and M. Pein et al., Phys. Chem. Chem. Phys., 2022,24, 27976-27988



#### Thank you for your attention !

#### Questions ? ?



#### Contact: mathias.pein@dlr.de

#### **Perovskite Material Design**



