

PROJECT MESOWAS

A solar-based membrane reactor for hydrogen production

<u>N.C. Neumann^a</u>, J.P. Rincon Duarte^a, S.M. Gross-Barsnick^c, K. Bittner^c, F. Schulze-Küppers ^c, F. Zeng^b, S. Baumann ^b, S. Ackermann^d

^aGerman Aerospace Center (DLR), Institute of Solar Research, Germany

^bForschungszentrum Jülich GmbH, Institut für Energie und Klimaforschung, IEK-1, Germany

^eForschungszentrum Jülich GmbH, Zentralinstitut für Engineering, Elektronik und Analytik, ZEA-1, Germany

^d Synhelion SA, Via Cantonale 19, 6900 Lugano, Switzerland

Introduction: The MESOWAS project

Membrane-based solar thermal cycles for the synthesis of green hydrogen

Option A: Sweep gas or thermochemical O₂ pump **Option B**: Partial oxidation of biomethane or biogas

Aim of project:

- Experimental proof-of-concept of a solar membrane reactor for water splitting
- 2. Development of membrane
- 3. Investigation of different approaches to reduce the oxygen concentration on permeate side
- 4. Potential analysis of membrane technology
- Start01.08.2022End31.07.2025

Consortium:

SPONSORED BY THE

Federal Ministry of Education and Research

Grant: 03SF0648A

MESOWAS: Membranbasierte solarthermische Kreisläufe für die Synthese von grünem Wasserstoff

1. Material selection and membrane fabrication

2. Membrane reactor development

3. Solar energy integration

Material selection

Application conditions			
□ T [.] 900 °C	Required properties		
\square Po ₂ <10 ⁻⁶ bar	Mixed ionic and electronic conductivity	Material candidates	
	Low chemical expansion	\Box Ce _{1-x} Gd _x O _{2-δ} (CGO)	
	Good stability	□ SrTi _{1-x} Fe _x O _{2-δ} (STF)	

- Lower chemical expansion from Ti⁴⁺(0.605 nm) to Ti³⁺ (0.67 nm) for STF compared to Ce⁴⁺ (0.97nm) to Ce³⁺ (1.143nm) in CGO
- 25 mol% Fe doping ensure applicable conductivity and structural integrity under low Po₂

→ STF material doped with 25 mol% Fe is selected

Membrane fabrication and performance

Sintered asymmetric membrane

Oxygen permeance (mol/cm2/s) Calculated Measured air I Ar Measured O2 I Ar 8E-07 6E-07 4E-07 2E-07 0E+00 Single layer 223um Asymmetric 20um

Bulk transport control:

Oxygen Permeance =
$$-\frac{j_{O_2}}{\int_{P'_{O_2}}^{P''_{O_2}} d \ln P_{O_2}} = \frac{R}{16F^2} \cdot \frac{1}{L} \cdot \sigma_{amb} \cdot T$$

- Single layer membrane: the measured value ~ calculated value, validating the assumption of bulk transport control
- Asymmetric membrane: the measured value ≤ calculated value, indicating limiting surface exchange and gas diffusion through the porous support → catalysts required

Agenda

1. Material selection and membrane fabrication

2. Membrane reactor development

3. Solar energy integration

Reactor design: From F10 Jülich Solid Oxide Electrolysis design to a membrane reactor

SOC "F10"

Feasibility of the design:

- → Similar outer envelope can be used; X layer stack footprint: 220 mm x 120 mm x scalable
- \rightarrow Different membrane shapes can be adapted (e.g. circular or rectangular)
- \rightarrow Shape and type of glass solders can be adapted to membrane and metals of the design
- \rightarrow Stacks allow scalability of system

Design of membrane reactor proof-of-concept of the solar membrane reactor (using stacks):

Agenda

1. Material selection and membrane fabrication

2. Membrane reactor development

3. Solar energy integration

Solar energy integration

- Membrane reactor stack inside an open insulation "box"
- Concentrated solar energy enters cavity and hits the absorber plate in front of the stack

Integration of solar energy

Using intermediate Heat Transfer Fluid (scale up concept analysis)

Using indirect irradiation of stack (experiments)

Homogeneous T distribution on membrane reactor

- Temperature for experiments: (800 – 900 °C)
- Max. allowable T gradient: 50 K

Simulations of solar flux distribution on membrane reactor Material of irradiated plate: steel

■ Hot spot in central part → temperature gradient too large!

Simulations perfored with Ansys® Academic Research Workbench 2022 R1

Modification of volume of cavity to reach higher temperatures

T distribution of cavity E Synhelion T/°C 816.01 727.79 T distribution membrane reactor JÜLICH 639.58 551.36 T/°C 463.14 813.28 374.93 804.47 286.71 198.5 795.66 110.28 786.86 22.066 778.05 769.24 760.44 751.63 240 742.82 734.02 280 7 280 irradiated plate: copper dimensions in mm

High temperature achieved, but T gradient still > 50 K

Simulations perfored with Ansys® Academic Research Workbench 2022 R1

Agenda

1. Material selection and membrane fabrication

2. Membrane reactor development

3. Solar energy integration

OD – Reactor Modelling

Development of a 0D model for initial design iterations [1]

Assumptions:

- Chemical equilibrium on both sides
- Infinite fast diffusion in gas phase
- Isothermal

Implementation:

 Coupling of two Gibbs minimization problems by Wagner equation

 H_2 production for 1 cm^2 active membrane area

^[1] Bittner, K., Margaritis, N., Schulze-Küppers, F., Wolters, J., & Natour, G. (2023). A mathematical model for initial design iterations and feasibility studies of oxygen membrane reactors by minimizing Gibbs free energy. *Journal of Membrane Science*, 685, 121955.

3D – Reactor Modelling

 Development of a 3D model to investigate geometrical effects

Assumptions:

 Chemical Equilibrium at the membrane surface

Implementation:

- Fluid flow equations are solved using Ansys Fluent
- Surface reactions and oxygen permeation are modelled using User Defined Functions

Conclusion

- STF-based membranes with 25 mol% Fe showed best mix of low thermal expansion and ambipolar conductivity for 800 °C – 900 °C and low pO_2 operation.
- Design of a first-of-a-kind solar membrane stack reactor.
- Solar energy can cover the energy demand of the reactor, but homogenisation of flux distribution still ongoing.
- 0D and 3D reactor model to identify suitable operation parameters.

SPONSORED BY THE

Synhelion

JÜLICH

Federal Ministry of Education and Research

Grant: 03SF0648A

Dr.-Ing. Nicole Carina Neumann DLR-Institut für Future Fuels Nicole.Neumann@dlr.de www.dlr.de/ff

SPONSORED BY THE

Federal Ministry of Education and Research

Grant: 03SF0648A

THANK YOU