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Green Hydrogen from Water Splitting by Solar Energy A#y
DLR
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Solar Thermochemical Redox Cycle A#y
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Solar Thermochemical Redox Cycle A#y
DLR
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Solar Thermochemical Redox Cycle
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Reactor and System Design Concepts A#y
DLR

» Redox material must be cycled between
1. High (1450°C) and low (900°C) temperatures -> heat recovery required
2. Atmospheres with low oxygen partial pressures and steam atmospheres

* either purge gas or vacuum for low pg,
» heat/power demand for steam / purge gas / vacuum generation important

= Move the material or change its surrounding conditions?

Fixed Redox Monoliths Moving Redox Particles

Vacuum (& Purge Gas) Only Purge Gas
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Solar Thermochemical Hydrogen Production
State of the Art: Batch Reactors with Fixed, Porous Monoliths of Redox Material DLR
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Solar Thermochemical Hydrogen Production
State of the Art: Batch Reactors with Fixed, Porous Monoliths of Redox Material DLR
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Solar Thermochemical Hydrogen Production
State of the Art: Batch Reactors with Fixed, Porous Monoliths of Redox Material DLR
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Advantages of Moving Particle Reactor Systems A#y
DLR

= Continuous and more flexible operation

» Less sensible heat losses, less thermal stresses
» Easy replacement of redox material

» Better heat transfer & better heat recovery

[Weber2023]

Projected Reactor Efficiencies (solar = H,) moving particles
L s 10% 15% 20% 25% >
I fixed monoliths[£°ller2019] moving monoliths [Brendelberger2022]
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DOE-STCH Project (2015-2017)

Vacuum Reactors with Moving Ceria Particles
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DOE-STCH Project (2015-2017) @Eneray  Pucknel

. \ . ] Sandia Q) iempessioncnmm |
Vacuum Reactors with Moving Ceria Particles @Nama.,

Laboratories m UNIVERSITY

—— CeO, particles SS plate —— CPR2 wall
< 1600} : | -
o \
S 1200f N\ .
©
S 800 \,]\
£
E 400 = 1 1 1 -1 .‘__4 . '. ; - 4 & -

14:00 15:00 16:00 17:00 18:00 e : :> 02
. -1' - =
. . . i:" Heat Rejection
g H2 productlon rate Pressure Buffer 2
E 0.20F 7 Pressure Buffer 3
-
Q ' \ )
-§ 0.10F - Pressurc \épaatlon ------
3 v te
2 0.00k= 2 ot N
0 1000 2000 3000 ‘H 2
time (s)

= Particles heated to 1700 K
= 0.25 SLPM peak H, rate

Johannes Grobbel, DLR Institute of Future Fuels | HEC 2023 .
| |mages adapted from SANDIA



Ongoing Work of Sandia and DLR [ .

........

Main goals: particle feed chamber (900° C)
= |mprove vacuum receiver-reactors
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SOMPIHR

Sweep (gas) & open moving particle receiver with heat recovery

@
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- New concept i
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SOMPIHR

Sweep (gas) & open moving particle receiver with heat recovery

= Projected solar to H2 efficiency for
prototype scale (2 kW): ~18% [Weber2023]
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Modeling Solar Particle Receivers

DLR
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Discrete Element Method (DEM) coupled to CFD
= Particle motion

= Heat transfer

= Reactions
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Challenges and Outlook #
DLR

Challenges (some of them):

= Moving particles at very high temperatures (1500°C)

= \Wear on particles and components

» Gas flow control through particle beds (uniformity, pressure drop, ...)

Outlook:

» Prototype testing of vacuum reactor system in DLR Synlight
» Modeling of new SOMPIHR concept (i.e. CFD-DEM models)
» Prototype design and construction



Summary ‘#7
DLR

= Concentrated solar energy can drive high-temperature chemical redox
reactions to produce hydrogen or syngas (w/o producing electricity first)

» Reactor efficiencies can be increased significantly by moving the redox
material instead of changing its surrounding conditions (temp. / pg,)
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