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Green Hydrogen from Water Splitting by Solar Energy
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Solar Thermochemical Redox Cycle
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Solar Thermochemical Redox Cycle
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Solar Thermochemical Redox Cycle
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Reactor and System Design Concepts

▪ Redox material must be cycled between 

1. High (1450°C) and low (900°C) temperatures  → heat recovery required

2. Atmospheres with low oxygen partial pressures and steam atmospheres

• either purge gas or vacuum for low pO2

• heat/power demand for steam / purge gas / vacuum generation important

▪ Move the material or change its surrounding conditions? 
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Source: IMDEA / SUN-to-LIQUID project

Solar Thermochemical Hydrogen Production
State of the Art: Batch Reactors with Fixed, Porous Monoliths of Redox Material
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Source: IMDEA / SUN-to-LIQUID project

Solar Thermochemical Hydrogen Production
State of the Art: Batch Reactors with Fixed, Porous Monoliths of Redox Material
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Source: Plataforma Solar de Almeria

(Owned by the Spanish research

centre CIEMAT)

Source: DLR
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Source: IMDEA / SUN-to-LIQUID project

Solar Thermochemical Hydrogen Production
State of the Art: Batch Reactors with Fixed, Porous Monoliths of Redox Material
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Advantages of Moving Particle Reactor Systems

▪ Continuous and more flexible operation

▪ Less sensible heat losses, less thermal stresses

▪ Easy replacement of redox material

▪ Better heat transfer & better heat recovery
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DOE-STCH Project (2015-2017)
Vacuum Reactors with Moving Ceria Particles
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initial concept

Ceria (CeO2) Particles 

• Sauter diameter 277 µm

• Density 6.6 g/cm³ 

image: Grobbel2017

image: Ermanoski2016
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DOE-STCH Project (2015-2017)
Vacuum Reactors with Moving Ceria Particles
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Ongoing Work of Sandia and DLR

Main goals:

▪ Improve vacuum receiver-reactors 

▪ Prove pressure separation by packed bed 

between two receivers 

▪ Collect more operational data in DLR Synlight®
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SOMPIHR
Sweep (gas) & open moving particle receiver with heat recovery

▪ Lessons Learned 
→ New concept

▪ Advantages:
▪ Continuous operation

▪ good part load behavior through 
particle flow control

▪ No window

▪ No high-temperature valves

▪ purge gas for efficient heat 
recovery

▪ high-temperature purge gas 
cleaning → lower parasitic losses

▪ Patent pending
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SOMPIHR
Sweep (gas) & open moving particle receiver with heat recovery

▪ Projected solar to H2 efficiency for 

prototype scale (2 kW): ~18% [Weber2023] 
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Modeling Solar Particle Receivers
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Challenges and Outlook
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Challenges (some of them):

▪ Moving particles at very high temperatures (1500°C) 

▪ Wear on particles and components

▪ Gas flow control through particle beds (uniformity, pressure drop, …)

Outlook:

▪ Prototype testing of vacuum reactor system in DLR Synlight

▪ Modeling of new SOMPIHR concept (i.e. CFD-DEM models)

▪ Prototype design and construction 



Summary

▪ Concentrated solar energy can drive high-temperature chemical redox 

reactions to produce hydrogen or syngas (w/o producing electricity first)

▪ Reactor efficiencies can be increased significantly by moving the redox 

material instead of changing its surrounding conditions (temp. / pO2)
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